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Abstract

This paper examines the ordinary least squares (OLS) estimator of the struc-
tural parameters in a class of stylised macroeconomic models in which agents are
boundedly rational and use an adaptive learning rule to form expectations of the
endogenous variable. The popularity of this type of model has recently increased
amongst applied economists and policy makers who seek to estimate it empirically.
Two prominent learning algorithms are considered, namely constant gain and de-
creasing gain learning. For each of the two learning rules, the analysis proceeds
in two stages. First, the paper derives the asymptotic properties of agents’ ex-
pectations. At the second stage, the paper derives the asymptotics of OLS in the
structural model, taken the first stage learning dynamics as given. In the case of
constant gain learning, the structural model effectively amounts to a static, cointe-
grating or co-explosiveness regression. With decreasing gain learning, the regressors
are asymptotically collinear such that OLS does not satisfy, in general, the Grenan-
der conditions for consistent estimability. Nevertheless, this paper shows that the
OLS estimator remains consistent in all models considered. It also shows, however,
that its asymptotic distribution, and hence any inference based upon it, may be
non-standard.

keywords: adaptive learning, non-stationary regression, ordinary least squares,
consistency, asymptotic distribution.
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1 Introduction

The purpose of this paper is to investigate the properties of the ordinary least squares esti-
mator of the structural parameters in a prototypical macroeconomic model with adaptive
learning. In particular, we consider a model class that has received substantial attention
in the economic theory literature:

Y :ﬂyflt_l—i—(Sxt—l—at, t = 1,2,... (11)

where Yiji—1 denotes agents’ expectations about y; based on the information available at
time ¢ — 1, the driving variable z; is exogenous, and the error terms ¢; are independent
and identically distributed (i.i.d.). Models of this type have a long tradition in economics.
For instance, the classical cobweb model fits into this form, see e.g. Bray & Savin| (1986))
and [Fourgeaud, Gourieroux & Pradel (1986), as does the Lucas| (1973)) aggregate supply
model and the New Keynesian Phillips curve (NKPC), cf. [Roberts (1995) and |Clarida,
Gali & Gertler| (2000). In some settings, is the solution of a system of behavioural
equations, with the coefficients 8 and 0 being functions of deep parameters. What is
common to most specifications is, however, that the slope parameter § generally turns
out to be unrestricted while the autoregressive coefficient [ lies within the unit interval,
as in the NKPC, or to be negative, as in the cobweb model. For the purposes of this
paper, we will refer the coefficients in (1.1) as structural parameters as they can often be
given an economic interpretation: For instance, in the NKPC, § is the discount factor
and ¢ the slope of the Phillips curve.

With a view to analysing the econometrics of model consider its economic aspects
first: Of central interest in the economic literature is the way in which the expectations
Y~ are modelled. The traditional approach is via rational expectations, cf. Muth| (1961)
or Sargent| (2008), which assumes that agents, when forming expectations yf|t71, have
complete knowledge of the model and the past F;_y = o0 (ys, 5 <t — 1,245 <t) and
make best use of it, Le. set yj, | = E (y¢|Fi—1). Taking conditional expectations in 1)
yields E (y;| Fi—1) = ax; with 5

o= 5 (1.2)

The so-called rational expectations equilibrium (REE) model is thus
Yy = Qg + & (1.3)

Obviously, under the assumption of rational expectations, only « is identified; not, how-
ever, 0 and [ separately.

More recently, economic agents are frequently assumed to be boundedly rational and to
form their expectations via adaptive learning, see Sargent|(1993,|1999)), Evans & Honkapo-
hjal (2001), Hommes| (2002)) or Gaspar, Smets & Vestin| (2010). The basic idea underlying
all adaptive learning procedures is that agents employ an auxiliary model, or so-called
perceived law of motion, to form their expectations yﬁtfl. One way to specify this auxil-
iary model is to assume that its functional form corresponds to that of the REE in ([1.3).
Generally, agents are presumed not to know the parameter o and therefore replace it
by some estimate a;_;, based on information F;_;. Typically, the parameter a will be
estimated by some recursive procedure which, in general, has the form of a stochastic



approximation algorithm:

x
ap = a1+ %r—t (Ye — az—1x4) (1.4a)
t

Ty = T+ (x? - 7’t71> ; (1.4b)

where ~; is some weighting, or gain, sequence. This updating algorithm can be viewed
as generalising the recursive least squares estimator of «, which has v, = 1/t and whose
ry is the sample second moment of x;. For recent surveys of stochastic approximation
algorithms and their applications, see |Lai| (2003) and Kushner| (2010). With the learning
scheme in , agents’ expectation will be given by

yf|t_1 = Q1T
and the resulting so-called actual law of motion, or data generating process (DGP), is
Yt = Baz_1me + 024 + . (1.5)

It is thus plain that, in models with adaptive learning, the expectational term Yiji—1
creates a forecast feedback, resulting in a self-referential, and thus highly complex, DGP.
Moreover, the stochastic behaviour of the DGP depends crucially on the specification of
the gain sequence ;.

Empirical models with learning have recently gained popularity amongst researchers and
policy makers; see for instance the New Keynesian Phillips curve models estimated by
Milani (2007) and |Chevillon, Massmann & Mavroeidis| (2010), the European Central
Bank’s New Multi-Country Model by Dieppe, Gonzalez Pandiella, Hall & Willman| (2011)),
the inflation model by Malmedier & Nagel| (2013) and the model of stock market volatility
by |Adam, Marcet & Nicolini (2015)). Yet not much is known about the econometrics of
adaptive learning models. In this paper, we contribute to filling this gap by investigating
the asymptotic behaviour of the OLS estimator of the structural parameters 3 and ¢ in
, henceforth denoted by 8 and ¢, respectively. We will refer to this issue as the
external estimation problem (EEP). In particular, the EEP concerns the question of the
weak consistency of the OLS estimator and of its asymptotic distribution, the former in
fact being a natural by-product of the existence of the latter[] Note that the model in
is a linear regression model with predetermined stochastic regressors. There is a
rich literature on the properties of OLS estimators in this model class, yet even the most
powerful available results cannot be applied to particular models considered in this paper.
This problem is particularly acute for the question of consistency and will be commented
on further below. With the properties of 5 and ¢ in thus being generally unsettled, it
is as yet unclear whether empirical implementations of it are built on sound econometric
principles. Examining the OLS estimator of 5 and ¢§ is the main purpose of this paper,
and the aim is to provide a response to the contention of [Marcet & Sargent| (1988, p. 171):

“It is open and problematic whether [a learning system/ can ever be expected to
yield econometric models that can be applied. ... [Our results| probably imply
that these parameters cannot be consistently estimated.”

!The issue of strong consistency of the OLS estimator is investigated in a companion paper, see
Christopeit & Massmann (2012).



With a view to examining the EEP we will first have to address the asymptotic properties
of agents’ forecast a, of a, see above, an issue usually referred to internal forecasting
problem (IFP). Two aspects of this issue are of interest: (i) Does a, converge to the REE a?
(71) If so, at which rate does a, converges? The first of these questions has been conclusively
answered in the literature; a good account of seminal results can be found in Benveniste,
Meétivier & Priouret (1990)) and Kottmann| (1990)). In particular, the literature generally
distinguishes between two basic approaches of specifying the gain sequence: constant gain
learning, i.e. with 74 = 7, and decreasing gain learning, for which v, — 0. Tt can be shown
that, in the former case, a; does not in general converge to a. Agents are thus said to
learn perpetually. As opposed to that, agents are fully rational asymptotically in the case
of decreasing gain learning since the convergence a; — a does hold with probability one
under suitable summability assumptions on ;. This result presumes that g < 1 since
it can be shown that, if § > 1, a; diverges, see e.g. |Christopeit & Massmann| (2010) for
details. Indeed, while most of the models in the literature presume that g € (0, 1), there
are some that consider negative values; see, for example, |Evans, Honkapohja, Sargent
& Williams| (2013) and Brock & Hommes (1997) who analyse cobweb-type models with
—0.5 < B < 1 and B < —1, respectively. With the question of convergence under
decreasing gain settled, it is surprising that the second of the two questions above has
to-date only received scarce attention in the literature. Results on the convergence rate
for a particular parameterisation have been derived by Marcet & Sargent| (1995) and for
agents employing a Bayesian estimation approach by [Vives (1993). Since, however, the
asymptotic behaviour of a; turns out to be crucial for the properties of the OLS estimator
in the EEP we provide a complete treatment of this issue in the present paper.

As to the EEP, the few existing results on the asymptotic behaviour of B and & pertain
mainly to the case of constant gain learning, see e.g. (Chevillon et al. (2010) and Adam
et al| (2015). In this case, the regressor a; is an autoregressive process with constant
coefficients and, depending on the value of 5 and ~, is either stationary ergodic, a random
walk (possibly with a negative unit root) with drift, or explosive, given suitable input
sequences ;. We will appeal to results available in the literature to derive the asymptotic
properties of 4 and J; see |Lai & Wei (1985) for the stationary ergodic case, Chan & Wei
(1988) for the (negative) unit root case, and Phillips & Magdalinos| (2008) as well as Wang
& Yu| (2015) for the explosive case. On the other hand, when learning is of decreasing
gain type such that a; — « with probability one, then the regressors in (1.5)) will be
asymptotically collinear:

Y ~ Bax; + 0xy + &, (1.6)

i.e. the asymptotic moment matrix

will be singular. This violates one of the classical “Grenander conditions”, i.e. the condition
that the regressor sample second moment matrix, suitably scaled, converges to a positive
definite limit; see Grenander & Rosenblatt| (1957). In the econometrics literature the
singularity of M is generally referred to as absence of strong asymptotic identification,
see e.g. Davidson & MacKinnon| (1993) or Newey & McFadden| (1994). Given that the
Grenander conditions are only sufficient but not necessary for consistent estimability,
it is not clear a priori whether the OLS estimators S and ¢ in possess desirable
asymptotic properties. One leading example in which the asymptotic singularity of M



does not preclude the consistency of OLS is that of a linear model with slowly varying
regressors, see [Phillips| (2007)). The regressors in that paper, however, are deterministic
while in our model a; is stochastic. Thus, seminal results such as the necessary condition
for weak consistency of OLS in the simple linear regression model with a deterministic
explanatory variable, as derived by |[Lai & Robbins| (1977), are not applicable in our
setting. Corresponding results for predetermined regressors can be found in, for instance,
Christopeit & Helmes (1980), Lai & Wei (19824, [19828) and (Christopeit, (1986)). However,
as will be discussed in Section [4 they do not satisfy our needs either.

The present paper hence investigates two issues. First, as part of the IFP, the influence
of the choice of gain sequence v, on the asymptotics of a; is investigated. Secondly, the
effect of v, on the properties of the OLS estimators 5 and 0 is explored in the context of
the EEP. Specifically, we consider models such as — with either a constant gain

Yt =7, (17)
or with a decreasing gain sequence
%=1, (18)

where v > 0. To see the motivation for this choice, note that, for a decreasing gain
sequence, a set of summability conditions guaranteeing the convergence of a; to « is
S, 7 = o0 but 3°,72In*t < oo, cf. Kottmann| (1990). These conditions would suggest
considering sequences v, = ~y/t"7, with n € (%,1} . Yet it is to be expected that the
case 7 = 1 exhibits a behaviour that is furthest removed from that in the constant
gain case, obtained by setting n = 0. Our choice of gain sequences can hence be seen
as covering the two extremes on a behavioural continuum without introducing a further
parameter, namely 7, that would either have to be estimated or assumed known in the
EEP. Moreover, recall also that «, = 1/t yields recursive least squares learning while
constant gain learning is known to be equivalent to exponential smoothing, both of which
are, due to their intuitive appeal, of interest per se. Indeed, the economic literature often
uses recursive least squares for modelling the learning of agents in stable regimes, as it
implies that a forecast is a linear combination of past data, each of which receives the
same weight, no matter how far in the past it was observed. Exponential smoothing, on
the other hand, means that the weight given to past observations declines exponentially,
making it predestined to be used by agents in unstable regimes. For instance, Marcet
& Nicolini| (2003) combine both types of learning in a switching model of hyperinflation,
while Evans & Ramey| (2006)) discuss their relationship to the Lucas critique.

In order to delineate the influence of the choice of 7; on agents’ forecasts on the one hand
and on the behaviour of the OLS estimators # and ¢ on the other hand, without obscuring
it by the influence of the regressors x;, we consider the very simplest scenario in which
r; = x is a constant. In this case, r, = 22 is the stationary solution of such that,
for any starting value rg, lim;_,» 7; = 22. For constant gain learning, this is true whenever
~v € (0,1), while for decreasing gain it holds for all v > 0. Without loss of generality, we
may then assume that x = 1, any other value of x merely requiring that the variance of ¢,
be changed from o2 to o/x?. Working with this stationary solution for r;, the recursion
in (|1.4a)) reduces to

ar = ag-1+ % (Y — ar-1) (1.9)
while the structural equation in (1.5) becomes
Yt = ) + Bat_l + &;. (110)

7



Note that by inserting (1.10)) into ((1.9) the dynamics of a; may also be written as

ay = (1 —Ct) ai—1 + V¢ (5+5t), (111)
where we have defined
Note that under constant gain learning, ¢; is equal to
c=(1- B, (1.13)

cf. (1.7), while it is equal to ¢; = ¢/t under decreasing gain, see (|1.8]).

The DGP we consider in this paper is hence —. Time-varying regressor se-
quences x; are beyond the scope of the present paper. Similarly, replacing yf‘t_l in the
economic model by forward-looking expectations yy 10> 1-€. expectations of time t+1
formed by agents at time ¢, introduces economic as well as econometric complications.
While a detailed analysis of these issues is left to future research the likely ramifications
of both extensions will be looked at in Section [l

The first central conclusion of our analysis is that the asymptotics of a;, and of B\ as well
as 0 critically depend on the value of ¢ in (L.13). In particular, regarding the interplay
of IFP and EEP, it is clear that there is some sort of trade-off between the asymptotic
behaviour of a; on the one hand and that of the OLS estimators on the other, in the
sense that convergence of agents’ expectations to the REE is likely to have detrimental
effects on the convergence of the OLS estimator, and vice versa. Our second central
conclusion is that in all of the aforementioned settings the structural parameters S and
0 can be consistently estimated although in all but one scenario the OLS estimators will
have differing, highly non-standard asymptotic distributions. This result hence provides
an answer to Marcet & Sargent’s speculation quoted above, in that the learning systems
considered in this paper do yield useful, albeit complex, econometric models.

The main contribution of the paper to the literature is hence that it derives the asymp-
totics of the OLS estimator § and [ in the setting of model under both constant and
decreasing gain learning. This has not been attempted before. The paper thus provides a
theoretical justification for estimating this type of model empirically, which is becoming
more and more popular in the profession. As a second major contribution, this paper
provides a complete analysis of the asymptotics of agents’ expectations a; in the said
model setting, and in particular of the rate at which a; converges to the REE, if at all.
Again, this is a novel undertaking and only comparable to the results derived in special
cases by Marcet & Sargent| (1995) and Vives| (1993). It will be of potential interest in the
economic theory literature. Finally, econometricians will likely find the third contribu-
tion instructive, namely that the paper effectively provides a synopsis of models that yield
vastly different dynamics depending on the choice of their parameter spaces, covering unit
root and explosive behaviour as much as illustrating issues like non-standard convergence
rates and singular variance-covariance matrices.

The paper is structured as follows: Our results pertaining to constant gain learning are
presented in Section [2| whilst those relating to decreasing gain learning are described in
Section[3] Subsidiary issues and model extensions are discussed in Section [4] before Section
concludes. Proofs of the constant gain results are relegated to Appendix [A] and those
of the decreasing gain results to Appendix The proofs of some auxiliary results are
contained in Appendices [CHE]



2 Constant gain learning

In this section, we consider the model in (1.10))-(1.12) with a constant gain sequence
v = > 0. In particular, the model of interest comprises the structural equation

Yr =0+ Baz1 + & (2.1)
while, for § # 1, the recursion in ([1.11]) is now written as
a; = (1—c)a_1 + ca+ve (2.2a)
since ca = 9. As before,
c=(1-B). 2.3)
In the special case of § =1, ([2.2a)) is replaced by
ay = Q41 + ’7((5 + €t). (22b)

Indeed, can be considered as resulting from taking the limit 3 — 1 in (2.2a). Note
that it is common in the economics literature to assume that v € (0,1) and that 5 < 1.
Yet, from a mathematical point of view, any value of § and any positive value of v can
and will in the following be admitted. We will make the following maintained assumptions
on the error term ¢; and the initial value ay throughout the entire paper.

Assumption MA1
The &, are i.i.d. with mean 0 and variance o>.

Assumption MA2
The initial value ay may be deterministic or stochastic. In the latter case, it is in L* and
independent of e, t > 1.

It will turn out that the parameter c is decisive for the behaviour of a; in Section [2.1] as
well as for that of the OLS estimators 8 and d in Section .

2.1 IFP

Let us first consider the internal forecasting problem (IFP), i.e. the asymptotic behaviour
of agents’ forecast a; in . The results will be used in the analysis of the EEP below,
yet they are also of interest per se. Depending on the value of ¢, three different types of
autoregressive processes arise:

(1) If 0 < ¢ < 2, the autoregressive coefficient
p=1—c¢

in (2.2a)) satisfies |p| < 1. Therefore we are in the classical scenario of stable autore-
gressive processes.

(i) If ¢ = 0 then p = 1 and (2.24)) is a random walk with drift. As opposed to that, if
¢ = 2 then p = —1 and (2.2b) is an alternating random walk with drift. Both are
hence unit root processes with drift. The latter scenario of a negative unit root has
not received much attention in the literature, the main reference being (Chan & Wei
(1988). Indeed, the behaviour of a; under a negative unit root turns out below to
be very different from the case with a positive unit root.




(111)) When ¢ < 0 or ¢ > 2, we have |[p| > 1, and (2.2a]) is an explosive autoregressive
process.

The asymptotic behaviour of a; for the various cases is summarised in the following
theorem. The proof is given in Appendix [A.2]

Theorem 1
(1) If 0 < ¢ < 2 then a; converges in distribution to the law L of the stationary solution,
i.e. to the invariant distribution. This is nondegenerate with mean o and positive
variance.

(i1) If ¢ = 0 then a; is a random walk with drift 6 and
a; = ot + o(t) a.s..

If, instead, ¢ = 2 then a; is an alternating random walk with drift 2o and

1
o't

a5 N(0,1). (2.4)

(iii) If ¢ < 0 or ¢ > 2 then (1 —c¢) "a; converges with probability one and in L* to a
nondegenerate limit with mean Eag — a.

It is hence plain that, in none of the three cases, a; converges to the REE « in any
probabilistic sense. Agents will thus not be rational in the limit but learn ad infinitum.

As mentioned above, the behaviour of a; depends on the value of ¢ = (1 — ). While (5 is
estimated as part of the EEP the value of 7y is assumed known for the time being. A known
v is of course synonymous with the investigator specifying how quickly agents discount
past observations in constructing their forecasts of a.. Issues resulting from assuming that
7 is unknown are discussed in Section [4]

2.2 EEP

We now turn to the external estimation problem (EEP) and to the problem of estimating
the unknown parameter vector § = (4, 3)" in the structural equation (2.I). It turns out
that prominent sufficient conditions for the consistency of OLS available in the literature
do not generally apply, as will discussed in Section {4 Yet the following observation on
the relationship between the EEP on the one side and OLS estimation in a first-order
autoregressive model on the other side will allow us to derive the limiting distribution
of the OLS estimator by making use of the asymptotics of a;, as derived in Theorem [}
and of results available in the time series literature. In particular, note that the OLS
estimator 6r = (07, fr)" of 6 based on T observations is traditionally written in the form

é\T -0 = MIITlUT, (25)

where the second moment matrix Myp is given by

T ZT_ A1
My = ( t=1 (2.6)
Zthl at—1 Zthl a’?fl

10



and

uT:( e ) (2.7)

Zle at—1€¢

with a; generated by 1} Yet an alternative way of analysing é\T — 0 is to examine in
lieu of equation (2.1 the following AR(1)-model:

a; = 5 + fa;_, + e, (2.8)

where, generally, the sequence a; as well as the parameter vector 8* = (§*, 3*)" differ from,
respectively, a; and 6 above. The OLS estimator of #* is given by

s — 0 = M ulh, (2.9)

where M7 is defined analogously to (2.6) and

T
u*T:fy( 2ot €t )

S a;
=1 @_1&t

If 8 # 1, suppose that 6* = ca and 8* = 1 —c. Then, if started with the same initial value
ag = a, it is plain that a; = a} for all ¢, that My = M} and that uy = v 'u}.. Hence it

follows from and (2.9) that
O — 0=~ <§; - 9*) . (2.10)

This identity will continue to hold for 5 = 1, in which case the two pairs of coeflicients
are given by 0* = 4 and f* = 1. In particular, if 6 = 0, the asymptotic behaviour of 01
needs to be evaluated at 0* = 0 and * = 1, corresponding to the Dickey-Fuller model
with drift.

In summary, the asymptotic behaviour of the OLS estimator in (2.1) is, up to a factor
of proportionality, equal to that of the OLS estimator in the AR(1)-model (2.8)). This
equivalence will be exploited in the proof of Theorem [2] see Appendix [A.3]

For the explosive case of constant gain learning, we need the following additional assump-
tion.

Assumption CG
The limit

z = Z(l —) ey
t=1

possesses a continuous distribution function.

Note that the limit exists both in L? and with probability one since |p| = |1 —¢| > 1.
Sufficient conditions for Assumption [CG| to hold will be discussed at the end of this
section.

Theorem 2 R L
The OLS estimator Oy = (67, Br)" for the parameters 6 = (5, 8) in model (2.1) has the

following asymptotic behaviour.
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(1) If 0 < ¢ < 2 then Or — 0 is asymptotically normal at rate /T :

VT(0r —6) 5 N (0, OQM”) , (2.11)

— 1 o}
M_(a 02+a2)’

and 02 = 0272/ (1 — (1 — ¢)?) is the variance of the invariant distribution of a;.

(i) If c =0 and § # 0 then

where

\/TST—é d 2
<T3/2((BT— 1)) ) = N (0,0°Q),

where

Q= ( 46 _lg% ) . (2.12)

where

If, however, ¢ = 2 then

( \/T(ST —9) > d 1 ( UB(l)fol E(S)st )

T(Br — B) - fol B(s)2ds —% [EQ(l) — 1]

where B and B are two independent standard Brownian motions.

(111) If ¢ < 0 or ¢ > 2 then, under the additional Assumption

\/T(S\T—(S) iN(O,U2),
1 [(1—0)2—1}11
Yo+ (I=c)ea/[(1—c)—1]

(1—c)" (Br—5) %

where v and v are independent L*-variables, and the two estimators are asymptoti-
cally independent.

Some of the theorem’s statements make use, of course, of standard textbook results,
see e.g. the stable case (i) and the unit root case (#) with ¢ = 0 and § = 0. Also,

the asymptotic normality of By at rate T2 in the unit root case (i) with ¢ = 0 and
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d # 0 corresponds to the results derived by West| (1988)). The explosive case (iii) is
based on a recent paper by Wang & Yu (2015)), see also Remark @] in Appendix For
the alternating unit root case (ii) with ¢ = 2, however, we obtain a nonstandard limit
distribution of the Dickey-Fuller type that, to the best of our knowledge, has not yet been
documented in the literature. Note that it concerns the joint limiting distribution of the
OLS estimator of the intercept and slope parameters in (2.2, or indeed , and its
proof builds on the results derived by Chan & Weil (1988). A negative unit root has also
been considered by, for instance, Abadir| (1993), albeit in the context of the uncentred
normalised autocorrelation coefficient.

The crucial aspect of Theorem [2| is that the behaviour of the OLS estimator differs
markedly depending on the value of ¢ = (1 — [3)y, i.e. on the value of the autoregres-
sive coefficient [ and of the gain parameter v in the structural model. The juxtaposition
of the results for different ¢ is meant to reinforce that conclusion. Importantly, the OLS
estimators of 0 and 3 are consistent or even super-consistent. Moreover, inference on both
parameters is feasible in all scenarios, provided one takes account of the non-standard dis-
tributions resulting in cases (i) and (%). Finally, the usual OLS estimator for o2 is also
consistent, as will be discussed in Section

A note on Assumption [CG| seems warranted. Though it seems impossible to give a com-
plete characterisation of those distribution functions F' of ¢; for which the assumption
holds, useful sufficient conditions are available. They are based on a theorem by Lévy,
cf. Kawatal (1972, Theorem 13.1.2), which, in turn, relies on the observation that the
point spectrum of the sum of two independent random variables is the vector sum of the
individual point spectra. A trivial consequence of the theorem is that, if the distribution
function F' of £, is continuous, then so is that of z. Hence Assumption [CG|is satisfied. A
consequence of the nontrivial part of the theorem is that, if F' has compact support and
discontinuities outside some neighborhood of 0, then Assumption [CG|is also satisfied. Tt
is definitely not satisfied for discontinuous F' with unbounded support and for distribution
functions having a saltus at 0.

13



3 Decreasing gain learning

In this section, we consider the model in (1.10)-(1.12)) with the gain sequence specified
as v, = v/t for some constant v > 0. In view of the discussion in the introduction, we
consider the case of 5 < 1 so as to ensure that a; — «. The model is hence given by:

Y =0 + Paz1 + &, (3.1)
c
a; = <1 — Z) a1 + %/ (5 + Et) s (32)
where, again,
c=(1-75)~. (3.3)

Note that the condition § < 1 corresponds to ¢ > 0. The value ¢ will again turn out to
be crucial for the behaviour of a; as well as of 5 and 4.

Recall the maintained Assumptions MAT and [MA2 mentioned in Section 2l The following
two additional assumptions about the error term e, are made at various stages in the
subsequent analysis.

Assumption DG1
The €, possess finite fourth moments my.

Assumption DG2
For ¢ < 1/2 and for every sequence of numbers 0; — 1, the limit

- €
Z i
vV = : 9%1—_0,
=1
has a continuous distribution function.

The limit v exists both in L? and with probability one. Comments apply similar to those
on Assumption [CG] made at the end of Section

We will now first discuss the internal forecasting problem (IFP) in the context of model
(8-1)-(B-3) before turning to the external estimation problem (EEP) in Section [3.2]

3.1 IFP

As mentioned in the introduction, the mere convergence of a; to « follows easily from well-
known results on recursive algorithms, see for instance |Christopeit & Massmann| (2010,
section 3.1). In particular, Kottmann’s (1990) sufficient conditions are met since 5 < 1 by
assumption and our choice of gain sequence 7, = v/t satisfies the summability conditions
>, =00 and > ,72In*t < co. However, for our analysis of the asymptotic distribution
of the OLS estimator in Section we will need the exact rates of convergence of a;. To
see this, consider for simplicity a simple linear model with a deterministic regressor: it
was shown by [Lai & Robbins| (1977) that the condition that the sum of squared mean-
adjusted regressors diverges is necessary and sufficient for the (strong) consistency of the
OLS estimator. Although the structural equation in is a linear regression model
with a predetermined stochastic regressor, it is intuitive that a comparable condition will
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again have to hold. The convergence rates of a; are instrumental in the analysis of the
EEP. They are of course also of interest per se.

The IFP in the context of the model in (3.1)-(3.3) is strikingly non-standard. This can
be gleaned from the following characteristics of the process a;: First, a; is autoregres-
sive of first order with a time-varying coefficient which is intrinsically local-to-unity. The
behaviour of models of that kind has been analysed by [Phillips| (1987), with recent ex-
tensions to autoregressive coefficients of the type 1 — ¢/7; with 7, = o(t) by Phillips &
Magdalinos (2007). Next, the impact of the intercept § and of the disturbance &, on a,
tends to zero for large t. In the limit, a; thus tends to a constant. As a result, the process
a; is highly non-stationary, as reflected in, for instance, the fact that its variance decreases
to zero at a rate which increases with c. Finally, for fixed ¢t and h — oo, the covariance
Cov (at, a;.p) behaves as O (h™°) and the correlation

O (h'/?7<) if ¢ >1/2,
Corr (ar,an) = § ¢ ((1n h)*”?) if o =1/2

while, if ¢ < 1/2, the correlation tends to a non-zero constant. In the context of stationary
stochastic processes, the behaviour for ¢ > 1/2 corresponds to what is called long memory,
see Brockwell & Davis| (1991). It is interesting to note that memory for ¢ = 1/2 is even
longer while, for ¢ < 1/2, it is infinite.

The following theorem describes the asymptotic distribution of a; in general and its con-
vergence rates in particular. Its proof will be given in Appendix

Theorem 3
(i) If ¢ > 1/2 then a, — « is asymptotically normal at rate \/t:

—\/2;7_1\/5(%—04) 4 N(0,1).

(11) If ¢ = 1/2 then a; — « is asymptotically normal at rate \/t/Int:

1 t d
E E(at—a)%/\/’((),l)

(ii1) If ¢ < 1/2 then
lim t(a; — ) = u
t—o0
in L2, where u = (ag — a) Bo+~yv, By is some positive constant depending on ¢, and
v is as defined in Assumption DG

The convergence rates of a, are illustrated in Figure[I] It is plain that, as ¢ decreases, the
convergence of a, to o gets progressively slower, from /2 to (t/In(t))"/? and to t° with
¢ < 1/2. Moreover, the value ¢ = 1/2 can be interpreted as a boundary separating ‘good’
asymptotic behaviour of a; from ‘poor’ behaviour, in the sense of speed of convergence.
To gain an intuitionﬂ for this threshold, consider the simple case of v = 1, as in recursive
least squares learning, such that § = 1 — ¢. Abstracting from the error term ¢;, the

2We are grateful to George Evans for drawing our attention to this interpretation.
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Figure 1: The convergence rates of a, to normality. Solid line: f(t) = /¢, dashed line:

f(t) = \/t/Int, dotted line: f(t) = t3/5.

structural equation in (3.1)) is given by y; = 0 + Byf, since y§ = a;_;. Denoting the REE
by § = a =9/(1 — ) the structural equation can be written as

v =7+ By, — 7).

It thus follows that, at the one extreme, i.e. when 5 = 1, y, = y; and the value of the
process is always equal to what agents believe it to be. At the other extreme, i.e. when
B8 =0, 3, = y and the process stays put at the REE. If y, takes an intermediate value
but is closer to yf than to g, such that § > 1/2 < ¢ < 1/2, then the speed at which it
converges towards g is fast. Conversely, when § < 1/2 < ¢ > 1/2, then y, is already close
to y and hence convergence towards it is slow. Indeed, the threshold of 1/2 is reminiscent
of a similar boundary discussed in [Evans et al. (2013)). In view of the aforementioned
trade-off between the behaviour of a; and that of B\T, one should expect the converse for
the performance of Sr. This will indeed be seen in Theorem

The result of y/t-convergence in part (i) of Theorem [3| also follows from Benveniste et al.
(1990), see their Theorem 3 on p. 110 and their Theorem 13 on p. 332, and has been used
by Marcet & Sargent|(1995)) and Evans & Honkapohjal (2001, Theorem 7.10), respectively.
Indeed, Benveniste et al. (1990, Theorem 3, p. 110) explicitly state that a particular
eigenvalue must be smaller than —1/2, a condition that translates into ¢ > 1/2 in our
context. Parts (%) and (444) of our Theorem (3| are, to the best of our knowledge, new.

Theorem 3| states that, for ¢ < 1/2, the asymptotic distribution of a, is, in general, not
normal. The reason for that is that v, as defined in Assumption[DG2] is a random nuisance
parameter. Yet, making the explicit assumption that the error terms are Gaussian, the
ensuing corollary provides an extension of Theorem [3| simply by virtue of v being a
weighted sum of the ;. Note that, in this case, Assumption[DG2]is automatically satisfied.

Corollary 1
Consider part (iii) of Theorem|3. If e, is normally distributed then a;— « is asymptotically
normal at rate t°.
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3.2 EEP

We now turn to the estimation of the structural parameters in (3.1). Our focus will be on
the slope coefficient 8 from which the properties of the estimator of § follow immediately,
see the discussion at the end of this section. As mentioned earlier, the structural equation
is a simple linear regression model with predetermined stochastic regressors, with error
terms that are i.i.d.. The OLS estimator of 5 can be written as

(3.4)

with
ur = Z (Clt_l — d;) Et (35)
Ar =" (a1 —az)”. (3.6)

—— 1 T
and ap = 7>, a1

Although OLS estimation in this model class has a very long tradition in statistics and
econometrics it is not clear a priori whether or not [ is consistent in the present setting.
The reason for this is that neither necessary nor minimally sufficient conditions for the
weak consistency of the OLS estimator in a linear regression model with predetermined
stochastic regressors and i.i.d. errors are available in the literature. And the sufficient
conditions that do exist turn out not to be met in our model for some parameter constel-
lations. In particular, the weak consistency of OLS is not evident since, as argued in the
introduction, one of the classical Grenander conditions is violated in model (3.1)-(3.3),
namely the non-singularity of the limiting regressor sample second moment matrix. Inci-
dentally, the best result for the strong consistency of OLS so far obtained is not satisfied
in our model either if ¢ > 1/2, as will be discussed further in Section [

It is hence plain that in examining the asymptotic properties of the OLS estimator in (3.4
no recourse can be taken to existing results. We hence resort to analysing our model from
first principles, making use of the behaviour of the predetermined regressor a, as derived
in Theorem [3| above. In particular, Theorem [ below will deal with the cases ¢ > 1/2
and ¢ < 1/2. The boundary case ¢ = 1/2 seems to require an approach entirely different
from ours and is thus left to future research. A comment on the difficulties arising in that
derivation will be made in Remark [7] as part of the proof of Theorem []in Appendix

Theorem 4
(i) If ¢ > 1/2 then, under the additional Assumption|DG1),

\/A_T(B\T_B) i}N(O,O'Q).

The divergence rate of Ar is given by

. Arp 0272
plim — = .
Tooo INT  2¢—1
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Figure 2: The divergence rates of Ap. Solid line: f(T) = InT, dotted line: f(T) = T"=3/4.
(11) If ¢ < 1/2 then, under the additional Assumption
~ 2 4 4
Ar (Br—B8) 5 o

The divergence rate of Ar is given by

lim i = 2
g%oo Tt—2e ’

with w as in Theorem[d (iii) and v* = 2/ (1 — 2¢) (1 — ¢)”.

The divergence rates of Ar are illustrated in Figure Clearly, the divergence of Ar,
and hence the convergence of Sr, increases as ¢ decreases, as was expected given that
the convergence of a; to « gets slower as ¢ becomes smaller, see Theorem [3| This is the
aforementioned trade-off between the asymptotic behaviour of a, and that of gr.

Note that Ar is a random normalising sequence whose presence can be interpreted as fol-
lows: Consider a textbook simple linear regression model with i.i.d.(0, ¢%) error terms and

exogenous regressors xi,...,rr. It is well-known that the variance of the OLS estimator
of the regression slope, conditional on Xy = o(z1,...,z7), can be written as
~ 0'2
Var(fr | Xr) = A
T

with A7 denoting again the sum of the squared mean-adjusted regressors. The usual

t-statistic is then R
VAr(Br — B)

o

t =

where 02 is a consistent estimator of the unknown variance 0. Returning to the model of
interest in —, it is clear that the regressors are predetermined and not exogenous,
yet part (i) of Theorem {4 effectively states that, when ¢ > 1/2, it is the analogue of
the conventional ¢-statistic that has an asymptotic standard normal distribution while
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part (ii) shows that, when ¢ < 1/2, the analogue of the usual Wald statistic is indeed
asymptotically y2-distributed.

As will be argued in the proof of Theorem {4, the asymptotic distribution of BT is in
general not Gaussian when ¢ < 1/2. The reason for this is that the limits of both uy and
Ar depend on a random nuisance parameter, viz. v as defined in Assumption [DG2] This
is similar to the random nuisance parameter appearing in the asymptotic distribution
theory of explosive AR(1)-models,

Zt = ¢Zt_1 + Et, with ’¢| > 1, (37)

where both the numerator 37, 2,1, and the denominator 3./ 22 | of the OLS esti-
mator tend geometrically fast to some nondegenerate random limit, see e.g. Wang & Yu
(2015, Theorem 2.2). With the additional assumption of normally distributed &;, however,

~

Br can be shown to have an asymptotic Cauchy distribution, as is proved in Appendix

Corollary 2
Consider part (ii) of Theorem|4}. If the e, are normally distributed,

KoV T1—2¢ (BT - 5) e (),

where C' () is a noncentral Cauchy distribution with noncentrality parameter . = agBy,
with By a constant that depends only on c, and k = v*Var (v). For ag = o, = 0 and
C (0) is the standard Cauchy distribution.

Indeed, this limit distribution is also obtained for the OLS estimator of ¢ in (3.7) when the
normalisation is with the deterministic sequence |a]_2T, cf. White (1958), and [Shiryaev
& Spokoiny| (1997).

As mentioned earlier, the asymptotic properties of the estimators of the intercept ¢ and
of the error variance o2 are easily derived from those of the slope estimator. In particular,
consistency of the OLS estimator

or =y — Pra”
follows immediately from R R
or —0=(8—pPr)a +¢. (3.8)
Since it is shown in the proof of Theorem 3| that plima~ = « for ¢ = 1/2 and since

£ converges to 0 by virtue of the LLN, dr is also weakly consistent. As to asymptotic
normality, since Ap = O,(InT) for ¢ > 1/2, it is clear that

\/A_Tg_ =0p (1)

and
VAr(dr = 8) = \/Ar(B - Br)a” + 0, (1). (3.9)

As a consequence, joint normality of both OLS estimators follows for ¢ > 1/2, i.e.

op — 6 d ol —a
G (520) o (1)
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Note that the asymptotic distribution is degenerate, namely concentrated on the line
y = —x/a. This implies that individual ¢-statistics can be constructed in the standard
fashion. The linear combination ST + QB\T also has a non-degenerate variance and may
be subjected to a t-test, too. However, multivariate statistics involving the inverse of the
asymptotic variance-covariance matrix, such as the Wald statistic, are infeasible. It would
seem natural, however, to bootstrap a statistic like that or to use a generalised inverse to
construct it.

For the case ¢ < 1/2 with normally distributed errors, an analogue of equation ([3.9)
continues to hold with normalisation /71 —2¢ instead of v/ Ar. Consequently, the resulting
bivariate distribution is again degenerate.
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4 Discussion and extensions

4.1 The error variance and the gain parameter

Given the consistency of the OLS estimators gT and BT under both constant and decreasing
gain learning, it follows immediately that the usual residual-based estimator of o is also
consistent. The proof of the following corollary is provided in Appendix [E]

Corollary 3 A
Define the OLS residual & = y; — 61 — Bras_1. Then

T
o 1 ZA
t=1

=+ 0

D
5 2.

Regarding the gain parameter v under constant or decreasing gain learning, see —
and — respectively, the treatment so far has assumed that it is known. A case in
point is to regard the decreasing gain updating equation for a; as an instance of recursive
least squares, since then v = 1. Given 7 and a starting value ay, agents’ forecast a; can
be endogenously generated by either

ar = a1 + 7 (Y — az—1) (4.1)
or 5
ay = az_1 + n (g — ar—1), (4.2)

depending on which type of learning is stipulated. As a consequence, the OLS estimates
Br, 7 and 7%, all being functions of (y;, a;_1), can be computed. With v known, ¢ can
also be estimated consistently by

c=(1-p)
and hence the results in Theorem [2| and in Theorem {| are feasible. Note, however,
that given an estimator ¢ the classifications in Theorems are subject to estimation
uncertainty.

It is instructive to note that the results stated in Theorems [2| and 4| would also go through
if, conversely, v were unknown yet agents’ forecasts a; were observed. For then v may be
computed from its DGP in or ([4.2)). This type of situation might arise when survey
data is used as measurement of agents’ forecasts. Indeed, in such scenarios, an extra error
term would be appended to or since it is unlikely to be an exact description
of empirical data, see for instance Branch & Evans (2006, 2010) or Markiewicz & Pick
(2014).

Finally, it is conceivable that both ~ is unknown and a, is not observed. In a situation
like this, all structural parameters 3, § and v could in principle be estimated by some
non-linear techniques. For instance, Chevillon et al. (2010) use non-linear least squares
while Adam et al. (2015) employ the method of simulated moments. The properties of
these estimation procedures in the context of adaptive learning models are not clear a
priori, however. Further research on these estimators is imperative.
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4.2 Forward-looking expectations

Some economic theories stipulate that agents’ expectations are forward-looking, i.e. agents
are thought of as forming expectations of a future value of the endogenous variable. For
instance, agents might forecast y;.; using information available at time t. This would
amount to replacing the expectational term in model by vy e yielding

Yo = BYirape + 0T + &0 (4.3)

However, this type of modified model setup raises a number of issues, both economic and
econometric.

The most immediate economic consequence of forward-looking models is that rational
expectations equilibria are, in general, no longer unique. For instance, consider model
([4.3), define the information set 7, = o (ys, s < t; 25,5 < t), and assume that z; follows
an i.i.d. process with mean p,. This implies that E (y;1 | Zy) = ap, and it is well-
known that the resulting rational expectations solution y, = o, + & is only one of many,
namely the minimum state variable solution. As an added complication, not all solutions
need to be stable. As forcefully argued by |[Evans & Honkapohjal (2001)), however, one
way to address the multiplicity issue is that adaptive learning can serve as a selection
device, in that equilibria that are learnable appear more plausible than others. Moreover,
instable equilibria can be ruled out by focusing on those that satisfy the conditions for
expectational stability, or so-called E-stability, a concept introduced by Evans| (1989) to
characterise those rational expectations solutions that are stable under learning.

A further economic issue with the model in that has important repercussions for
the analysis is that the use of Z; introduces simultaneity in the system, since agents’
expectations are now endogenous, being partly based on the current value of y,. However,
it is common practice in parts of the economic theory literature, see for instance that on
the indeterminacy of equilibria, to avoid this problem by simply assuming that y; is not
observable by agents after all and that they base their prediction on Z;_;, or indeed F;_1,
instead. However, Bullard & Mitra| (2002), for instance, criticise this practice and argue
that the use of Z;_; would be be informationally inconsistent within the model and that
a switch between Z, and Z; ; in a system with adaptive learning might lead to a reversal
of the stability properties of the equilibria. A solution to this issue is suggested by [Adam
(2003) who allows agents to make use of information Z; yet, through the introduction of
sticky prices, avoids any simultaneity in the system.

A road map for the econometric analysis of models with forward-looking expectations can
now be sketched. First, it would seem natural in a first step to examine the properties
of the parameter estimators in systems with adaptive learning whose equilibria are E-
stable. Secondly, following the approach suggested by |Adam| (2003), models could be
examined that have agents make good use of information Z, while their forecast y; 1) 15 008
endogenous. OLS estimation of the model parameters in that setting is still appropriate
and the consistency and distributional results derived in the present paper should continue
to hold. However, if the regressor yy, |, in is endogenous then OLS would no longer
be appropriate and recourse would have to be taken to an instrumental variable technique.
Suitable assumptions on instruments and their relationship to the endogenous variable
and the error term would have to be made. The analysis would become more involved,
yet preliminary derivations indicate that similar issues to those discussed in the present
paper would arise.
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4.3 Time-varying regressors

The assumption in this paper that the exogenous regressor x; is constant serves the
purpose of analytical tractability, especially in order to facilitate the examination of the
asymptotic behaviour of a;, at least to such an extent as is needed for the treatment of
the EEP. Upon inspecting the proofs, however, it is apparent that time-varying regressors
x; may lead to a complication of the analysis, for instance if their behaviour leads to
sequences a; which can no longer be classified as stable, unit root or explosive for its
entire trajectory. Of the many ways in which time-varying regressors could be introduced
we now discuss a simple extension that has the beauty of resulting in essentially the same
results as in Theorems Although this generalisation is somewhat special it illustrates
that the results in this paper have wider applicability.

Assumption E
The sequence x; tends to an equilibrium value x: lim;_ .o, x; = x.

Without loss of generality, we may again assume that x = 1. The z; are taken to be
deterministic for expositional simplicity. Identical calculations to those below would result
for stochastic regressors if, for instance, (i) the regressors are strictly exogenous, i.e.
the sequence z; is independent of the error terms &;, and (i) Assumption [E| holds with
probability one.

4.3.1 Constant gain

Reconsider the recursion of r, in (1.4b|) with a constant gain v = ~:
re = (1 — ) req + a2, (4.4)

With the solution of (4.4) given by

t—1
re=p'ro+7 ) plai,

n=0

it follows that r; tends to the equilibrium value r = z? = 1, provided that v € (0,1). Sub-
stituting this into the dynamics of a; in yields the recursion in , as indeed was
obtained under the assumption of a constant x; = x. As a consequence, the asymptotics
of a; are also the same.

Regarding the EEP, note that the structural equation is given by
Yr = 0y + Bag 17 + &

or
Yy =0 + Bag—1 + &},

with yf = y,;/z, and € = g;/x;. Remembering that x; — 1, it can be shown that passing
from € to e; does not affect the behaviour of the OLS estimator, so that all the results
for the EEP in the case of constant gain remain valid.
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4.3.2 Decreasing gain

Reconsider the recursion of r, in (1.4b)) with a decreasing gain sequence v, = v/t, i.e.
g g
T = (1 — ?> Tt—1 + ?SC?

This is of the same form as equation (B.3)). Hence, performing the same analysis on 7, as
is done on a; in Appendices [B.1.1] and [B.1.2| shows that, for every v > 0,

lim r, = rya? =ry
t—o0

for some positive number r. Using this equilibrium value in the dynamics for a; in (|1.4al)

we obtain
1/r
a = Q41 + e (g — az—1),

which is just (1.9) with v, =75/t and ¥ = 1/r. Note, however, that in order to determine
~ and, correspondingly, the value of ¢ = (1 —7) 3, one has to know r. This, however, is

given by
1 0;
"= tlggt_Vzl i1’

cf. (B.17) and (B.20). Since 6, — 1, it is clear that

t

.1 1 o1 b ds
r= lim — — = lim — —_
too0 Y =177 tooo Y | ) ST

4 0(1)} _ %

Hence, v = v and ¢ = ¢. As a consequence, up to a change in variance, we have the same
asymptotics for a; as for x; = 1. The same is true for the EEP.

4.4 Consistency

As mentioned above, the weak consistency of the OLS estimator in Sections [2] and [3] is
obtained as a byproduct of our results in Theorems [2 and [l It is instructive, however, to
look at our results in the light of the results available in the literature on consistency in
models with predetermined regressors. The reason is that even the best of those conditions
turn out not to be met by some of the constant and decreasing gain learning models we
consider in this paper. This finding complements the failure of the Grenander condition
for the decreasing gain model in Section |3| see also the discussion in the introduction.

To our knowledge, the best sufficient condition for the consistency of the OLS estimator
in multivariate models with predetermined regressors is given in Lai & Wei| (1982a). It
requires that

In Apax (7)

)\min(T)

where Apax(T) and Apin(77) are the maximal and minimal eigenvalue, respectively, of the
regressors’ moment matrix Mp. For the estimation of the slope parameter in a simple
regression model, a slight improvement is given in Lai & Wei (19828) with the condition

Amin(T) = 0o and — 0 as., (4.5)

AT o as., (4.6)



with Ar being again the sum of squares mean-adjusted regressors. To illustrate the
strength of (4.5)), [Lai & Wei (1982d) discuss an example in which a marginal violation
of the conditions leads to the inconsistency of the OLS estimator. They hence call the
conditions in (4.5)) “in some sense the weakest possible” (p. 155).

For the purpose of comparing (4.5)) and (4.6)) to our results on weak consistency, note that
condition (4.6) may also be used in terms of convergence in probability, in the sense that

In Apax(T) 5
—/\min(T) =0 (4.7)

implies the weak consistency of the OLS estimator, say §T. This is because the basic result
obtained by |Lai & Wei (1982a) is that

In Apax(7)

Hé\T—GHQZ o (T O(1) a.s.

on the set {Amin(7") > 0} . Let us briefly discuss condition (4.7)) for the various models
considered in this paper.

4.4.1 Constant gain

Reconsider the model in (2.1)-(2.3). For the stable case, is trivially satisfied since all
entries of Mr in satisfy a weak LLN. The same is true for the unit root case, as can
be shown by some straightforward calculations on the eigenvalues, using the asymptotic
behaviour of the properly normalised entries of Mp as obtained in Appendix For
the explosive case, similar calculations making use of Theorem [1| (ii) show that

In A\pax(7)

o (T —4In|l —¢| as..

Hence (4.7)) is violated, but weak consistency still holds.

4.4.2 Decreasing gain

Turn now to model (3.1)-(3.3)). For ¢ < 1/2, it can be verified that condition (4.7)) is met.
For ¢ > 1/2, however, it is shown in Appendix that

Hence (4.6) is not satisfied. Also, Christopeit & Massmann (20134 conclude that

. InApax(T) 9 2c—1
lim ——2 1
plim ==y = (@7 ) T

so that (4.7) is not satisfied either. Nevertheless, Theorem [4] implies that the slope
estimator is weakly consistent. Under the more stringent conditions of Gaussian error
terms, we even have strong consistency, as is shown in (Christopeit & Massmann| (2012).
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5 Conclusion

This paper investigates the asymptotic properties of the OLS estimator of § and 3 in a
stereotypical macroeconomic model of the form

Yt = BYgp—1 + 0T + &, (5.1)

where agents form expectations Yiji—1 = 1T according to constant or decreasing gain
adaptive learning. While empirical models of this type are becoming ever more popular
in the literature, the asymptotics of OLS have so far not been investigated. The paper is
the first to address this issue systematically.

To make the analysis tractable, the regressor sequence x; is assumed to be constant. For
both types of learning, we then provide a complete analysis of the asymptotics of agents’
expectations a;, considering its convergence to the rational expectations equilibrium and,
if appropriate, its convergence rate. The latter aspect has so far not been addressed
comprehensively in the literature. Subsequently, given the behaviour of a;, the asymptotic
properties of the OLS estimators § and [ are derived for both constant and decreasing
gain learning. This is both a novel and a challenging undertaking. Some of the models we
consider are highly complex, e.g. self-referential models whose autoregressive parameter
follows a non-stationary stochastic process. Yet the conclusions are wide-reaching for
the theoretical and applied literature alike: Tt turns out that, contrary to what might be
believed at first sight, § and ( are consistent in all scenarios we consider. Their asymptotic
distribution, however, is highly non-standard in all but one setting, so care must be taken
when inference is to be conducted. For constant gain models, some results are related
to the cointegration or co-explosiveness literature. With decreasing gain, the results are
reminiscent of the literature on slowly varying regressions, yet not with deterministic
regressors as in [Phillips| (2007) but with predetermined stochastic regressors. Several of
the results we derive do not seem yet to have counterparts in the existing literature.

As extensions, forward-looking expectations and time-varying regressor sequences are con-
templated, yet a complete analysis is beyond the scope of the present paper and is left
to future research. Our results indicate, however, that an econometric analysis of such
models as can, at a fundamental level, be econometrically feasible and sound. This
is encouraging, given the interest among economic theorists to develop further models
of bounded rationality via adaptive learning and given the push by policy makers and
applied economists to exploit these methods empirically.
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A Proofs for constant gain

A.1 Working formula for a;

If B # 1, it will sometimes turn out favourable to work with the transformed process
a = a, — a. For then (2.2a)) simplifies to

aff = (1 —c)al" | + e (A1)
We will also make repeated use of the solution of a; in (2.2a)):
t—1 ,
a; = (1—¢)ag+ Zi:() (1—1¢)" (ca+ &)
M (1t Y’ LN
=[1-(1-0]a+(1-¢)ao —i—fyzizo (1—c)'ery (A.2)
and of af in (A1):
t—1 ;
dF=(—d a2 1
ot _orSY 1o
=(1-0'af +7(1—c¢) ijl (1-¢)"¢, (A.3)

which are valid for all initial values ag.

A.2 Proof of Theorem
A.2.1 Stable case: 0 <c< 2

In this case, |1 —¢| < 1, and the assertion is a classical standard result for stable AR-
systems.

A.2.2 Unit root case: c=0o0r ¢c=2

If ¢ = 0 then, by (2.2b)),

ag=a;1+7(0+¢&).

Hence a; is a random walk with drift:
a; = ag+ v (0t + 5y),
where S; = ZZZI ;. As a consequence, by the LLN,
ta, =75 +o0(1) as.
If ¢ = 2 then (A.2) becomes
t—1 ,
a=[1— (=) ]a+(-1)ao+ 722‘:0 (=)' ey
t .
=[1=(=DJa+(D'a+y (=)D (-1)7e;

j=1
Since the &; = (—1) 7 ¢; are ii.d., ) follows from the classical CLT applied to S, =
22:1 g, together with the symmetry of the limit distribution.
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A.2.3 Explosive case: c <0 or c>2

In this case, |1 —¢| > 1. Recall (A.3) and consider the martingale

t s
Mt = ijl (]. - C) jgj.

Since its predictable quadratic variation is

M), =0*3 (-7,

Jj=

and hence (M)__ < oo a.s., it follows from the martingale convergence theorem that the
limit - _
—_— 3 — —_— _] .
M = lim M, = ijl (1-¢)7¢
exists with probability one and also in L?. Its variance is 1/ [(1 — )’ — 1] . Therefore,

(1—c)_taf:a§£+*yMt%a#+’yM

and hence
(1—¢)"ay — ag—a+~yM

both a.s. and in L?.
A.3 Proof of Theorem
Throughout this section, we will make use of the observations made at the beginning of

Section namely that the asymptotic behaviour of the OLS estimator in (2.1)) is, up to
a factor of proportionality, equal to that of the OLS estimator in the AR(1)-model (2.8]).

A.3.1 Stable case: 0 <c<?2
In this case, |8*| < 1. It is standard textbook knowledge that

VT —07) S N (o, V%W‘l)

with .
M = plim — M
T—o00 T g
and M7 being given in (2.6)). Since
L I
plim—Zat =FEa =«

T—o0 —1

T
1
plimfZaf =Eal =02 + o2,
t=1

T—o0

(2.11) is an immediate consequence of (2.10).
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A.3.2 Unit root case: c=0o0r c=2

Case ¢ = 0. Consider first the sub-case of § # 0. Making use of the OLS estimator in
(2.5), the asymptotic behaviour of a; as established in Theorem [1| () implies that, with
probability one,

T 52 2
lim — Qi1 = lim —
T—o0 T2 = 97 T—so0 1"

IIM’ﬂ

Therefore, remembering 1) and introducing the normahslng matrix

VT 0
- (0,

we find that

1 X —
TILI%OD;]WTDE1 = < & & ) =M as..
2 3

Applying the CLT for bivariate martingales to (2.7)), one obtains

T
Dy'u —( YL )&N(o M
T Ur = 1 T ,o*M) .

T3/2 Zt:l Qg1

Therefore,

VT (6 - 6)
T%2(B 1)

Calculating the inverse yields (2.12)).

Consider now the second sub-case of § = 0. It is of course well-known that the asymptotic
behaviour of the OLS estimator is very different according to whether § # 0 or 6 = 0.
This is also obvious from the different behaviour of a; as established in Theorem [1] (i),
viz. a; grows linearly in the former case and tends to zero in the latter. Recall from the
discussion in Section that the OLS estimator 6 = (8, 3)’ of the parameters 6 = (3, 3)’
in the structural model satisfies

) — [D7'MyD7 7 Dytur 5 N (0,02M’1) .

§—0—~" (5* . 9*) , [©.10)

where §* = (3\*, 3*)’ is the OLS estimator for the parameters #* = (6*,5*)" in the AR(1)
model provided that 6* = 7§ and 8* = 8. As pointed out earlier, this AR(1)-model
is the Dickey-Fuller model with drift, evaluated at the joint null 6* = 0, 8* = 1. As is then
well-known,

where

o U1<MB(1) ) Bls)ds — 5 (B(
—B(1



Taking account of (2.9) yields the desired result.

Case ¢ = 2. In this case, according to (2.2a)), the dynamics of a; are given by
a; = 2 — ay_1 + Y&y, (A.4)

with DGP
Y =0+ Paz1 + &4 (A.5)

Introducing z; = a; — a, (A.4)) is equivalent to
2y = —Zy_ 1+ YE¢- (AG)

The asymptotics of z; have, in a multivariate context, been analysed by |Chan & Wei
(1988). Introducing &; = (—1) 7 ¢; and

t
St: E 5]',
Jj=1

it is easily verified that B
z=7(=1)"5. (A7)

Putting )?T(u) = ﬁg[uﬂ, we have the functional CLT
Xr= B (A.8)

in D[0,1], where B is a standard BM. As a first consequence,

T 1
1 72 ~ =~
T2 Z 7, = T2 Z St =70 X7 (s—)ds
t=1 t=1 0
1
4 7202/ B(s)*ds. (A.9)
0
Returning to a;, this means that
T T T
1 9 1 9 1 a?
ﬁZat_l = TTQZZt_I +20(7T222t_1 —f—T (AlO)

t=1 t=1 t=1

For the OLS estimator in (|A.5]), we need the asymptotics of the first two sample moments
of a,. For the mean, we must take account of the alternating factor (—1)" in (A.7) since
the mean of S, itself is weakly convergent at rate 7°/2. Since

1 <& 1 <&
_Zatfl :—Zzt71+0@
Tt:l Tt:l

consider

T T
Z Zt—1 =7 Z (—1)#1 Si—1 = YWr.
t=1 1

t=
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By partial summation,

T T
WT = Z (—1)t_1 St,1 = UTST — Zatgt.

t=1 t=1

Here we have put
t

- 1, todd
— 1\ 1 — I )
o= Z( D) { 0, teven.

j=1

Since T-Y25°F 08, 5 N (0,02/2) and T-257 % N (0,02) (jointly), it follows that
Wr = O, (T"?) . Hence

T

plim — 211 =0
T—00 ;

and

1 7
plim T ; ai_1 = Q.

T—o0

Revisiting (A.10) and taking account of (A.9)), we find that

T 1
1 ~
T2 Z a;_, KA 7202/ B(s)%ds.
t=1 0
As a consequence, introducing the normalising matrix

DT:(\/T 0))

0 T
we find that
_ _ 1 B ZT a1
DIMTDl _ ( T3/2 Lat=1 "1
4 T ﬁ 23:1 at—1 % Zthl a;
(A.11)
d — 1 0
- M = ~ .
( 0 ~%0? fol B(s)*ds )
Turning to

T
ur = ( ;t:l ct )
Y
thl Ay—1E¢

define S, = 22:1 g; and Xp(u) = #TS[,LT]. Then we have the usual functional CLT

X7 = B, (A.12)

with a standard BM B. As a consequence,

1

TZat 4 oB(1). (A.13)

3
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t—1

As to the second component of ur, we make use of the trivial identity (—1)" " g, = —&;.

Then
T T . T N
Z Zt—1E = 7Y Z <—1)t_1 Stflgt = -7 Z Stflgt. (A14)
t=1 t=1 t=1

From )
S =(Sa+8) =8, 425 15+

it follows that

1 - ~
A % [32(1) . 1} . (A.15)
Now look at

T T
1 1 1
— Qi1 = — Z 2y 1 + Q= Z Et
T T t=1 T t=1

T
1 ~
= —’}/T t:E 1 St—lgt + 0(1)

In view of (A.14) and (A.15]),

T
%Zatlgt 4 —7%2 [EQ(D - 1} : (A.16a)

t=1

Or, if this version is preferred,
1 & L
S ST / Bs)dB(s). (A.16b)
t=1 0

(A.13) and (A.16) give the separate asymptotic behaviour of the entries of uz. Actually,
what we need in order to figure out the asymptotics of the OLS estimators

(375) -

is the joint asymptotic behaviour of all entries of My and wp. This is where the result of
Chan & Weilis used, namely that weak convergence in (A.12)) and (A.8)) is joint, i.e.

(Xr, X7) = (B, B)
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in D |0, 1]2, and B, B are independent BMs, cf. Chan & Wei (1988, Theorem 2.2). This
allows us to conclude that

1 T
, LT _ B(1)
Dl — \/TZt_lgt iu:( 0-1,\, - )
e ( T 2 imy G158 —y0? [y B(s)dB(s)

jointly with the convergence in (A.11)). Hence, finally,

(7o) - = (555
(B - B) p—p
= [Dy*MrDF 7 Ditug
N VT

with

o o) (ofina)

_ 1 ( oB(1) [} B(s)*ds >

JEB(s)2ds \ = Jo B(s)dB(s)

A.3.3 Explosive case: ¢ <0 or c>2

In this case, the corresponding AR(1)-model is
ar =ca+ (1 —c)a_1 + v&q.

According to Wang & Yu| (2015), the asymptotic distribution of the OLS estimator 0* of
0* =ca and f* =1 —cin (2.8 is given by

VI (5= 5) 4 A (0.4%0%).

[(1 —¢)’ — 1 u

+(1—=c)ea/[(1—c)—1] (A17)

-9 (B -5)%-

where u and v are independent L2-variables, and the two estimators are asymptotically
independent. Premultiplying by 7! yields the assertion.

Remark 1
Actually, the random variable v is the limit

o [Z(l —c) e +ag

t=1

= oz + ap)

a.s. and in L*. This is where Assumption enters the stage to guarantee that the
right-hand side in (A.17)) is well-defined.
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B Proofs for decreasing gain

B.1 Preliminaries

We return now to the model (3.1)-(3.3):

Yy = 0+ Pag+e (B.1a)
c
ar = (1 - z) a1+ %/ ((5 + €t) 5 (Blb)
where
c=(1-08).

In the following, we will derive a finite moving-average form for a, in terms of its initial
value ap and a weighted sum of the errors. It will simplify the calculations if we center a,
about its asymptotic value

) %)
oO=—"=—.
1-p c
To this end, introduce
aff =a; — . (B.2)
Then, by straightforward calculation,
c
Clzéﬁ = (1 - Z) (lfil + %Et. (B?))

Also,

Yy = 0+ B (a1 —a)+af+eg
= a+pa |+ (B.4)

since 0 + aff = a. Henceforth, let us rename the afﬁ as a;. The theorems in Section [3| are
of course presented in terms of the original a,.

The solution to (B.3)) is given by

"
€
a; = apPo + 7y E ¢ti7a (B.5)
i1

where

C c .
i = (1_2'—1—1)”-(1_2» i1=0,...,t -1, (B.6)
ou = L

In particular, for ¢ =1,

for all i. Define iy = [¢] = smallest integer > c. Then, for ¢ > iy, the factors in are
all positive. Note that ig = 0 for ¢ < 1.Taking logarithms and using a first order Taylor
expansion, we obtain for ¢ > iy
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! & ! 1 Rj
In gbm‘ = Z In{1-— ; = —C ; - 5 (B?)
1 .

j=i+1 Jj=1

with
(1-9;)c

(1-0)

for some 0 < ¥J; < 1 (Cauchy form of the remainder). Note that R; > 0 and

R; =

62

sup R; <

s ;. (B.8)
j2io+1 (1 _ _c )
i0+1

Hence
t

t
Ingy = —c Z % — Ou(1) Z j%’

j=i+1 j=i+1
with the Oy(1)-term uniformly bounded in i,¢. Henceforth, we will denote such terms
simply by O(1). Making use of the integral comparison test (ICT),

oy = —c(nt—In(i+1))+ 0(1)”#1

= —c <lnt—lni —lnz—i__l) —I—O(l)l

7 ]

= —c¢(Int—1Inid) 4+ O(l)l,.
i

As a consequence, for i > 75 > 0,

oo () rro ()] o

For 0 < i < iy, it follows from (B.6)) and (B.9al) that

io—1 ¢l rt c
i == 1 - 1 —
[ Hj=i+1 j Hj=i0 ( i+ 1)
< Couy =0 (t7°). (B.9b)
In particular,
|pw| = O (t7°). (B.10)
Actually, for ¢ < 1 (i.e. ip = 0), (B.9a)) remains valid also for i = 0 (in the form

¢y = O (t7°)). But in this case we can do better for all ¢y, i > 0, (and indeed have to for
¢ < 1/2). To see this, we go back to (B.7):

t 1 t R
Ingy = —¢ Y i > = (B.11)

Jj=i+1 J=i+1

In the sequel, we will make frequent use of the following version of the integral comparison
theorem (ICT), which we cite here for the reader’s convenience, cf.|[Apostol| (1974, Theorem
8.33).
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Proposition (ICT) Let f(z) positive decreasing fct s.t. lim, o f(z) =0. For n > i,i =
1,2,..., define

n n

swi= 3 SK), = [ [(@)dr, dui = $ui— tu.

Then we have:

(1) 0< f(n+1) <dp1,; <dp; < f(3).
(i1) d; = lim,_, dp; exists, and d; < f(i).
(iii) 0 <dp; —d; < f(n).

(1) Spi < f(i) + tpi

By ICT (ii)), the limit

t t
E; = lim LZ 1—/ dr
t—oo | J it1 T

=i+l
exists, and 0 < E; < 1/(i+1). For i = 0, Ej is just the Euler constant. Making use of
(iii), we obtain

i t
o<y o[ &gl
j=it1 ! i+1 L
so that we may write
1 1
Y —=t-n(i+1)+E+0i(-]. (B.12)
j=it1? t

As to the second term on the right hand side of (B.11]),
t o0
R; R;
2 /G=)
j=it1 j=it1

with 0 < C; < C/ (i + 1) for some constant C'. Since sup;»; R; < R =¢*/ (1 — ¢)®, using
the IC'T again,

t 0 00
R; R, 1 1
o= 3 =3 enyg=o(j).
j=i+1 j=t+1 j=t

Hence
t

> 3_; =Ci+0 G) . (B.13)
j=i+1

As a consequence, for ¢ < 1, bringing together (B.11), (B.12) and (B.13) we may write

Ingy = —cl[lnt—In(i+1)+ E;j] — C;+ O (%)
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for all ¢ > 0. Hence

In(t¢y) =cln(i+1) —ck; — C; + O (%) .

Or, denoting B; = e~ (¢FitCi),

tc¢ti _ (Z + 1) —(cE;+C5) exp l

()
verafo)
- mfreoft)

with §; = (1+i71)° B; for i > 1 and 6y = By. This stronger form of (B.9a)) will be needed
for the case ¢ < 1/2. Note that the O (1/t)-term also depend on ¢, but the dependence on
1/t is uniform in i: sup,, |O; (1/t)| = O (1/t). Note also that

lim B; = 1. (B.15)

t—o00

In particular, note that
By = ¢~ (cEo+Co)

where Ej is the Euler constant and
s
=1 7
Making use of (B.7)), we find that Cy may be calculated from

:_E&[cz Hn%]:_hmz[ ru(1-5)).

J

We are now ready to derive the basic working formulas for a; used in the proofs below.
They will be different for ¢ < 1/2 and for ¢ > 1/2.

B.1.1 Case c<1/2

Starting from (B.5)) and noting that ip = 0 for ¢ < 1/2, we make use of (B.14) to write

¢

€

t‘ar = tca0¢t0+’7§ tcﬁbti?
i=1

= CL()BO + 7y (Ut + U)t) + 0 (t_l) , (B16)
where we have put
t t
Z E; 1 On(l)
pr— 97/‘_’ p——_ R i' B-17
" i=1 e " tia e ) ( )



Note that the O (t7!) and the Oy(1)-terms are deterministic and uniformly bounded.
Alternatively, we will use the form

1
ar =t ‘apBy + v (& +m) + O (t1+0> : (B.18)
with
1 1
& = el = W (B.19)

B.1.2 Case ¢c>1/2

In this case, except for ¢ < 1, we have 7o > 1. Starting from (B.5]), we make the decom-

position
t0—1

ngtzg.l Z¢tz . +Z¢tz e

i=ig

By (B.9b)), the first term on the right hand side is O (¢7¢) . Making use of (B.9al), we write
the second term in the form

t

t t
&g 1 E; 1 OZ 1

E ¢ti7 = + = ,t( )&'

i=1

tc Zl—c te 4= 22_C
=10 )

= ft +77t-

Since it is more convenient to start the sums at ¢ = 1 instead of i = iy, we introduce

t
v = Z -, t_ZOZt;C (B.20a)

i=1
1 1
& = Vo = W (B.20b)

(with the Oy(1)-term = 1 for i < ig). Then & = & + O (t7¢), and same for 7. Therefore,
finally, taking account of (B.10]), we may write (B.5) in the form

ar=0 ") +7(&+mn). (B.21)

Remark 2

The definitions of v, and w,; differ for the two cases. We desist, however, from using
different symbols for the two processes since in the proofs it will always be clear which
case is under investigation.

Remark 3
At first sight, (B.16) seems to be nothing but a minor improvement in precision in com-
parison with (B.21). Indeed, it is. But the exact identification of the O (t=°)-term in
will be crucial in the proof of Theorem@ where it is indispensable to establish the
existence of a limit for t°a, instead of a mere O,(1) statement.
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B.2 Proof of Theorem [3]

In the following, we will derive the asymptotic behaviour of a;. In addition, we shall
also consider that of ar because it is needed in the treatment of the EEP in Appendix
[B.3] The four subsections below will cover the cases of ¢ > 1/2, ¢ = 1/2, and ¢ < 1/2

separately.

B.2.1 Case c>1/2

Reconsider the representation of a; in (B.21)) above and examine first the behaviour of &,
(cf. (B.20b))). By the ICT, the predictable quadratic variation of v, is given by

oY (-1 o® e
(W), =0 Zizlz =t +0(). (B.22)

Hence (v) = limy_,o (v), = oo a.s.. By the CLT for sums of independent random
variables, Shiryaev| (1996, Chapter 111, §4, Theorem 1),

Vg V2e—1

(v), o te=t/?

4 N(0,1).

Or, in terms of &,

Vi S N, ) (B.23)

Turning to 7, (cf. (B.20), it follows again by the ICT that

O (t*3) for c¢> 3/2,
Ew? ={ O(Int) for c=3/2,
O(1) for ¢<3/2.

Hence
Etn} = t'*Ew} — 0,

and, as a consequence,
2
Vi, 5 o. (B.24)
Taking account of (B.21)), we find that

%\/Eat i) N(O, 1)

For later use, let us briefly consider the behavior of @r. From the definition,

9 t

o 1 _

=1

Hence, since Etn? = o(1), it follows that

T
t
Blar < 2= > (" +EB[&l+E n)
t=1
const (t’c N t’l/Q) _ const itlﬂ
a T t=1 T t=1
= 0T
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Therefore,
ar =0, (T7'?). (B.25)

Remark 4
Actually, for ¢ > 1/2, it holds that

iEUf < o0,
t=1

so that .
an <00 a.S.. (B.26)
t=1

We will need this result later, cf. Appendiz[B.3.2

B.2.2 Case c=1/2
Reconsider (B.21)). Regarding &;, note that the predictable quadratic variation of v, is
_ o\ -1 2
(v), =0 Zi:l i =o0"Int+0O(1). (B.27)

Hence, arguing as above, it follows from the CLT that

Uy V2e—1 d
~ 0,1).
(v), o oVInt N0

1 /t d

Etn; =0 (1),

/1 P
—n; — 0.
lntnt

Therefore, by virtue of (B.21]), we obtain that

1 t 0 1 n 1/t €+ 1/t
N —ay = _ — — — _
oy V Int ! Int cVInt™ o lntm

4 N(0,1).

Or, in terms of &,

As for n,,

so that

Remark 5
The Lindeberg condition (LC) for the cases ¢ > 1/2 and ¢ = 1/2 will be verified in

Appendiz

40



B.2.3 Case c<1/2
In this case, the basic formula is (B.16):
t°ay = apBo + v (v + wy) + O (fl) ) (B.28)

with

t
Ve = 2915—107 = — Z Oltll B g (B29)
i=1

and lim;_,, 0; = 1. The O (t71)- and Oy; (1)-terms are deterministic and uniformly boun-
ded. Apparently, w, converges to zero in L?. Also, the limit

00 &;
v=) Oics (B.30)
i=1

exists in L? and has nonzero variance. Hence it follows from (B.28) that

tlim t°a; = agBy + v =u (B.31)
—00
in L2. Or, put differently,
ta; = u + py, (B.32)
with
pr =7 (v —v) +yw, + O (t_l) . (B.33)
Note that p; — 0 in L?. Concerning the behavior of @r, this means that
. _ 1
plim,_,  Tar = T (B.34)
Actually, it can be shown that
1 2
E|TGr — —u| =0 (T%7),
—c

but we will not need this sharper result.

B.3 Proof of Theorem
B.3.1 The OLS estimator

Recall from Section [3] that the OLS estimator for the structural parameters in the DGP
(3.1) in terms of the original non-centered variables a,_; is given by

~ - ur
Pr—FB=—7 (B.35)

T

where

T
Z a1 — ay) (B.36)
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and
Ap =" (- — a;)”. (B.37)
Here we have used the notation

T
1
ap ==Y a (B.38)

which will turn out convenient in the sequel.

A moment’s thought shows that the OLS estimators obtained by using a; or the centered

forecasts afé = a; — « are identical. To see this, let B\# denote the OLS estimator obtained

using the latter, i.e.
Br—p=-%

with obvious definitions for uf and A%. Then

= _ #
a1 — ap = a; | —a#p,

and hence
ur = u#, Ap = A#.
As a consequence, R R
Br—B=8F -8

and

M(gTﬁ);;_T;%@@M).

Henceforth, we will continue to work with the transformed af& and denote them again by
a;. Our interest is in the asymptotic behavior of

Ur = /Ar (Br - 8) = jA_ (B.39)

Making use of the elementary algebraic identity

T ~ Ty ~
Z (a; —ar) (bt — bT) = Z r (ar — @) (bt - bt—l) ;
t=1 t=2
we may write
d t—1 N2
AT = Z ; (at,1 — atfl) . (B40)
t=2

emark 6
B.40) shows that At is nondecreasing.

The decisive step is to determine the rate of divergence of Ar, i.e. find a sequence of

numbers ap ' 0o such that
A
plim,_,_ % =\ (B.41)
ar
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with A positive and finite. Note that, since Ar is increasing, this implies that A, =
limy_,o, A7 = oo with probability one. For ¢ > 1/2, it will turn out that

722
=InT, M= B.42
ar nit, 20 _ 1 ( a)
will do. In this case, Ur in (B.39) will be shown to be asymptotically normal.
For ¢ < 1/2, we will show that
2 2
ar=T"% A= ve (B.42b)

(1—c)?(1—2¢)

with » as in . The fact that now the limit A is random, incorporating the en-
tire sequence of &;, poses some problems with asymptotic normality of Ur. Without
further assumptions, it can, however, be shown that the square of Uy is asymptotically
x2-distributed (up to a normalisation).

B.3.2 Case ¢>1/2

Our procedure will be as follows. First, we show asymptotic normality of Ur, assuming
(B.41). Then we will prove the latter. From (B.25) we know that

ap =0, (%) . (B.43)

Hence, starting with the second term on the right hand side of (B.36]),

__ T T
ap [ar ap

& = - €
VAT ; ' Ar \/ar ;

T
1 1
2 >\/111T T; '

= 0,(1) (B.44)

~+

3

by the CLT. Turning to the first term in (B.36)), consider the martingale difference array
(MDA)

T
at—1
Mr = E E¢. B.45
! =1 VOT t ( )

Its predictable quadratic variation is

A/
M 2L
< >T 9 OZT’
where
T
Ap=>"al . (B.46)
t=1

From the definition of Ay (cf. (B.37)) together with (B.43) it follows readily that
Ap = Ay =T (a7)* = A+ 0, (1). (B.47)
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Therefore, in view of (B.41]),

AL Ap 1 Ar
Y =—4+0,| — | =— 1
T 04T+ p(aT) O@‘*’%()

and .

plim, , ~L =1.

Ar
In particular, (B.41) is equivalent to

!/

: T
phmTHooa—T =\

As a consequence,
plimT—)oo <M>T = 02)"

Applying a CLT for MDAs, cf. Shiryaev| (1996, Chapter VII, §8), we find that

Mz 5 N(0,02)),

or
T My % N0, 0%)
Ar

(B.48)

(B.49)

(B.50)

(B.51)

The proof of the LC for (B.50) is relegated to Appendix [C.2] In view of (B.36), (B.39)
and (B.45]), bringing together (B.44]) and (B.51)), we then obtain as final consequence

ar

Ar
4 N(0,02).

Ur = My + Op(l)

Or, in terms of the explicit rate of convergence,

\/227_1\/ﬁ <§T — B) 4 N(0,0?).

It remains to verify (B.49)). For this crucial step, recall (B.21):

ar =0 (t°) +v (& +m) =&+ G,

with ¢; = O (t7¢) + ym,. We may then write

T
Z@? =7° A7 + Ry

t=1

with
T

T T
AS =) "¢ and RT=2;&Q+;<§.

t=1

Introducing
T
Sr=> ¢,
t=1
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it follows from the Cauchy-Schwartz inequality that

Sr S
|Ry| < 24/A%Sy + Sy = A9 |2 A—€+A—§
T T
Since > n? < oo a.s., c¢f. Remark
Sr=0(1) as..

Hence

T

2 40

§ a; = Ay
1

ol

t
Therefore (B.49) is implied by

AY o2
li —L = :
PN o) 7 T 50 21

(B.53)

Note that, by monotonicity, this implies that A% = co a.s.. Note also that it is not
sufficient to simply show that Ar/InT = O, (1) since the latter need not imply that Ap
tends to infinity. This, however, is indispensable for asymptotic normality. The proof of
(B.53) is relegated to Appendix [D] Actually, there it is shown that convergence in (B.53)
takes place in L2. It is for this step that we need fourth moments of the &,.

Remark 7

If one tries to apply the rationale of this proof to the case of ¢ = 1/2 one encounters the
problem of A%/ar not being a Cauchy sequence in L* for any choice of a deterministic
sequence ar. It is hence not clear whether an asymptotic distribution of BT can be derived
using an approach similar to the ones used for ¢ Z 1/2 in this paper.

B.3.3 Case c<1/2

We continue to work with the formulas (B.36]), (B.37) and (B.39). The first term in ur
is the martingale My = Z?zl a;_1€¢, which has the predictable quadratic variation o2 AZ..
Consider

ur
Uy = : (B.54)
VAT
Then
Al
Ur = | =LU,. (B.55)
Ar
Our procedure here is as follows.
Step (i) First we show that A/ = oo a.s. and p? = limp_,,, A} /Ar is finite.
Step (ii) Then we show that
Uy % %2, (B.56)

with x% = 2.
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Together Step (i) and Step (i) will imply that
N 2
U2 = Ap (5T _ 5) A 5202, (B.57)

Regarding Step (i), the essential tool will be the asymptotic behavior of A% and Ar. Note
that (B.47) is no longer valid for ¢ < 1/2. We therefore go back to the properties of a;
investigated in Theorem (3| (i77). For the readers convenience, we repeat the fundamental
facts here:

ta; = u+ py, (B.58a)

po= y(w—v)+yw +0 (), (B.58b)

Tear = 1“ +0,(1) (B.58c¢)
—C

cf. (B.32) - (B.34). Performing some straightforward calculations it can be shown that

U2

AL = THCﬁ [1+0,(1)], (B.59a)
— zC
Ar = T'"**?[1+0,(1)], (B.59b)
with ,
V= ¢ . (B.60)

(1—2¢)(1—c¢)
This already settles the assertion in Step (i), showing that

Al 1 ?
P’ = plimT_mOA—:‘; = (— - 1> (B.61)

C

on the set {u # 0} . Note that, by Assumption P(u#0)=1.

Let us now turn to Step (ii). Note that the following derivation presumes that Assump-
tions[MAT|and [DG2are satisfied by the error terms. Note also that the ¢; are not assumed
to be normally distributed. Gaussian error terms will be looked at in Appendix [B.4]

We go back to (B.36)):

T T
ur = Z Q1€ — 5} Z Et. (B62)
t=1 t=1

The second term on the right hand side can be handled making use of (B.58c) to obtain

T " T

a; th = 1_ T ° [1 + Op(l)] th.
=1 ¢ =1
By (B.59a)),
u

VAL = LTW—c [1+0,(1)]. (B.63)
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Therefore,

(1) (B.64)

Here we have put

Coming to the first term of up, we go back to the decomposition (B.58)). Since (t — 1)~ —
t7¢ =0 (t7079) and u as well as p; are bounded in L?* (since Ep} — 0),

a1 = (t—1) " Jutpa] =t [u+ pe_g] + 9,

with d, bounded in L?. Hence

T

T T
Z -1 = U Z t % + Z tpr_rer + Op(1)
=1 =1

t=1

and

T T
1 v1—2¢ 1
E 18y = sign (u E t ‘e
—A,T - t—1E¢ 1+0p(1)T1/2*c [ gn ( )t:1 t

T
+ Z tpraee + Op(1)
=1

_ 1—V+10‘p(210) [sign (u) X0+ Zz] + 0p(1). (B.65)

Here we have put

1 T
Xr = mZt_cat,
1 t;l
le = Y e (B.66)
t=1

If X/ and Zr are both O,(1), (B.65) can be written

T

1
Non Z ai—16¢ = V1 — 2¢[sign (u) X7 + Zr| + 0,(1). (B.67)
T t=1

For X/, this is clear since E (X})?> = O(1). For Zr, it will be shown below that Z7 Lo.
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Introduce

T

1 . T

We now combine (B.64)) and (B.65]) to obtain the following decomposition for U’:

u . 1
U, = \/j;_/T =v1-2c [&gn (u) <X{p — :X%) + ZT} +0,(1)

= V1 —2c|[sign (u) X7 + Zr| + 0,(1). (B.69)
As for Xr,
1 T—¢ 2 1 T — T T1720
e — = —— t2—2 te

= ¥+ 0(1),
with 22 as in (B.60). Hence it follows from the CLT for sums of independent random
variables that

Xr % N (0,0%7). (B.70)
The LC is verified in Appendix [C.3] Hence, if it can be shown that

Zr 50, (B.71)
it will follow from (B.69) that
Uf = (1—2¢) X2+ 0,(1)

= (1-2¢)0%? (ﬁf +op(1)

ov
4 2722, (B.72)
with
¢\’ )

2 —02(1=2¢) = =0

cf. (B.61)). Or, returning to Uy, taking account of (B.55)) and (B.61)),
Uz N a?x>.

Remark 8

It should be noted that, without further knowledge, it does not follow from (B.70) that
sign(u) X converges in distribution, let alone is asymptotically normal. The problem
caused here by the random nuisance parameter sign(u) is similar to the one appearing
explosive AR(1)-models y, = ay,_1 + &, where the denominator (M), = Y1 y?, of

the OLS-estimator tends geometrically fast (at rate |a|*") to some nondegenerate random
limat u.

48



It remains to show that Zp = 0, see (B.71).

To that end, return to (B.66)), with

Pt—1 =7 (Ut,1 — ’U) + YWi—-1 + @) (til)

(cf. (B.58b))). For the following, we need a somewhat more detailed representation of the
term v;_; — v. Remembering (B.29)) and (B.30), we write

pro1 =G+ w1+ O (171),

with

= 3
i
G=0v-1—0V= E 91'—2.170-
i=t

Then

T

1 —c
Zy = mzt Pit—1E¢

- T1/2 - Zt cCt5t+Zt We— 15“LZ t1+c =

Apparently (remember that the O, (1)-terms are deterministic), the contribution of the
last term on the right hand side is 0,(1) since

Hence

T

1 € L?
T1/2—c Z tl-‘rc — 0.

Zp = (Rr + Sr) + 0p(1)

with

Ry

Ad R. We calculate

T 2
E Ztcctst] =
t=1

) T
= Tijz—e Z £ G,
=1

1 T
= —Tl/Q—C Z ticwtflgt.
t=1

T
E Z tCErs™ (st

s,t=1

T t—1 T
1) Z tCey Z s Ces+ E Z 1227
t—1

T
QZZt s CECtetQS&ts—i—EZt 2e t&‘f

t=1 s=1
Rir + Ror.
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As to Ry7, making use of (B.74)), we obtain for s < ¢ that

L) e ] 00 &
E¢ie(es = E{ ZHZF &t lz_:elzl_c] 55}
L =t
E {

22
= E 2621 — | &tss
€ Lo
Zezzl—lcl Et Zglzl—lc] ES}
" t—1 '
el

Hence, remembering that lim; ., 6; = 1,

t—1

Rir = 20 Zt e Z —0083110

s=1

= 20! Zet% Zesé
t s=1

= O(1)In*T. (B.79)

As to RQT,

2.2 € 1% o
EGe; = E [Ctﬂ + Qttl—_c] on
2

0
— ECtHEf—i— T 0o B

00 92
- U Z t2 1 —c) t2 (1- c)
i=t+1

- 0 (t2c—1> )

Hence
1

T
Ryr =Y t7E¢e; =0(1)) - =0T (B.80)
t=1

t=1

Therefore, taking account of (B.76) together with (B.78), (B.79) and (B.80), we find that

In?T
[Rir + Ror] = O (m) .

1
E(Ry)* = Ti-2¢

In particular,

plim,_, Ry = 0. (B.81)
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Ad S. Recalling (B.77),

1
St T2 ;t We_1E¢
Since
1 <= 0y (1)
Wi—1 = ; e Ei, (B82)
=1
1 1
Bui, = O(1) 2 Z 200 0 (t_Q) ) (B.83)
i=1
(cf. (B.29)) is F;_1-measurable and
2 &
ESE = Ti-2¢ Zt_QcEth—l
t=1

S

1 1 1
- O(l)Tl 2c Z 20t 0 (Tl—Qc) :

t=1

In particular,
plim,_, St = 0. (B.84)

This shows (B.71]).
B.4 Proof of Corollary 2} Gaussian errors
In this section, we consider the special case where the ¢; are i.i.d. normal. Then a more

specific statement can be made about the asymptotics of the deterministically normalised
OLS-estimator, i.e. about the asymptotic distribution of

Vo = VI (B, - ).

Using the notation introduced in Appendix taking account of (B.59b)) and (B.61)),

T1—20 Ur Tl 2c
V p—
r Ar \/A_T Ap AT \/A_/

ol |UT +o0p(1
In view of the representation (B.69),
Vp = |pu| V1 —2¢[sign (u) Xo + Zr| + 0,(1)
pvV1—2cX
- A= CYT +o0,(1). (B.85)

The crucial fact is that, under normality,

() 29 ) (5 & ) man
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2

with 02 = 0?k?, 0% = o*v? and

2 o~ 0}
k=7 Z 20-0)°
i=1
(B.86) follows from the fact that
u = agBy + yv, with v = Z@lf—l
) —C
i=1

(cf. (B.31) and (B.30)), and since X7 and v are jointly normal with covariance

1 > 0; T e T
cov (v, Xyp) = T1/2—cEZ cCi <t — 1 c> £t
i=1 =1

2 T —c
g Qt _c T
T T1/2-c ; P <t 1_—¢
0'2 T Qt T—¢ T Qt
- T1/2—c [Z ? - 1—c¢ Z tl—c
t=1 t=1
0.2
= O(1) s T+ 0 (1)
= 0O (TC—I/Q)

In particular, u and X7 are asymptotically independent. It then follows from the contin-
uous mapping theorem that
Xr 4 X
[ % JR—
u U
where X is an N (0, 0% )-distributed random variable independent of u ~ N (agBy, 02).
Normalising, we find that N
¢ kX X
vy = Qe BAT A2 (B.87)
Or U vou u
where X ~ N (0,1) is independent of & ~ N (agBy, 1). As is well known, for y = agBy =
0, the ratio X /u is standard Cauchy-distributed. For nonvanishing p, the limit distribu-
tion is a noncentral Cauchy distribution C = C (u) which may also be regarded as double
noncentral t-distribution with one degree of freedom whose noncentrality parameters are
zero in the numerator and p in the denominator. Its density is given by

1 1 2
f0) = e [ng(“)]’

2 2 v2 ® 22 v2
V() = e ) / e 2(144%) gy

An alternative representation of the density in terms of an infinite series expansion may
be found in Krishnan| (1968)). Going back to (B.87), we then find that

Vi 4.
Finally, by asymptotic equivalence of V' and V’,

KV 5 C (1) .
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Remark 9

Reconsider the result in Theorem |9 (iii). It turns out that for Gaussian error terms, u
and v are independent normally distributed random variables with mean zero. Hence the
limit distribution of 5 is also a noncentral Cauchy distribution. For explosive AR(1)-
model without intercept the usual Cauchy distribution C (0) was already identified as limit
distribution in the Gaussian case by |White (1958) and |Shiryaev € Spokoiny (1997).

93



C The Lindeberg conditions

C.1 Theorem [3| for ¢ > 1/2

We verify the Lindeberg condition for sums of independent random variables, cf. [Shiryaev
(1996, Chapter III, §4, Theorem 1). Put differently, for every § > 0,

1 e
Vi = (v), 2 B Yeson-cwyz) 7 O
For ¢ > 1/2, taking account of (B.22]),

{led > 8t (v} {|gi| > %5@1—0\/&—1 + 0(1)}
C —_—

{'@" > (1t o(l))az'l—%c—l/?}
C {lasl > k(1 +0(1))t"}

with p = (¢ A1) — § and & > 0. The last inclusion follows from the fact that ¢'~¢ > ¢*=¢
for ¢ > 1 and i'7¢ > 1 for ¢ < 1. Therefore, by square integrability of ¢;,

Egzgl{‘gi < E8%1{|81|>/€(1+0(1))t1’} =7 — 0

|>5¢1—c<v>§/2}

as t — 0o. As a consequence,

t

Tt 1 Tt
V, < = — = 0.
R

For ¢ = 1/2, the proof runs similarly, now making use of (B.27):

{lei > 62 @ = {lail > 0 (1 +o(1))0i1/*Vint}

C {|€z‘ > Ii(l + 0(1))\/11115} 7
so that
2 , B
EEi 1{|Ei|>5i1—0<7)>i/2} < EEll{\al|>,{(1+o(1))m} =m — 0
and hence

d t
1 g2 o _—
T ;E71{lal>&”2<v>i/2} S iz

t =1

C.2 Theorem 4 for ¢ > 1/2
Reconsider the martingale in (B.45)), reproduced here for convenience:

ai—1

var

T
Mrp = Zthe?t, Ery =
t=1
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We have to show that, for every 6 > 0,
T
Ry = ZE {g%tgl?l{‘STtat‘>5}|Ft_1} £> 0, (Cl)
t=1

cf. Christopeit & Hoderlein| (2006)). To this end, we make use of the elementary implication
lab] > & = a® > & or b* > § to obtain the inclusion {|&ve;| > 6} = {|a_1e:| > 0\/ar} C

{a} | > é\/ar} U{e? > d,/ar} . Therefore,

T
1 2 2
RT < a_th;E{at—lgtl{a?1>5\/@}|‘Ft—1}
L I
2 2

T ar ; " {at—lgt Yersovar) 'E—l}

o & 1 —
_ 2 2 2
= o gt o 2B s |

T = T =
= R} + Rj.

As to RY, since a; — «a a.s., there will be a T (depending on w) such that a? | < d,/ar
for all ¢ > 1. Hence the sum is finite and

R — 0 as. (C.2)

As to RY,
E {E?l{s§>)\w§}} =ar — 0.
Hence, taking account of (B.49),

T !/
T P
Rr="—"=) a =mp~—L 50. (C.3)
- ar

(C.2) and (C.3)) together show (C.1)).

C.3 Theorem [4] for ¢ < 1/2

By definition (cf. (B.68))),

with

(. T
th_Tl/Q—C - 1—C

T
RT - ZE {g%t(g?l{\ﬁﬂstbts}‘ftfl} £> 0.

t=1

To show:
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But
T
Rr =) &E {5?1{5?»2/5%}} ‘
t=1

Since
1 1 1

* 1—cTV?

max [€7y| < = mr = o(1),

(T T1/2—¢
it follows that
mr=E {5?1{53>62/§%t}} <E {5?1{€%>52/m%}} — 0.
Therefore,

T
Rr SmTZ§%t—>O

t=1

since S0, &2, = O(1).
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D Proof of equation (B.53

D.1 Introduction

Here we give the proof of (B.53), as announced in Appendix [B.3]| namely that

L& 1] 0 (D.1)

for the sequence

InT. (D.2)

The sequence & was defined by

1 i
gt - Ezlf—c

i=1

Remember that we are dealing with the case ¢ > 1/2. Denote

T
Xp=>) &
t=1

Then, since

t2c £ 72(1—c)

- 7 {Lt%—l + 0(1)}

t2¢ [ 2¢—1
21 1
- 7 _—Lo(=),
2c— 1t t2c

it follows from the integral comparison test (ICT) that

0_2

EX, =
T 9.1

T + O(1). (D.3)

Hence, if (D.1)) holds,

o’ EXr — 1,
so that the normalisation (D.2) comes up naturally.

In order to show (D.1)), we will have to calculate 4th moments:

T T T
EX; =Y EgG =) Ef+2 Y EEG (D.4)
t=1

s,t=1 s,t=1;s<t
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D.2 Calculation of 4th moments

Henceforth, we will assume that s < t. The basic formula will be

my, i=i=j5=7,
Ecicpejep =4 o, i=i#j=j ori=j#i =7 ori=j#i=j
0, else

Then

s 2 t 2
1 1 1
2¢2
e - B |3 a3t

i=1 j=1
s t
1 E 1 1
T g2cq2e Z Z~1—cz~/1—c€i€i/ Z jl—cj/l—cgjgj/
iyi'=1 g.j'=1
= Ast+Bst'
Here we have put
S
1 1 1
Aa = §2c42¢ Z jl—cji—c jl—c '/1ch€i5i’5j5j”
i, §j'=1 I
s t
1 1 1
By = omB ) amonmesisr D e i
iyi'=1 jij'=s+1

Remark 10
Note that the B-term vanishes for s =t.

D.2.1 Ad Ay

1

s s i—1
1 4 1 1
ASt - g2ct2c [m4 Z 74(1—c) + 60 Z 72(1=¢) Z j2(1—c)]
=1 =2 j=1

with )
1 < 1 1 L1
li 1
A = S Z Ao Ay = Shc (Z Z’2(1—c)>
i=1 1=1
Ad A’ Since

O(1), < 3/4,

1
Zm: O(IHS>, C:3/4,
- ! O(s*3), ¢ > 3/4,

o8

(D.6a)

(D.6b)



it follows that

As a consequence,

d Y A =0(1). (D.8)

Ad A" Since

we have that
AT = 0 (s2* V) =0 (s7?). (D.9)

Hence

ZZA” = O(InT). (D.10)

t=1 s=1

As a consequence, from (D.64)),

> Aa=> > Ay=01)> > [A + Al = O(InT). (D.11)

s<t t=1 s=1 t=1 s=1

~+

D.2.2 Ad By

B will turn out the leading term in (D.5). Therefore we must be more explicit about
O(1)-terms. We will make use of the formula

Y=l (o) D13

which is valid for all p > —1.

By (D.6b),
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s t
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As a consequence,

T T t-1
ZBst = ZZBst
s<t t=2 s=1
4 T t T t
o 1 1 1 1
= =) —+oM)] =) —
(20_ 1)2 ; [t s=1 § ; t s=1 82(1 )
o a 1 1 d 1 2¢—1
= @ lgg Int+ O(1)] — T ;t—c [+ O0(1)]
But
T T T
1
Y —Mt+0(1)] = [/ nTtdt+0(1)] +0(1) [ %H}
t=2 2 2
1
= {5 In*T + 0(1)] +O0(1) [InT + 1]
— %anT—f—O(lnT)
and
A T dt
Zt—c [+ O(1)] :/ 7+O(1) =InT + O(1).
t=2 2
Hence
T 0_4 )
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;t T o127 (InT)
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D.3 Synthesis

From (D.5) together with (D.11) and (D.13)) it follows that

EX2 =

T T T
> EEG =2 ECG+ > EY
t=1

s<t

s<t

T
2) By +O0(InT)

(2¢—1)

s<t

4
sIno’T +O(InT).

Or, put differently, with o7 as in (D.2)),

E [0, X, — 1]

This proves the assertion.

o7t [EXG — 207EXr + 07+ O(InT)]
o7'0(InT)
O(n'T).
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E Proof of Corollary

Consider the OLS residual &; = y; — 5 — Bat_l = my; + &;, where

my = (0= 0) + (8 — B)ar.
Then

T T
Z th+22mt€t+25t
t=1 t=1

Since

Nl =
(]~
@SM
IA
Nl o

T(5—0)+ (8- B)° Zafll = o(1),

IN

it follows that

H-l\D
l\)

1 T T
ESCEES L
t=1 t=1

with probability one or in probability according to whether both 5 and B are strongly or
weakly consistent.
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