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Abstract

This paper examines the ordinary least squares (OLS) estimator of the struc-

tural parameters in a class of stylised macroeconomic models in which agents are

boundedly rational and use an adaptive learning rule to form expectations of the

endogenous variable. The popularity of this type of model has recently increased

amongst applied economists and policy makers who seek to estimate it empirically.

Two prominent learning algorithms are considered, namely constant gain and de-

creasing gain learning. For each of the two learning rules, the analysis proceeds

in two stages. First, the paper derives the asymptotic properties of agents' ex-

pectations. At the second stage, the paper derives the asymptotics of OLS in the

structural model, taken the �rst stage learning dynamics as given. In the case of

constant gain learning, the structural model e�ectively amounts to a static, cointe-

grating or co-explosiveness regression. With decreasing gain learning, the regressors

are asymptotically collinear such that OLS does not satisfy, in general, the Grenan-

der conditions for consistent estimability. Nevertheless, this paper shows that the

OLS estimator remains consistent in all models considered. It also shows, however,

that its asymptotic distribution, and hence any inference based upon it, may be

non-standard.
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1 Introduction

The purpose of this paper is to investigate the properties of the ordinary least squares esti-
mator of the structural parameters in a prototypical macroeconomic model with adaptive
learning. In particular, we consider a model class that has received substantial attention
in the economic theory literature:

yt = βyet|t−1 + δxt + εt, t = 1, 2, . . . (1.1)

where yet|t−1 denotes agents' expectations about yt based on the information available at
time t − 1, the driving variable xt is exogenous, and the error terms εt are independent
and identically distributed (i.i.d.). Models of this type have a long tradition in economics.
For instance, the classical cobweb model �ts into this form, see e.g. Bray & Savin (1986)
and Fourgeaud, Gourieroux & Pradel (1986), as does the Lucas (1973) aggregate supply
model and the New Keynesian Phillips curve (NKPC), cf. Roberts (1995) and Clarida,
Galí & Gertler (2000). In some settings, (1.1) is the solution of a system of behavioural
equations, with the coe�cients β and δ being functions of deep parameters. What is
common to most speci�cations is, however, that the slope parameter δ generally turns
out to be unrestricted while the autoregressive coe�cient β lies within the unit interval,
as in the NKPC, or to be negative, as in the cobweb model. For the purposes of this
paper, we will refer the coe�cients in (1.1) as structural parameters as they can often be
given an economic interpretation: For instance, in the NKPC, β is the discount factor
and δ the slope of the Phillips curve.

With a view to analysing the econometrics of model (1.1) consider its economic aspects
�rst: Of central interest in the economic literature is the way in which the expectations
yet|t−1 are modelled. The traditional approach is via rational expectations, cf. Muth (1961)

or Sargent (2008), which assumes that agents, when forming expectations yet|t−1, have

complete knowledge of the model and the past Ft−1 = σ (ys, s ≤ t− 1;xs, s ≤ t) and
make best use of it, i.e. set yet|t−1 = E (yt|Ft−1). Taking conditional expectations in (1.1)

yields E (yt|Ft−1) = αxt with

α =
δ

1− β
. (1.2)

The so-called rational expectations equilibrium (REE) model is thus

yt = αxt + εt. (1.3)

Obviously, under the assumption of rational expectations, only α is identi�ed; not, how-
ever, δ and β separately.

More recently, economic agents are frequently assumed to be boundedly rational and to
form their expectations via adaptive learning, see Sargent (1993, 1999), Evans & Honkapo-
hja (2001), Hommes (2002) or Gaspar, Smets & Vestin (2010). The basic idea underlying
all adaptive learning procedures is that agents employ an auxiliary model, or so-called
perceived law of motion, to form their expectations yet|t−1. One way to specify this auxil-

iary model is to assume that its functional form corresponds to that of the REE in (1.3).
Generally, agents are presumed not to know the parameter α and therefore replace it
by some estimate at−1, based on information Ft−1. Typically, the parameter α will be
estimated by some recursive procedure which, in general, has the form of a stochastic
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approximation algorithm:

at = at−1 + γt
xt
rt

(yt − at−1xt) (1.4a)

rt = rt−1 + γt
(
x2t − rt−1

)
, (1.4b)

where γt is some weighting, or gain, sequence. This updating algorithm can be viewed
as generalising the recursive least squares estimator of α, which has γt = 1/t and whose
rt is the sample second moment of xt. For recent surveys of stochastic approximation
algorithms and their applications, see Lai (2003) and Kushner (2010). With the learning
scheme in (1.4), agents' expectation will be given by

yet|t−1 = at−1xt,

and the resulting so-called actual law of motion, or data generating process (DGP), is

yt = βat−1xt + δxt + εt. (1.5)

It is thus plain that, in models with adaptive learning, the expectational term yet|t−1
creates a forecast feedback, resulting in a self-referential, and thus highly complex, DGP.
Moreover, the stochastic behaviour of the DGP depends crucially on the speci�cation of
the gain sequence γt.

Empirical models with learning have recently gained popularity amongst researchers and
policy makers; see for instance the New Keynesian Phillips curve models estimated by
Milani (2007) and Chevillon, Massmann & Mavroeidis (2010), the European Central
Bank's New Multi-Country Model by Dieppe, González Pandiella, Hall & Willman (2011),
the in�ation model by Malmedier & Nagel (2013) and the model of stock market volatility
by Adam, Marcet & Nicolini (2015). Yet not much is known about the econometrics of
adaptive learning models. In this paper, we contribute to �lling this gap by investigating
the asymptotic behaviour of the OLS estimator of the structural parameters β and δ in
(1.5), henceforth denoted by β̂ and δ̂, respectively. We will refer to this issue as the
external estimation problem (EEP). In particular, the EEP concerns the question of the
weak consistency of the OLS estimator and of its asymptotic distribution, the former in
fact being a natural by-product of the existence of the latter.1 Note that the model in
(1.5) is a linear regression model with predetermined stochastic regressors. There is a
rich literature on the properties of OLS estimators in this model class, yet even the most
powerful available results cannot be applied to particular models considered in this paper.
This problem is particularly acute for the question of consistency and will be commented
on further below. With the properties of β̂ and δ̂ in (1.5) thus being generally unsettled, it
is as yet unclear whether empirical implementations of it are built on sound econometric
principles. Examining the OLS estimator of β and δ is the main purpose of this paper,
and the aim is to provide a response to the contention of Marcet & Sargent (1988, p. 171):

�It is open and problematic whether [a learning system] can ever be expected to
yield econometric models that can be applied. . . . [Our results] probably imply
that these parameters cannot be consistently estimated.�

1The issue of strong consistency of the OLS estimator is investigated in a companion paper, see
Christopeit & Massmann (2012).
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With a view to examining the EEP we will �rst have to address the asymptotic properties
of agents' forecast at of α, see (1.4a) above, an issue usually referred to internal forecasting
problem (IFP). Two aspects of this issue are of interest: (i) Does at converge to the REE α?
(ii) If so, at which rate does at converges? The �rst of these questions has been conclusively
answered in the literature; a good account of seminal results can be found in Benveniste,
Métivier & Priouret (1990) and Kottmann (1990). In particular, the literature generally
distinguishes between two basic approaches of specifying the gain sequence: constant gain
learning, i.e. with γt = γ, and decreasing gain learning, for which γt → 0. It can be shown
that, in the former case, at does not in general converge to α. Agents are thus said to
learn perpetually. As opposed to that, agents are fully rational asymptotically in the case
of decreasing gain learning since the convergence at → α does hold with probability one
under suitable summability assumptions on γt. This result presumes that β < 1 since
it can be shown that, if β ≥ 1, at diverges, see e.g. Christopeit & Massmann (2010) for
details. Indeed, while most of the models in the literature presume that β ∈ (0, 1), there
are some that consider negative values; see, for example, Evans, Honkapohja, Sargent
& Williams (2013) and Brock & Hommes (1997) who analyse cobweb-type models with
−0.5 < β < 1 and β < −1, respectively. With the question of convergence under
decreasing gain settled, it is surprising that the second of the two questions above has
to-date only received scarce attention in the literature. Results on the convergence rate
for a particular parameterisation have been derived by Marcet & Sargent (1995) and for
agents employing a Bayesian estimation approach by Vives (1993). Since, however, the
asymptotic behaviour of at turns out to be crucial for the properties of the OLS estimator
in the EEP we provide a complete treatment of this issue in the present paper.

As to the EEP, the few existing results on the asymptotic behaviour of β̂ and δ̂ pertain
mainly to the case of constant gain learning, see e.g. Chevillon et al. (2010) and Adam
et al. (2015). In this case, the regressor at is an autoregressive process with constant
coe�cients and, depending on the value of β and γ, is either stationary ergodic, a random
walk (possibly with a negative unit root) with drift, or explosive, given suitable input
sequences xt. We will appeal to results available in the literature to derive the asymptotic
properties of β̂ and δ̂; see Lai & Wei (1985) for the stationary ergodic case, Chan & Wei
(1988) for the (negative) unit root case, and Phillips & Magdalinos (2008) as well as Wang
& Yu (2015) for the explosive case. On the other hand, when learning is of decreasing
gain type such that at → α with probability one, then the regressors in (1.5) will be
asymptotically collinear:

yt ∼ βαxt + δxt + εt, (1.6)

i.e. the asymptotic moment matrix

M =

(
1 α
α α2

)
plim
T→∞

1

T

T∑
t=1

x2t

will be singular. This violates one of the classical �Grenander conditions�, i.e. the condition
that the regressor sample second moment matrix, suitably scaled, converges to a positive
de�nite limit; see Grenander & Rosenblatt (1957). In the econometrics literature the
singularity of M is generally referred to as absence of strong asymptotic identi�cation,
see e.g. Davidson & MacKinnon (1993) or Newey & McFadden (1994). Given that the
Grenander conditions are only su�cient but not necessary for consistent estimability,
it is not clear a priori whether the OLS estimators β̂ and δ̂ in (1.5) possess desirable
asymptotic properties. One leading example in which the asymptotic singularity of M
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does not preclude the consistency of OLS is that of a linear model with slowly varying
regressors, see Phillips (2007). The regressors in that paper, however, are deterministic
while in our model at is stochastic. Thus, seminal results such as the necessary condition
for weak consistency of OLS in the simple linear regression model with a deterministic
explanatory variable, as derived by Lai & Robbins (1977), are not applicable in our
setting. Corresponding results for predetermined regressors can be found in, for instance,
Christopeit & Helmes (1980), Lai & Wei (1982a, 1982b) and Christopeit (1986). However,
as will be discussed in Section 4, they do not satisfy our needs either.

The present paper hence investigates two issues. First, as part of the IFP, the in�uence
of the choice of gain sequence γt on the asymptotics of at is investigated. Secondly, the
e�ect of γt on the properties of the OLS estimators β̂ and δ̂ is explored in the context of
the EEP. Speci�cally, we consider models such as (1.4)-(1.5) with either a constant gain

γt = γ, (1.7)

or with a decreasing gain sequence

γt =
γ

t
, (1.8)

where γ > 0. To see the motivation for this choice, note that, for a decreasing gain
sequence, a set of summability conditions guaranteeing the convergence of at to α is∑

t γt = ∞ but
∑

t γ
2
t ln2 t < ∞, cf. Kottmann (1990). These conditions would suggest

considering sequences γt = γ/tη, with η ∈
(
1
2
, 1
]
. Yet it is to be expected that the

case η = 1 exhibits a behaviour that is furthest removed from that in the constant
gain case, obtained by setting η = 0. Our choice of gain sequences can hence be seen
as covering the two extremes on a behavioural continuum without introducing a further
parameter, namely η, that would either have to be estimated or assumed known in the
EEP. Moreover, recall also that γt = 1/t yields recursive least squares learning while
constant gain learning is known to be equivalent to exponential smoothing, both of which
are, due to their intuitive appeal, of interest per se. Indeed, the economic literature often
uses recursive least squares for modelling the learning of agents in stable regimes, as it
implies that a forecast is a linear combination of past data, each of which receives the
same weight, no matter how far in the past it was observed. Exponential smoothing, on
the other hand, means that the weight given to past observations declines exponentially,
making it predestined to be used by agents in unstable regimes. For instance, Marcet
& Nicolini (2003) combine both types of learning in a switching model of hyperin�ation,
while Evans & Ramey (2006) discuss their relationship to the Lucas critique.

In order to delineate the in�uence of the choice of γt on agents' forecasts on the one hand
and on the behaviour of the OLS estimators β̂ and δ̂ on the other hand, without obscuring
it by the in�uence of the regressors xt, we consider the very simplest scenario in which
xt = x is a constant. In this case, rt = x2 is the stationary solution of (1.4b) such that,
for any starting value r0, limt→∞ rt = x2. For constant gain learning, this is true whenever
γ ∈ (0, 1) , while for decreasing gain it holds for all γ > 0. Without loss of generality, we
may then assume that x = 1, any other value of x merely requiring that the variance of εt
be changed from σ2 to σ2/x2. Working with this stationary solution for rt, the recursion
in (1.4a) reduces to

at = at−1 + γt (yt − at−1) (1.9)

while the structural equation in (1.5) becomes

yt = δ + βat−1 + εt. (1.10)
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Note that by inserting (1.10) into (1.9) the dynamics of at may also be written as

at = (1− ct) at−1 + γt (δ + εt) , (1.11)

where we have de�ned
ct = (1− β) γt. (1.12)

Note that under constant gain learning, ct is equal to

c = (1− β)γ, (1.13)

cf. (1.7), while it is equal to ct = c/t under decreasing gain, see (1.8).

The DGP we consider in this paper is hence (1.10)-(1.12). Time-varying regressor se-
quences xt are beyond the scope of the present paper. Similarly, replacing yet|t−1 in the

economic model (1.1) by forward-looking expectations yet+1|t, i.e. expectations of time t+1
formed by agents at time t, introduces economic as well as econometric complications.
While a detailed analysis of these issues is left to future research the likely rami�cations
of both extensions will be looked at in Section 4.

The �rst central conclusion of our analysis is that the asymptotics of at and of β̂ as well
as δ̂ critically depend on the value of c in (1.13). In particular, regarding the interplay
of IFP and EEP, it is clear that there is some sort of trade-o� between the asymptotic
behaviour of at on the one hand and that of the OLS estimators on the other, in the
sense that convergence of agents' expectations to the REE is likely to have detrimental
e�ects on the convergence of the OLS estimator, and vice versa. Our second central
conclusion is that in all of the aforementioned settings the structural parameters β and
δ can be consistently estimated although in all but one scenario the OLS estimators will
have di�ering, highly non-standard asymptotic distributions. This result hence provides
an answer to Marcet & Sargent's speculation quoted above, in that the learning systems
considered in this paper do yield useful, albeit complex, econometric models.

The main contribution of the paper to the literature is hence that it derives the asymp-
totics of the OLS estimator δ̂ and β̂ in the setting of model (1.1) under both constant and
decreasing gain learning. This has not been attempted before. The paper thus provides a
theoretical justi�cation for estimating this type of model empirically, which is becoming
more and more popular in the profession. As a second major contribution, this paper
provides a complete analysis of the asymptotics of agents' expectations at in the said
model setting, and in particular of the rate at which at converges to the REE, if at all.
Again, this is a novel undertaking and only comparable to the results derived in special
cases by Marcet & Sargent (1995) and Vives (1993). It will be of potential interest in the
economic theory literature. Finally, econometricians will likely �nd the third contribu-
tion instructive, namely that the paper e�ectively provides a synopsis of models that yield
vastly di�erent dynamics depending on the choice of their parameter spaces, covering unit
root and explosive behaviour as much as illustrating issues like non-standard convergence
rates and singular variance-covariance matrices.

The paper is structured as follows: Our results pertaining to constant gain learning are
presented in Section 2 whilst those relating to decreasing gain learning are described in
Section 3. Subsidiary issues and model extensions are discussed in Section 4 before Section
5 concludes. Proofs of the constant gain results are relegated to Appendix A and those
of the decreasing gain results to Appendix B. The proofs of some auxiliary results are
contained in Appendices C-E.
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2 Constant gain learning

In this section, we consider the model in (1.10)-(1.12) with a constant gain sequence
γt = γ > 0. In particular, the model of interest comprises the structural equation

yt = δ + βat−1 + εt (2.1)

while, for β 6= 1, the recursion in (1.11) is now written as

at = (1− c) at−1 + cα + γεt (2.2a)

since cα = γδ. As before,
c = (1− β)γ. (2.3)

In the special case of β = 1, (2.2a) is replaced by

at = at−1 + γ(δ + εt). (2.2b)

Indeed, (2.2b) can be considered as resulting from taking the limit β → 1 in (2.2a). Note
that it is common in the economics literature to assume that γ ∈ (0, 1) and that β < 1.
Yet, from a mathematical point of view, any value of β and any positive value of γ can
and will in the following be admitted. We will make the following maintained assumptions
on the error term εt and the initial value a0 throughout the entire paper.

Assumption MA1
The εt are i.i.d. with mean 0 and variance σ2.

Assumption MA2
The initial value a0 may be deterministic or stochastic. In the latter case, it is in L2 and
independent of εt, t ≥ 1.

It will turn out that the parameter c is decisive for the behaviour of at in Section 2.1 as
well as for that of the OLS estimators β̂ and δ̂ in Section 2.2.

2.1 IFP

Let us �rst consider the internal forecasting problem (IFP), i.e. the asymptotic behaviour
of agents' forecast at in (2.2). The results will be used in the analysis of the EEP below,
yet they are also of interest per se. Depending on the value of c, three di�erent types of
autoregressive processes arise:

(i) If 0 < c < 2, the autoregressive coe�cient

ρ = 1− c

in (2.2a) satis�es |ρ| < 1. Therefore we are in the classical scenario of stable autore-
gressive processes.

(ii) If c = 0 then ρ = 1 and (2.2a) is a random walk with drift. As opposed to that, if
c = 2 then ρ = −1 and (2.2b) is an alternating random walk with drift. Both are
hence unit root processes with drift. The latter scenario of a negative unit root has
not received much attention in the literature, the main reference being Chan & Wei
(1988). Indeed, the behaviour of at under a negative unit root turns out below to
be very di�erent from the case with a positive unit root.

9



(iii) When c < 0 or c > 2, we have |ρ| > 1, and (2.2a) is an explosive autoregressive
process.

The asymptotic behaviour of at for the various cases is summarised in the following
theorem. The proof is given in Appendix A.2.

Theorem 1
(i) If 0 < c < 2 then at converges in distribution to the law L of the stationary solution,

i.e. to the invariant distribution. This is nondegenerate with mean α and positive
variance.

(ii) If c = 0 then at is a random walk with drift δγ and

at = γδt+ o(t) a.s..

If, instead, c = 2 then at is an alternating random walk with drift 2α and

1

σγ
√
t
at

d→ N (0, 1) . (2.4)

(iii) If c < 0 or c > 2 then (1− c)−t at converges with probability one and in L2 to a
nondegenerate limit with mean Ea0 − α.

It is hence plain that, in none of the three cases, at converges to the REE α in any
probabilistic sense. Agents will thus not be rational in the limit but learn ad in�nitum.

As mentioned above, the behaviour of at depends on the value of c = (1−β)γ. While β is
estimated as part of the EEP the value of γ is assumed known for the time being. A known
γ is of course synonymous with the investigator specifying how quickly agents discount
past observations in constructing their forecasts of α. Issues resulting from assuming that
γ is unknown are discussed in Section 4.

2.2 EEP

We now turn to the external estimation problem (EEP) and to the problem of estimating
the unknown parameter vector θ = (δ, β)′ in the structural equation (2.1). It turns out
that prominent su�cient conditions for the consistency of OLS available in the literature
do not generally apply, as will discussed in Section 4. Yet the following observation on
the relationship between the EEP on the one side and OLS estimation in a �rst-order
autoregressive model on the other side will allow us to derive the limiting distribution
of the OLS estimator by making use of the asymptotics of at, as derived in Theorem 1,
and of results available in the time series literature. In particular, note that the OLS
estimator θ̂T = (δ̂T , β̂T )′ of θ based on T observations is traditionally written in the form

θ̂T − θ = M−1
T uT , (2.5)

where the second moment matrix MT is given by

MT =

(
T

∑T
t=1 at−1∑T

t=1 at−1
∑T

t=1 a
2
t−1

)
(2.6)

10



and

uT =

( ∑T
t=1 εt∑T

t=1 at−1εt

)
, (2.7)

with at generated by (2.2). Yet an alternative way of analysing θ̂T − θ is to examine in
lieu of equation (2.1) the following AR(1)-model:

a∗t = δ∗ + β∗a∗t−1 + γεt, (2.8)

where, generally, the sequence a∗t as well as the parameter vector θ∗ = (δ∗, β∗)′ di�er from,
respectively, at and θ above. The OLS estimator of θ∗ is given by

θ̂∗T − θ∗ = M∗−1
T u∗T , (2.9)

where M∗
T is de�ned analogously to (2.6) and

u∗T = γ

( ∑T
t=1 εt∑T

t=1 a
∗
t−1εt

)
.

If β 6= 1, suppose that δ∗ = cα and β∗ = 1− c. Then, if started with the same initial value
a0 = a∗0, it is plain that at = a∗t for all t, that MT = M∗

T and that uT = γ−1u∗T . Hence it
follows from (2.5) and (2.9) that

θ̂T − θ = γ−1
(
θ̂∗T − θ∗

)
. (2.10)

This identity will continue to hold for β = 1, in which case the two pairs of coe�cients
are given by δ∗ = γδ and β∗ = 1. In particular, if δ = 0, the asymptotic behaviour of θ̂T
needs to be evaluated at δ∗ = 0 and β∗ = 1, corresponding to the Dickey-Fuller model
with drift.

In summary, the asymptotic behaviour of the OLS estimator in (2.1) is, up to a factor
of proportionality, equal to that of the OLS estimator in the AR(1)-model (2.8). This
equivalence will be exploited in the proof of Theorem 2, see Appendix A.3.

For the explosive case of constant gain learning, we need the following additional assump-
tion.

Assumption CG
The limit

z =
∞∑
t=1

(1− c)−t εt

possesses a continuous distribution function.

Note that the limit exists both in L2 and with probability one since |ρ| = |1− c| > 1.
Su�cient conditions for Assumption CG to hold will be discussed at the end of this
section.

Theorem 2
The OLS estimator θ̂T = (δ̂T , β̂T )′ for the parameters θ = (δ, β)′ in model (2.1) has the
following asymptotic behaviour.
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(i) If 0 < c < 2 then θ̂T − θ is asymptotically normal at rate
√
T :

√
T (θ̂T − θ)

d→ N
(

0, σ2M
−1
)
, (2.11)

where

M =

(
1 α
α σ2

a + α2

)
,

and σ2
a = σ2γ2/

(
1− (1− c)2

)
is the variance of the invariant distribution of at.

(ii) If c = 0 and δ 6= 0 then ( √
T (δ̂T − δ)

T 3/2(β̂T − 1)

)
d→ N

(
0, σ2Ω

)
,

where

Ω =

(
4 − 6

δγ

− 6
δγ

12
δ2γ2

)
. (2.12)

If, instead, c = 0 and δ = 0 then( √
T δ̂T

T (β̂T − 1)

)
d→ Z,

where

Z = v−1

(
σB(1)

∫ 1

0
B(s)2ds− σ

2

(
B (1)2 − 1

) ∫ 1

0
B(s)ds

1
2γ

(
B (1)2 − 1

)
− 1

γ
B (1)

∫ 1

0
B(s)ds

)
,

v =

∫ 1

0

B(s)2ds−
(∫ 1

0

B(s)ds

)2

.

If, however, c = 2 then( √
T (δ̂T − δ)
T (β̂T − β)

)
d→ 1∫ 1

0
B̃(s)2ds

(
σB(1)

∫ 1

0
B̃(s)2ds

− 1
2γ

[
B̃2(1)− 1

] ) ,
where B and B̃ are two independent standard Brownian motions.

(iii) If c < 0 or c > 2 then, under the additional Assumption CG,

√
T (δ̂T − δ)

d→ N
(
0, σ2

)
,

(1− c)T (β̂T − β)
d→ 1

γ

[
(1− c)2 − 1

]
u

v + (1− c) cα/ [(1− c)− 1]
,

where u and v are independent L2-variables, and the two estimators are asymptoti-
cally independent.

Some of the theorem's statements make use, of course, of standard textbook results,
see e.g. the stable case (i) and the unit root case (ii) with c = 0 and δ = 0. Also,

the asymptotic normality of β̂T at rate T 3/2 in the unit root case (ii) with c = 0 and
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δ 6= 0 corresponds to the results derived by West (1988). The explosive case (iii) is
based on a recent paper by Wang & Yu (2015), see also Remark 9 in Appendix B.4. For
the alternating unit root case (ii) with c = 2, however, we obtain a nonstandard limit
distribution of the Dickey-Fuller type that, to the best of our knowledge, has not yet been
documented in the literature. Note that it concerns the joint limiting distribution of the
OLS estimator of the intercept and slope parameters in (2.2), or indeed (2.8), and its
proof builds on the results derived by Chan & Wei (1988). A negative unit root has also
been considered by, for instance, Abadir (1993), albeit in the context of the uncentred
normalised autocorrelation coe�cient.

The crucial aspect of Theorem 2 is that the behaviour of the OLS estimator di�ers
markedly depending on the value of c = (1 − β)γ, i.e. on the value of the autoregres-
sive coe�cient β and of the gain parameter γ in the structural model. The juxtaposition
of the results for di�erent c is meant to reinforce that conclusion. Importantly, the OLS
estimators of δ and β are consistent or even super-consistent. Moreover, inference on both
parameters is feasible in all scenarios, provided one takes account of the non-standard dis-
tributions resulting in cases (ii) and (iii). Finally, the usual OLS estimator for σ2 is also
consistent, as will be discussed in Section 4.

A note on Assumption CG seems warranted. Though it seems impossible to give a com-
plete characterisation of those distribution functions F of εt for which the assumption
holds, useful su�cient conditions are available. They are based on a theorem by Lévy,
cf. Kawata (1972, Theorem 13.1.2), which, in turn, relies on the observation that the
point spectrum of the sum of two independent random variables is the vector sum of the
individual point spectra. A trivial consequence of the theorem is that, if the distribution
function F of εt is continuous, then so is that of z. Hence Assumption CG is satis�ed. A
consequence of the nontrivial part of the theorem is that, if F has compact support and
discontinuities outside some neighborhood of 0, then Assumption CG is also satis�ed. It
is de�nitely not satis�ed for discontinuous F with unbounded support and for distribution
functions having a saltus at 0.
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3 Decreasing gain learning

In this section, we consider the model in (1.10)-(1.12) with the gain sequence speci�ed
as γt = γ/t for some constant γ > 0. In view of the discussion in the introduction, we
consider the case of β < 1 so as to ensure that at → α. The model is hence given by:

yt = δ + βat−1 + εt, (3.1)

at =
(

1− c

t

)
at−1 +

γ

t
(δ + εt) , (3.2)

where, again,
c = (1− β) γ. (3.3)

Note that the condition β < 1 corresponds to c > 0. The value c will again turn out to
be crucial for the behaviour of at as well as of β̂ and δ̂.

Recall the maintained Assumptions MA1 and MA2 mentioned in Section 2. The following
two additional assumptions about the error term εt are made at various stages in the
subsequent analysis.

Assumption DG1
The εt possess �nite fourth moments m4.

Assumption DG2
For c < 1/2 and for every sequence of numbers θi → 1, the limit

v =
∞∑
i=1

θi
εi
i1−c

,

has a continuous distribution function.

The limit v exists both in L2 and with probability one. Comments apply similar to those
on Assumption CG made at the end of Section 2.

We will now �rst discuss the internal forecasting problem (IFP) in the context of model
(3.1)-(3.3) before turning to the external estimation problem (EEP) in Section 3.2.

3.1 IFP

As mentioned in the introduction, the mere convergence of at to α follows easily from well-
known results on recursive algorithms, see for instance Christopeit & Massmann (2010,
section 3.1). In particular, Kottmann's (1990) su�cient conditions are met since β < 1 by
assumption and our choice of gain sequence γt = γ/t satis�es the summability conditions∑

t γt =∞ and
∑

t γ
2
t ln2 t <∞. However, for our analysis of the asymptotic distribution

of the OLS estimator in Section 3.2, we will need the exact rates of convergence of at. To
see this, consider for simplicity a simple linear model with a deterministic regressor: it
was shown by Lai & Robbins (1977) that the condition that the sum of squared mean-
adjusted regressors diverges is necessary and su�cient for the (strong) consistency of the
OLS estimator. Although the structural equation in (3.1) is a linear regression model
with a predetermined stochastic regressor, it is intuitive that a comparable condition will
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again have to hold. The convergence rates of at are instrumental in the analysis of the
EEP. They are of course also of interest per se.

The IFP in the context of the model in (3.1)-(3.3) is strikingly non-standard. This can
be gleaned from the following characteristics of the process at: First, at is autoregres-
sive of �rst order with a time-varying coe�cient which is intrinsically local-to-unity. The
behaviour of models of that kind has been analysed by Phillips (1987), with recent ex-
tensions to autoregressive coe�cients of the type 1 − c/τt with τt = o(t) by Phillips &
Magdalinos (2007). Next, the impact of the intercept δ and of the disturbance εt on at
tends to zero for large t. In the limit, at thus tends to a constant. As a result, the process
at is highly non-stationary, as re�ected in, for instance, the fact that its variance decreases
to zero at a rate which increases with c. Finally, for �xed t and h → ∞, the covariance
Cov (at, at+h) behaves as O (h−c) and the correlation

Corr (at, at+h) =

{
O
(
h1/2−c

)
if c > 1/2,

O
(

(lnh)−1/2
)

if c = 1/2

while, if c < 1/2, the correlation tends to a non-zero constant. In the context of stationary
stochastic processes, the behaviour for c > 1/2 corresponds to what is called long memory,
see Brockwell & Davis (1991). It is interesting to note that memory for c = 1/2 is even
longer while, for c < 1/2, it is in�nite.

The following theorem describes the asymptotic distribution of at in general and its con-
vergence rates in particular. Its proof will be given in Appendix B.2

Theorem 3
(i) If c > 1/2 then at − α is asymptotically normal at rate

√
t:

√
2c− 1

σγ

√
t (at − α)

d→ N (0, 1) .

(ii) If c = 1/2 then at − α is asymptotically normal at rate
√
t/ ln t:

1

σγ

√
t

ln t
(at − α)

d→ N (0, 1).

(iii) If c < 1/2 then
lim
t→∞

tc (at − α) = u

in L2, where u = (a0 − α)B0 +γv, B0 is some positive constant depending on c, and
v is as de�ned in Assumption DG2.

The convergence rates of at are illustrated in Figure 1. It is plain that, as c decreases, the
convergence of at to α gets progressively slower, from t1/2 to (t/ ln(t))1/2 and to tc with
c < 1/2. Moreover, the value c = 1/2 can be interpreted as a boundary separating `good'
asymptotic behaviour of at from `poor' behaviour, in the sense of speed of convergence.
To gain an intuition2 for this threshold, consider the simple case of γ = 1, as in recursive
least squares learning, such that β = 1 − c. Abstracting from the error term εt, the

2We are grateful to George Evans for drawing our attention to this interpretation.
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Figure 1: The convergence rates of at to normality. Solid line: f(t) =
√
t, dashed line:

f(t) =
√
t/ ln t, dotted line: f(t) = t3/8.

structural equation in (3.1) is given by yt = δ + βyet , since y
e
t = at−1. Denoting the REE

by ȳ = α = δ/(1− β) the structural equation can be written as

yt = ȳ + β(yet − ȳ).

It thus follows that, at the one extreme, i.e. when β = 1, yt = yet and the value of the
process is always equal to what agents believe it to be. At the other extreme, i.e. when
β = 0, yt = ȳ and the process stays put at the REE. If yt takes an intermediate value
but is closer to yet than to ȳ, such that β > 1/2 ⇔ c < 1/2, then the speed at which it
converges towards ȳ is fast. Conversely, when β < 1/2⇔ c > 1/2, then yt is already close
to ȳ and hence convergence towards it is slow. Indeed, the threshold of 1/2 is reminiscent
of a similar boundary discussed in Evans et al. (2013). In view of the aforementioned

trade-o� between the behaviour of at and that of β̂T , one should expect the converse for
the performance of β̂T . This will indeed be seen in Theorem 4.

The result of
√
t-convergence in part (i) of Theorem 3 also follows from Benveniste et al.

(1990), see their Theorem 3 on p. 110 and their Theorem 13 on p. 332, and has been used
by Marcet & Sargent (1995) and Evans & Honkapohja (2001, Theorem 7.10), respectively.
Indeed, Benveniste et al. (1990, Theorem 3, p. 110) explicitly state that a particular
eigenvalue must be smaller than −1/2, a condition that translates into c > 1/2 in our
context. Parts (ii) and (iii) of our Theorem 3 are, to the best of our knowledge, new.

Theorem 3 states that, for c < 1/2, the asymptotic distribution of at is, in general, not
normal. The reason for that is that v, as de�ned in Assumption DG2, is a random nuisance
parameter. Yet, making the explicit assumption that the error terms are Gaussian, the
ensuing corollary provides an extension of Theorem 3, simply by virtue of v being a
weighted sum of the εt. Note that, in this case, Assumption DG2 is automatically satis�ed.

Corollary 1
Consider part (iii) of Theorem 3. If εt is normally distributed then at−α is asymptotically
normal at rate tc.
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3.2 EEP

We now turn to the estimation of the structural parameters in (3.1). Our focus will be on
the slope coe�cient β from which the properties of the estimator of δ follow immediately,
see the discussion at the end of this section. As mentioned earlier, the structural equation
is a simple linear regression model with predetermined stochastic regressors, with error
terms that are i.i.d.. The OLS estimator of β can be written as

β̂T − β =
uT
AT

, (3.4)

with

uT =
T∑
t=1

(
at−1 − ā−T

)
εt (3.5)

AT =
T∑
t=1

(
at−1 − ā−T

)2
. (3.6)

and ā−T = 1
T

∑T
t=1 at−1.

Although OLS estimation in this model class has a very long tradition in statistics and
econometrics it is not clear a priori whether or not β̂ is consistent in the present setting.
The reason for this is that neither necessary nor minimally su�cient conditions for the
weak consistency of the OLS estimator in a linear regression model with predetermined
stochastic regressors and i.i.d. errors are available in the literature. And the su�cient
conditions that do exist turn out not to be met in our model for some parameter constel-
lations. In particular, the weak consistency of OLS is not evident since, as argued in the
introduction, one of the classical Grenander conditions is violated in model (3.1)-(3.3),
namely the non-singularity of the limiting regressor sample second moment matrix. Inci-
dentally, the best result for the strong consistency of OLS so far obtained is not satis�ed
in our model either if c > 1/2, as will be discussed further in Section 4.

It is hence plain that in examining the asymptotic properties of the OLS estimator in (3.4)
no recourse can be taken to existing results. We hence resort to analysing our model from
�rst principles, making use of the behaviour of the predetermined regressor at as derived
in Theorem 3 above. In particular, Theorem 4 below will deal with the cases c > 1/2
and c < 1/2. The boundary case c = 1/2 seems to require an approach entirely di�erent
from ours and is thus left to future research. A comment on the di�culties arising in that
derivation will be made in Remark 7 as part of the proof of Theorem 4 in Appendix B.3.

Theorem 4
(i) If c > 1/2 then, under the additional Assumption DG1,√

AT

(
β̂T − β

)
d→ N

(
0, σ2

)
.

The divergence rate of AT is given by

plim
T→∞

AT
lnT

=
σ2γ2

2c− 1
.
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Figure 2: The divergence rates of AT . Solid line: f(T ) = lnT , dotted line: f(T ) = T 1−3/4.

(ii) If c < 1/2 then, under the additional Assumption DG2,

AT

(
β̂T − β

)2 d→ σ2χ2
1.

The divergence rate of AT is given by

plim
T→∞

AT
T 1−2c = ν2u2,

with u as in Theorem 3 (iii) and ν2 = c2/ (1− 2c) (1− c)2.

The divergence rates of AT are illustrated in Figure 2. Clearly, the divergence of AT ,
and hence the convergence of β̂T , increases as c decreases, as was expected given that
the convergence of at to α gets slower as c becomes smaller, see Theorem 3. This is the
aforementioned trade-o� between the asymptotic behaviour of at and that of β̂T .

Note that AT is a random normalising sequence whose presence can be interpreted as fol-
lows: Consider a textbook simple linear regression model with i.i.d.(0, σ2) error terms and
exogenous regressors x1, . . . , xT . It is well-known that the variance of the OLS estimator
of the regression slope, conditional on XT = σ(x1, . . . , xT ), can be written as

Var(β̂T | XT ) =
σ2

AT

with AT denoting again the sum of the squared mean-adjusted regressors. The usual
t-statistic is then

t =

√
AT (β̂T − β)

σ̂

where σ̂2 is a consistent estimator of the unknown variance σ2. Returning to the model of
interest in (3.1)-(3.3), it is clear that the regressors are predetermined and not exogenous,
yet part (i) of Theorem 4 e�ectively states that, when c > 1/2, it is the analogue of
the conventional t-statistic that has an asymptotic standard normal distribution while
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part (ii) shows that, when c < 1/2, the analogue of the usual Wald statistic is indeed
asymptotically χ2-distributed.

As will be argued in the proof of Theorem 4, the asymptotic distribution of β̂T is in
general not Gaussian when c < 1/2. The reason for this is that the limits of both uT and
AT depend on a random nuisance parameter, viz. v as de�ned in Assumption DG2. This
is similar to the random nuisance parameter appearing in the asymptotic distribution
theory of explosive AR(1)-models,

zt = φzt−1 + εt, with |φ| > 1, (3.7)

where both the numerator
∑T

t=1 zt−1εt and the denominator
∑T

t=1 z
2
t−1 of the OLS esti-

mator tend geometrically fast to some nondegenerate random limit, see e.g. Wang & Yu
(2015, Theorem 2.2). With the additional assumption of normally distributed εt, however,

β̂T can be shown to have an asymptotic Cauchy distribution, as is proved in Appendix
B.3.

Corollary 2
Consider part (ii) of Theorem 4. If the εt are normally distributed,

κν
√
T 1−2c

(
β̂T − β

)
d→ C (µ) ,

where C (µ) is a noncentral Cauchy distribution with noncentrality parameter µ = a0B0,
with B0 a constant that depends only on c, and κ = γ2Var (v). For a0 = α, µ = 0 and
C (0) is the standard Cauchy distribution.

Indeed, this limit distribution is also obtained for the OLS estimator of φ in (3.7) when the
normalisation is with the deterministic sequence |a|−2T , cf. White (1958), and Shiryaev
& Spokoiny (1997).

As mentioned earlier, the asymptotic properties of the estimators of the intercept δ and
of the error variance σ2 are easily derived from those of the slope estimator. In particular,
consistency of the OLS estimator

δ̂T = ȳ − β̂T ā−

follows immediately from
δ̂T − δ = (β − β̂T )ā− + ε̄. (3.8)

Since it is shown in the proof of Theorem 3 that plim a− = α for c ≷ 1/2 and since

ε̄ converges to 0 by virtue of the LLN, δ̂T is also weakly consistent. As to asymptotic
normality, since AT = Op(lnT ) for c > 1/2, it is clear that√

AT ε̄ = op (1)

and √
AT (δ̂T − δ) =

√
AT (β − β̂T )ā− + op (1) . (3.9)

As a consequence, joint normality of both OLS estimators follows for c > 1/2, i.e.

√
AT

(
δ̂T − δ
β̂T − β

)
d−→ N

(
0, σ2

(
α2 −α
−α 1

))
.
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Note that the asymptotic distribution is degenerate, namely concentrated on the line
y = −x/α. This implies that individual t-statistics can be constructed in the standard

fashion. The linear combination δ̂T + αβ̂T also has a non-degenerate variance and may
be subjected to a t-test, too. However, multivariate statistics involving the inverse of the
asymptotic variance-covariance matrix, such as the Wald statistic, are infeasible. It would
seem natural, however, to bootstrap a statistic like that or to use a generalised inverse to
construct it.

For the case c < 1/2 with normally distributed errors, an analogue of equation (3.9)
continues to hold with normalisation

√
T 1−2c instead of

√
AT . Consequently, the resulting

bivariate distribution is again degenerate.
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4 Discussion and extensions

4.1 The error variance and the gain parameter

Given the consistency of the OLS estimators δ̂T and β̂T under both constant and decreasing
gain learning, it follows immediately that the usual residual-based estimator of σ2

T is also
consistent. The proof of the following corollary is provided in Appendix E.

Corollary 3
De�ne the OLS residual ε̂t = yt − δ̂T − β̂Tat−1. Then

σ̂2
T =

1

T

T∑
t=1

ε̂2t
p→ σ2.

Regarding the gain parameter γ under constant or decreasing gain learning, see (2.2)-(2.3)
and (3.2)-(3.3) respectively, the treatment so far has assumed that it is known. A case in
point is to regard the decreasing gain updating equation for at as an instance of recursive
least squares, since then γ = 1. Given γ and a starting value a0, agents' forecast at can
be endogenously generated by either

at = at−1 + γ (yt − at−1) (4.1)

or
at = at−1 +

γ

t
(yt − at−1) , (4.2)

depending on which type of learning is stipulated. As a consequence, the OLS estimates
β̂T , δ̂T and σ̂2

T , all being functions of (yt, at−1), can be computed. With γ known, c can
also be estimated consistently by

ĉ = (1− β̂)γ

and hence the results in Theorem 2 and in Theorem 4 are feasible. Note, however,
that given an estimator ĉ the classi�cations in Theorems 1-4 are subject to estimation
uncertainty.

It is instructive to note that the results stated in Theorems 2 and 4 would also go through
if, conversely, γ were unknown yet agents' forecasts at were observed. For then γ may be
computed from its DGP in (4.1) or (4.2). This type of situation might arise when survey
data is used as measurement of agents' forecasts. Indeed, in such scenarios, an extra error
term would be appended to (4.1) or (4.2) since it is unlikely to be an exact description
of empirical data, see for instance Branch & Evans (2006, 2010) or Markiewicz & Pick
(2014).

Finally, it is conceivable that both γ is unknown and at is not observed. In a situation
like this, all structural parameters β, δ and γ could in principle be estimated by some
non-linear techniques. For instance, Chevillon et al. (2010) use non-linear least squares
while Adam et al. (2015) employ the method of simulated moments. The properties of
these estimation procedures in the context of adaptive learning models are not clear a
priori, however. Further research on these estimators is imperative.
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4.2 Forward-looking expectations

Some economic theories stipulate that agents' expectations are forward-looking, i.e. agents
are thought of as forming expectations of a future value of the endogenous variable. For
instance, agents might forecast yt+1 using information available at time t. This would
amount to replacing the expectational term in model (1.1) by yet+1|t, yielding

yt = βyet+1|t + δxt + εt. (4.3)

However, this type of modi�ed model setup raises a number of issues, both economic and
econometric.

The most immediate economic consequence of forward-looking models is that rational
expectations equilibria are, in general, no longer unique. For instance, consider model
(4.3), de�ne the information set It = σ (ys, s ≤ t;xs, s ≤ t), and assume that xt follows
an i.i.d. process with mean µx. This implies that E (yt+1 | It) = αµx and it is well-
known that the resulting rational expectations solution yt = αµx + εt is only one of many,
namely the minimum state variable solution. As an added complication, not all solutions
need to be stable. As forcefully argued by Evans & Honkapohja (2001), however, one
way to address the multiplicity issue is that adaptive learning can serve as a selection
device, in that equilibria that are learnable appear more plausible than others. Moreover,
instable equilibria can be ruled out by focusing on those that satisfy the conditions for
expectational stability, or so-called E-stability, a concept introduced by Evans (1989) to
characterise those rational expectations solutions that are stable under learning.

A further economic issue with the model in (4.3) that has important repercussions for
the analysis is that the use of It introduces simultaneity in the system, since agents'
expectations are now endogenous, being partly based on the current value of yt. However,
it is common practice in parts of the economic theory literature, see for instance that on
the indeterminacy of equilibria, to avoid this problem by simply assuming that yt is not
observable by agents after all and that they base their prediction on It−1, or indeed Ft−1,
instead. However, Bullard & Mitra (2002), for instance, criticise this practice and argue
that the use of It−1 would be be informationally inconsistent within the model and that
a switch between It and It−1 in a system with adaptive learning might lead to a reversal
of the stability properties of the equilibria. A solution to this issue is suggested by Adam
(2003) who allows agents to make use of information It yet, through the introduction of
sticky prices, avoids any simultaneity in the system.

A road map for the econometric analysis of models with forward-looking expectations can
now be sketched. First, it would seem natural in a �rst step to examine the properties
of the parameter estimators in systems with adaptive learning whose equilibria are E-
stable. Secondly, following the approach suggested by Adam (2003), models could be
examined that have agents make good use of information It while their forecast yet+1|t is not
endogenous. OLS estimation of the model parameters in that setting is still appropriate
and the consistency and distributional results derived in the present paper should continue
to hold. However, if the regressor yet+1|t in (4.3) is endogenous then OLS would no longer
be appropriate and recourse would have to be taken to an instrumental variable technique.
Suitable assumptions on instruments and their relationship to the endogenous variable
and the error term would have to be made. The analysis would become more involved,
yet preliminary derivations indicate that similar issues to those discussed in the present
paper would arise.
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4.3 Time-varying regressors

The assumption in this paper that the exogenous regressor xt is constant serves the
purpose of analytical tractability, especially in order to facilitate the examination of the
asymptotic behaviour of at, at least to such an extent as is needed for the treatment of
the EEP. Upon inspecting the proofs, however, it is apparent that time-varying regressors
xt may lead to a complication of the analysis, for instance if their behaviour leads to
sequences at which can no longer be classi�ed as stable, unit root or explosive for its
entire trajectory. Of the many ways in which time-varying regressors could be introduced
we now discuss a simple extension that has the beauty of resulting in essentially the same
results as in Theorems 1-4. Although this generalisation is somewhat special it illustrates
that the results in this paper have wider applicability.

Assumption E
The sequence xt tends to an equilibrium value x: limt→∞ xt = x.

Without loss of generality, we may again assume that x = 1. The xt are taken to be
deterministic for expositional simplicity. Identical calculations to those below would result
for stochastic regressors if, for instance, (i) the regressors are strictly exogenous, i.e.
the sequence xt is independent of the error terms εt, and (ii) Assumption E holds with
probability one.

4.3.1 Constant gain

Reconsider the recursion of rt in (1.4b) with a constant gain γt = γ:

rt = (1− γ) rt−1 + γx2t . (4.4)

With the solution of (4.4) given by

rt = ρtr0 + γ
t−1∑
n=0

ρnx2t−n

it follows that rt tends to the equilibrium value r = x2 = 1, provided that γ ∈ (0, 1). Sub-
stituting this into the dynamics of at in (1.4a) yields the recursion in (2.2), as indeed was
obtained under the assumption of a constant xt = x. As a consequence, the asymptotics
of at are also the same.

Regarding the EEP, note that the structural equation is given by

yt = δxt + βat−1xt + εt

or
yxt = δt + βat−1 + εxt ,

with yxt = yt/xt and ε
x
t = εt/xt. Remembering that xt → 1, it can be shown that passing

from εxt to εt does not a�ect the behaviour of the OLS estimator, so that all the results
for the EEP in the case of constant gain remain valid.
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4.3.2 Decreasing gain

Reconsider the recursion of rt in (1.4b) with a decreasing gain sequence γt = γ/t, i.e.

rt =
(

1− γ

t

)
rt−1 +

γ

t
x2t .

This is of the same form as equation (B.3). Hence, performing the same analysis on rt as
is done on at in Appendices B.1.1 and B.1.2 shows that, for every γ > 0,

lim
t→∞

rt = rγx2 = rγ

for some positive number r. Using this equilibrium value in the dynamics for at in (1.4a)
we obtain

at = at−1 +
1/r

t
(yt − at−1) ,

which is just (1.9) with γt = γ̃/t and γ̃ = 1/r. Note, however, that in order to determine
γ̃ and, correspondingly, the value of c̃ = (1− γ̃) β, one has to know r. This, however, is
given by

r = lim
t→∞

1

tγ

t∑
i=1

θi
i1−γ

,

cf. (B.17) and (B.20). Since θi → 1, it is clear that

r = lim
t→∞

1

tγ

t∑
i=1

1

i1−γ
= lim

t→∞

1

tγ

[∫ t

1

ds

s1−γ
+O(1)

]
=

1

γ
.

Hence, γ̃ = γ and c̃ = c. As a consequence, up to a change in variance, we have the same
asymptotics for at as for xt = 1. The same is true for the EEP.

4.4 Consistency

As mentioned above, the weak consistency of the OLS estimator in Sections 2 and 3 is
obtained as a byproduct of our results in Theorems 2 and 4. It is instructive, however, to
look at our results in the light of the results available in the literature on consistency in
models with predetermined regressors. The reason is that even the best of those conditions
turn out not to be met by some of the constant and decreasing gain learning models we
consider in this paper. This �nding complements the failure of the Grenander condition
for the decreasing gain model in Section 3, see also the discussion in the introduction.

To our knowledge, the best su�cient condition for the consistency of the OLS estimator
in multivariate models with predetermined regressors is given in Lai & Wei (1982a). It
requires that

λmin(T )→∞ and
lnλmax(T )

λmin(T )
→ 0 a.s., (4.5)

where λmax(T ) and λmin(T ) are the maximal and minimal eigenvalue, respectively, of the
regressors' moment matrix MT . For the estimation of the slope parameter in a simple
regression model, a slight improvement is given in Lai & Wei (1982b) with the condition

AT
lnT

→∞ a.s., (4.6)
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with AT being again the sum of squares mean-adjusted regressors. To illustrate the
strength of (4.5), Lai & Wei (1982a) discuss an example in which a marginal violation
of the conditions leads to the inconsistency of the OLS estimator. They hence call the
conditions in (4.5) �in some sense the weakest possible� (p. 155).

For the purpose of comparing (4.5) and (4.6) to our results on weak consistency, note that
condition (4.6) may also be used in terms of convergence in probability, in the sense that

lnλmax(T )

λmin(T )

p→ 0 (4.7)

implies the weak consistency of the OLS estimator, say θ̂T . This is because the basic result
obtained by Lai & Wei (1982a) is that∥∥∥θ̂T − θ∥∥∥2 =

lnλmax(T )

λmin(T )
O(1) a.s.

on the set {λmin(T ) > 0} . Let us brie�y discuss condition (4.7) for the various models
considered in this paper.

4.4.1 Constant gain

Reconsider the model in (2.1)-(2.3). For the stable case, (4.7) is trivially satis�ed since all
entries of MT in (2.6) satisfy a weak LLN. The same is true for the unit root case, as can
be shown by some straightforward calculations on the eigenvalues, using the asymptotic
behaviour of the properly normalised entries of MT as obtained in Appendix B.3.2. For
the explosive case, similar calculations making use of Theorem 1 (iii) show that

lnλmax(T )

λmin(T )
→ 4 ln |1− c| a.s..

Hence (4.7) is violated, but weak consistency still holds.

4.4.2 Decreasing gain

Turn now to model (3.1)-(3.3). For c < 1/2, it can be veri�ed that condition (4.7) is met.
For c > 1/2, however, it is shown in Appendix B.3 that

plim
T→∞

AT
lnT

=
σ2γ2

2c− 1
.

Hence (4.6) is not satis�ed. Also, Christopeit & Massmann (2013b) conclude that

plim
T→∞

lnλmax(T )

λmin(T )
=
(
α2 + 1

) 2c− 1

σ2γ2

so that (4.7) is not satis�ed either. Nevertheless, Theorem 4 implies that the slope
estimator is weakly consistent. Under the more stringent conditions of Gaussian error
terms, we even have strong consistency, as is shown in Christopeit & Massmann (2012).
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5 Conclusion

This paper investigates the asymptotic properties of the OLS estimator of δ and β in a
stereotypical macroeconomic model of the form

yt = βyet|t−1 + δxt + εt, (5.1)

where agents form expectations yet|t−1 = at−1xt according to constant or decreasing gain
adaptive learning. While empirical models of this type are becoming ever more popular
in the literature, the asymptotics of OLS have so far not been investigated. The paper is
the �rst to address this issue systematically.

To make the analysis tractable, the regressor sequence xt is assumed to be constant. For
both types of learning, we then provide a complete analysis of the asymptotics of agents'
expectations at, considering its convergence to the rational expectations equilibrium and,
if appropriate, its convergence rate. The latter aspect has so far not been addressed
comprehensively in the literature. Subsequently, given the behaviour of at, the asymptotic
properties of the OLS estimators δ̂ and β̂ are derived for both constant and decreasing
gain learning. This is both a novel and a challenging undertaking. Some of the models we
consider are highly complex, e.g. self-referential models whose autoregressive parameter
follows a non-stationary stochastic process. Yet the conclusions are wide-reaching for
the theoretical and applied literature alike: It turns out that, contrary to what might be
believed at �rst sight, δ̂ and β̂ are consistent in all scenarios we consider. Their asymptotic
distribution, however, is highly non-standard in all but one setting, so care must be taken
when inference is to be conducted. For constant gain models, some results are related
to the cointegration or co-explosiveness literature. With decreasing gain, the results are
reminiscent of the literature on slowly varying regressions, yet not with deterministic
regressors as in Phillips (2007) but with predetermined stochastic regressors. Several of
the results we derive do not seem yet to have counterparts in the existing literature.

As extensions, forward-looking expectations and time-varying regressor sequences are con-
templated, yet a complete analysis is beyond the scope of the present paper and is left
to future research. Our results indicate, however, that an econometric analysis of such
models as (5.1) can, at a fundamental level, be econometrically feasible and sound. This
is encouraging, given the interest among economic theorists to develop further models
of bounded rationality via adaptive learning and given the push by policy makers and
applied economists to exploit these methods empirically.
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A Proofs for constant gain

A.1 Working formula for at

If β 6= 1, it will sometimes turn out favourable to work with the transformed process
a#t = at − α. For then (2.2a) simpli�es to

a#t = (1− c) a#t−1 + γεt. (A.1)

We will also make repeated use of the solution of at in (2.2a):

at = (1− c)t a0 +
∑t−1

i=0
(1− c)i (cα + γεt−i)

=
[
1− (1− c)t

]
α + (1− c)t a0 + γ

∑t−1

i=0
(1− c)i εt−i (A.2)

and of a#t in (A.1):

a#t = (1− c)t a#0 + γ
∑t−1

i=0
(1− c)i εt−i

= (1− c)t a#0 + γ (1− c)t
∑t

j=1
(1− c)−j εj, (A.3)

which are valid for all initial values a0.

A.2 Proof of Theorem 1

A.2.1 Stable case: 0 < c < 2

In this case, |1− c| < 1, and the assertion is a classical standard result for stable AR-
systems.

A.2.2 Unit root case: c = 0 or c = 2

If c = 0 then, by (2.2b),
at = at−1 + γ (δ + εt) .

Hence at is a random walk with drift:

at = a0 + γ (δt+ St) ,

where St =
∑t

i=1 εi. As a consequence, by the LLN,

t−1at = γδ + o (1) a.s..

If c = 2 then (A.2) becomes

at =
[
1− (−1)t

]
α + (−1)t a0 + γ

∑t−1

i=0
(−1)i εt−i

=
[
1− (−1)t

]
α + (−1)t a0 + γ (−1)t

∑t

j=1
(−1)−j εj.

Since the ε̃j = (−1)−j εj are i.i.d., (2.4) follows from the classical CLT applied to S̃t =∑t
j=1 ε̃j together with the symmetry of the limit distribution.
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A.2.3 Explosive case: c < 0 or c > 2

In this case, |1− c| > 1. Recall (A.3) and consider the martingale

Mt =
∑t

j=1
(1− c)−j εj.

Since its predictable quadratic variation is

〈M〉t = σ2
∑t

j=1
(1− c)−2j ,

and hence 〈M〉∞ < ∞ a.s., it follows from the martingale convergence theorem that the
limit

M = lim
t→∞

Mt =
∑∞

j=1
(1− c)−j εj

exists with probability one and also in L2. Its variance is 1/
[
(1− c)2 − 1

]
. Therefore,

(1− c)−t a#t = a#0 + γMt → a#0 + γM

and hence
(1− c)−t at → a0 − α + γM

both a.s. and in L2.

A.3 Proof of Theorem 2

Throughout this section, we will make use of the observations made at the beginning of
Section 2.2, namely that the asymptotic behaviour of the OLS estimator in (2.1) is, up to
a factor of proportionality, equal to that of the OLS estimator in the AR(1)-model (2.8).

A.3.1 Stable case: 0 < c < 2

In this case, |β∗| < 1. It is standard textbook knowledge that

√
T (θ̂∗T − θ∗)

d→ N
(

0, γ2σ2M
−1
)

with

M = plim
T→∞

1

T
MT

and MT being given in (2.6). Since

plim
T→∞

1

T

T∑
t=1

at = Eat = α

plim
T→∞

1

T

T∑
t=1

a2t = Ea2t = σ2
a + α2,

(2.11) is an immediate consequence of (2.10).

28



A.3.2 Unit root case: c = 0 or c = 2

Case c = 0. Consider �rst the sub-case of δ 6= 0. Making use of the OLS estimator in
(2.5), the asymptotic behaviour of at as established in Theorem 1 (ii) implies that, with
probability one,

lim
T→∞

1

T 2

T∑
t=1

at−1 =
δγ

2
, lim

T→∞

1

T 3

T∑
t=1

a2t−1 =
δ2γ2

3
.

Therefore, remembering (2.6) and introducing the normalising matrix

DT =

( √
T 0

0 T 3/2

)
,

we �nd that

lim
T→∞

D−1T MTD
−1
T =

(
1 δγ

2
δγ
2

δ2γ2

3

)
= M a.s..

Applying the CLT for bivariate martingales to (2.7), one obtains

D−1T uT =

(
1√
T

∑T
t=1 εt

1
T 3/2

∑T
t=1 at−1εt

)
d→ N

(
0, σ2M

)
.

Therefore, ( √
T (δ̂ − δ)

T 3/2(β̂ − 1)

)
=
[
D−1T MTD

−1
T

]−1
D−1T uT

d→ N
(

0, σ2M
−1
)
.

Calculating the inverse yields (2.12).

Consider now the second sub-case of δ = 0. It is of course well-known that the asymptotic
behaviour of the OLS estimator is very di�erent according to whether δ 6= 0 or δ = 0.
This is also obvious from the di�erent behaviour of at as established in Theorem 1 (ii),
viz. at grows linearly in the former case and tends to zero in the latter. Recall from the
discussion in Section 2.2 that the OLS estimator θ̂ = (δ̂, β̂)′ of the parameters θ = (δ, β)′

in the structural model (2.1) satis�es

θ̂ − θ = γ−1
(
θ̂∗ − θ∗

)
, (2.10)

where θ̂∗ = (δ̂∗, β̂∗)′ is the OLS estimator for the parameters θ∗ = (δ∗, β∗)′ in the AR(1)
model (2.8) provided that δ∗ = γδ and β∗ = β. As pointed out earlier, this AR(1)-model
is the Dickey-Fuller model with drift, evaluated at the joint null δ∗ = 0, β∗ = 1. As is then
well-known,

( √
T δ̂∗

T (β̂∗ − 1)

)
d→ Z∗,

where

Z∗ = v−1

(
σγB(1)

∫ 1

0
B(s)2ds− σγ

2

(
B (1)2 − 1

) ∫ 1

0
B(s)ds

1
2

(
B (1)2 − 1

)
−B (1)

∫ 1

0
B(s)ds

)
,

v =

∫ 1

0

B(s)2ds−
(∫ 1

0

B(s)ds

)2

.
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Taking account of (2.9) yields the desired result.

Case c = 2. In this case, according to (2.2a), the dynamics of at are given by

at = 2α− at−1 + γεt, (A.4)

with DGP
yt = δ + βat−1 + εt. (A.5)

Introducing zt = at − α, (A.4) is equivalent to

zt = −zt−1 + γεt. (A.6)

The asymptotics of zt have, in a multivariate context, been analysed by Chan & Wei
(1988). Introducing ε̃j = (−1)−j εj and

S̃t =
t∑

j=1

ε̃j,

it is easily veri�ed that
zt = γ (−1)t S̃t. (A.7)

Putting X̃T (u) = 1
σ
√
T
S̃[uT ], we have the functional CLT

X̃T ⇒ B̃ (A.8)

in D [0, 1] , where B̃ is a standard BM. As a �rst consequence,

1

T 2

T∑
t=1

z2t−1 =
γ2

T 2

T∑
t=1

S̃2
t−1 = γ2σ2

∫ 1

0

X̃2
T (s−)ds

d→ γ2σ2

∫ 1

0

B̃(s)2ds. (A.9)

Returning to at, this means that

1

T 2

T∑
t=1

a2t−1 =
1

T 2

T∑
t=1

z2t−1 + 2α
1

T 2

T∑
t=1

zt−1 +
α2

T
. (A.10)

For the OLS estimator in (A.5), we need the asymptotics of the �rst two sample moments
of at. For the mean, we must take account of the alternating factor (−1)t in (A.7) since

the mean of S̃t itself is weakly convergent at rate T 3/2. Since

1

T

T∑
t=1

at−1 =
1

T

T∑
t=1

zt−1 + α,

consider
T∑
t=1

zt−1 = γ

T∑
t=1

(−1)t−1 S̃t−1 = γWT .
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By partial summation,

WT =
T∑
t=1

(−1)t−1 S̃t−1 = σT S̃T −
T∑
t=1

σtε̃t.

Here we have put

σt =
t∑

j=1

(−1)j−1 =

{
1, t odd,
0, t even.

Since T−1/2
∑T

t=1 σtε̃t
d→ N (0, σ2/2) and T−1/2S̃T

d→ N (0, σ2) (jointly), it follows that
WT = Op

(
T 1/2

)
. Hence

plim
T→∞

1

T

T∑
t=1

zt−1 = 0

and

plim
T→∞

1

T

T∑
t=1

at−1 = α.

Revisiting (A.10) and taking account of (A.9), we �nd that

1

T 2

T∑
t=1

a2t−1
d→ γ2σ2

∫ 1

0

B̃(s)2ds.

As a consequence, introducing the normalising matrix

DT =

( √
T 0

0 T

)
,

we �nd that

D−1T MTD
−1
T =

(
1 1

T 3/2

∑T
t=1 at−1

1
T 3/2

∑T
t=1 at−1

1
T 2

∑T
t=1 a

2
t−1

)
(A.11)

d→M =

(
1 0

0 γ2σ2
∫ 1

0
B̃(s)2ds

)
.

Turning to

uT =

( ∑T
t=1 εt∑T

t=1 at−1εt

)
,

de�ne St =
∑t

j=1 εj and XT (u) = 1
σ
√
T
S[uT ]. Then we have the usual functional CLT

XT ⇒ B, (A.12)

with a standard BM B. As a consequence,

1√
T

T∑
t=1

εt
d→ σB(1). (A.13)
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As to the second component of uT , we make use of the trivial identity (−1)t−1 εt = −ε̃t.
Then

T∑
t=1

zt−1εt = γ
T∑
t=1

(−1)t−1 S̃t−1εt = −γ
T∑
t=1

S̃t−1ε̃t. (A.14)

From

S̃2
t =

(
S̃t−1 + ε̃t

)2
= S̃2

t−1 + 2S̃t−1ε̃t + ε̃2t

it follows that

T∑
t=1

S̃t−1ε̃t =
1

2

[
S̃2
T − S̃2

0

]
− 1

2

T∑
t=1

ε̃2t ,

1

T

T∑
t=1

S̃t−1ε̃t =
σ2

2
X̃2
T (1)− 1

2T

T∑
t=1

ε̃2t .

Therefore, in view of (A.8),

1

T

T∑
t=1

S̃t−1ε̃t
d→ σ2

2

[
B̃2(1)− 1

]
. (A.15)

Now look at

1

T

T∑
t=1

at−1εt =
1

T

T∑
t=1

zt−1εt + α
1

T

T∑
t=1

εt

= −γ 1

T

T∑
t=1

S̃t−1ε̃t + o(1).

In view of (A.14) and (A.15),

1

T

T∑
t=1

at−1εt
d→ −γσ

2

2

[
B̃2(1)− 1

]
. (A.16a)

Or, if this version is preferred,

1

T

T∑
t=1

at−1εt
d→ −γσ2

∫ 1

0

B̃(s)dB̃(s). (A.16b)

(A.13) and (A.16) give the separate asymptotic behaviour of the entries of uT . Actually,
what we need in order to �gure out the asymptotics of the OLS estimators(

δ̂ − δ
β̂ − β

)
= M−1

T uT

is the joint asymptotic behaviour of all entries of MT and uT . This is where the result of
Chan & Wei is used, namely that weak convergence in (A.12) and (A.8) is joint, i.e.

(XT , X̃T )⇒ (B, B̃)
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in D [0, 1]2 , and B, B̃ are independent BMs, cf. Chan & Wei (1988, Theorem 2.2). This
allows us to conclude that

D−1T uT =

(
1√
T

∑T
t=1 εt

1
T

∑T
t=1 at−1εt

)
d→ u =

(
σB(1)

−γσ2
∫ 1

0
B̃(s)dB̃(s)

)
jointly with the convergence in (A.11). Hence, �nally,( √

T (δ̂ − δ)
T (β̂ − β)

)
= DT

(
δ̂ − δ
β̂ − β

)
=

[
D−1T MTD

−1
T

]−1
D−1T uT

d→M
−1
u

with

M
−1
u = σ

(
1 0

0 γ2σ2
∫ 1

0
B̃(s)2ds

)−1(
σB(1)

−γσ2
∫ 1

0
B̃(s)dB̃(s)

)

=
1∫ 1

0
B̃(s)2ds

(
σB(1)

∫ 1

0
B̃(s)2ds

− 1
γ

∫ 1

0
B̃(s)dB̃(s)

)

A.3.3 Explosive case: c < 0 or c > 2

In this case, the corresponding AR(1)-model is

at = cα + (1− c) at−1 + γεt.

According to Wang & Yu (2015), the asymptotic distribution of the OLS estimator θ̂∗ of
δ∗ = cα and β∗ = 1− c in (2.8) is given by

√
T
(
δ̂∗ − δ∗

)
d→ N

(
0, γ2σ2

)
,

(1− c)T
(
β̂∗ − β∗

)
d→

[
(1− c)2 − 1

]
u

v + (1− c) cα/ [(1− c)− 1]
, (A.17)

where u and v are independent L2-variables, and the two estimators are asymptotically
independent. Premultiplying by γ−1 yields the assertion.

Remark 1
Actually, the random variable v is the limit

α

[
∞∑
t=1

(1− c)−tεt + a0

]
= α(z + a0)

a.s. and in L2. This is where Assumption CG enters the stage to guarantee that the
right-hand side in (A.17) is well-de�ned.
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B Proofs for decreasing gain

B.1 Preliminaries

We return now to the model (3.1)-(3.3):

yt = δ + βat−1 + εt (B.1a)

at =
(

1− c

t

)
at−1 +

γ

t
(δ + εt) , (B.1b)

where
c = (1− β) γ.

In the following, we will derive a �nite moving-average form for at in terms of its initial
value a0 and a weighted sum of the errors. It will simplify the calculations if we center at
about its asymptotic value

α =
δ

1− β
=
γδ

c
.

To this end, introduce
a#t = at − α. (B.2)

Then, by straightforward calculation,

a#t =
(

1− c

t

)
a#t−1 +

γ

t
εt. (B.3)

Also,

yt = δ + β (at−1 − α) + αβ + εt

= α + βa#t−1 + εt (B.4)

since δ + αβ = α. Henceforth, let us rename the a#t as at. The theorems in Section 3 are
of course presented in terms of the original at.

The solution to (B.3) is given by

at = a0φt0 + γ

t∑
i=1

φti
εi
i
, (B.5)

where

φti =

(
1− c

i+ 1

)
· · ·
(

1− c

t

)
, i = 0, . . . , t− 1, (B.6)

φtt = 1.

In particular, for c = 1,

φti =
i

t

for all i. De�ne i0 = [c] = smallest integer ≥ c. Then, for i ≥ i0, the factors in (B.6) are
all positive. Note that i0 = 0 for c < 1.Taking logarithms and using a �rst order Taylor
expansion, we obtain for i ≥ i0
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lnφti =
t∑

j=i+1

ln

(
1− c

j

)
= −c

t∑
j=i+1

1

j
−

t∑
j=i+1

Rj

j2
, (B.7)

with

Rj =
(1− ϑj) c2(
1− ϑj cj

)2
for some 0 < ϑj < 1 (Cauchy form of the remainder). Note that Rj ≥ 0 and

sup
j≥i0+1

Rj ≤
c2(

1− c
i0+1

)2 . (B.8)

Hence

lnφti = −c
t∑

j=i+1

1

j
−Oti(1)

t∑
j=i+1

1

j2
,

with the Oti(1)-term uniformly bounded in i, t. Henceforth, we will denote such terms
simply by O(1). Making use of the integral comparison test (ICT),

lnφti = −c (ln t− ln (i+ 1)) +O(1)
1

i+ 1

= −c
(

ln t− ln i− ln
i+ 1

i

)
+O(1)

1

i

= −c (ln t− ln i) +O(1)
1

i
.

As a consequence, for i ≥ i0 > 0,

φti =

(
i

t

)c [
1 +O

(
1

i

)]
. (B.9a)

For 0 ≤ i < i0, it follows from (B.6) and (B.9a) that

|φti| =
∏i0−1

j=i+1

∣∣∣∣1− c

j

∣∣∣∣∏t

j=i0

(
1− c

j + 1

)
≤ Cφti0 = O

(
t−c
)
. (B.9b)

In particular,
|φt0| = O

(
t−c
)
. (B.10)

Actually, for c < 1 (i.e. i0 = 0), (B.9a) remains valid also for i = 0 (in the form
φti = O (t−c)). But in this case we can do better for all φti, i ≥ 0, (and indeed have to for
c < 1/2). To see this, we go back to (B.7):

lnφti = −c
t∑

j=i+1

1

j
−

t∑
j=i+1

Rj

j2
. (B.11)

In the sequel, we will make frequent use of the following version of the integral comparison
theorem (ICT), which we cite here for the reader's convenience, cf. Apostol (1974, Theorem
8.33).
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Proposition (ICT) Let f(x) positive decreasing fct s.t. limx→∞ f(x) = 0. For n ≥ i, i =
1, 2, . . . , de�ne

sni =
n∑
k=i

f(k), tni =

∫ n

i

f(x)dx, dni = sni − tni.

Then we have:

(i) 0 < f(n+ 1) ≤ dn+1,i ≤ dni ≤ f(i).

(ii) di = limn→∞ dni exists, and di ≤ f(i).

(iii) 0 ≤ dni − di ≤ f(n).

(iv) sni ≤ f(i) + tni.

By ICT (ii)), the limit

Ei = lim
t→∞

[
t∑

j=i+1

1

j
−
∫ t

i+1

dx

x

]
exists, and 0 ≤ Ei ≤ 1/ (i+ 1) . For i = 0, E0 is just the Euler constant. Making use of
(iii), we obtain

0 ≤
t∑

j=i+1

1

j
−
∫ t

i+1

dx

x
− Ei ≤

1

t
,

so that we may write

t∑
j=i+1

1

j
= ln t− ln (i+ 1) + Ei +Oi

(
1

t

)
. (B.12)

As to the second term on the right hand side of (B.11),

t∑
j=i+1

Rj

j2
↗ Ci =

∞∑
j=i+1

Rj

j2
,

with 0 ≤ Ci ≤ C/ (i+ 1) for some constant C. Since supj≥1Rj ≤ R = c2/ (1− c)2 , using
the ICT again,

Ci −
t∑

j=i+1

Rj

j2
=

∞∑
j=t+1

Rj

j2
≤ R

∞∑
j=t

1

j2
= O

(
1

t

)
.

Hence
t∑

j=i+1

Rj

j2
= Ci +O

(
1

t

)
. (B.13)

As a consequence, for c < 1, bringing together (B.11), (B.12) and (B.13) we may write

lnφti = −c [ln t− ln (i+ 1) + Ei]− Ci +O

(
1

t

)
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for all i ≥ 0. Hence

ln (tcφti) = c ln (i+ 1)− cEi − Ci +O

(
1

t

)
.

Or, denoting Bi = e−(cEi+Ci),

tcφti = (i+ 1)c e−(cEi+Ci) exp

[
O

(
1

t

)]
= (i+ 1)cBi

[
1 +O

(
1

t

)]
= icθi

[
1 +O

(
1

t

)]
(B.14)

with θi = (1 + i−1)
c
Bi for i ≥ 1 and θ0 = B0. This stronger form of (B.9a) will be needed

for the case c < 1/2. Note that the O (1/t)-term also depend on i, but the dependence on
1/t is uniform in i: supi≤t |Oi (1/t)| = O (1/t) . Note also that

lim
t→∞

Bi = 1. (B.15)

In particular, note that
B0 = e−(cE0+C0),

where E0 is the Euler constant and

C0 =
∞∑
j=1

Rj

j2
.

Making use of (B.7), we �nd that C0 may be calculated from

C0 = − lim
t→∞

[
c

t∑
j=1

1

j
+ lnφt0

]
= − lim

t→∞

t∑
j=1

[
c

j
+ ln

(
1− c

j

)]
.

We are now ready to derive the basic working formulas for at used in the proofs below.
They will be di�erent for c < 1/2 and for c ≥ 1/2.

B.1.1 Case c < 1/2

Starting from (B.5) and noting that i0 = 0 for c < 1/2, we make use of (B.14) to write

tcat = tca0φt0 + γ
t∑
i=1

tcφti
εi
i

= a0B0 + γ (vt + wt) +O
(
t−1
)
, (B.16)

where we have put

vt =
t∑
i=1

θi
εi
i1−c

, wt =
1

t

t∑
i=1

Oti(1)

i1−c
εi. (B.17)
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Note that the O (t−1) and the Oti(1)-terms are deterministic and uniformly bounded.
Alternatively, we will use the form

at = t−ca0B0 + γ (ξt + ηt) +O

(
1

t1+c

)
, (B.18)

with

ξt =
1

tc
vt, ηt =

1

tc
wt. (B.19)

B.1.2 Case c ≥ 1/2

In this case, except for c < 1, we have i0 ≥ 1. Starting from (B.5), we make the decom-
position

t∑
i=1

φti
εi
i

=

i0−1∑
i=1

φti
εi
i

+
t∑

i=i0

φti
εi
i
.

By (B.9b), the �rst term on the right hand side is O (t−c) . Making use of (B.9a), we write
the second term in the form

t∑
i=1

φti
εi
i

=
1

tc

t∑
i=i0

εi
i1−c

+
1

tc

t∑
i=i0

Oti(1)

i2−c
εi

= ξ0t + η0t .

Since it is more convenient to start the sums at i = 1 instead of i = i0, we introduce

vt =
t∑
i=1

εi
i1−c

, wt =
t∑
i=1

Oti(1)

i2−c
εi, (B.20a)

ξt =
1

tc
vt, ηt =

1

tc
wt (B.20b)

(with the Oti(1)-term = 1 for i < i0). Then ξ
0
t = ξt +O (t−c) , and same for η. Therefore,

�nally, taking account of (B.10), we may write (B.5) in the form

at = O
(
t−c
)

+ γ (ξt + ηt) . (B.21)

Remark 2
The de�nitions of vt and wt di�er for the two cases. We desist, however, from using
di�erent symbols for the two processes since in the proofs it will always be clear which
case is under investigation.

Remark 3
At �rst sight, (B.16) seems to be nothing but a minor improvement in precision in com-
parison with (B.21). Indeed, it is. But the exact identi�cation of the O (t−c)-term in
(B.21) will be crucial in the proof of Theorem 3, where it is indispensable to establish the
existence of a limit for tcat instead of a mere Op(1) statement.
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B.2 Proof of Theorem 3

In the following, we will derive the asymptotic behaviour of at. In addition, we shall
also consider that of aT because it is needed in the treatment of the EEP in Appendix
B.3. The four subsections below will cover the cases of c > 1/2, c = 1/2, and c < 1/2
separately.

B.2.1 Case c > 1/2

Reconsider the representation of at in (B.21) above and examine �rst the behaviour of ξt
(cf. (B.20b)). By the ICT, the predictable quadratic variation of vt is given by

〈v〉t = σ2
∑t

i=1
i2(c−1) =

σ2

2c− 1
t2c−1 +O(1). (B.22)

Hence 〈v〉∞ = limt→∞ 〈v〉t = ∞ a.s.. By the CLT for sums of independent random
variables, Shiryaev (1996, Chapter III, �4, Theorem 1),

vt√
〈v〉t
∼
√

2c− 1

σ

vt
tc−1/2

d→ N (0, 1).

Or, in terms of ξt, √
2c− 1

σ

√
tξt

d→ N (0, 1). (B.23)

Turning to ηt (cf. (B.20), it follows again by the ICT that

Ew2
t =


O (t2c−3) for c > 3/2,
O (ln t) for c = 3/2,
O(1) for c < 3/2.

Hence
Etη2t = t1−2cEw2

t → 0,

and, as a consequence, √
tηt

L2

→ 0. (B.24)

Taking account of (B.21), we �nd that
√

2c− 1

σ

√
tat

d→ N (0, 1).

For later use, let us brie�y consider the behavior of aT . From the de�nition,

Eξ2t =
σ2

t2c

t∑
i=1

1

i2(1−c)
= O

(
t−1
)
.

Hence, since Etη2t = o(1), it follows that

E |aT | ≤
const

T

T∑
t=1

(
t−c + E |ξt|+ E |ηt|

)
≤ const

T

T∑
t=1

(
t−c + t−1/2

)
=

const

T

T∑
t=1

t−1/2

= O
(
T−1/2

)
.
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Therefore,
aT = Op

(
T−1/2

)
. (B.25)

Remark 4
Actually, for c > 1/2, it holds that

∞∑
t=1

Eη2t <∞,

so that
∞∑
t=1

η2t <∞ a.s.. (B.26)

We will need this result later, cf. Appendix B.3.2.

B.2.2 Case c = 1/2

Reconsider (B.21). Regarding ξt, note that the predictable quadratic variation of vt is

〈v〉t = σ2
∑t

i=1
i−1 = σ2 ln t+O(1). (B.27)

Hence, arguing as above, it follows from the CLT that

vt√
〈v〉t
∼
√

2c− 1

σ

vt

σ
√

ln t

d→ N (0, 1).

Or, in terms of ξt,
1

σ

√
t

ln t
ξt

d→ N (0, 1).

As for ηt,
Etη2t = O (1) ,

so that √
t

ln t
ηt

p→ 0.

Therefore, by virtue of (B.21), we obtain that

1

σγ

√
t

ln t
at = O

(
1

ln t

)
+

1

σ

√
t

ln t
ξt +

1

σ

√
t

ln t
ηt

d→ N (0, 1) .

Remark 5
The Lindeberg condition (LC) for the cases c > 1/2 and c = 1/2 will be veri�ed in
Appendix C.1
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B.2.3 Case c < 1/2

In this case, the basic formula is (B.16):

tcat = a0B0 + γ (vt + wt) +O
(
t−1
)
, (B.28)

with

vt =
t∑
i=1

θi
εi
i1−c

, wt =
1

t

t∑
i=1

Oti (1)

i1−c
εi (B.29)

and limi→∞ θi = 1. The O (t−1)- and Oti (1)-terms are deterministic and uniformly boun-
ded. Apparently, wt converges to zero in L2. Also, the limit

v =
∞∑
i=1

θi
εi
i1−c

(B.30)

exists in L2 and has nonzero variance. Hence it follows from (B.28) that

lim
t→∞

tcat = a0B0 + γv = u (B.31)

in L2. Or, put di�erently,
tcat = u+ ρt, (B.32)

with
ρt = γ (vt − v) + γwt +O

(
t−1
)
. (B.33)

Note that ρt → 0 in L2. Concerning the behavior of aT , this means that

plimT→∞T
caT =

1

1− c
u. (B.34)

Actually, it can be shown that

E

∣∣∣∣T caT − 1

1− c
u

∣∣∣∣2 = O
(
T 2c−1) ,

but we will not need this sharper result.

B.3 Proof of Theorem 4

B.3.1 The OLS estimator

Recall from Section 3 that the OLS estimator for the structural parameters in the DGP
(3.1) in terms of the original non-centered variables at−1 is given by

β̂T − β =
uT
AT

, (B.35)

where

uT =
T∑
t=1

(
at−1 − a−T

)
εt (B.36)
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and

AT =
T∑
t=1

(
at−1 − a−T

)2
. (B.37)

Here we have used the notation

a−T =
1

T

T∑
t=1

at−1 (B.38)

which will turn out convenient in the sequel.

A moment's thought shows that the OLS estimators obtained by using at or the centered
forecasts a#t = at−α are identical. To see this, let β̂#

T denote the OLS estimator obtained
using the latter, i.e.

β̂#
T − β =

u#T
A#
T

,

with obvious de�nitions for u#T and A#
T . Then

at−1 − a−T = a#t−1 − a#
−
T ,

and hence
uT = u#T , AT = A#

T .

As a consequence,
β̂T − β = β̂#

T − β

and √
AT

(
β̂T − β

)
=

uT√
AT

=
u#T√
A#
T

=

√
A#
T

(
β̂#
T − β

)
.

Henceforth, we will continue to work with the transformed a#t and denote them again by
at. Our interest is in the asymptotic behavior of

UT =
√
AT

(
β̂T − β

)
=

uT√
AT

. (B.39)

Making use of the elementary algebraic identity

T∑
t=1

(at − aT )
(
bt − bT

)
=

T∑
t=2

t− 1

t
(at − at−1)

(
bt − bt−1

)
,

we may write

AT =
T∑
t=2

t− 1

t

(
at−1 − a−t−1

)2
. (B.40)

Remark 6
(B.40) shows that AT is nondecreasing.

The decisive step is to determine the rate of divergence of AT , i.e. �nd a sequence of
numbers αT ↗∞ such that

plimT→∞
AT
αT

= λ (B.41)
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with λ positive and �nite. Note that, since AT is increasing, this implies that A∞ =
limT→∞AT =∞ with probability one. For c > 1/2, it will turn out that

αT = lnT, λ =
σ2γ2

2c− 1
(B.42a)

will do. In this case, UT in (B.39) will be shown to be asymptotically normal.

For c < 1/2, we will show that

αT = T 1−2c, λ =
u2c2

(1− c)2 (1− 2c)
, (B.42b)

with u as in (B.31). The fact that now the limit λ is random, incorporating the en-
tire sequence of εt, poses some problems with asymptotic normality of UT . Without
further assumptions, it can, however, be shown that the square of UT is asymptotically
χ2-distributed (up to a normalisation).

B.3.2 Case c > 1/2

Our procedure will be as follows. First, we show asymptotic normality of UT , assuming
(B.41). Then we will prove the latter. From (B.25) we know that

a−T = Op

(
1√
T

)
. (B.43)

Hence, starting with the second term on the right hand side of (B.36),

a−T√
AT

T∑
t=1

εt =

√
αT
AT

a−T√
αT

T∑
t=1

εt

= Op (1)
1√
lnT

1√
T

T∑
t=1

εt

= op(1) (B.44)

by the CLT. Turning to the �rst term in (B.36), consider the martingale di�erence array
(MDA)

MT =
T∑
t=1

at−1√
αT

εt. (B.45)

Its predictable quadratic variation is

〈M〉T = σ2A
′
T

αT
,

where

A′T =
T∑
t=1

a2t−1. (B.46)

From the de�nition of AT (cf. (B.37)) together with (B.43) it follows readily that

AT = A′T − T
(
a−T
)2

= A′T +Op (1) . (B.47)
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Therefore, in view of (B.41),

A′T
αT

=
AT
αT

+Op

(
1

αT

)
=
AT
αT

+ op (1)

and

plimT→∞
A′T
AT

= 1. (B.48)

In particular, (B.41) is equivalent to

plimT→∞
A′T
αT

= λ. (B.49)

As a consequence,
plimT→∞ 〈M〉T = σ2λ.

Applying a CLT for MDAs, cf. Shiryaev (1996, Chapter VII, �8), we �nd that

MT
d→ N (0, σ2λ), (B.50)

or √
αT
AT

MT
d→ N (0, σ2) (B.51)

The proof of the LC for (B.50) is relegated to Appendix C.2. In view of (B.36), (B.39)
and (B.45), bringing together (B.44) and (B.51), we then obtain as �nal consequence

UT =

√
αT
AT

MT + op(1)

d→ N (0, σ2). (B.52)

Or, in terms of the explicit rate of convergence,

γ√
2c− 1

√
lnT

(
β̂T − β

)
d→ N (0, σ2).

It remains to verify (B.49). For this crucial step, recall (B.21):

at = O
(
t−c
)

+ γ (ξt + ηt) = γξt + ζt,

with ζt = O (t−c) + γηt. We may then write

T∑
t=1

a2t = γ2A0
T +RT

with

A0
T =

T∑
t=1

ξ2t and RT = 2
T∑
t=1

ξtζt +
T∑
t=1

ζ2t .

Introducing

ST =
T∑
t=1

ζ2t ,
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it follows from the Cauchy-Schwartz inequality that

|RT | ≤ 2
√
A0
TST + ST = A0

T

[
2

√
ST
A0
T

+
ST
A0
T

]
.

Since
∑
η2t <∞ a.s., cf. Remark 4,

ST = O (1) a.s..

Hence
T∑
t=1

a2t = A0
T

[
γ2 +O

(
1√
A0
T

)]
.

Therefore (B.49) is implied by

plimT→∞
A0
T

lnT
=

σ2

2c− 1
. (B.53)

Note that, by monotonicity, this implies that A0
∞ = ∞ a.s.. Note also that it is not

su�cient to simply show that AT/ lnT = Op (1) since the latter need not imply that AT
tends to in�nity. This, however, is indispensable for asymptotic normality. The proof of
(B.53) is relegated to Appendix D. Actually, there it is shown that convergence in (B.53)
takes place in L2. It is for this step that we need fourth moments of the εt.

Remark 7
If one tries to apply the rationale of this proof to the case of c = 1/2 one encounters the
problem of A0

T/αT not being a Cauchy sequence in L2 for any choice of a deterministic

sequence αT . It is hence not clear whether an asymptotic distribution of β̂T can be derived
using an approach similar to the ones used for c ≷ 1/2 in this paper.

B.3.3 Case c < 1/2

We continue to work with the formulas (B.36), (B.37) and (B.39). The �rst term in uT
is the martingale MT =

∑T
t=1 at−1εt, which has the predictable quadratic variation σ2A′T .

Consider
U ′T =

uT√
A′T

. (B.54)

Then

UT =

√
A′T
AT

U ′T . (B.55)

Our procedure here is as follows.

Step (i) First we show that A′∞ =∞ a.s. and ρ2 = limT→∞A
′
T/AT is �nite.

Step (ii) Then we show that

U ′2T
d→ σ2ρ−2χ2, (B.56)

with χ2 = χ2
1.
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Together Step (i) and Step (ii) will imply that

U2
T = AT

(
β̂T − β

)2 d→ σ2χ2. (B.57)

Regarding Step (i), the essential tool will be the asymptotic behavior of A′T and AT . Note
that (B.47) is no longer valid for c < 1/2. We therefore go back to the properties of at
investigated in Theorem 3 (iii). For the readers convenience, we repeat the fundamental
facts here:

tcat = u+ ρt, (B.58a)

ρt = γ (vt − v) + γwt +O
(
t−1
)
, (B.58b)

T caT =
u

1− c
+ op(1) (B.58c)

cf. (B.32) - (B.34). Performing some straightforward calculations it can be shown that

A′T = T 1−2c u2

1− 2c
[1 + op(1)] , (B.59a)

AT = T 1−2cν2u2 [1 + op (1)] , (B.59b)

with

ν2 =
c2

(1− 2c) (1− c)2
. (B.60)

This already settles the assertion in Step (i), showing that

ρ2 = plimT→∞
A′T
AT

=

(
1

c
− 1

)2

(B.61)

on the set {u 6= 0} . Note that, by Assumption DG2, P (u 6= 0) = 1.

Let us now turn to Step (ii). Note that the following derivation presumes that Assump-
tions MA1 and DG2 are satis�ed by the error terms. Note also that the εt are not assumed
to be normally distributed. Gaussian error terms will be looked at in Appendix B.4.

We go back to (B.36):

uT =
T∑
t=1

at−1εt − a−T
T∑
t=1

εt. (B.62)

The second term on the right hand side can be handled making use of (B.58c) to obtain

a−T

T∑
t=1

εt =
u

1− c
T−c [1 + op(1)]

T∑
t=1

εt.

By (B.59a), √
A′T =

|u|√
1− 2c

T 1/2−c [1 + op(1)] . (B.63)
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Therefore,

1√
A′T

a−T

T∑
t=1

εt =

√
1− 2c

1− c
sign (u) [1 + op(1)]

1√
T

T∑
t=1

εt

=

√
1− 2c

1− c
sign (u)

1√
T

T∑
t=1

εt + op(1) (B.64)

=

√
1− 2c

1− c
sign (u)X ′′T + op(1).

Here we have put

X ′′T =
1√
T

T∑
t=1

εt.

Coming to the �rst term of uT , we go back to the decomposition (B.58). Since (t− 1)−c−
t−c = O

(
t−(1+c)

)
and u as well as ρt are bounded in L2 (since Eρ2t → 0),

at−1 = (t− 1)−c [u+ ρt−1] = t−c [u+ ρt−1] + t−(1+c)dt,

with dt bounded in L2. Hence

T∑
t=1

at−1εt = u
T∑
t=1

t−cεt +
T∑
t=1

t−cρt−1εt +Op(1)

and

1√
A′T

T∑
t=1

at−1εt =

√
1− 2c

1 + op(1)

1

T 1/2−c

[
sign (u)

T∑
t=1

t−cεt

+
T∑
t=1

t−cρt−1εt +Op(1)

]

=

√
1− 2c

1 + op(1)
[sign (u)X ′T + ZT ] + op(1). (B.65)

Here we have put

X ′T =
1

T 1/2−c

T∑
t=1

t−cεt,

ZT =
1

T 1/2−c

T∑
t=1

t−cρt−1εt. (B.66)

If X ′T and ZT are both Op(1), (B.65) can be written

1√
A′T

T∑
t=1

at−1εt =
√

1− 2c [sign (u)X ′T + ZT ] + op(1). (B.67)

For X ′T , this is clear since E (X ′T )2 = O(1). For ZT , it will be shown below that ZT
P→ 0.
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Introduce

XT = X ′T −
1

1− c
X ′′T

=
1

T 1/2−c

T∑
t=1

(
t−c − T−c

1− c

)
εt. (B.68)

We now combine (B.64) and (B.65) to obtain the following decomposition for U ′:

U ′T =
uT√
A′T

=
√

1− 2c

[
sign (u)

(
X ′T −

1

1− c
X ′′T

)
+ ZT

]
+ op(1)

=
√

1− 2c [sign (u)XT + ZT ] + op(1). (B.69)

As for XT ,

1

T 1−2c

T∑
t=1

(
t−c − T−c

1− c

)2

=
1

T 1−2c

[
T∑
t=1

t−2c − 2
T−c

1− c

T∑
t=1

t−c +
T 1−2c

(1− c)2

]

=

[
1

1− 2c
− 1

(1− c)2

]
+O

(
1

T 1−2c

)
= ν2 + o(1),

with ν2 as in (B.60). Hence it follows from the CLT for sums of independent random
variables that

XT
d→ N

(
0, σ2ν2

)
. (B.70)

The LC is veri�ed in Appendix C.3. Hence, if it can be shown that

ZT
p→ 0, (B.71)

it will follow from (B.69) that

U ′2T = (1− 2c)X2
T + op(1)

= (1− 2c)σ2ν2
(
XT

σν

)2

+ op(1)

d→ σ2τ 2χ2
1, (B.72)

with

τ 2 = v2 (1− 2c) =

(
c

1− c

)2

= ρ−2,

cf. (B.61). Or, returning to UT , taking account of (B.55) and (B.61),

U2
T

d→ σ2χ2.

Remark 8
It should be noted that, without further knowledge, it does not follow from (B.70) that
sign(u)XT converges in distribution, let alone is asymptotically normal. The problem
caused here by the random nuisance parameter sign(u) is similar to the one appearing
explosive AR(1)-models yt = ayt−1 + εt, where the denominator 〈M〉T =

∑T
t=1 y

2
t−1 of

the OLS-estimator tends geometrically fast (at rate |a|2T ) to some nondegenerate random
limit u.
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It remains to show that ZT
p→ 0, see (B.71).

To that end, return to (B.66), with

ρt−1 = γ (vt−1 − v) + γwt−1 +O
(
t−1
)

(cf. (B.58b)). For the following, we need a somewhat more detailed representation of the
term vt−1 − v. Remembering (B.29) and (B.30), we write

ρt−1 = γζt + γwt−1 +O
(
t−1
)
, (B.73)

with

ζt = vt−1 − v =
∞∑
i=t

θi
εi
i1−c

. (B.74)

Then

ZT =
1

T 1/2−c

T∑
t=1

t−cρt−1εt

=
γ

T 1/2−c

[
T∑
t=1

t−cζtεt +
T∑
t=1

t−cwt−1εt +
T∑
t=1

Ot (1)

t1+c
εt

]
.

Apparently (remember that the Ot (1)-terms are deterministic), the contribution of the
last term on the right hand side is op(1) since

1

T 1/2−c

T∑
t=1

εt
t1+c

L2

→ 0.

Hence
ZT = γ (RT + ST ) + op(1) (B.75)

with

RT =
1

T 1/2−c

T∑
t=1

t−cζtεt, (B.76)

ST =
1

T 1/2−c

T∑
t=1

t−cwt−1εt. (B.77)

Ad R. We calculate

E

[
T∑
t=1

t−cζtεt

]2
= E

T∑
s,t=1

t−cζtεts
−cζsεs

= 2E
T∑
t=1

t−cζtεt

t−1∑
s=1

s−cζsεs + E
T∑
t=1

t−2cζ2t ε
2
t

= 2
T∑
t=1

t−1∑
s=1

t−cs−cEζtεtζsεs + E
T∑
t=1

t−2cζ2t ε
2
t

= R1T +R2T . (B.78)
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As to R1T , making use of (B.74), we obtain for s < t that

Eζtεtζsεs = E

{[
∞∑
i=t

θi
εi
i1−c

]
εt

[
∞∑
i=s

θi
εi
i1−c

]
εs

}

= E


[
∞∑
i=t

θi
εi
i1−c

]2
εtεs


+E

{[
∞∑
i=t

θi
εi
i1−c

]
εt

[
t−1∑
i=s

θi
εi
i1−c

]
εs

}

= E

{[
∞∑
i=t

θi
εi
i1−c

]
εt

}
E

{[
t−1∑
i=s

θi
εi
i1−c

]
εs

}
= σ4θtθs

1

t1−c
1

s1−c
.

Hence, remembering that limt→∞ θt = 1,

R1T = 2σ4

T∑
t=1

t−cθt
1

t1−c

t−1∑
s=1

s−cθs
1

s1−c

= 2σ4

T∑
t=1

θt
1

t

t−1∑
s=1

θs
1

s

= O (1)
T∑
t=1

1

t
[ln t+O (1)]

= O (1) ln2 T. (B.79)

As to R2T ,

Eζ2t ε
2
t = E

[
ζt+1 + θt

εt
t1−c

]2
ε2t

= Eζ2t+1Eε
2
t +

θ2t
t2(1−c)

Eε4t

= σ4

∞∑
i=t+1

θ2i
t2(1−c)

+
θ2t

t2(1−c)
m4

= O
(
t2c−1

)
.

Hence

R2T =
T∑
t=1

t−2cEζ2t ε
2
t = O (1)

T∑
t=1

1

t
= O (1) lnT. (B.80)

Therefore, taking account of (B.76) together with (B.78), (B.79) and (B.80), we �nd that

E (RT )2 =
1

T 1−2c [R1T +R2T ] = O

(
ln2 T

T 1−2c

)
.

In particular,
plimT→∞RT = 0. (B.81)

50



Ad S. Recalling (B.77),

ST =
1

T 1/2−c

T∑
t=1

t−cwt−1εt.

Since

wt−1 =
1

t

t−1∑
i=1

Oti (1)

i1−c
εi, (B.82)

Ew2
t−1 = O (1)

1

t2

t∑
i=1

1

i2(1−c)
= O

(
t−2
)
, (B.83)

(cf. (B.29)) is Ft−1-measurable and

ES2
T =

σ2

T 1−2c

T∑
t=1

t−2cEw2
t−1

= O(1)
1

T 1−2c

T∑
t=1

1

t2(1+c)
= O

(
1

T 1−2c

)
.

In particular,
plimT→∞ST = 0. (B.84)

This shows (B.71).

B.4 Proof of Corollary 2: Gaussian errors

In this section, we consider the special case where the εt are i.i.d. normal. Then a more
speci�c statement can be made about the asymptotics of the deterministically normalised
OLS-estimator, i.e. about the asymptotic distribution of

VT =
√
T 1−2c

(
β̂T − β

)
.

Using the notation introduced in Appendix B.3, taking account of (B.59b) and (B.61),

VT =

√
T 1−2c

AT

uT√
AT

=

√
T 1−2c

AT

√
A′T
AT

uT√
A′T

=
ρ

ν |u|
U ′T + op(1).

In view of the representation (B.69),

VT =
ρ

ν |u|
√

1− 2c [sign (u)XT + ZT ] + op(1)

=
ρ
√

1− 2c

ν

XT

u
+ op(1). (B.85)

The crucial fact is that, under normality,(
u
XT

)
d→ N

{(
a0B0

0

)
,

(
σ2
u 0

0 σ2
X

)}
, (B.86)
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with σ2
u = σ2κ2, σ2

X = σ2ν2 and

κ2 = γ2
∞∑
i=1

θ2i
i2(1−c)

.

(B.86) follows from the fact that

u = a0B0 + γv, with v =
∞∑
i=1

θi
εi
i1−c

(cf. (B.31) and (B.30)), and since XT and v are jointly normal with covariance

cov (v,XT ) =
1

T 1/2−cE
∞∑
i=1

θi
i1−c

εi

T∑
t=1

(
t−c − T−c

1− c

)
εt

=
σ2

T 1/2−c

T∑
t=1

θt
t1−c

(
t−c − T−c

1− c

)

=
σ2

T 1/2−c

[
T∑
t=1

θt
t
− T−c

1− c

T∑
t=1

θt
t1−c

]

= O (1)
σ2

T 1/2−c [lnT +O (1)]

= O
(
T c−1/2

)
.

In particular, u and XT are asymptotically independent. It then follows from the contin-
uous mapping theorem that

XT

u

d→ X

u

where X is an N (0, σ2
X)-distributed random variable independent of u ∼ N (a0B0, σ

2
u) .

Normalising, we �nd that

V ′T =
σu
σx

XT

u
=
κ

ν

XT

u

d→ X̃

ũ
, (B.87)

where X̃ ∼ N (0, 1) is independent of ũ ∼ N (a0B0, 1). As is well known, for µ = a0B0 =

0, the ratio X̃/ũ is standard Cauchy-distributed. For nonvanishing µ, the limit distribu-
tion is a noncentral Cauchy distribution C = C (µ) which may also be regarded as double
noncentral t-distribution with one degree of freedom whose noncentrality parameters are
zero in the numerator and µ in the denominator. Its density is given by

f(v) =
1

π

1

1 + v2
e−µ

2/2
[
1 +

µ

2
ψ (µ)

]
,

ψ (µ) =
2

1 + v2
eµ

2/2(1+v2)
∫ µ

0

e−x
2/2(1+v2)dx.

An alternative representation of the density in terms of an in�nite series expansion may
be found in Krishnan (1968). Going back to (B.87), we then �nd that

V ′T
d→ C.

Finally, by asymptotic equivalence of V and V ′,

κνVT
d→ C (µ) .
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Remark 9
Reconsider the result in Theorem 2 (iii). It turns out that for Gaussian error terms, u
and v are independent normally distributed random variables with mean zero. Hence the
limit distribution of β̂ is also a noncentral Cauchy distribution. For explosive AR(1)-
model without intercept the usual Cauchy distribution C (0) was already identi�ed as limit
distribution in the Gaussian case by White (1958) and Shiryaev & Spokoiny (1997).
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C The Lindeberg conditions

C.1 Theorem 3 for c ≥ 1/2

We verify the Lindeberg condition for sums of independent random variables, cf. Shiryaev
(1996, Chapter III, �4, Theorem 1). Put di�erently, for every δ > 0,

Vt =
1

〈v〉t

t∑
i=1

E
ε2i

i2(1−c)
1{
|εi|>δi1−c〈v〉1/2t

} → 0.

For c > 1/2, taking account of (B.22),{
|εi| > δi1−c 〈v〉1/2t

}
=

{
|εi| >

σ√
2c− 1

δi1−c
√
t2c−1 +O(1)

}
=

{
|εi| >

σ√
2c− 1

(1 + o(1))δi1−ctc−1/2
}

⊂ {|εi| > κ (1 + o(1))tp}

with p = (c ∧ 1)− 1
2
and κ > 0. The last inclusion follows from the fact that i1−c ≥ t1−c

for c ≥ 1 and i1−c ≥ 1 for c < 1. Therefore, by square integrability of εi,

Eε2i 1
{
|εi|>δi1−c〈v〉1/2t

} ≤ Eε211{|ε1|>κ(1+o(1))tp} = πt → 0

as t→∞. As a consequence,

Vt ≤
πt
〈v〉t

t∑
i=1

1

i2(1−c)
=
πt
σ2
→ 0.

For c = 1/2, the proof runs similarly, now making use of (B.27):{
|εi| > δi1/2 〈v〉1/2t

}
=

{
|εi| > σ (1 + o(1))δi1/2

√
ln t
}

⊂
{
|εi| > κ (1 + o(1))

√
ln t
}
,

so that
Eε2i 1

{
|εi|>δi1−c〈v〉1/2t

} ≤ Eε211{|ε1|>κ(1+o(1))√ln t} = πt → 0

and hence

Vt =
1

〈v〉t

t∑
i=1

E
ε2i
i

1{
|εi|>δi1/2〈v〉

1/2
t

} ≤ πt
〈v〉t

t∑
i=1

1

i
=
πt
σ2
→ 0.

C.2 Theorem 4 for c > 1/2

Reconsider the martingale in (B.45), reproduced here for convenience:

MT =
T∑
t=1

ξTtεt, ξTt =
at−1√
αT

.
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We have to show that, for every δ > 0,

RT =
T∑
t=1

E
{
ξ2Ttε

2
t1{|ξTtεt|>δ}|Ft−1

} p→ 0, (C.1)

cf. Christopeit & Hoderlein (2006). To this end, we make use of the elementary implication
|ab| > δ ⇒ a2 > δ or b2 > δ to obtain the inclusion {|ξTtεt| > δ} =

{
|at−1εt| > δ

√
αT
}
⊂{

a2t−1 > δ
√
αT
}
∪
{
ε2t > δ

√
αT
}
. Therefore,

RT ≤ 1

αT

T∑
t=1

E
{
a2t−1ε

2
t1{a2t−1>δ

√
αT}|Ft−1

}
+

1

αT

T∑
t=1

E
{
a2t−1ε

2
t1{ε2t>δ√αT}|Ft−1

}
=

σ2

αT

T∑
t=1

a2t−11{a2t−1>δ
√
αT} +

1

αT

T∑
t=1

a2t−1E
{
ε2t1{ε2t>δ√αT}

}
= R0

T +R1
T .

As to R0
T , since at → α a.s., there will be a T0 (depending on ω) such that a2t−1 ≤ δ

√
αT

for all t > T0. Hence the sum is �nite and

R0
T → 0 a.s. (C.2)

As to R1
T ,

E
{
ε2t1{ε2t>λT δ}

}
= πT → 0.

Hence, taking account of (B.49),

R1
T =

πT
αT

T∑
t=1

a2t−1=πT
A′T
αT

p→ 0. (C.3)

(C.2) and (C.3) together show (C.1).

C.3 Theorem 4 for c < 1/2

By de�nition (cf. (B.68)),

XT =
T∑
t=1

ξTtεt

with

ξTt =
1

T 1/2−c

(
t−c − T−c

1− c

)
To show:

RT =
T∑
t=1

E
{
ξ2Ttε

2
t1{|ξTtεt|>δ}|Ft−1

} p→ 0.
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But

RT =
T∑
t=1

ξ2TtE
{
ε2t1{ε2t>δ2/ξ2Tt}

}
.

Since

max
t≤T
|ξTt| ≤

1

T 1/2−c +
1

1− c
1

T 1/2
= mT = o(1),

it follows that
πT = E

{
ε2t1{ε2t>δ2/ξ2Tt}

}
≤ E

{
ε2t1{ε2t>δ2/m2

T}
}
→ 0.

Therefore,

RT ≤ mT

T∑
t=1

ξ2Tt → 0

since
∑T

t=1 ξ
2
Tt = O(1).
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D Proof of equation (B.53)

D.1 Introduction

Here we give the proof of (B.53), as announced in Appendix B.3, namely that

E

[∑T
t=1 ξ

2
t

σ2
T

− 1

]2
→ 0 (D.1)

for the sequence

σ2
T =

σ2

2c− 1
lnT. (D.2)

The sequence ξt was de�ned by

ξt =
1

tc

t∑
i=1

εi
i1−c

.

Remember that we are dealing with the case c > 1/2. Denote

XT =
T∑
t=1

ξ2t .

Then, since

Eξ2t =
1

t2c
E

[
t∑
i=1

1

i1−c
εi

]2
=
σ2

t2c

t∑
i=1

1

i2(1−c)

=
σ2

t2c

[
1

2c− 1
t2c−1 +O(1)

]
=

σ2

2c− 1

1

t
+O

(
1

t2c

)
,

it follows from the integral comparison test (ICT) that

EXT =
σ2

2c− 1
lnT +O(1). (D.3)

Hence, if (D.1) holds,
σ−2T EXT → 1,

so that the normalisation (D.2) comes up naturally.

In order to show (D.1), we will have to calculate 4th moments:

EX2
T =

T∑
s,t=1

Eξ2sξ
2
t =

T∑
t=1

Eξ4t + 2
T∑

s,t=1;s<t

Eξ2sξ
2
t . (D.4)
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D.2 Calculation of 4th moments

Henceforth, we will assume that s ≤ t. The basic formula will be

Eεiεi′εjεj′ =


m4, i = i′ = j = j′,
σ4, i = i′ 6= j = j′ or i = j 6= i′ = j′ or i = j′ 6= i′ = j
0, else

.

Then

Eξ2sξ
2
t =

1

s2ct2c
E

[
s∑
i=1

1

i1−c
εi

]2 [ t∑
j=1

1

j1−c
εj

]2

=
1

s2ct2c
E

s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=1

1

j1−cj′1−c
εjεj′

= Ast +Bst. (D.5)

Here we have put

Ast =
1

s2ct2c

s∑
i,i′,j,j′=1

1

i1−ci′1−c
1

j1−cj′1−c
Eεiεi′εjεj′ , (D.6a)

Bst =
1

s2ct2c
E

s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=s+1

1

j1−cj′1−c
εjεj′ . (D.6b)

Remark 10
Note that the B-term vanishes for s = t.

D.2.1 Ad Ast

Ast =
1

s2ct2c

[
m4

s∑
i=1

1

i4(1−c)
+ 6σ4

s∑
i=2

1

i2(1−c)

i−1∑
j=1

1

j2(1−c)

]

=
1

s4c

 s∑
i=1

1

i4(1−c)
+

(
s∑
i=1

1

i2(1−c)

)2
O(1)

= [A′s + A′′s ]O(1),

with

A′st =
1

s4c

s∑
i=1

1

i4(1−c)
, A′′st =

1

s4c

(
s∑
i=1

1

i2(1−c)

)2

.

Ad A′ Since
s∑
i=1

1

i4(1−c)
=


O (1) , c < 3/4,
O (ln s) , c = 3/4,
O(s4c−3), c > 3/4,
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it follows that

A′s =


O
(

1
s4c

)
, c < 3/4,

O
(
ln s
s3

)
, c = 3/4,

O
(

1
s3

)
, c > 3/4.

(D.7)

As a consequence,
T∑
t=1

t∑
s=1

A′s = O(1). (D.8)

Ad A′′ Since
s∑
i=1

1

i2(1−c)
= O

(
s2c−1

)
,

we have that

A′′s =
1

s4c
O
(
s2(2c−1)

)
= O

(
s−2
)
. (D.9)

Hence
T∑
t=1

t∑
s=1

A′′s = O(lnT ). (D.10)

As a consequence, from (D.6a),

T∑
s≤t

Ast =
T∑
t=1

t∑
s=1

Ast = O(1)
T∑
t=1

t∑
s=1

[A′s + A′′s ] = O(lnT ). (D.11)

D.2.2 Ad Bst

B will turn out the leading term in (D.5). Therefore we must be more explicit about
O(1)-terms. We will make use of the formula

t∑
j=s+1

jp =
tp+1

p+ 1

[
1−

(s
t

)p+1

+Ost

(
1

t

)]
, (D.12)

which is valid for all p > −1.

By (D.6b),
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Bst =
1

s2ct2c
E

[
s∑

i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=s+1

1

j1−cj′1−c
E {εjεj′|Fs}

]

=
1

s2ct2c
E

[
s∑

i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j=s+1

σ2

j2(1−c)

]

=
σ4

s2ct2c

[
s∑
i=1

1

i2(1−c)

][
t∑

j=s+1

1

j2(1−c)

]

=
σ4

(2c− 1)2
s2c−1t2c−1

s2ct2c
[1 + o(1)]

[
1−

(s
t

)2c−1
+ o(1)

]
=

σ4

(2c− 1)2
1

st

[
1−

(s
t

)2c−1
+ o(1)

]
.

As a consequence,

T∑
s<t

Bst =
T∑
t=2

t−1∑
s=1

Bst

=
σ4

(2c− 1)2

T∑
t=2

[
1

t

t∑
s=1

1

s
[1 + o(1)]−

T∑
t=2

1

t2c

t∑
s=1

1

s2(1−c)

]

=
σ4

(2c− 1)2

[
T∑
t=2

1

t
[ln t+O(1)]− 1

2c− 1

T∑
t=2

1

t2c
[
t2c−1 +O(1)

]]
.

But

T∑
t=2

1

t
[ln t+O(1)] =

[∫ T

2

ln t

t
dt+O(1)

]
+O(1)

[∫ T

2

dt

t
+ 1

]
=

[
1

2
ln2 T +O(1)

]
+O(1) [lnT + 1]

=
1

2
ln2 T +O(lnT )

and
T∑
t=2

1

t2c
[
t2c−1 +O(1)

]
=

∫ T

2

dt

t
+O(1) = lnT +O(1).

Hence
T∑
s<t

Bst =
σ4

2 (2c− 1)2
ln2 T +O(lnT ). (D.13)

60



D.3 Synthesis

From (D.5) together with (D.11) and (D.13) it follows that

EX2
T =

T∑
s≤t

Eξ2sξ
2
t = 2

T∑
s<t

Eξ2sξ
2
t +

T∑
t=1

Eξ4t

= 2
T∑
s<t

Bst +O(lnT )

=
σ4

(2c− 1)2
lnσ2T +O(lnT ).

Or, put di�erently, with σT as in (D.2),

E
[
σ−2T XT − 1

]2
= σ−4T

[
EX2

T − 2σ2
TEXT + σ4

T +O(lnT )
]

= σ−4T O(lnT )

= O
(
ln−1 T

)
.

This proves the assertion.
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E Proof of Corollary 3

Consider the OLS residual ε̂t = yt − δ̂ − β̂at−1 = mt + εt, where

mt = (δ − δ̂) + (β − β̂)at−1.

Then
T∑
t=1

ε̂2t =
T∑
t=1

m2
t + 2

T∑
t=1

mtεt +
T∑
t=1

ε2t .

Since

1

T

T∑
t=1

m2
t ≤

2

T

[
T (δ − δ̂)2 + (β − β̂)2

T∑
t=1

a2t−1

]
= o(1),

1

T

∣∣∣∣∣
T∑
t=1

mtεt

∣∣∣∣∣ ≤
[

1

T

T∑
t=1

m2
t

1

T

T∑
t=1

ε2t

]1/2
= o(1),

it follows that
1

T

T∑
t=1

ε̂2t =
1

T

T∑
t=1

ε2t + o(1)→ σ2

with probability one or in probability according to whether both δ̂ and β̂ are strongly or
weakly consistent.
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