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Private Road Networks with Uncertain

Demand

Xinying Fu1∗, Vincent van den Berg1,2, Erik T. Verhoef1,2

1Department of Spatial Economics, VU University Amsterdam
2Tinbergen Institute

August 3, 2015

Abstract

There has been wide interest in private supply of roads as a solution to traf-

fic congestion. We study its efficiency under demand uncertainty: we solve

for equilibrium and optimum as benchmarks, and evaluate the efficiency of

possible regulatory policies for private road operators. We obtain analytic

solutions for simple networks and numerical simulation results for more com-

plex ones. For two serial links and two parallel links, self-financing still holds

in expected terms for the first-best case, even though the capacity is higher

than the capacity for the deterministic demand equal to the expected value.

When forced to apply the second-best optimal pricing, the private supplier

makes an expected loss (profit) if there is an untolled substitute (complement)

in the network. In contrast to the deterministic counterpart of the problem

we study, regulation by competitive auction cannot replicate the second-best

∗Corresponding author. TEL:+31205988978. email-addresses: x.fu@vu.nl(X. Fu),
v.a.c.vanden.berg@vu.nl (V. van den Berg), e.t.verhoef@vu.nl (E.T. Verhoef)
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zero-profit result. For more complex networks, when private firms adds ca-

pacity one link at a time, entry by competitive auctions performs better

than free entry. For the parameter range considered in the numerical simu-

lation, entry by generalized auction performs better than entry by patronage

auction.

Keywords: Traffic Congestion, Road Pricing, Uncertain Demand, Road

Network, Private Supply

JEL codes:

1 Introduction

There has been wide interest in private supply of roads as a solution to in-

creasing traffic congestion around the world. Many countries already have

private tolled roads and the trend is increasing. This is because many gov-

ernments have insufficient public funds to finance new road projects, and

private firms are believed to manage the tolled roads more efficiently. How-

ever, there is one disadvantage: suppliers have market power and tend to

maximize their profits, resulting in a loss of social welfare compared to opti-

mal pricing (Edelson (1971), Verhoef et al. (1996) and de Palma and Lindsey

(2000)).

Previous studies have examined the effects of private supply of roads on

social welfare. Following Moring and Harwitz(1962), Yang and Meng (2002)

shows that, if both the toll and the capacity are set optimally for every link

of the network and neutral scale economies prevail, the private road is self-

financing, meaning that the collected tolls can cover the capacity costs. In

that case, the social optimum can be offered by a private firm without making

the firm running to losses. Obviously, not all roads are priced optimally in

reality. For example, free public roads are common in every country, even

if a toll could reduce congestion and improve social welfare. Verhoef (2007)

demonstrates that a private road supplier who is forced to price and invest

2



second-best optimally makes a loss when there is an untolled substitute road

in the network, so a subsidy from the government is needed to achieve the

desired social welfare. If such subsidy is ruled out due to political or economic

reasons, Verhoef (2008) derives the highest social welfare under the condition

that the private firm makes at least a zero profit. This is a natural benchmark

to compare the efficiency of various ways of regulating private supply of

roads. Verhoef (2008) found that among many possible regulation tools, two

competitive auctions, namely the patronage auction and the generalized price

auction, are preferred, because they make the private firm choose the socially

optimum tolls and capacity under the zero profit condition.

The study of private supply of road can be further complicated by demand

uncertainty. Demand fluctuations are common in road transportation and

have been studied by numerous scholars. Most scholars focus on a single

link and find demand uncertainty has substantial influence on the capacity

and toll decisions. Kraus (1982), D’Ouville and McDonald (1990), Arnott

et al. (1996) and De Borger and Van Dender (2006) all find that for a single

link the optimal capacity with demand uncertainty is larger than the optimal

capacity for a deterministic demand equal to the expected value. Lindsey

and de Palma (2014) proves that the cost recovery theorem holds also with

uncertain demand and cost in expected terms. To date, however, models

about demand uncertainty have not been applied to examine private supply

of road in a mixed network.

The aim of the present paper is to study, under demand uncertainty,

the impact of private supply of road in a public network and of alternative

ways to regulate it. Demand uncertainty plays a role, because the capacity

is set when demand is unknown, but tolls can be adjusted according to the

realized demand. For simple networks, we distinguish between parallel links

and serial links, and derive analytically the expected social welfare under

various scenarios, which are used as objectives to assess the efficiency of

private supply of road. We also examine various ways of regulation aiming
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to achieve the highest social welfare possible. For more complex networks, we

are interested in the development of private supply of road networks through

competition. We run simulations to compare the outcomes of free entry and

entry by regulation.

Our research brings new insights into private supply of roads and de-

mand uncertainty. Consistent with the findings for a single link with demand

uncertainty, the optimal capacity is larger than the optimal capacity for a

deterministic demand equal to the expected value. This is because if the

capacity is set on the basis of expected demand, the benefit of increasing the

capacity when demand is high outweighs the cost when demand is low. In ad-

dition, the self-financing results still holds in expectation for optimal toll and

capacity: also the expected toll is higher under uncertainty. However, the

following results are unique due to demand uncertainty. When the private

firm needs at least zero profit, the toll generally differs from the case with-

out demand uncertainty. An especially important finding for policy makers

is that regulation by simple competitive auctions can no longer make the

private suppliers adopt the socially desirable tolls and capacities under the

zero profit constraint. In other words, demand uncertainty makes regulating

the private supply of roads more difficult. With the help of competition,

the numerical simulation suggests that entry by regulation still works better

than free entry.

The remaining paper is organized as follows. Section 2 introduces the

model for simple networks and discusses the analytical results. Section 3

contains the simulation results for more complex networks and section 4

concludes.

2 Analytical Model

In this section, we study two serial links and two parallel links. They are

the basic components of any complex network, and are common in real life.
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They have, however, quite different implications for policy maker. We can

get clear analytical results for the two basic network, and the insights from

these two basic networks carry over to more complex networks.

2.1 Model Setup

This paper attempts to model demand uncertainty in a general way to rep-

resent a variety of uncertainty distributions and inverse demand functions.

Denote the probability of state i as pi, the total traffic flow in state i as N i,

and the inverse demand in state i as Di(N i). We assume the inverse demand

function decreases with traffic flow. For example, if the highest willingness to

pay varies with the realized demand state and the probability of each state

is one half, we can denoted the demand function as Di(N i) = di0− d1N i and

i ∈ {h, l}, ph = 1
2
, pl = 1

2
. Due to demand uncertainty, the timing of the

game is as follows. Capacity is decided before the demand state is known,

because there are long lead times to adapt capacity. Tolls are decided after

the demand uncertainty is resolved, because prices are easy to adjust.

The other assumptions are standard in traffic congestion models. There

is a single market with one origin and one destination, and the users are

homogeneous. The congestion cost is increasing and homogeneous of degree

zero in the ratio of the traffic flow and the capacity. This includes the widely

used BPR function. We also assume that the marginal capacity cost is a

constant. Let j denotes link j, the capacity, congestion cost and marginal

capacity costs are denoted as Kj, c(N
i
j , Kj) and γ respectively.

2.2 Serial Links

We study a network of two serial links in this section. A traveler must

use both links to get from the origin to the destination. The two links are

complementary to each other. As a result, the total traffic flow equals the

traffic flow on each link, i.e. N i = N i
0 = N i

1.
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The main findings are summarized here for four different cases. In the

first-best case, a social planner can design the capacity and tolls on both

links to maximize expected social welfare. The results are consistent with

previous studies. The toll equals the sum of the marginal external cost

of congestion on the full trip(De Borger and Van Dender (2006)), and the

capacity is larger than the case without demand uncertainty (Kraus (1982),

D’Ouville and McDonald (1990) and Arnott et al. (1996)). In the second-

best case, there exists an untolled road and the social planner chooses the

capacity and tolls on the other road. An expected profit is gained on the

tolled link. Similar to Verhoef (2007), the intuition is that the toll on the

priced link also includes the marginal external cost on the unpriced link, so

that an efficient investment policy for the tolled link would not exhaust all

toll revenues. In the second-best zero-profit case, the social planner faces

an additional requirement that the expected toll revenue covers the capacity

cost of the toll link. Contrary to existing literature on private supply of

road without demand uncertainty, Verhoef (2008) for example, the toll is not

equal to the marginal external cost of congestion of both links. Finally, in

the regulation by auction case, we study how to implement the second-best

zero-profit case through competitive auctions. Two auctions are examined,

namely the patronage auction and the generalized price auction. However,

neither can implement the second-best zero-profit result. We will discuss

each case in more detail in the remainder of this section.

2.2.1 First-Best for Serial Links

To assess the efficiency of private supply of road, a natural benchmark is

the first best case, which generates the highest expected social welfare by

optimizing the capacity and toll of both links. The optimization problem can

be stated as maximize the expected social welfare, which equals the expected

consumer benefit minus the expected congestion cost and the capacity cost,

under the constraint that the generalized price of any active route equals

6



the marginal consumer benefit. Mathematically, let us denote the sum of

the tolls as τ i, the traffic volume as N i, the capacity on link j as Kj, the

inverse demand function as Di(N i), and the congestion cost as c(N i, Kj).

The resulting Lagrangian is as follows:

L =
∑
i

pi(

∫ N i

0

Di(n)dn−N i(c(N i, K0) + c(N i, K1)))− γ(K0 +K1)

+
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i))

(1)

Solving the FOCs yields the familiar solution:

Di(N i)− c(N i, K0)− c(N i, K1)−N i(cN i(N i, K0) + cN i(N i, K1)) = 0∑
i

pi(−N icK0(N
i, K0)) = γ∑

i

pi(−N icK1(N
i, K1)) = γ

τ i = N i(cN i(N i, K0) + cN i(N i, K1)) (2)

The results are consistent with previous studies on uncertain demand

for a single link (Kraus (1982), D’Ouville and McDonald (1990), Arnott

et al. (1996), De Borger and Van Dender (2006) and Lindsey and de Palma

(2014)). The toll is equal to the marginal external congestion cost over the

full trip in each state. The two links are self-financing in expectation, because∑
i p

iN iτ i =
∑

i p
iN iN i(cN i(N i, K0)+cN i(N i, K1)) =

∑
i p

iN i(−K0cK0(N
i, K0)−

K1N
icK1(N

i, K1)) = γ(K0 +K1). For a linear inverse demand function and

a BPR congestion function, we show in Appendix I that the optimal capac-

ity is larger than in the case without uncertainty. In other words: both the

expected toll revenue and the total capacity cost are higher with uncertainty
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than without, but they are so in equal amounts, so that self-financing still

prevails. The intuition why both are higher is that due to the convexity of

the user cost function, the expected value of the marginal external cost under

uncertainty exceeds the deterministic marginal external cost for a traffic flow

equal to the expected value of the flow under uncertainty. This raises the

expected value of the toll, but also the optimal capacity of the road.

2.2.2 Second-Best for Serial Links

The comparison of the private supply of a road with the first-best case can

be less accurate if some untolled initial roads already exist in a network.

Because a social planner can only design and hence optimise the capacity

and tolls of a new road, the resulting expected social welfare is generally

lower for this second best case. Mathematically, the optimization problem

looks similar to the fist best one, except that the choice variables are reduced

to K1, τ
i and N i. The Lagrangian is:

L =
∑
i

pi(

∫ N i

0

Di(n)dn−N i(c(N i, K0) + c(N i, K1)))− γ(K0 +K1)

+
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i)) (3)

The solution is:

Di(N i)− c(N i, K0)− c(N i, K1)−N i(cN i(N i, K0) + cN i(N i, K1)) = 0∑
i

pi(−N icK1(N
i, K1)) = γ

τ i = N i(cN i(N i, K0) + cN i(N i, K1)) (4)

The results are in line with the research on private supply of roads without
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uncertain demand (Verhoef et al. (1996)). The toll in each demand state

equals the marginal external congestion cost of the full trip, so the expected

toll revenues more than compensate the capacity cost of the tolled link. In

fact, the toll revenue would be sufficient to cover the cost of supplying both

links in an optimal fashion, if the capacity of the unpriced links happens to

be optimal.

2.2.3 Second-Best Zero-Profit for Serial Links

We study the second best zero profit case in this subsection, where the

provider earns zero profit on the tolled link. This is a good benchmark for

competing private firm, because under perfect competition, profit are driven

down to zero. It is also a good benchmark for regulation, because the toll

revenue must cover capacity cost if no subsidy is provided by the government.

The problem has the following Lagrangian:

L =
∑
i

pi(

∫ N i

0

Di(n)dn−N i(c(N i, K0) + c(N i, K1)))− γ(K0 +K1)

+
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i)) + λzp(
∑
i

piN iτ i − γK1)

(5)

The FOCs are:
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∂L

∂N i
= pi(Di(N i)− c(N i, K0)− c(N i, K1)−N icN i(N i, K0)−N icN i(N i, K1))

+ λi(cN i(N i, K0) + cN i(N i, K1)−Di
N i(N i)) + λzppiτ i = 0

∂L

∂τ i1
= λi + λzppiN i = 0

∂L

∂K1

= −
∑
i

piN icK1(N
i, K1)− γ +

∑
i

λicK1(N
i, K1)− λzpγ = 0

∂L

∂λi
= c(N i, K0) + c(N i, K1) + τ i −Di(N i) = 0

∂L

∂λzp
=

∑
i

piN iτ i − γK1 = 0 (6)

Substitute the Lagrangian multipliers out and we have the following ex-

pression:

λzp =
τ i −N i(cN i(N i, K0) + cN i(N i, K1))

−τ i −N i(Di
N i(.)− cN i(N i, K0)− cN i(N i, K1))

(7)

The Lagrangian multiplier for the zero profit constraint, λzp, reflects how

much the expected social welfare changes if we allow for a small expected

deficit. The numerator is the derivative of the social welfare in state i with

respect to N i. It equals the height of the Harberger triangle, which measures

the deadweight loss due to inefficient tolling. The denominator is the deriva-

tive of the deficit in state i with respect to N i. To derive it, consider the

effect of a marginal increase in traffic volume. On the one hand, the deficit

decreases, because we get the toll payment from the new marginal traveler.

On the other hand, the deficit also increases, because we can collect less toll

from every original traveler 1. In sum, λzp measures how much a change in

1The toll is less because the congestion cost increases and the willingness to pay de-
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the expected deficit leads to a change in the expected social welfare in equi-

librium. Its value must be equal across states, because the marginal effect is

the same whether it is realized through through a change of the traffic flow

in state i or j.

Using λzp, we can see why, contrary to cases without demand uncertainty

Verhoef (2008), the toll in the second best zero profit case is not the marginal

external congestion cost of the link. For example, if inverse demand function

is Di(N i) = di0 − d1N
i and di0 > dj0, apply the Pigouvian toll and we will

have N i > N j and
−cNi (N

i,K0)

cNi (N i,K0)+d1
<

−c
Nj (N

j ,K0)

c
Nj (Nj ,K0)+d1

. We prove that Pigouvian is

not optimal by contradiction. For state i, the traffic volume is set optimally,

so ∂L
∂N i = 0 and λzp =

−cNi (N
i,K0)

cNi (N i,K0)+d1
. For state j, because λzp <

−c
Nj (N

j ,K0)

c
Nj (Nj ,K0)+d1

,

we can show that ∂L
∂Nj > 0 and the traffic volume in state j is too low.

2.2.4 Auctions for Serial Links

When a social planner is not sure about the optimal toll and capacity due

to lack of information on the congestion cost function or the capacity cost, a

competitive auction can improve the efficiency of private supply of the road.

In a competitive auction, all sellers have the same marginal capacity cost γ

and full information of the congestion cost function, and they will bid until

the profit is exhausted. We already know that in the deterministic case, two

auctions can implement the second best zero profit outcome (Verhoef, 2007).

There are the patronage auction, where firms bid for the highest traffic flow

on the tolled road, and the generalized price auction, where they bid for the

lowest generalized price. So we will study how theses two auctions perform

under uncertain demand.

The patronage auction maximizes the expected traffic flow and the La-

grangian is:

creases.
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L =
∑
i

piN i +
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i)) + λzp(
∑
i

piN iτ i − γK1)

∂L

∂N i
= pi + λi(cN i(N i, K0) + cN i(N i, K1)−Di

N i(N i)) + λzppiτ i = 0

∂L

∂τ i1
= λi + λzppiN i = 0

∂L

∂K1

=
∑
i

λicK1(N
i, K1)− λzpγ = 0

∂L

∂λi
= c(N i, K0) + c(N i, K1) + τ i −Di(N i) = 0

∂L

∂λzp
=

∑
i

piN iτ i − γK1 = 0 (8)

If we simplify the first order conditions, we have

λzp =
1

−τ i −N i(Di
N i(.)− cN i(N i, K0)− cN i(N i, K1))

(9)

The Lagrangian multiplier for the zero profit constraint, λzp, reflects how

much the expected patronage changes if we allow for a small expected deficit.

The numerator equals the derivative of the traffic volume in state i with

respect to itself, and is therefore 1 now (as apposed to the numerator of (7)).

The denominator equals the derivative of the expected deficit with respect

to the traffic volume, which is of course the same as in (7). To see why the

toll cannot be the marginal congestion cost of the tolled road, consider again

a linear inverse demand function with Di(N i) = di0 − d1N i. If di0 > dj0, we

can derive that N i > N j and 1
N i(d1+cNi (N i,K0))

< 1
Nj(d1+cNj (Nj ,K0))

.

The generalized price auction minimizes the generalized price, so the La-

grangian is:
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L =
∑
i

piDi(N i) +
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i)) + λzp(
∑
i

piN iτ i − γK1)

∂L

∂N i
= piDi

N i(N i) + λi(cN i(N i, K0) + cN i(N i, K1)−Di
N i(N i)) + λzppiτ i = 0

∂L

∂τ i1
= λi + λzppiN i = 0

∂L

∂K1

=
∑
i

λicK1(N
i, K1)− λzpγ = 0

∂L

∂λi
= c(N i, K0) + c(N i, K1) + τ i −Di(N i) = 0

∂L

∂λzp
=

∑
i

piN iτ i − γK1 = 0 (10)

If we substitute out the Lagrangian multipliers, we have

λzp =
Di
N i(.)

−τ i −N i(Di
N i(.)− cN i(N i, K0)− cN i(N i, K1))

(11)

λzp reflects how much the expected generalized price changes as a result

of allowing a small expected deficit. The numerator equals the derivative

of the expected generalized price with respect to the traffic volume in state

i. The denominator again equals the derivative of the expected deficit with

respect to the traffic volume. For a linear inverse demand function, where

Di
N i(.) is a constant, the expression of λzp suggests the same relation between

τ i, Ki and N i in both auctions, so the solutions are also the same for both

auctions. This is because, for linear demand function and serial links, the

maximum expected total traffic flow corresponds to the minimum expected

generalized price. For non-linear demands, the outcomes of the auctions will

be different.

In sum, the patronage auction and the generalized price auction cannot

replicate the result for the second best zero profit case with serial links if there
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is demand uncertainty. There are two ways to explain it. Firstly, the auctions

and the second best zero profit case have different expected optimization

objectives, which is the sum of the optimization objectives in each state

weighted by the probability of that state. Note that the expected social

welfare equals the expected consumer surplus under the zero profit constraint.

For linear inverse demand functions, in each state, the consumer surplus is

quadratic in the traffic flow while the patronage and the generalized price are

linear in the traffic flow, so the highest expected consumer surplus corresponds

to neither the highest expected patronage nor the lowest expected generalized

price. Secondly, and as a result of the first point, the last four sets of FOCs,

which are the same for the two auctions and the second best zero profit case,

cannot determine a unique solution. The solution depends also on the first

three sets of FOCs, which are in general different across the auctions and

the second best zero profit case. On the contrary, when there is no demand

uncertainty, in terms of the optimization objective, maximization of the social

welfare under the zero profit constraint is equivalent to maximization of the

patronage and minimization of the generalized price. In terms of the resulting

FOCs, the last four sets of FOCs determine a unique combination of the

traffic flows, capacity and toll (Verhoef 2007).

2.3 Parallel Links

In this section, we consider two parallel links, where two roads both connect

the same origin and destination and a traveler can use either of them. As a

result, the total traffic flow is the sum of the traffic flow of both links, i.e.

N i = N i
0 +N i

1.

Here is a summary of the key results for the parallel links for four cases.

In the first best case, where the expected social welfare is maximized, the toll

is the marginal external cost of congestion and both roads are self-financing

in expectation. In the second best case, however, when one road is untolled,

the social planner expects a loss when maximizing the expected social welfare
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by setting capacity and tolls on the other road. In the second best zero profit

case, we study the highest social welfare attainable under the condition that

the toll road generates at least a zero profit, because private firms will exit the

market if they make a loss. This results in the same toll as in the first best.

Finally in the auctions case, we show that, contrary to the deterministic case

Verhoef (2007), neither the patronage auction nor the least price auction can

implement the second best zero profit result when demand uncertainty is a

concern.

2.3.1 First-Best for Parallel Links

As a benchmark for efficiency loss due to private supply of road, we discuss

the first best case, where a social planner can design the capacities and tolls

of the two parallel links to obtain the highest expected social welfare. The

Lagrangian is the following:

L =
∑
i

pi[

∫ N i
0+N

i
1

0

Di(n)dn−N i
0c(N

i
0, K0)−N i

1c(N
i
1, K1)]− γ(K0 +K1)

+
∑
i

λi0[c(N
i
0, K0) + τ i0 −Di(N i

0 +N i
1)] +

∑
i

λi1[c(N
i
1, K1) + τ i1 −Di(N i

0 +N i
1)]

(12)

Solve the first order conditions of Kj, τ
i
j , N

i
j , λ

i
j and we have the following:

Di(N i
0 +N i

1)− c(N i
0, K0)− τ ij = 0∑

i

pi(−N i
jcKj

(N i
j , Kj)) = γ

τ ij = N i
jcN i

j
(N i

j , Kj)

(13)
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In the first best case, the Pigouvian toll is levied on each link in each

state, so the externality of congestion is internalized. Consistent with Lindsey

and de Palma (2014), the roads are self-financing in expectation. For linear

inverse demand function and BPR congestion function, we show in Appendix

I that the optimal capacity is larger than the case without uncertainty. Due

to the convexity of the user cost function, the expected value of the marginal

external cost under uncertainty exceeds the deterministic marginal external

cost for a traffic flow equal to the expected value of the flow under uncertainty.

This raises the expected value of the toll, but also the optimal capacity of

the road.

2.3.2 Second-Best for Parallel Links

In the second best case, an untolled initial network already exists, and the

best a social planner can do is to optimize the capacity and tolls of a new

road. It is common to find the situation that, to get from one city to another,

there are a fast highway with tolls and a slow but free road. The optimization

problem looks similar to the fist best one, except the choice variables are

reduced to K1, τ
i
1 and N i

j . Let us consider the case where the new road runs

parallel to an existing untolled one. The Lagrangian is:

L =
∑
i

pi[

∫ N i
0+N

i
1

0

Di(n)dn−N i
0c(N

i
0, K0)−N i

1c(N
i
1, K1)]− γ(K0 +K1)

+
∑
i

λi0[c(N
i
0, K0)−Di(N i

0 +N i
1)] +

∑
i

λi1[c(N
i
1, K1) + τ i1 −Di(N i

0 +N i
1)]

(14)

The solution is:
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Di(N i
0 +N i

1)− c(N i
0, K0) = 0

Di(N i
0 +N i

1)− c(N i
1, K1)− τ i1 = 0∑

i

pi(−N i
1cK1(N

i
1, K1)) = γ

τ i1 = N i
1cN i

1
(N i

1, K1) +N i
0cN i

0
(N i

0, K0)
Di
N i

1
(N i

0 +N i
1)

cN i
0
(N i

0, K0)−Di
N i

0
(N i

0 +N i
1)

(15)

Similar to the case without uncertainty Verhoef et al. (1996), the toll in

each demand state equals the sum of the marginal external cost of congestion

and a negative network spillover effect. The social planner expects a loss

on the tolled link, because of a downward adjustment of the toll from the

Pigouvian toll.

2.3.3 Second-Best Zero-Profit for Parallel Links

As shown in the previous section, in the second-best case with parallel links,

the operator of the tolled road makes a loss. What is the highest expected

social welfare if this road has to be self-financing? This is a relevant ques-

tion because it is a natural benchmark for private supply (with or without

regulation) when there is an untolled alternative parallel road: we cannot

expect the private road to make a loss, so the best we can hope for is the

setting where welfare is maximized while the firm makes (at least) a zero
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profit. Mathematically, we optimize over the following Lagrangian funciton:

L =
∑
i

pi[

∫ N i
0+N

i
1

0

Di(n)dn−N i
0c(N

i
0, K0)−N i

1c(N
i
1, K1)]− γ(K0 +K1)

+
∑
i

λi0[c(N
i
0, K0)−Di(N i

0 +N i
1)] +

∑
i

λi1[c(N
i
1, K1) + τ i1 −Di(N i

0 +N i
1)]

+ λzp[
∑
i

piτ i1N
i
1 − γK1] (16)

The FOCs are:

∂L

∂N i
0

= pi[Di(N i
0 +N i

1)− c(N i
0, K0)−N i

0cN i
0
(N i

0, K0)] + λi0[cN i
0
(N i

0, K0)−Di
N i

0
(N i

0 +N i
1)]

− λi1Di
N i

0
(N i

0 +N i
1) = 0

∂L

∂N i
1

= pi[Di(N i
0 +N i

1)− c(N i
1, K1)−N i

1cN i
1
(N i

1, K1)]− λi0Di
N i

1
(N i

0 +N i
1)

+ λi1[cN i
1
(N i

1, K1)−Di
N i

1
(N i

0 +N i
1)] + λzppiτ i1 = 0

∂L

∂τ i1
= λi1 + λzppiN i

1 = 0

∂L

∂K1

=
∑
i

pi(−N i
1cK1(N

i
1, K1))− γ +

∑
i

λi1cK1(N
i
1, K1)− λzpγ = 0

∂L

∂λi0
= c(N i

0, K0)−Di(N i
0 +N i

1) = 0

∂L

∂λi1
= c(N i

1, K1) + τ i1 −Di(N i
0 +N i

1) = 0

∂L

∂λzp
=

∑
i

piτ i1N
i
1 − γK1 = 0 (17)
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The Lagrangian multiplier for the zero profit condition is simplified to:

λzp =

τ i1 −N i
1cN i

1
(.)−N i

0cN i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)

−τ i1 −N i
1(D

i
N i

1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(18)

λzp again shows how much expected social welfare changes when we allow

a small expected deficit on the tolled road. The numerator is the derivative

of the social welfare in state i with respect to N i
1, taking into account of the

induced changes in N i
0
2. It equals the sum of the height of the Harberger

triangle of both links, where that of untold link is weighted to reflect the

substitution between equilibrium use of the two links. The denominator is

the derivative of the deficit in state i with respect to N i
1, taking into account

of the induced changes in N i
0. The deficit decreases directly, because we get

the toll payment from the new traveler on the tolled road. It also increases

indirectly, because we can collect less toll from every original traveler due

to the diversion of traffic to the untolled link 3. In sum, λzp measures how

much a change in the expected deficit leads to a change in the expected social

welfare in equilibrium and its value must be equal across states.

Using the expression for λzp together with the last four equations, we find

the solution for the equilibrium:

2If N i
1 increases by a small amount ∆, N i

0 will decrease by
Di

Ni
1
(.)

c
Ni

0
(.)−Di

Ni
0

(.)
∆, because on

the untolled road, user cost must equal inverse demand.
3The willingness to pay decreases with an increase in N i

1, and decreases with an induced
decrease in N i

0, while the congestion on the tolled link increases with an increase in N i
1,

so in total the toll decreases.
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λi0 = piN i
0

λi1 = −piN i
0

λzp =
N i

0

N i
1

Di(N i
0 +N i

1)− c(N i
0, K0) = 0

Di(N i
0 +N i

1)− c(N i
1, K1)− τ i1 = 0∑

i

pi(−N i
1cK1(N

i
1, K1)) = γ

τ i = N i
1cN i

1
(N i

1, K1)

(19)

The toll in each state equals the marginal external cost of congestion

of the tolled link, even for a general structure of demand uncertainty. If

the social planner allows an expected deficit on the tolled road, the positive

λzp shows that the expected social welfare will increase. This is because,

the Pigouvian toll on the tolled road does not account for the crowding out

effect on the untolled road. In addition, we can achieve an equivalent welfare

increase if we give every user on the tolled road a small subsidy4. Such effect

on welfare is larger when there are more travelers on the untolled road and

less travelers on the tolled road. In the extreme case of zero traffic flow on

the untolled road, the effect is zero because we already achieve the highest

social welfare by optimum tolling.

2.3.4 Auctions for Parallel Links

The second best zero profit case is the best result we can expect for private

supply of road in a mixed network, but private firms will not automatically

4To achieve the same increase in expected social welfare, the total subsidy must equal
the deficit, because λi1 = −λzppiN i

1.
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achieve it. This subsection again examines how the social planner can use

the patronage auction and the generalized price auction to regulate private

supply of roads. Both auctions can produce the same result as the second-

best zero-profit case for parallel links without demand uncertainty (Verhoef

2007), but as we have seen in the serial links, this is no longer true with

demand uncertainty.

Patronage Auction for Parallel Links For the patronage auction, a firm

maximizes the expected traffic flow on its link. Due to competitive bidding,

the firm earns zero profit. The Lagrangian and FOCs for the problem are:

L =
∑
i

piN i
1 +

∑
i

λi0[c(N
i
0, K0)−Di(N i

0 +N i
1)] +

∑
i

λi1[c(N
i
1, K1) + τ i1 −Di(N i

0 +N i
1)]

+ λzp[
∑
i

piτ i1N
i
1 − γK1]

∂L

∂N i
0

= λi0[cN i
0
(N i

0, K0)−Di
N i(N i

0 +N i
1)]− λi1Di

N i(N i
0 +N i

1) = 0

∂L

∂N i
1

= pi − λi0Di
N i(N i

0 +N i
1) + λi1[cN i

1
(N i

1, K1)−Di
N i(N i

0 +N i
1)] + λzppiτ i1 = 0

∂L

∂τ i1
= λi1 + λzppiN i

1 = 0

∂L

∂K1

=
∑
i

λi1cK1(N
i
1, K1)− λzpγ = 0

∂L

∂λi0
= c(N i

0, K0)−Di(N i
0 +N i

1) = 0

∂L

∂λi1
= c(N i

1, K1) + τ i1 −Di(N i
0 +N i

1) = 0

∂L

∂λzp
=

∑
i

piτ i1N
i
1 − γK1 = 0 (20)

The last four sets of equations, which specify the investment rule, the

Wardropian user equilibrium conditions for the untolled and tolled roads and
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the zero profit constraint, are the same as those of the second best zero profit

case. However, unlike the case without uncertainty Wu et al. (2011), those

four sets of equations cannot determine a unique solution, because demand

uncertainty offers more choice variables now. To find the solution, we need

to substitute out the three Lagrangian multipliers from the first three sets of

equations. λzp for any state i can be expressed as follows:

λzp =
1

−τ i1 −N i
1(D

i
N i

1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(21)

λzp shows how much the expected traffic volume changes if there is a small

expected deficit, as in (9) for serial links. The numerator is the derivative

of the traffic volume on the tolled road in state i with respect to itself, thus

its value is 1. The denominator is the derivative of the deficit with respect

to the traffic volume on the tolled road, which is of course the same as the

denominator in (7).

Contrary to the case without demand uncertainty, the resulting toll can-

not be equal to the marginal external congestion cost of the tolled road. If

it was so, λzp would be different for state i from state j. For example, for a

linear inverse demand function and a BPR congestion cost function, we can

show that if di0 > dj0, we have 1

N i
1d

c
Ni
0
(.)

c
Ni
0
(.)+d

< 1

Nj
1d

c
N

j
0

(.)

c
N

j
0

(.)+d

.

Generalized Price Auction for Parallel Links For the generalized price

auction, a firm minimizes the expected generalized price, such that the tolled

road beaks even. The Lagrangian for the problem is:

22



L =
∑
i

piDi(N i
0 +N i

1) + λzp(
∑
i

piτ i1N
i
1 − γK1)

+
∑
i

λi0(c(N
i
0, K0)−Di(N i

0 +N i
1)) +

∑
i

λi1(c(N
i
1, K1) + τ i1 −Di(N i

0 +N i
1))

(22)

The FOCs are:

∂L

∂N i
0

= piDi
N i

0
(N i

0 +N i
1) + λi0(cN i

0
(N i

0, K0)−Di
N i

0
(N i

0 +N i
1))− λi1Di

N i
0
(N i

0 +N i
1) = 0

∂L

∂N i
1

= piDi
N i

1
(N i

0 +N i
1)− λi0Di

N i
1
(N i

0 +N i
1) + λi1(cN i

1
(N i

1, K1)−Di
N i

1
(N i

0 +N i
1)) + λzppiτ i1 = 0

∂L

∂τ i1
= λi1 + λzppiN i

1 = 0

∂L

∂K1

=
∑
i

λi1cK1(N
i
1, K1)− λzpγ = 0

∂L

∂λi0
= c(N i

0, K0)−Di(N i
0 +N i

1) = 0

∂L

∂λi1
= c(N i

1, K1) + τ i1 −Di(N i
0 +N i

1) = 0

∂L

∂λzp
=

∑
i

piτ i1N
i
1 − γK1 = 0 (23)

After substitution, λzp is as follows:

λzp =

Di
N i

1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)

−τ i1 −N i
1(D

i
N i

1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(24)
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λzp now shows how much the expected generalized price changes if there

is a small expected deficit, as in (10) for serial links. The numerator is the

derivative of the generalized price in state i with respect to the traffic volume

on the tolled road, taking into consideration the induced traffic volume on

the untolled link. The denominator is the derivative of the deficit in state i

with respect to the traffic volume on the tolled road, which is the same in

the second best zero profit case.

The tolls again cannot be Pigouvian in the generalized price auction,

because then λzp would be different across states. For a linear demand and

a BPR congestion functions, if di0 > dj0, we can show that −1
N i

1
> −1

Nj
1

.

In sum, the patronage auction and the generalized price auction cannot

replicate the result of the second best zero profit case, even for a linear de-

mand function. To see it from the perspective of the FOCs, the conditions

for λzp are not equivalent among the three cases, because many combinations

of tolls and capacity can satisfy the last four sets of equations. Which combi-

nation is optimal depends on the first three sets of equations. To see it from

the perspective of the optimization target, the traffic volume that maximizes

the expected patronage on the tolled road does not minimize the expected

generalized price.

3 Numerical Analysis

The analytical results show that the impact of demand uncertainty on the

efficiency of the network is different for parallel and serial links. For a more

general network, as well as comparative statistics, clear-cut analytical re-

sults are hard to obtain, so we rely on numerical simulations to gain some

insights. We are not only interested in how private roads perform in a given

mixed network, but also in how private provision of roads influence the net-

work development. So in the simulation we will model how competition and

regulation can influence the network formation under demand uncertainty.
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3.1 Setup

Similar to Verhoef (2008), we assume there are two serial segments a and

b in a network connecting one origin and one destination. The initial links

on the two segments, denoted as a0 and b0 respectively, are untolled, which

represent a free public road network. Private firms can add capacities on

each segment one at a time, and then charge tolls. For example, if the first

firm adds a link in section a, we denote the new link as a1. a1 is now parallel

to the existing link on section a, denoted by a0, and serial to the existing

link on section b, denoted by b0. In this way, we can model both parallel

and serial competition and the development of the network.

The timing of the game is as follows: since construction takes time, at the

beginning of each round, there is uncertainty about the future demand. Firms

compete to add a capacity to one section of the network without knowing

the realized demand. After the demand uncertainty is resolved, the firms

can no longer change their capacities, but they can decide on tolls to charge

on their own links. When setting capacities, firms are myopic in expecting

no more new entry. They only consider the resulted toll setting game in the

second stage. However, to their surprise, a new round begins and a new firm

may enter. There is again demand uncertainty and capacity setting of the

new firm in the first stage, and toll setting of all firms in the second stage.

The sequential game continues until there is no profit for a new entry.

Some assumptions are made for the simplicity of the simulation and to

avoid unsolvable dynamic games, but we think they are also reasonable. We

assume that within each round, firms are forward looking and rational, so

the capacity decision takes into account of the toll setting in the next stage.

But between rounds, firms are assumed myopic, in the sense that they take

every round as repeating itself forever, until they are surprised by new comers

who change the network structure. We make this assumption, thinking of

the slow and lump-sum development in infrastructure we usually observe in

reality. Because it usually takes considerate time to assess the expected cost
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and benefit and finally allow new developments in roads, a firm can focus

on competing with the existing firms for now and not worry too much about

possible new competitors in the future. But we admit it is a simplification.

Another assumption is the uncertain demand in each round. Firms can learn

to predict the demand over time, but in general, since the road service period

is long, it is hard to know about the demand far into the future. In addition,

the economy usually fluctuates between booms and busts during the long

service years of a road. We think the model is best suited for development in

road networks where capacity addition is slow in pace and once it’s added,

it remains there for a long time while prices are relatively easy to adjust

for demand changes. We could of course make other ad hoc assumptions on

how demand uncertainty would change between investment rounds, but this

would in fact complicate the interpretation of the results.

We compare and contrast two regimes, the unregulated free-entry regime

and the regulated entry-by-auction regime. In the free-entry regime, firm

compete freely. We assume the firm with the highest expected profit adds

a capacity on its desired section, because this firm is the most motivated to

lobby the government for it. After the capacity is built, the demand is known

and all firms in the network play a Bertrand price setting game, i.e. every

firm sets its own toll simultaneously while taking the tolls of the others as

given. In the entry-by-auction regime, the winner of an auction can add a

capacity. Due to the perfect competition in auctions, any firm that adds a

capacity earns zero profit in expectation. The auction can be on either the

expected patronage of the new road or the expected generalized price. To

be comparable to Verhoef 2008, when demand is known, all existing firms

charge tolls as promised in the auction, thus no direct toll competition in the

entry-by-auction regime.

The parameters of the numerical simulation is as follows. To be compara-

ble with Verhoef (2008), the inverse demand function is linear and Di(N i) =

δ0 − δ1N i. The demand uncertainty is about δ0, where δ0 = δh0 with prob-
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ability ph and δ0 = δl0 with probability 1 − ph. We set δ1 = 0.01167, δh0 =

74.11, δl0 = 49.41, ph = 0.5, which means compared with Verhoef 2008, the

highest willingness to pay can go up or down by 20% with equal probability.

According to Flyvbjerg et al. (2006), actual traffic deviates from the fore-

casted ones by more than 20% for half of roads projects. The congestion cost

function is of the familiar BPR form, i.e. c(N i
j , Kj) = αtf (1 + β(

N i
j

Kj
)x). The

parameter for the value of time, α, is set at 7.5. tf is the free-flow travel time

and is set at 0.25, implying a total trip length of 60 kilometers for a highway

with 120 kilometer/hour speed. β and x take their conventional values of

0.15 and 4 respectively. The marginal capacity cost is set at 3.5 for both

segments, which represents the hourly capital cost. We assume the initial

capacities are Ka0 = Kb0 = 1500.

3.2 Benchmark

As a benchmark, Table 1 summarizes the characteristics of the base equilib-

rium, the first best case, the second best case and the second best zero profit

case. The expected social welfare, efficiency, expected profits, capacity, tolls,

generalized prices and traffic volumes are denoted by S, ω, π,K, τ, P and N

respectively. The superscript h(l) denotes the high(low) demand state. And

the subscript a(b) is for section a(b), while 0(1) is for the initial (newly-

added) link. E is for expectation. The results are consistent with the theory

in the previous section.

The base equilibrium with the two untolled links is quite congested as

its expected social welfare, i.e. E(S) = 60189, is only half of the first-best

case’s. Since no toll is charged, the government expects a loss of 5250 on the

two initial links. In both states, congestion cost is much higher than that

of the first best case in both low and high demand states. There is a large

room for improvement from the base equilibrium.

In the first best case, where the capacities and tolls on the two initial

segments are set by a social planner to maximize the social welfare, the
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capacity more than doubles from the base case and the congestion costs in

both states decrease. The expected profit is zero, because the profit in the

high state and the loss in the low state cancel out. Therefore, first-best

pricing and capacity setting is self-financing in expected terms, as in Lindsey

and de Palma (2014). Compared with the deterministic case discussed in

Verhoef (2008), the first-best capacity is larger under uncertainty, because of

the convexity of the congestion cost function, as we also explained above.

The second-best case, where the initial segments are not toll but the

capacity and tolls on the two new segments are set to maximize the expected

social welfare, can achieve 97.1% of the increase in the expected social welfare

from the base equilibrium to the first-best case. However, this generates a

considerable loss for the newly-added link in either realized demand state,

because the capacity expansion is too large, and the toll revenues cannot

cover the capacity cost.

As a benchmark for private supply of roads, we consider the second-

best zero-profit case, where the tolls must cover the capacity cost of the

new segments in expectation. As predicted by the theoretical result for the

parallel links, the second-best zero-profit case have the same toll, total traffic

flow and generalized price, as in the first best case, in both demand states.

It can achieve 80.4% of the increase in social welfare. The expected profit of

the tolled link is zero, because the profit in the good state is the same as the

loss in the bad state.

3.3 Entry Game

Free Entry In the free entry regime, the firm with the highest expected

profit sets a capacity on a segment of his choice. Then demand uncertainty

is resolved and firms sets tolls simultaneously by Bertrand competition. We

allow both old and new firms to add capacity, so the double marginalization

problem is mitigated, in the sense that one may expect competition between

firms on parallel segments to drive down tolls.
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The result of the free entry regime is shown in Table 2. We assume with-

out loss of generality that capacity is first added on section a. In equilibrium,

the firm that has added capacity on section a will, in the next round, add

capacity on section b. Then a new firm adds capacity on section a, then

section b, and so on. This pattern emerges because (1) the same firm can

better coordinate the tolls on both sections; (2) when the capacity on one

section is expanded, it is more profitable to add capacity on the complemen-

tary section. In addition, the capacity addition in section b is always larger

than that in section a in the previous round because of increased demand.

A new firm always adds capacity in section a in the next round because if

an old firm does so, it will end up competing with its own capacities in sec-

tion a. After eights rounds of capacity building, the total capacity on both

section are above that of the first-best case in the numerical example, which

means competition will cause over investment in capacity in the end. The

expected profit of the entrant decreases as more firms join the network, and

so does the expected profit of the incumbent firms. The generalized price in

each state falls over time due to increased competition, but it remains higher

than the second-best zero-profit case’s level owing to the market power of the

firms. The expected social welfare is 98433 after eight rounds, which means

that ω = 0.71, where ω gives the improvement in social welfare from the

base equilibrium to the first best case. The qualitative patterns match those

described in Verhoef(2008) for deterministic demand.

Entry by Patronage Auction In the entry by patronage auction regime,

the firm which offers the highest expected traffic flow on the new link is

allowed to add the link. Every time a new firm enters, it makes zero expected

profit due to the competitive nature of the auction. Afterwards, it keeps the

toll scheme (conditional on the realized demand) unchanged. It may not

collect enough tolls to cover the capacity cost if later too many firms enter

with low tolls.
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The key characteristics of the resulting equilibrium are shown in Table 3.

After four rounds already, the expected social welfare is higher than that after

eight rounds in the free entry regime. Capacity addition is rapid initially,

and after five rounds the capacity addition is negligible, which means a stable

network is formed. ω = 0.79, which is much higher than that of the free entry

regime and close to that of the second-best zero-profit case (0.80). Judging

from these criteria, the entry by patronage auction performs well.

Entry by Generalized-Price Auction In the entry by generalized-price

auction regime, the firm which offers the lowest expected generalized price

can add the link. Afterwards it keeps the toll scheme (conditional on the

realized demand) unchanged. As shown in Table 4, the characteristics of the

equilibrium are similar to those in the entry by patronage auction regime.

The expected social welfare is even higher and ω = 80%. Both auctions are

quick to achieve a good result, thus an improvement on the free entry regime.

Entry by Social Welfare Auction Finally, we can create a benchmark by

considering an entry by social welfare auction, where the firm that generates

the highest expected social welfare is allowed add the capacity. The result

will be as in Table 5. We shall not confuse it with the second-best zero-

profit case in the benchmark, where the capacities on both sections a and

b are selected at the same time, whereas here capacity is added one link at

a time. For this auction, ω = 80%. Compared with the patronage and the

generalized-price auctions, this auction has a lower(higher) generalized price,

and a higher(lower) traffic volume in the high(low) demand state. This is in

line with the theoretical analysis for the parallel networks, where the tolls in

the other two auctions are adjusted upward from the Pigouvian toll in the

high-demand state.

In sum, the simulation suggests that the two regulated auctions perform

better than the unregulated free entry.
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3.4 Sensitivity Analysis

The numerical simulation seems to suggest that entry by either auction per-

forms better than free entry. In addition, entry by the generalized price

auction seems to generate higher efficiency than the patronage auction when

demand is uncertain. In this section we test the sensitivity of such results

with respect to the degree of uncertainty and the price elasticity of demand.

In the numerical simulation, the inverse demand function is represented

by Di(N i) = δi0 − δ1N
i and the degree of uncertainty is represented by a,

where δh0 = (1 + a)δ0 for the high demand state and δl0 = (1 − a)δ0 for the

low demand state. a = 0 means demand is completely certain and as a

increases, demand becomes more uncertain. a = 0.2 is used in the numerical

simulation in the previous section. Figure 1 shows the relative efficiency of the

three regimes after five rounds of entry corresponding with different degrees

of demand uncertainty. For 0 ≤ a ≤ 0.35, the two auctions clearly perform

better than the free entry, because capacity addition is quicker with auctions.

The efficiencies of the two auctions are similar, which is consistent with the

case without demand uncertainty. As the degree of uncertainty increases,

the relative efficiency of all three regulatory regimes increases. The main

reason is that when the degree of uncertainty increases, the optimal capacity

in the first-best case increases, so the social welfare of the base equilibrium

decreases.

To study the robustness of the results with respect to demand elasticity,

we vary the demand elasticity by changing the intercept and slope of the

inverse demand function, but keep the base equilibrium unchanged. In other

words, we change the value of b, where the new intercept is δ̄i0 = δi0 + bδ1N
i

and the new slope is δ̄1 = (1+b)δ1. For the simulation in the previous section,

we set b = 0 and the resulting demand elasticity is 0.50. Figure 2 shows the

relative efficiency of the three regimes after five rounds of entry corresponding

with different demand elasticity. When b changes from −0.5 to 0.5, the

demand elasticity changes from −1.01 to −0.34. For the parameter range in
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Figure 1: Sensitivity Analysis: Degree of Uncertainty

Figure 2: Sensitivity Analysis: Demand Elasticity

the simulation, it seems that the two auctions generate similar social welfare,

with the generalized price auction performing only slightly better. They both

perform much better than free entry, due to quick capacity addition. As the

demand elasticity increases, due to larger capacity adjustment under the

first-best case and the auctions, the expected social welfare of the three cases

increases less significantly than that of the base equilibrium and the free-

entry case. As a result, the relative efficiency of the auctions decreases and

that of the free-entry case increases.
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4 Concluding Remarks

This paper investigates how demand uncertainty influences the efficiency of

private supply of road in a mixed network. The results allows us to compare

different benchmarks and evaluate the efficiency of regulation policies for

both simple networks and more complex ones.

For simple networks, such as two serial links and two parallel links, we

have clear analytical results for four difference cases, namely the first-best

regime, the second-best regime, the second-best zero-profit regime and the

regulation-by-auction regime. On the one hand, some results are similar to

previous studies. For example, in the first-best case, the toll is Pigouvian in

every state and the roads are self-financing in expected terms; the optimal

capacity is higher than that for a deterministic demand with the same ex-

pected value. In the second-best case, when there is an untolled substitute

(complement), the tolled road makes a loss (profit) in expectation. In the

second-best zero-profit case, the the toll for parallel links are Pigouvian. On

the other hand, we gain new insights into the complexity added by demand

uncertainty. For instance, in the second-best zero-profit case, the toll for se-

rial links are no longer Pigouvian. The patronage and the generalized price

auction can no longer implement the second-best zero-profit result because

the highest expected maximum social welfare implies neither the highest ex-

pected patronage nor the lowest expected generalized price under the zero

profit constraint.

For more complex networks, we resolve to simulation. We consider a net-

work with both parallel and serial links and study also the network formation.

When the firms with the highest expected profit can add capacity one link at

a time, the capacity addition to the network is slow and will generally lead

to over-investment, similar to van den Berg and Verhoef (2012). When we

control the process by the patronage or the generalized price auctions, the

expected social welfare increases much quicker and reaches a steady state

rather closely after only five rounds. The results appear robust to changes
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in the degree of uncertainty and demand elasticity.

In sum, demand uncertainty complicates the evaluation and regulation

of private supply of roads in mixed networks. For future research, we will

consider more general networks, dynamic games of capacity addition, user

heterogeneity and optimal auction design.
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Appendix I

Consider the simplest case with only one road. Let N,K, λ denote the flow,

the capacity and the unit capacity cost. The congestion cost and demand

functions are as follows:

c(N,K) = αtf (1 + β(
N

K
)x)

D(N) = δ0 − δ1N

The demand uncertainty concerns δ0, which can be δh0 with probability ph

and δl0 with probability 1−ph. A social planner commits to a capacity before

knowing the demand but can adjust tolls according the realized demand.

If the social planner chooses K units of capacity and the realized demand

parameter is δ0, then the optimal toll (denoted as τ) should solve the following
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maximization problem.

max
τ,N

W = δ0N −
δ1N

2

2
− c(N,K)N − λK

s.t.D(N) = c(N,K) + τ (25)

The FOCs for N is:

∂W

∂N
= δ0 − δ1N − αtf (1 + β(

N

K
)x(1 + x)) = 0

(26)

Solving the implicit function and the resulting flow and social welfare are

denoted as N∗(K, δ0) and W ∗(K, δ0) respectively.

To determine the optimal capacity, the social planner needs to con-

sider the marginal effect of the capacity on social welfare, as in ∂W ∗(K,δ0)
∂K

=

αtfβx(N∗(K, δ0)/K)1+x − λ. The marginal cost is simply λ. The realized

marginal benefit, depending on the demand state δ0, is αtfβx(N∗(K, δ0)/K)1+x.

The expected marginal benefit is then the probability weighted average of

the realized ones.

Note that for any chosen capacity K, the realized marginal benefit is

convex in δ0 for x > 0, as can be shown by the derivatives below:

∂N∗(K, δ0)
1+x

∂δ0
=

(1 + x)N∗1+x

δ1N∗ + αβtf (1 + x)x(N
∗

K
)x
> 0

∂2N∗(K, δ0)
1+x

∂δ20
=
N∗1+xx(1 + x)(δ1N

∗ + (1 + x)αtfβ(N
∗

K
)x)

(δ1N∗ + (1 + x)xαtfβ(N
∗

K
)x)3

> 0 (27)

The convexity implies that ph
∂W ∗(K,δh0 )

∂K
+(1−ph)∂W

∗(K,δl0)

∂K
>

∂W ∗(K,phδ
h
0+(1−ph)δl0)
∂K

.

In other words, for any chosen capacity, the expected marginal benefit is

higher with demand uncertainty. So the social planner should choose higher

capacity under demand uncertainty.
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Table 1: Benchmark Equilibria
Variables Base First-best Second-best Second-best zero-profit

Sh 76513 167573 166325 146383
Sl 43864 59908 58061 60099
E[S] 60189 113741 112193 103241
ω 0 1 0.971 0.804

πha0, π
h
b0 -5250 8685 -5250 -5250

πha1, π
h
b1 - - -7461 3340

πla0, π
l
b0 -5250 -8685 -5250 -5250

πla1, π
l
b1 - - -8625 -3340

E[πa0], E[πb0] -5250 0 -5250 -5250
E[πa1], E[πb1] - - -8043 0
Ka0, Kb0 1500 3644 1500 1500
Ka1, Kb1 - - 2479 1401
τha0, τ

h
b0 0 4.226 0 0

τha1, τ
h
b1 - - 0.350 4.226

τ la0, τ
l
b0 0 1.119 0 0

τ la1, τ
l
b1 - - 0.022 1.119

cha0, c
h
b0 14.230 2.931 3.313 7.157

cha1, c
h
b1 - - 2.963 2.931

cla0, c
l
b0 6.697 2.155 2.131 3.273

cla1, c
l
b1 - - 2.110 2.155

Dh = P h 28.459 14.315 6.626 14.315
Dl = P l 13.395 6.546 4.263 6.546
Nh
a0, N

h
b0 3862 5074 2256 3123

Nh
a1, N

h
b1 - - 3477 1951

Nh 3862 5074 5733 5074
N l
a0, N

l
b0 3052 3639 1466 2240

N l
a1, N

l
b1 - - 2369 1399

N l 3052 3639 3835 3639

38



Table 2: Free Entry
Round Ka Kb E(S) E(π) Dh = ph Dl = pl

0 1500 1500 60189 - - -
1 1862 1500 66436 1145 26.678 12.364
2 1862 1960 77972 1837 23.606 10.761
3 2176 1960 82920 721 22.043 9.953
4 2176 2283 88639 759 20.231 9.049
5 2426 2283 91887 380 19.073 8.511
6 2426 2518 94892 321 17.963 8.017
7 2607 2518 96824 172 17.194 7.689
8 2607 2677 98448 128 16.523 7.412

Table 3: Entry by Patronage Auction
Round Ka Kb E(S) Dh = ph Dl = pl

0 1500 1500 60189 - -
1 2275 1500 69744 25.315 11.311
2 2275 2764 96109 17.419 6.802
3 2886 2764 101567 15.501 6.006
4 2886 3154 102353 14.946 5.753
5 2930 3154 102503 14.870 5.725
6 2930 3159 102503 14.865 5.723
7 2930 3159 102503 14.864 5.723
8 2930 3159 102503 14.864 5.723

Table 4: Entry by Generalized Price Auction
Round Ka Kb E(S) Dh = ph Dl = pl

0 1500 1500 60189 - -
1 2277 1500 69818 25.223 11.382
2 2277 2767 96906 16.802 7.174
3 2888 2767 102517 14.793 6.447
4 2888 2916 103137 14.502 6.346
5 2907 2916 103203 14.468 6.335
6 2907 2918 103210 14.464 6.334
7 2908 2918 103211 14.464 6.333
8 2908 2918 103211 14.464 6.333
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Table 5: Entry by Auction: Social Welfare
Round Ka Kb E(S) Dh = ph Dl = pl

0 1500 1500 60189 - -
1 2278 1500 69827 25.186 11.424
2 2278 2771 96969 16.636 7.355
3 2889 2771 102603 14.595 6.667
4 2889 2902 103172 14.329 6.582
5 2906 2902 103229 14.299 6.582
6 2906 2904 103236 14.296 6.573
7 2906 2904 103236 14.296 6.572
8 2906 2904 103236 14.296 6.572
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