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Congestion pricing in urban polycentric networks with distorted labor markets:                    
a spatial general equilibrium model for the area Randstad. 

Ioannis Tikoudis 

Department of Spatial Economics, VU University Amsterdam,                                                                                                                  
De Boelelaan 1105, 1081HV Amsterdam                                                                                                                                     

and 

Tinbergen Institute, Gustav Mahlerplein 117, 1082MS Amsterdam,                                                                      
the Netherlands 

 
Abstract 

 
The paper presents a polycentric general equilibrium model with congestion externalities and 
distortionary labor taxation calibrated to fit the key empirical regularities of the regional economy and 
transport system of Randstad conglomeration. In line with more stylized models, marginal external cost 
pricing (i.e. a quasi first-best Pigouvian toll that ignores the pre-existing taxation in the labor market) is 
shown to generate considerable welfare losses. Surprisingly, the quasi first-best Pigouvian toll is welfare 
decreasing even when the road tax revenue is used to finance labor tax cuts. This is due to the large 
deviation of marginal external costs from the optimal toll levels, as the latter are found to be negative in 
many of the network links. Approximations of the key double-dividend effects show that, in those links, 
the tax interaction effect is strong enough to outweigh both the revenue-recycling and the Pigouvian 
effect.   
 
Keywords: applied general equilibrium, network, road pricing, commuting, polycentricity, environmental 
taxation, double-dividend 
 
JEL classification: D58, H21, H23, C63, R13, R40 

 
1. Introduction 
 
The taxation of externalities in road networks has received considerable attention in the literature of 
transport economics during the last decades. To a large extent, this is due to a series of second-best issues 
that arise from the use of pricing schemes that leave certain links, routes, or areas of the network untaxed. 
It has been shown in a variety of stylized settings that this partial taxation pushes the existing externality 
taxes below or above their Pigouvian levels (i.e. from marginal external costs). 1  Some earlier 
contributions in the first-best and second-best literature have derived rules for optimal road pricing in a 
generic static network. For instance, Verhoef (2002a; 2002b) offers a general analytical solution for the 
second-best problem where not all links of a congested network can be charged; an algorithm based on 

                                                           
1 Throughout the entire paper the term Pigouvian level of a tax refers to a tax level that is equal to the marginal 
external cost. 
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this analytical solution is then tested on a medium size network. Also, van Dender (2004) shows that 
constraints in network pricing can cause the optimal toll to deviate in a complex way from the marginal 
external cost of congestion.2  
 The above partial taxation is unintentional, in the sense that it is always suboptimal to a 
Pigouvian tax rule, but the regulator cannot impose the latter because of some exogenous hampering 
factor (e.g. political acceptability, implementation costs etc.). Because no other distortionary tax or 
subsidy is considered elsewhere in the economy (even in the transport system), as soon as the hampering 
factor is removed, optimal taxes return to their Pigouvian levels.    
 The recent advances in the double dividend theory have highlighted a second reason for which 
second-best settings may emerge.3 This regards the existence of at least one distortionary tax (or subsidy) 
somewhere in the economy, even inside the transport system (e.g. public transport subsidies). Like the 
case of partial taxation, the presence of the distortionary tax causes deviations of the optimal tolls from 
their Pigouvian levels. In fact, as in the partial taxation case (see for instance Verhoef et al., 1996) optimal 
externality taxes may turn out to be negative even when the entire network can be taxed. But the critical 
differentiator between the two streams is that the deviation of the externality tax from its Pigouvian level 
in the latter case may be welfare increasing, something that is not possible in the case of partial taxation. 
This is because the Pigouvian equilibrium in the presence of a distortionary tax is suboptimal (or quasi 
first-best) to begin with. Parry and Bento (2001) have highlighted the case of an optimal negative road tax 
for a single-link network with exogenous residential and working locations; this is to be juxtaposed 
against the quasi first-best Pigouvian toll which is welfare decreasing.  
 However, the use of a single-link network by Parry and Bento (2001) did not allow for a real 
merge of the two streams of literature. This merge has been recently explored by Tikoudis et al. (2015a), 
who show that in a serial monocentric network, the introduction of partial taxation in the form of a cordon 
toll can be welfare improving with a preexisting labor tax and the rest of determining factors set in 
accordance with the hypotheses made in Parry and Bento (2001).4 On the other hand, the quasi first-best 
Pigouvian toll is shown to generate significant welfare losses. The key mechanisms that generate the 
above result are i) that the (positively priced) cordon toll imposed in a certain distance from CBD is 
affecting only the subgroup of the population that provides labor relatively inelastically, and ii) that the 
elasticity of labor supply falls with distance from the CBD. 
 This paper investigates further the welfare effects of partial taxation incorporated in a double 
dividend setting for a polycentric, mixed network setting. In a such setting, the (general equilibrium) 
elasticity of labor supply is determined in a fairly complex way: it does not only depend on household 
location, but also on the location of the job, the chosen route and the transport mode. We are interested in 
testing the earlier finding by Tikoudis et al. (2015a) in its strong form, i.e. with lump-sum revenue 
recycling, and in its weak form, i.e. with road tax revenue used to finance labor tax cuts. 
 The paper has a clear geographical reference. The area of Randstad is a polycentric urban 
conglomeration in western Netherlands, which comprises the country's four largest cities (Amsterdam, 
Rotterdam, the Hague and Utrecht). The region is of considerable economic significance; while it covers 
only 20 percent of the country's land area, at least 40 percent of the population resides there, and half of 

                                                           
2 The above contributions assume that both the residence and job location, i.e. the OD pair of the commuter, is fixed.   
3 Goulder (1995) and Bovenberg (1999) provide excellent synopses of the existing literature in the field.  
4 In this case, the cordon toll is expressed as a series of consecutive links (extending from the edge of the serial 
network, i.e. the CBD to some given link) that remain untolled and a series of consecutive links that are subject to a 
uniform charge. 
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the national income is generated within its boundaries. Despite being a prosperous region, it has, for a 
series of years, experienced a lower productivity growth compared to other regions in the Netherlands and 
Europe.5 It is characterized by large commuting flows between zones and severe congestion during the 
peak hours. 
 The territorial review by OECD (2007) places heavy congestion and the incoherency of public 
transport system as the most important drivers of this sluggish growth. Regarding congestion, roughly 80 
percent of the traffic jams in the Netherlands in 2005 occurred in Randstad. The problem is deteriorated 
because the regional public transport is relatively fragmented, i.e. the coherence between the multiple 
operators and facilities is limited, resulting in a suboptimal use of the public transport system. Other 
identified factors include distortions originating from the labor and, especially, the housing market, where 
a series of land-use practices (e.g. density regulations) add burden to the social cost of public transport 
provision. Given this complex reality, the natural question arising is whether there are road pricing 
policies which can simultaneously address congestion and mitigate distortions elsewhere in the economy. 
 To study this in a coherent framework, this paper presents a stylized general equilibrium network 
model that is strongly related to previous work of Anas and Kim (1996) and Anas and Liu (2007) and 
more loosely to relevant CGE models (see for instance Böhringer and Rutherford, 2007).6 Anas and Liu 
(2007) introduced a polycentric model for the wider metropolitan area of Chicago, and a recent 
application of the model in order to evaluate the potential welfare effects of a cordon toll in the area 
(Anas and Hiramatsu, 2013).7 The interaction of transport with the markets of housing and labor is 
captured in a detailed way, since residence and job locations are endogenous. However, the distortions 
generated in the respective markets are not considered. Subsequently, the marginal social benefit of road 
use may be understated or overstated, depending on the relative conditions in these markets (taxes, 
subsidies, regulations).  
 Our model accounts explicitly for a double dividend setting, with a realistic tax rate on labor 
income. The calibration is designed to fit a series of stylized facts characterizing the behavior of the 
average household (expenditures shares, allocation of time, etc.) and the characteristics of Randstad 
region: the general spatial lay-out and network, the population and employment share of the population in 
each zone, the average commuting speed of modes, modal split, and the relative land rents, housing 
prices, wages and floor-to-area ratios.  
 We use the model to explore various pricing schemes (systems of uniform and differentiated 
cordon tolls around the major cities, as well as Pigouvian taxes in the entire network) accompanied by 
two distinct revenue recycling programs: i) lump-sum transfers and ii) labor tax cuts. In line with more 
stylized models, a Pigouvian road tax is shown to generate considerable welfare losses. These are less 
severe in the case of a system of cordon toll around the largest employment zones of the conglomeration. 
Surprisingly, Pigouvian tolls are also welfare decreasing even when the road tax revenue is used to 
finance labor tax cuts. By computing the optimal road tax by road link in this case, we find that the latter 
may not only lie far below its Pigouvian level, but it may also be negative in a large part of the network. 
We establish a clear connection of the above result with the double-dividend theory by approximating the 

                                                           
5 annually 1.7 % over the period 1995-2005. 
6 The model is able to capture the various distortions occurring simultaneously in the markets for transport, housing 
and labor in Randstad. In the years to come, the model will be further developed and used as a tool for the 
evaluation of drastic reforms in pricing (road pricing, parking), programs that grant fiscal autonomy to certain 
network operators (causing tax exporting behavior), and for the appraisal of investments in drastic commuting 
technologies (e.g. the automated highway). 
7 See also Rhee et al. (2014). 
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Pigouvian, tax-interaction and revenue recycling effect for each link. A system of multiple cordon tolls 
leaves most of these links untaxed and is found to produce significant welfare gains, provided that is 
accompanied by a small downward adjustment in the uniform labor tax rate. 
 The paper has the following structure: section 2 presents the behavior of the various agents and 
the mechanics of the general, stochastic user equilibrium. Section 3 discusses the solution algorithm 
employed to solve for it. Section 4 presents the data and the overview of the algorithm used in the 
calibration of the model. Section 5 provides the policy analysis and sensitivity checks. Section 6 
concludes.   
 
2. Model 
 
The model proposed in this section is a network-based, polycentric extension of the general equilibrium 
monocentric city models by Verhoef (2005), Tikoudis et al. (2015a; 2015b), and is in line with the 
preexisting contributions in the field (Anas and Kim, 1996; Anas and Xu, 1999; Anas and Liu, 2007; 
Anas and Hiramatsu, 2012).8 
 
2.1. Space, network representation and discrete choice 

Economic activity takes place in an ordered set of 𝐽 zones (each represented by a single node), 𝒥.9 
Let the ordered subsets 𝒥𝑅 and 𝒥𝑊 denote the locations that host residences and jobs respectively, with 
𝒥 = 𝒥𝑅 ⋃𝒥𝑊. Throughout the text, the subscript i is used to denote an arbitrary zone in the ordered set 
𝒥𝑅 that serves as a residential node, i.e. 𝑖 ∈ 𝒥𝑅. Similarly, the subscript j is used to denote an arbitrary 
zone in the ordered set 𝒥 that serves as an employment node, i.e. 𝑗 ∈ 𝒥𝑊. Every zone is characterized by 
mixed land-use, in this case 𝒥𝑅⋂𝒥𝑊 = 𝒥. Let the set 𝒞𝑂𝑂 = 𝒥𝑅 × 𝒥𝑊 denote the Cartesian product of 
sets 𝒥𝑅 and 𝒥𝑊, i.e. the set that contains all possible pairs of residential and employment locations. Each 
element a𝑖𝑖 ∈ 𝒞𝑂𝑂 is an origin-destination pair (hereafter, OD pair).  

Two arbitrary zones, 𝑠 and 𝑒, are neighboring if there is at least one transport link 𝑙𝑚
(𝑠𝑠) starting at 

𝑠 and ending at 𝑒,  where  the subscript 𝑚 denotes the type of transport network the link belongs to (e.g. 

road, rail, etc.). Links are directed, thus 𝑙𝑚
(𝑠𝑠) ≠ 𝑙𝑚

(𝑒𝑒). A route 𝑞 is defined as a sequence (i.e. an ordered 

list) of links such that, for each pair of consecutive links in the sequence, 𝑙𝑚
(𝑠𝑠) and 𝑙𝑚′

(𝑠′𝑒′), it holds that 

𝑒 = 𝑠′, although it can be that 𝑚 ≠ 𝑚′, i.e. paths can be multimodal. However, an arbitrary path cannot 

reach the same node twice, i.e. cyclical paths that contain at least two links, 𝑙𝑚
(𝑠𝑠) and 𝑙𝑚′

(𝑠′𝑒′), for which it 

holds that 𝑠 = 𝑠′ or  𝑠 = 𝑒′ or 𝑒 = 𝑠′ or 𝑒 = 𝑒′ are excluded.     
For each OD pair a𝑖𝑖 in 𝒞𝑂𝑂 there is a set of corresponding possible routes, which we denote by 

𝒬(a𝑖𝑖). It is straightforward that, if origin zone, 𝑖, and destination zone, 𝑗, are neighboring, then it holds 

that any 𝑙𝑚
(𝑖𝑖) ∈ 𝒬(a𝑖𝑖). An alternative, a, is a set that contains the OD pair a𝑖𝑖 and a route 𝑞 ∈ 𝒬(a𝑖𝑖), i.e. 

a = �a𝑖𝑖, 𝑞� = {𝑖, 𝑗, 𝑞}. The choice set, denoted by 𝒞, contains all possible alternatives.   

 

                                                           
8 The exposition in Section 2 draws, to some extent from the earlier contributions by Tikoudis et al. (2015a; 2015b). 
Literal citations from these sources are not marked as such for legibility; duplicating equations are provided in order 
to keep this paper self-contained. 
9 Therefore, we abstract from intra-zonal links. 
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2.2. Households 

 Households can locate in any zone   𝑖  and supply labor in any zone   𝑗 . For simplicity, we 

normalize the exogenous population, 𝑁, to one. For each feasible alternative, a = �a𝑖𝑖, 𝑞�, the household 

maximizes the quasi-linear utility function: 
  
 

𝑈a = 𝜋0 𝑦a + 𝜋1 �𝑠a𝛼 𝑇𝐹a
𝛽

���
𝑥a

�

𝛾

, (1) 

where  𝑦a corresponds to the general consumption of a composite good and 𝑥a to the consumption of a 
good composed by housing consumption, 𝑠a, and leisure, 𝑇𝐹a (hereafter, 𝑥a is referred to as the lifestyle 
choice). The marginal utility of income is constant and equal to 𝜋0. Given that the parameters of the 
Cobb-Douglas subutility function for the lifestyle choice are such that 𝛼 < 1, 𝛽 < 1 and 𝛼 + 𝛽 = 1, the 
marginal utility with respect to the residential space and leisure is diminishing for 𝛾 < 1. The total time 
endowment of the household, 𝑇, is spent on commuting from 𝑖 to 𝑗, 𝑇𝐶a, working, 𝑇𝐿a, and leisure, 𝑇𝐹a: 

 
                                                   𝑇 = 𝑇𝐶a +  𝑇𝐿a + 𝑇𝐹a. (2) 

Labor supply is inelastic throughout a working day, which is of fixed duration, 𝑡𝐿 ,  independent of 
working location. The household anticipates every trip to work to require 𝑡a  units of time. This 
anticipated commuting time equals the endogenously determined expected commuting time, 𝑡̂𝑞, in the 

stochastic user equilibrium (see below), where the subscript 𝑞  refers to the route associated with 

alternative a = �a𝑖𝑖, 𝑞�. For 𝐷Wa working days the time constraint becomes:  

 𝑇 = 𝐷Wa (𝑡𝐿 + 𝑡a) + 𝑇𝐹a . (3) 

Normalizing the duration of the working day, 𝑡𝐿, to 1, the above constraint becomes: 

  
 𝑇 = 𝐷Wa (1 + 𝑡a) + 𝑇𝐹a ⇔ 𝐷Wa =

𝑇 − 𝑇𝐹a
1 + 𝑡a

 . (4) 

The net wage per working day is defined as the difference between wage in zone 𝑗, 𝑤𝑗, the labor tax, 𝜏𝐿, 

and the expected pecuniary cost of commuting under the choice of alternative a, i.e. 𝑐a. The full income, 

𝑀a, of the household that has chosen alternative a = �a𝑖𝑖, 𝑞� is the maximum income that can be realized 

when leisure time is zero. That is:  

 
𝑀a = 𝐵 + 𝐵ℓ +

�𝑤𝑗(1 − 𝜏𝐿)  − 𝑐a�
1 + 𝑡a�������������

𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑡𝑡𝑡𝑡 𝑖𝑖 𝐚 

𝑇, (5) 

where 𝐵 denotes a lump-sum transfer from the government to the household and 𝐵ℓ is the income from 
land rents, which are returned to households lump-sum. Both 𝐵  and 𝐵ℓ  are exogenous (from the 

viewpoint of the household) and independent of any element composing the alternative a = �a𝑖𝑖, 𝑞�. We 

refer to this type of redistribution as horizontal revenue recycling. For simplicity, we assume that intra-
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zonal travel time and cost is zero, i.e. 𝑐a = 𝑡a = 0 if a = �a𝑖𝑖, 𝑞� = {𝑖, 𝑗, 𝑞} is such that 𝑖 = 𝑗. The full 

income can be used to buy back leisure at the shadow price of time, �𝑤𝑗(1 − 𝜏𝐿) − 𝑐a� (1 + 𝑡a)⁄ , 

(hereafter the value of time, denoted by 𝑣a) and for the consumption of the composite good and residential 
space. The budget constraint can then be written as: 

 𝐵 + 𝐵ℓ + 𝑣a𝑇 = 𝑣a𝑇𝐹a + 𝑝 𝑦a + 𝑝𝐻𝐻 𝑠a, (6) 

where 𝑝 is the (uniform in the entire region) price of the composite good (hereafter normalized to one) 
and 𝑝𝐻𝐻  the price of housing per unit of space at the zone indexed by 𝑖. By definition, both housing 
consumption and leisure are essential, thus 𝑠a > 0 and 𝑇𝐹a > 0. Furthermore, leisure is upper-bounded by 
the total time endowment, therefore 𝑇𝐹a < 𝑇(= 𝑇 if 𝐷𝑊a

∗ = 0), and consumption has to be non-negative, 
i.e.  𝑦a ≥ 0. To maximize (1) subject to (6) and the above non-negativity constraints we set up the 
Lagrangian: 
 
 ℒ = 𝜋0 𝑦a + 𝜋1 �𝑠a𝛼  𝑇𝐹a

𝛽 �
𝛾
− 𝜓[𝑣a𝑇𝐹a + 𝑝 𝑦a + 𝑝𝐻𝐻 𝑠a − (𝐵 + 𝐵ℓ + 𝑣a𝑇)] + 𝜗𝐶  𝑦a

+ 𝜗𝐹𝑈(𝑇 − 𝑇𝐹a), 
(7) 

and solve the system of the three first order conditions equations ℒ𝑦′ = 0, ℒ𝑠′ = 0, ℒ𝐹′ = 0 and the budget 

constraint in (6). For an interior optimum the corresponding four unknowns are  𝑦a , 𝑠a , 𝑇𝐹a  and the 

Lagrangian multiplier, 𝜓 , since the complementary slackness conditions require that 𝜗𝐶 = 𝜗𝐹𝑈 = 0. 10 
Solving the system yields the Marshallian demand functions for housing and leisure time respectively: 
 
 

𝑠a∗ = �
𝑝𝐻𝐻𝜋0
𝛼𝛾𝜋1

�
1

𝛾−1
 �
𝛼𝑣a
𝛽𝑝𝐻𝐻

�
𝛽𝛾
𝛾−1

, (8) 

 
𝑇𝐹a∗ = �

𝑝𝐻𝐻𝜋0
𝛼𝛾𝜋1

�
1

𝛾−1
 �
𝛼𝑣a
𝛽𝑝𝐻𝐻

�
𝛽𝛾
𝛾−1−1

 . (9) 

Inserting (9) into (4) yields the optimal labor supply for alternative a:  

 

𝐷𝑊a
∗ =

𝑇 − �𝑝𝐻𝐻𝜋0
𝛼𝛾𝜋1

�
1

𝛾−1  � 𝛼𝑣a
𝛽𝑝𝐻𝐻

�
𝛽𝛾
𝛾−1−1

1 + 𝑡a
 . 

(10) 

                                                           
10 Corner optima with zero consumption are found by setting 𝑦a = 0 and solving the same system for 𝜗𝐶, 𝑠a, 𝑇𝐹a and 
𝜓. Similarly, corner optima with zero labor supply are found by setting 𝑇𝐹a = 0 and solving the system for 𝑦a, 𝜗𝐹𝑈, 
𝑠a, and 𝜓. The requirements for an admissible solution are that the remaining endogenous variables lie in the interior 
and that the respective multiplier (𝜗𝐶 in the first case and 𝜗𝐹𝑈 in the second) is positive. Zero consumption is an 
artifact of the quasi-linear preference relation in (1). However, the chosen parameters rule out the possibility of a 
corner solution (in which at least one of the conditions 𝐷𝑊a

∗ = 0 and 𝑦a∗ = 0 holds) for any given alternative in the 
choice set. Later on we discuss the rationale behind the choice of a preference relation characterized by constant 
marginal utility of income.  
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Optimal consumption, 𝑦a∗, can be computed by inserting (8) and (9) into (6). Substituting 𝑦a∗, 𝑠a∗ and 𝑇𝐹a∗  
into the objective function and allowing an alternative-specific constant, za, yields the indirect utility of 
alternative a: 

 𝑉a∗ = 𝑉�𝑤𝑗,𝑝𝐻𝐻, 𝜏𝐿 , 𝑐a, 𝑡a,𝐵,𝐵ℓ� = za + 𝜋0𝑦a∗ + 𝜋1 �𝑠a∗𝛼  𝑇𝐹a
∗𝛽�

𝛾
. (11) 

The alternative-specific constant is the sum of: i) a residential-specific constant, z𝐼𝐼, that captures the 
average utility of locational characteristics (e.g. amenities, ambient pollution) not modeled specifically in 
zone 𝑖, ii) an employment-specific constant, z𝐽𝐽, that captures the average utility of non-pecuniary or time 

characteristics of the average job offered in zone 𝑗 (e.g. prospects for a better future job arrangement due 
to spatial concentration of jobs), iii) a mode-specific constant, z𝑀, (discussed below) and iv) a sum of 
link-specific constants, 𝑧𝑞, capturing the average utility of non-pecuniary or time characteristics of the 

links (e.g. the presence of a gas station or other facility) that form the route 𝑞 involved in alternative 

a = �a𝑖𝑖, 𝑞�. Therefore: 

 
 za = z𝐼𝐼 + z𝐽𝐽 + z𝑀 + � 𝑧𝑚

(𝑠𝑠)

𝑙𝑚
(𝑠𝑠)∈𝑞�������

𝑧𝑞

. 
(12) 

The mode-specific constant, z𝑀, captures the average (dis)utility of commuting stemming from factors 
that are not modelled explicitly: waiting times, changing from a private to a public mode and vice versa, 
in-vehicle-comfort, cruising time, etc. More specifically, it is assumed that: 
 
 z𝑀 = �𝐼(𝑞,𝑚) ∙ z𝑚

𝑚

+ 𝐼𝑡(𝑞) ∙ z𝑡, (13) 

where the indicator function 𝐼(𝑞,𝑚) equals one if route 𝑞 makes use of mode 𝑚 (zero otherwise), the 
indicator function 𝐼𝑡(𝑞) equals one if route 𝑞 involves a transit from a private to a public mode (or vice 
versa, otherwise zero), z𝑚  is the average disutility inflicted to the individual by the use of mode 𝑚 

(compared to those that do not have to commute, i.e. individuals which choose an a = �a𝑖𝑖, 𝑞�  such that 

𝑖 = 𝑗), and z𝑡  the average disutility of a mode change. Finally, a stochastic term, 𝜀a , which is i.i.d. 
extreme value type I across alternatives in 𝒞, is added to (11) in order to capture the rest of the factors that 

are omitted in the model and may determine the choice of a = �a𝑖𝑖, 𝑞�. Total utility is, thus: 

 
 𝑈a∗ = z𝐼𝐼 + z𝐽𝐽 + �𝐼(𝑞,𝑚)z𝑚

𝑚

+ 𝐼𝑡(𝑞)z𝑡   + � 𝑧𝑚
(𝑠𝑠)

𝑙𝑚
(𝑠𝑠)∈𝑞

+ 𝜋0𝑦a∗ + 𝜋1 �𝑠a∗𝛼  𝑇𝐹a
∗𝛽�

𝛾

�������������������������������������������������
𝑉a∗

+ 𝜀a. 

(14) 

Due to the inclusion of alternative specific constants, the error term has a mean equal to zero by 

construction and standard deviation equal to 𝜆�𝜋 √6⁄ �, where 𝜆 is the scale parameter of the distribution. 

Because exogenous income, 𝐵 + 𝐵ℓ, does not appear in (8) or (9) it is straightforward that the marginal 
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(systematic) utility of income is constant and equal to 𝜋0.11 Because the error component 𝜀a is additive to 
the systematic utility and follows a Generalized Extreme Value distribution, the expectation of the 
maximum utility (hereafter, 𝐸𝐸𝐸𝐸) that can be derived when facing the choice set 𝒞 is the well-known 
logsum expression: 
 
 

𝐸𝐸𝐸𝐸 = 𝜆 �ℇ + 𝑙𝑙𝑙 ��
𝑒𝑒𝑒(𝑉a∗)

𝜆 �
a∈𝒞

�, (15) 

 
where ℇ ≈ 0.5772 is the Euler constant. The resulting logit choice probability for each alternative a in the 
choice set 𝒞 is:  
 

𝑃a =
(𝑒𝑒𝑒(𝑉a∗) 𝜆⁄ )

∑ {𝑒𝑒𝑒(𝑉a∗) 𝜆⁄ }a∈𝒞
. (16) 

2.3 Firms 

A competitive, representative firm is located in each zone 𝑗 ϵ 𝒥 and produces a zone-specific intermediate 
output, 𝑄𝑗, under constant returns to scale, using capital (𝐾), and labor (𝐿): 

 
 𝑄𝑗𝑆 = 𝐴𝑗 𝐾𝛿𝐿1−𝛿 ,  (17) 

where 𝐴𝑗 denotes the zone-specific total factor productivity. The zero profit condition, implies that the 

price of the good produced in zone 𝑗, 𝑝𝑗, is equal to the unit cost:  

 

𝑝𝑗 =
1
𝐴𝑗
�(

𝛿
1− 𝛿

)1−𝛿 + (
1 − 𝛿
𝛿

)𝛿������������������
Φ

  𝑅𝛿𝑤𝑗1−𝛿 ,   (18) 

where 𝑤𝑗  is the local equilibrium wage, and 𝑅 the exogenous price of capital. The conditional factor 

demands for labor, capital and land can be computed using the Shephard’s lemma, i.e. by differentiating 
(18) with respect to the corresponding price of the input and multiplying with the level of output, 𝑄𝑗. 
Thus, labor demand is:  
 𝐿𝑗𝐷 =

1
𝐴𝑗
Φ(1 − δ) 𝑅𝛿𝑤𝑗−𝛿𝑄𝑗𝑆,   (19) 

and capital demand is: 

 𝐾𝑗
𝐷𝑓 =

1
𝐴𝑗
Φδ 𝑅𝛿−1𝑤𝑗1−𝛿𝑄𝑗𝑆.   (20) 

An assembly industry combines the 𝐽 distinct intermediate goods (which are bought from the local firms, 
each at price 𝑝𝑗) to produce the composite good demanded by the consumers (see section 2.1) and by the 

rest of the world. The amount of the composite good produced is given by the Cobb-Douglas production 
function: 

                                                           
11 Solving (6) for  𝑦a, replacing 𝑠a and 𝑇𝐹a by their optimal values in (8) and (9) respectively, plugging the resulting 
𝑦a∗ in (14) and differentiating 𝑉a∗ with respect to 𝐵 gives 𝜋0. 
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 𝑌 = �𝑄𝑗
𝜁𝑗

𝑗 ϵ 𝒥

,   (21) 

where 𝜁𝑗 is the share of intermediate good produced in zone 𝑗 in the total cost of 𝑌, and ∑ 𝜁𝑗𝑗 ϵ 𝒥 = 1. The 

associated minimum cost function is: 

 
 

𝑐(𝑌) = 𝑌��𝑝𝑗
𝜁𝑗

𝑗 ϵ 𝒥

���𝜔𝑗
𝑗 ϵ 𝒥

�
�������������

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐

,   (22) 

where the auxiliary parameter 𝜔 is: 

 

𝜔𝑗 =
𝜁𝑗
�∑ 𝜁𝑘𝑘≠𝑗 �

∏ 𝜁𝑘𝜁𝑘𝑘≠𝑗
.   (23) 

The conditional factor demand for each intermediate can be derived using Shephard’s lemma. This is: 

 
𝑄𝑗𝐷 =

𝜕𝜕(𝑌)
𝜕𝑝𝑗

= 𝜁𝑗 𝑌 𝑝𝑗
𝜁𝑗−1 ��𝑝𝑘

𝜁𝑘

𝑘≠𝑗

���𝜔𝑗
𝑗 ϵ 𝒥

�.   (24) 

Note that neither capital nor labor is used in the combining process.    

 

2.4 Developers 

A competitive, representative developer produces homogenous residential space, 𝑠, using capital (𝐾) and 
land (𝑋). We assume a Cobb-Douglas production function:  
 
 𝑠𝑖𝑆 = 𝐾𝜃𝑋1−𝜃.  (25) 

Just like the ordinary firms, the firms in the construction sector make zero profits in equilibrium. This 
implies the following housing price per unit of floor space:  
 
 𝑝𝐻𝐻 = �(

𝜃
1− 𝜃

)1−𝜃 + (
1 − 𝜃
𝜃

)𝜃������������������
Φ�

 𝑅𝜃𝑝𝐿𝐿1−𝜃 .   (26) 

Again, Shephard’s lemma can be used to derive the conditional factor demands for capital: 

 
𝐾𝑖
𝐷𝑑 = Φ�𝜃 𝑅𝜃−1𝑝𝐿𝐿1−𝜃𝑠𝑖𝑆,   (27) 

and land: 

 
𝑋𝑖𝐷 = Φ�(1 − 𝜃)𝑅𝜃𝑝𝐿𝐿−𝜃𝑠𝑖𝑆,   (28) 
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where the supply of land in each zone is exogenous and equal to 𝑋�𝑖. 

 

2.5 Transport  

The volume delay function is assumed to be linear in road links. That is, the time required to move from 

node 𝑠 to node 𝑒, using a private mode, i.e. the road (𝑅) link 𝑙𝑅
(𝑠𝑠) that connects them, is: 

 
𝑡𝑅𝑠𝑠 = ℓ𝑅𝑠𝑠(𝜉0𝑅𝑠𝑠 + 𝜉1𝑅𝑠𝑠𝑑𝑅𝑠𝑠),   (29) 

where ℓ𝑅𝑠𝑠 and 𝑑𝑅𝑠𝑠 are the length and demand (see below) of link 𝑙𝑅
(𝑠𝑠) respectively, 𝜉0𝑅𝑠𝑠  is the free-flow 

travel time per unit of distance (i.e. the inverse of the free-flow speed) and 𝜉1𝑅𝑠𝑠  is the marginal delay 
caused by an additional unit of (traffic) demand in the link. Public transport (𝑃) links are not subject to 
congestion, but free flow travel time is longer:12  

 
𝑡𝑃𝑠𝑠 = ℓ𝑃𝑠𝑠𝜉0𝑃𝑠𝑠 .   (30) 

We now turn to network loading. Total demand for road link 𝑙𝑅
(𝑠𝑠) is: 

 

𝑑𝑅𝑠𝑠 = 𝑁��𝐼 �𝑙𝑅
(𝑠𝑠)|𝑞�𝑃a𝐷𝑊a

∗ �
a∈𝒞

,   (31) 

where the indicator function 𝐼 �𝑙𝑅
(𝑠𝑠)|𝑞� equals one if the route 𝑞 of alternative a = �a𝑖𝑖, 𝑞� contains link 

𝑙𝑅
(𝑠𝑠) (zero if not or if a does not imply any commuting). The aggregation of (29) across all links of a 

feasible route 𝑞  yields the resulting route-specific (as opposed to the anticipated travel time 𝑡a  by 
households) travel time: 

 

𝑡̂𝑞 = � 𝑡𝑚𝑠𝑠

(ℓ𝑅
𝑠𝑠,ℓ𝑃

𝑠𝑠)∈𝑞

   with 𝑚 = (𝑅,𝑃). (32) 

Adding up the lengths of the road links involved in route 𝑞 yields the total distance generated by car in 
this route: 

 

𝐿𝑅𝑅 = � ℓ𝑅𝑠𝑠

ℓ𝑅
𝑠𝑠∈𝑞

. (33) 

Similarly, the distance covered by the public transport mode in the arbitrary route 𝑞 is: 

                                                           
12 Therefore, for two links connecting an identical pair of nodes, it is generally assumed that  𝜉0𝑅

𝑠𝑠 < 𝜉0𝑃
𝑠𝑠 . 
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𝐿𝑃𝑃 = � ℓ𝑃𝑠𝑠

ℓ𝑃
𝑠𝑠∈𝑞

. (34) 

The pecuniary cost of route 𝑞 is: 

 

𝑐̂𝑞 = �𝑝𝑔𝐿𝑅𝑅�+ �𝑝𝑃𝐿𝑃𝑃��������������
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ � 𝜏𝑅𝑠𝑠

ℓ𝑅
𝑠𝑠∈𝑞�����

𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡

, (35) 

where 𝑝𝑔 and 𝑝𝑃 is the monetary cost per unit of distance when commuting by car and public transport 

respectively, and 𝜏𝑅𝑠𝑠 is the road toll imposed to the commuter that uses the road link 𝑙𝑅
(𝑠𝑠).13 Both prices, 

𝑝𝑔 and 𝑝𝑃, are equal to their marginal costs, denoted by 𝑝̂𝑔 and 𝑝̂𝑃 respectively. Weighting commuting 

expenditure in (35) across alternatives yields the total transport expenditure of households in the 
economy, i.e.: 

 𝐸𝑇 = 𝑁 ∙ ��𝑃a𝐷𝑊a
∗ ��𝑝𝑔𝐿𝑅𝑅�+ �𝑝𝑃𝐿𝑃𝑃���

a∈𝒞���������������������
𝑡𝑡𝑡𝑡𝑡 ℎ𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, 
(36) 

where 𝑞 refers to the commuting route of alternative a = �a𝑖𝑖, 𝑞�. The total cost of transport provision is 

assumed to be: 

 𝐶𝑇 = 𝐹 +𝑁 ∙��𝑃a𝐷𝑊a
∗ ��𝑝̂𝑔𝐿𝑅𝑅� + �𝑝̂𝑃𝐿𝑃𝑃���

a∈𝒞���������������������
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐 𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜

, 
(37) 

where 𝐹 is the fixed cost of public transport provision. From (36) and (37) it can be seen that the transport 
provision deficit is:  
 

𝐷𝑇 = 𝐹 + 𝑁 ∙��𝑃a𝐷𝑊a
∗ (𝑝̂𝑃 − 𝑝𝑃)𝐿𝑃𝑃�

a∈𝒞���������������������
𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑁 ∙��𝑃a𝐷𝑊a
∗ (𝑝̂𝑔 − 𝑝𝑔)𝐿𝑃𝑃�

a∈𝒞�������������������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. (38) 

 

2.6 Government and public budget  

The federal government functions as a benevolent planning authority who controls the tax instruments 𝜏𝐿 
and 𝜏𝑅𝑠𝑠, and the redistribution instruments 𝐵 and 𝐵ℓ  in order to maximize the expected maximum utility 
in (15). It must be stressed that welfare analysis based on the maximization of (15) might be invalid if the 
marginal utility of income is not constant, i.e. if (1) is replaced by a utility function in which income 
effects are switched on. In such a case, it has been shown by Anas (2012) that, despite expected 
maximum utility still coincides with the logsum expression, the maximization of (15) subject to the 
equilibrium conditions (as described in sections 2.1-2.5) cannot be achieved without alternative-specific 

                                                           
13 Thus, equation (35) gives the monetary cost of all alternatives a = {𝑖, 𝑗, 𝑞} that make use of route 𝑞. 
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redistribution instruments that aim to equalize the marginal utility of income across alternatives. 
Consequently, with horizontal revenue recycling, optimal externality-correcting taxes (in the context of 
this model 𝜏𝑅𝑠𝑠) deviate from their Pigouvian levels (see equation (56) below) even in the absence of any 
other failure in the model.14 Furthermore, welfare analysis through the computation of compensating 
variations from a policy change (e.g. a tax reform) might prove a cumbersome task (see Herriges and 
Kling, 1999; Dagsvik and Karlström, 2005 for a complete discussion of the issue). 
 The government is responsible for the recycling of the expected revenue from road tolls and 
public transport fares, by controlling the public transport. Inserting (9) into (4) and weighting across the 
alternatives of the choice set 𝒞 yields the expected total labor supply. The expected government revenue 
from the labor tax is, therefore:  

 𝑅𝐿 = 𝜏𝐿 ∙ 𝑁 ∙��𝑃a𝐷𝑊a
∗ 𝑤𝑗�

a∈𝒞�����������
𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐿𝐿)

. 
(39) 

The total revenue from road taxes is: 

 
𝑅𝑅 = 𝑁��𝑃a � � 𝜏𝑅𝑠𝑠

ℓ𝑅
𝑠𝑠∈𝑞

�𝐷𝑊a
∗  �

a∈𝒞

. (40) 

The total (equilibrium) revenue from the 𝐽 land markets is:15  

 

𝐵ℓ = �𝑝𝐿𝐿 𝑋𝑖𝐷

𝑖∈𝒥

. (41) 

Public budget is balanced, therefore: 

 𝐵 =
1
𝑁

(𝑅𝐿 + 𝑅𝑅 − 𝐷𝑇). (42) 

 

2.5 General, stochastic user equilibrium 

In equilibrium, labor, housing, land markets at each zone clear, together with the output market. For each 
of the 𝐽 labor markets, the clearing condition is: 
 
 𝑁�{𝐼(𝑗|a) 𝑃a 𝐷𝑊a

∗ }
a∈𝒞�������������

𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 𝑧𝑧𝑧𝑧 𝑗

− 𝐿𝑗𝐷 = 0, 
(43) 

                                                           
14 This finding by Anas (2012) has been confirmed using alternative specifications of the model in which income 
effects were on. 
15 Unlike monocentric city models, in which the opportunity cost of land is determined by the return to agriculture,  
in polycentric general equilibrium models there is generally no land-use alternative to development; thus all land is 
characterized by zero opportunity cost and is being developed in the equilibrium. 
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where 𝐼(𝑗|a) is an indicator function that takes the value one if the employment zone of alternative a is 

zone 𝑗  (zero otherwise), and 𝐿𝑗𝐷  is the labor demand from (19). Similarly, for each of the 𝐽  housing 

markets, the clearing condition is:  
 
 𝑁�{𝐼(𝑖|a) 𝑃a𝑠a∗}

a∈𝒞�����������
ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 𝑧𝑧𝑧𝑧 𝑖

− 𝐻𝑖𝑆 = 0 , 
(44) 

where 𝐼(𝑖|a) is an indicator function that takes the value one if the residential zone of alternative a =
�a𝑖𝑖, 𝑞� is zone 𝑖 (zero otherwise) and 𝐻𝑖𝑆 is the housing supply in the same zone. Land markets also clear, 

therefore from (28): 
 
 Φ�(1 − 𝜃)𝑅𝜃𝑝𝐿𝐿−𝜃𝑠𝑖�������������

𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 𝑧𝑧𝑧𝑧 𝑖

− 𝑋�𝑖 = 0, (45) 

where the parametric function Φ�  has been defined in (26) and 𝑋�𝑖 denotes the total surface available for 
development in zone 𝑖. Clearing of the intermediate 𝐽 markets implies that: 
 
 

𝜁𝑗 𝑌 𝑝𝑗
𝜁𝑗−1 ��𝑝𝑘

𝜁𝑘

𝑘≠𝑗

���𝜔𝑗
𝑗 ϵ 𝒥

�
���������������������

𝑄𝑗
𝐷

− 𝑄𝑗𝑆 = 0 , 
(46) 

The aggregate demand for the composite good in the entire region is given by:  
 
 𝑌𝐷 = 𝑁�{ 𝑃a𝑦a∗}

a∈𝒞

. (47) 

In order for the model to close properly, a part of the composite output must be used to import the 
required capital, and to cover the costs associated with the use of private modes and the public transport 
system. This implies the closure condition: 
 

𝑝(𝑌𝑆 − 𝑌𝐷)�������
𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑅��𝐾𝑗
𝐷𝑓

𝑗 ϵ 𝒥

+ �𝐾𝑖
𝐷𝑑

𝑖 ϵ 𝒥

�
�����������������

𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝐶𝑇 , (48) 

where the term on the left hand side is the value of the composite good (with price, 𝑝, normalized to one) 
that is not consumed inside the region but bought by a virtual trader that exports it to the rest of the world 
(ROW). The trader then buys capital and transport services (demanded by individuals, firms and 
developers in the region) of equal value from ROW and sells them back to the region.16 
 Because the equilibrium is competitive, the prices of all final and intermediate goods produced in 
the region equal their marginal cost. For each of the 𝐽 intermediates this implies one zero profit condition 

                                                           
16 See Chapter 4 of the dissertation for an elaborate discussion about closure conditions. 
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as in (18). Similarly, for each of the 𝐽 housing markets this implies a zero profit condition as in (26). 
Because the price of the composite is normalized to one, the corresponding condition for this good is: 

 
��𝑝𝑗

𝜁𝑗

𝑗 ϵ 𝒥

���𝜔𝑗
𝑗 ϵ 𝒥

� = 1 , (49) 

where 𝜔 has been defined in (23).  
 Finally, the disaggregate labor supply in (10), housing demand in (8) and consumption (computed 
from (6)-(9)) are based on a belief over the travel time and cost attached to each alternative a. Because 
these underlie the aggregate labor supply, housing demand and consumption, in equilibrium the above 
belief has to be correct. This implies that, for each alternative a, it holds that the commuting time and 
pecuniary cost used to derive optimal household behavior is equal to the resulting commuting time and 
cost given by (32) and (35) respectively. This is: 
 

𝑡̂𝑞 = 𝑡𝑞 , 
(50) 

and  
 𝑐̂𝑞 = 𝑐𝑞 . (51) 

However, it is easy to see that the above holds if the expected travel times and pecuniary costs of links in 
the network are equal to the resulting ones.  
 Section 2 describes a system of 35 types of equations in 35 vectors of unknowns. These are 
equations: (6), (8), (9), (10), (11), (15), (16), (18), (19), (20), (24), (26), (27), (28), (29), (30), (31), (32), 
(33), (34), (35), (38), (39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (49), (50) and (51) 
corresponding to the unknown vectors: 𝑦a∗, 𝑠a∗, 𝐷𝑊a

∗ , 𝑇𝐹a∗ , 𝑉a∗, 𝑃a (each vector of size equal to the number 

of elements in the choice set, denoted by 𝑁𝒞), 𝑝𝑗, 𝑤𝑗, 𝐿𝑗𝐷, 𝐾𝑗
𝐷𝑓 , 𝑄𝑗𝐷, 𝑝𝐻𝐻, 𝐾𝑖

𝐷𝑑 , 𝑋𝑖𝐷, 𝐻𝑖𝑆, 𝑝𝐿𝐿 and 𝑄𝑗𝑆 (each 

vector of size equal to 𝐽), 𝐿𝑅𝑅, 𝐿𝑃𝑃 , 𝑡𝑞, 𝑐𝑞, 𝑡̂𝑞 and 𝑐̂𝑞 (each vector of size equal to the number of feasible 

routes, i.e. 𝑁𝑄), 𝑡𝑅𝑠𝑠 and 𝑑𝑅𝑠𝑠  (of size equal to the number of road links in the network, 𝑁𝑅), 𝑡𝑃𝑠𝑠 (of size 

equal to the number of public transport, i.e. rail, links, 𝑁𝑃), 𝐷𝑇, 𝑅𝐿, 𝑅𝑅, 𝐵ℓ, 𝐵, 𝑌𝐷, 𝑌, 𝐸𝑚𝑚𝑚 and 𝑝 (each of 
size one).  
 The model uses a network with 𝑁𝑅 = 52 road links, 𝑁𝑃 =  50 rail links, 𝑁𝑄  = 1738 feasible 

routes, 𝐽 = 18 zones and 𝑁𝒞 = 𝑁𝑄 + 𝐽 = 1756 alternatives.17 This implies a non-linear square system of 𝑁𝑒 

= 21325 equations in 21325 unknowns.18 Section 3 describes how to solve this system for the general, 
stochastic user equilibrium with a computationally efficient approach.  
 
3. Solution algorithm and OOP architecture 
 
Figure 1 summarizes the pseudocode behind the solution of the 𝑁𝑒 ∙ 𝑁𝑒 system described in section 2.5. 
The algorithm separates the system in several subsystems, the solution of which is allocated to different 

                                                           
17 We consider 12386 non-cyclical routes of which 10648 are excluded: i) due to abnormal travel time/distance 
compared to the shortest path route or ii) because they violate the rule of a logical mode use. For example, routes 
that imply car use at two different, non-subsequent trip components: from a to b by car, from b to c by public mode 
and from c to d by car.  
18 That is: 𝑁𝑒 = (6 ∙ 𝑁𝒞) + �6 ∙ 𝑁𝑄� + (11 ∙ 𝐽) + (2 ∙ 𝑁𝑅) + 𝑁𝑃 + 9 = 21325 equations. 
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methods (functions) of various classes. Below, the classes used in the program are enumerated (together 
with the information each class stores), prior to the discussion of the functions each class utilizes. 
 The class Alternative stores the current values 𝑦a∗ , 𝑠a∗ , 𝐷𝑊a

∗ , 𝑇𝐹a∗ , 𝑉a∗  and 𝑃a  for an arbitrary 

alternative a. The classes Firm, Developer and Assembly industry store the current values of 𝐿𝑗𝐷 and 𝐾𝑗
𝐷𝑓, 

𝐾𝑖
𝐷𝑑 and 𝑋𝑖𝐷, and 𝑄𝑗𝐷 respectively. The class Network stores 𝐿𝑅𝑅, 𝐿𝑃𝑃, 𝑡̂𝑞, 𝑐̂𝑞, 𝑡𝑅𝑠𝑠, 𝑑𝑅𝑠𝑠 and 𝑡𝑃𝑠𝑠.  

 The core class of the program is World, which stores a list of Alternative instances (i.e. the choice 
set), a list of Firm instances, a list of Developer instances, an Assembly industry instance and a Network 
instance. This class stores the current values of the endogenous vector ℘ = (𝑤𝑗, 𝑝𝐻𝐻, 𝑝𝐿𝐿, 𝑝𝑗, 𝑄𝑗𝑆, 𝐻𝑖𝑆, 𝐷𝑇, 

𝑅𝐿 , 𝑅𝑅 , 𝑅ℓ, 𝐵, 𝑌, 𝑡𝑞 , 𝑐𝑞), where ℘ is a concatenation of its elements. Different classes have different 

access to different subvectors of ℘, as explained below. Whenever called, method W1 of class World  
returns the vector 𝐯(℘) with the equation values of the subsystem that is made up by the zero profit 
conditions in (18) and (26), market clearing conditions in (43), (44), (45), (46), and (48), revenue 
equations (38), (39), (40), (41) and (42), and the stochastic user equilibrium equations (50) and (51). This 
subsystem is made up by 𝑁1 = 6𝐽 + 6 + 2𝑁𝑄 equations.19  

 That is, class Alternative receives the necessary information from the subvector ℘𝐴 =
(𝑤𝑗,𝑝𝐻𝐻 , 𝜏𝐿 , 𝑐a, 𝑡a,𝐵) and uses its method A1 to compute (6), (8), (9), (10) and (11), and update its values 

𝑦a∗, 𝑠a∗, 𝐷𝑊a
∗ , 𝑇𝐹a∗  and 𝑉a∗ to the optimal levels. Method A1 is called more often than any other (see below), 

with frequency increasing as the size of the choice set, 𝑁𝒞, becomes larger. It is therefore important to 
formulate the utility maximization problem in a way that (6), (8), (9) and (10) have closed form 
expressions. 

 Class Firm accesses ℘𝐹 = (𝑤𝑗,𝑄𝑗𝑆) and the values 𝑅 and 𝐴𝑗 (as well as the necessary parameter 

values stored in World) and contains method F1, which computes the closed-form expressions in (19) and 

(20) to update the endogenous variables 𝐿𝑗𝐷 and 𝐾𝑗
𝐷𝑓. Similarly, Developer accesses ℘𝐷 = (𝑝𝐿𝐿, 𝐻𝑖𝑆) and 

the value of 𝑅 and contains method D1, which computes the closed-form expressions in (27) and (28) to 

update the endogenous variables 𝐾𝑖
𝐷𝑑  and 𝑋𝑖𝐷 . Class Assembly industry accesses ℘𝐼 = (𝑝𝑗 , 𝑌)  and 

contains method I1, which computes the closed-form expressions of 𝐽 intermediate demand equations, as 

in (24), to update vector 𝑄𝑗𝐷 (of size 𝐽).20 Finally, Network’s method N1 accesses 𝐷𝑊a
∗  and 𝑃a  in order to 

compute (29), (30), (31), (32), (33), (34) and (35) in order to update its fields, i.e. 𝐿𝑅𝑅, 𝐿𝑃𝑃, 𝑡̂𝑞, 𝑐̂𝑞, 𝑡𝑅𝑠𝑠, 

𝑑𝑅𝑠𝑠 and 𝑡𝑃𝑠𝑠. 
 World also uses method W2 to compute the 𝐸𝑚𝑚𝑚 and update the 𝑁𝒞  choice probabilities 𝑃a in 
(16), and method W3 which uses 𝑃a together with 𝑦a∗, 𝑠a∗, 𝐷𝑊a

∗ , 𝑇𝐹a∗  to compute the aggregate values of 
labor supply, housing demand and consumption (as they are defined in the left hand sides of equations 
(43) and (44), and equation (47) respectively).  
 Method W1 encapsulates methods A1, F1, D1, I1, N1, W2 and W3: whenever a change in an 
arbitrary endogenous variable 𝑒 in ℘ occurs, W1 calls consecutively those of the Methods A1, F1, D1 and 
                                                           
19 Earlier contributions in the field (e.g. RELU-TRAN by Anas and Liu, 2007) have proposed a detachment of the 
economic part of the equilibrium from the stochastic user part. This detachment is possible under certain 
mathematical manipulations of the model presented here. See Anas and Tikoudis (2015) for a detailed discussion 
over the compatibility and the relative computational efficiency of the two types of models.  
20 To be consistent with the Walras’ law, one equation, together with an endogenous price has to be excluded from 
the system. Here we chose arbitrarily to exclude the zero profit condition of the assembly industry in (49) and to 
normalize the price of the composite, by setting  𝑝 = 1. Therefore, Method 2c excludes this equation, which is used 
upon convergence to check if the equilibrium is correct. 
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I1 that can access 𝑒 in order to use it as an input (see above). Call of A1 implies a subsequent call of W2 
because systematic utilities (i.e. the input of W2) are altered by A1. In contrast, changes in produced 

quantities 𝑄𝑗𝑆, 𝐻𝑖𝑆 or 𝑌 imply that A1 and W2 are skipped because household behavior remains intact in 

the current iteration. 
 

 
Fig. 1. Schematic depiction of the object-oriented solution algorithm. 
    
 Because W1 encapsulates all the optimal economic behavior of the agents that class World 
contemplates, equilibrium is reached when the norm of the subsystem returned by this method is 
sufficiently close to zero. Method W4 performs the numerical tâtonnement process that computes the 
equilibrium. This is a variant of the Newton method with a line search. At each iteration 𝑘, W4 calls W1 
multiple times. Initially, this is to compute the distance of ℘𝑘 from the equilibrium, i.e. the vector 𝐯(℘𝑘). 
Then, 𝑁1 times to numerically approximate the Jacobian matrix at ℘𝑘, 𝐉(℘𝑘), using finite differences. At 
each of these calls, 𝑛,  W1 returns the vector 𝐯(℘𝑘

𝑛), where ℘𝑘
𝑛 differs from ℘𝑘 in its 𝑛-th element by Δ𝑝. 

The 𝑛-th column of  𝐉 is therefore the vector (𝐯(℘𝑘
𝑛)− 𝐯(℘𝑘))/Δ𝑝. When the direction vector, 𝐉−1𝐯, is 

computed, W4 uses a line search method which calls W1 multiple times, in order to evaluate different step 
sizes, 𝜎. When the optimal step is found, W4 updates the core vector: 
 

℘𝑘+1 = ℘𝑘 − 𝜎∗𝐉−1𝐯(℘𝑘), 
(52) 
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it calls W1 to return 𝐯(℘𝑘+1) and checks if the distance from equilibrium, i.e. ‖𝐯(℘𝑘+1)‖ has fallen 
below a prespecified tolerance level. If not, W4 repeats itself. Figure 1 summarizes the architecture of the 
program. 
 
4. Application to the area of Randstad: key data and calibration. 
 
The model is calibrated in order for the relative values of the endogenous variables to exhibit the 
maximum degree of resemblance to those of Randstad (see introduction) in the base equilibrium. In order 
to ensure that the research question can be addressed without disturbing the computational tractability of 
the model, a resolution which comprises 18 zones has been chosen. As shown in Figure 2, each zone 
represents a group of municipalities, which share either similar commuting patterns or a common 
strategic position in the road network.21 The four largest employment and residential centers (Amsterdam 
& Amstelveen, Utrecht, Rotterdam and the Hague) constitute separate zones.22 The data used for the 
calibration of the model regard primarily commuting flows between the 18 zones of the model. The 
18×18 origin-destination (hereafter, OD) matrix has been computed using CBS microdata for fully 
employed workers in year 2012. The variation of labor supply across different OD-pairs is not observed. 
 The calibration is treated as a series of optimization problems, one at each stage. At any arbitrary 
iteration 𝑘  of stage A, a genetic algorithm draws a population of random preference vectors 𝒗𝑨 =
(𝜋0,𝜋1,𝛼,𝛽, 𝛾) from a ball 𝐵�𝒗𝐴𝑘−1, 𝑟𝑘� = {𝒗𝑨 ∶  𝑑(𝒗𝑨,𝒗𝐴𝑘−1) ≤ 𝑟𝑘} of radius 𝑟𝑘 centered at the survivor 

preference vector from iteration 𝑘 − 1, i.e. 𝒗𝐴𝑘−1. At each draw, the model is solved using the algorithm 
discussed in section 3. Upon solution, the following information is recorded: i) average expenditure share 

on consumption, 𝐸𝑠ℎ(𝒗𝑨𝑘 ,𝐶), housing, 𝐸𝑠ℎ(𝒗𝑨𝑘 ,𝐻), and transport, 𝐸𝑠ℎ(𝒗𝑨𝑘 ,𝑇), and ii) average time shares 

on labor, 𝑇𝑠ℎ(𝒗𝑨𝑘 ,𝐿), leisure, 𝑇𝑠ℎ(𝒗𝑨𝑘 ,ℓ), and commuting,  𝑇𝑠ℎ(𝒗𝑨𝑘 , 𝑐).  
 The objective functions (to be minimized) are:  

 
𝓀𝐴0�𝒗𝑨𝑘�  = �𝐸𝑠ℎ(𝒗𝑨𝑘 ,𝐶) − 0.65�+ �𝐸𝑠ℎ(𝒗𝑨𝑘 ,𝐻) − 0.30�, 

(53) 

and 

                                                           
21  An initial selection excluded municipalities with population below 20000 inhabitants. A first grouping of 
municipalities into clusters (zones) was made in order to merge neighboring municipalities with populations 
between 20000 and 180000 inhabitants that share similar labor supply patterns (towards municipalities with a 
population over 180000 inhabitants). Further refinements rived some of these groupings into smaller parts, to 
account for the fact that some municipalities had access to more than one major highway link and would therefore 
hold larger monopoly power (ceteris paribus) had they been granted fiscal autonomy to perform road pricing on their 
own. 
22 The included zones are: 1) Amsterdam and Amstelveen, 2) municipalities between Amsterdam and Utrecht across 
highway A2, 3) eastern suburbs of Amsterdam along highway A1, including Diemen, Muiden, Weesp and Naarden, 
4) cluster of municipalities from Bussum, all the way on A1 to the crossing with A27, and across A27 all the way to 
Utrecht, 5) The cluster of Amersfoort, Soest and Zeist, municipalities located across A1 and A28 to the northeast of 
Utrecht, 6) Utrecht, 7) west suburbs of Utrecht (Montfoord, Woerden) across A12, 8) South suburbs of Utrecht 
(IJsselstein, Houten, Nieuwegein, Vianen) across A2 and A27, 9) Almere and Lelystad on A6, 10) northeast suburbs 
of Rotterdam, built around A12 and A20, 11) Rotterdam, 12) southeast suburbs of Rotterdam around A15, 13) 
municipalities located between Rotterdam and the Hague (e.g. Delft, Zoetermeer), 14) the Hague, 15) municipalities 
located north of the Hague, around Leiden, which are accessed through A4 and A44, 16) municipalities located 
southwest of Amsterdam (Haarlem, Haarlemermeer), with the area including Schiphol airport, 17) cluster of 
municipalities located across A9 from Haarlem up to Alkmaar, and 18) northwest suburbs of Amsterdam (Zaanstad, 
Purmerend) accessed through parts of A10, A8 and A7. 
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𝓀𝐴1�𝒗𝑨𝑘�  = �𝑇𝑠ℎ(𝒗𝑨𝑘 ,𝐿) − 0.60�+ �𝑇𝑠ℎ(𝒗𝑨𝑘 , 𝑐) − 0.10�. 

(54) 

 
The benchmark consumption share (0.65) and housing expenditure share (0.30), which imply a transport 
expenditure share of 0.05, have been chosen to be in rough accordance with the expenditure profile of the 
average household in Western Europe. Similarly, assuming a day of 13½ hours (excluding the essential 
time needed for physical rest and necessary activities of the household from the full 24-hour day), the 
benchmark labor time share (0.60) corresponds to a working day of approximately eight hours; therefore, 
the one-way benchmark commuting time (0.10) corresponds to approximately 40 minutes. The rest of the 
time endowment, i.e. approximately four hours, is spent on leisure activities.23  

 The vector that survives the iteration is the one with the lowest objective values 𝓀𝐴0�𝒗𝑨𝑘� and 

𝓀𝐴1�𝒗𝑨𝑘�. As these objective values get closer to zero the radius 𝑟𝑘 that defines the search area around the 

survivor vector 𝒗𝐴𝑘−1  becomes smaller. The algorithm terminates when there the Pareto frontier is 
reached, i.e. no superior vector is drawn for a large number of trials. 
 On stage B, the same algorithm draws vectors of 𝒗𝑩 = (𝛽, 𝛾, 𝜉1𝑅) i.e. of the parameters that are 
mainly responsible for the level of traffic and the average equilibrium speed. The objective function here 
is:  

 𝓀𝐵(𝒗𝑩)  = [𝑡𝑟𝑟𝑟(𝒗𝑩) − 2.3], (55) 

  
where 𝑡𝑟𝑟𝑟(𝒗𝑩) is the average (across links) equilibrium-to-free-flow travel time ratio.24 Assuming a free 
flow speed of 120 km per hour, the benchmark value (2.3) implies an average equilibrium speed of 52 
kilometers per hour. This speed is roughly consistent with the average commuting speed reported for 
large US cities in the national household travel survey (Federal Highway Administration, 2004), and 
plausible if someone takes into account bottlenecks, traffic lights, parking search time and other events 
not modeled explicitly in this application.25 For the public transport mode, we assume a constant speed of 
60 km per hour, i.e. half of the average private mode speed.   
 
Table 1.  Residential and employment percentages in benchmark equilibrium and data. 
Zone 

 

Residential 
share (model) 

Residential 
share (data) 

Employment 
share (model) 

Employment 
share (data) 

Amsterdam & Amstelveen 0.145 0.148 0.179 0.182 
southeast Amsterdam suburbs 0.026 0.021 0.016 0.012 

east Amsterdam suburbs  

 

0.015 0.011 0.017 0.015 

northeast Utrecht suburbs     0.039 0.037 0.038 0.037 

east Utrecht suburbs     0.035 0.036 0.037 0.035 

Utrecht 0.050 0.049 0.054 0.061 

                                                           
23 The calibrated model shares are: 𝐸𝑠ℎ�𝒗𝒑𝑘,𝐶� = 0.643, 𝐸𝑠ℎ�𝒗𝒑𝑘 ,𝐻� = 0.307 , 𝐸𝑠ℎ�𝒗𝒑𝑘 ,𝑇� = 0.050, 𝑇𝑠ℎ�𝒗𝒑𝑘 , 𝐿� =
0.591, 𝑇𝑠ℎ�𝒗𝒑𝑘, ℓ� = 0.299 and 𝑇𝑠ℎ�𝒗𝒑𝑘, 𝑐� = 109.    
24 The calibrated ratio 𝑡𝑟𝑟𝑟(𝒗𝑩) is 2.274. 
25 To facilitate calibration, we have assumed that 𝜉0𝑅𝑠𝑠  and 𝜉1𝑅𝑠𝑠  are constant across road links. We have fixed the free-
flow parameter 𝜉0𝑅 to 0.25. Multiplying this with 13½ hours (the assumed time endowment) yields approximately 
3.375 hours per unit of distance or, equivalently, a speed of 0.296 units of distance per hour. Setting the unit of 
distance equal to 405.4 km, 𝜉0𝑅 = 0.25 implies a free-flow speed of 120 km per hour.    
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southwest Utrecht suburbs     0.016 0.011 0.014 0.009 

southeast Utrecht suburbs     0.031 0.028 0.029 0.025 

Almere & Lelystad 0.035 0.038 0.031 0.027 

northeast Rotterdam suburbs 0.041 0.039 0.038 0.034 

Rotterdam 0.098 0.102 0.117 0.124 

southeast Rotterdam suburbs 0.072 0.073 0.053 0.056 

cluster between Rotterdam and the Hague 0.127 0.124 0.109 0.107 

the Hague 

 

0.077 0.081 0.091 0.094 

Leiden and suburbs 0.050 0.048 0.038 0.038 

cluster around Schiphol airport 0.049 0.053 0.066 0.071 

northwest Amsterdam suburbs 0.046 0.051 0.040 0.039 

northeast Amsterdam suburbs 0.049 0.050 0.033 0.034 

 
 On stage C, we calibrate the employment and population shares of each zone to fit those observed 
in data, by adjusting the parameter vector 𝒗𝑪 = (z𝑖, z𝑗, 𝜁𝑗 ) while keeping the rest of the parameters 

fixed.26 This part of the algorithm is rather heuristic: it increases (decreases) z𝑖 for residential zones that 
attract fewer (more) households than those observed in data, and adjusts z𝑗 in the same manner to bring 

employment density in alignment with data. However there is an asymmetry between the two 
adjustments: while increasing the average utility of local amenities, z𝑖, attracts more residents and presses 
housing and land prices upwards, increasing the employment-specific constants, z𝑗, increases labor supply 

and therefore (ceteris paribus) pushes wages in these zones downwards.27 This downward pressure is 
partially due to the fact that we have accounted for a unique type of skill in the model. We offset it by 
simultaneously adjusting the cost share of the local intermediate on the cost of the composite good, i.e. by 
adjusting 𝜁𝑗; this ensures that the main labor attractor zones offer a higher wage in equilibrium, as data 

suggest.28 Table 1 juxtaposes the employment and residential shares in the benchmark equilibrium against 
the shares observed in data. 
 The fourth stage of the algorithm adjusts the parameter vector 𝒗𝑫 = (z𝑅 , z𝑃 , z𝑡), i.e. the mode-
specific constants and the transit specific constant, in order for the probability of commuting by car to be 
sufficiently close to 65%. This is in general alignment with the observed rates in the Netherlands. 
Furthermore, the algorithm renders commutes with modal shift unlikely (below 5%).29  
 

                                                           
26  Throughout the entire calibration process, parameter 𝜆  is fixed to 3.0. We have chosen to abstract from 
agglomeration effects, which are going to be studied thoroughly in a separate contribution. We have therefore fixed 
total factor productivity, 𝐴𝑗, to 1.0 in each zone. 
27 Relative housing prices (base zone 18) are in the range of 0.59 to 1.67. Relative land prices vary between 0.46 and 
2.60. Unfortunately, the model produces a poor spatial variation in terms of floor-to-area ratios, which varies in the 
limited range between 1.16 and 1.95. This is mainly due to the equilibrium elasticity of substitution between 
residential space and consumption that gives rise to large residential consumption in zones with very low population 
density.   
28 This holds because an increased 𝜁𝑗  implies (in general) higher demand for the intermediate goods produced in 
those zones (see equation (46)); and this, in turn, implies higher wages. 
29 See Schwanen et al. (2001) for an analysis of the modal split and urban form based on the Dutch National Travel 
Survey of 1998. 
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Fig. 2.  Spatial configuration of the model: zonal aggregation (left), main highways of the road network (middle) and 
network representation (right). 
 

For the rest, we assume a uniform labor income tax rate of 35% which is in accordance with the 
generic tax rates in Western Europe and North America (25-45%). In equilibrium, the annual pecuniary 
cost of car use per kilometer is 0.177% of total disposable (after tax) income. Setting this income to the 
plausible level of €30000, this annual cost turns out to be slightly above €53. The corresponding annual 
kilometer cost with public transport is approximately €16. 30  The fixed cost of the public transport 
operator is set to zero in benchmark equilibrium. There are no price subsidies in public or private 
transport thus pricing is efficient. From (5) it is straightforward that the value of time has an upper bound 
which is the after-tax wage, 𝑤𝑗(1 − 𝜏𝐿). The expected value of time is 0.737 of the wage, with a standard 

deviation of 0.151. These values are in line with those proposed at several previous studies.    
Contrary to stylized models, in which the elasticity of labor supply may attain a uniform value 

(e.g. Parry and Bento, 2001), or monocentric city models, in which it may vary across residence locations, 
here we consider an equilibrium elasticity of labor supply (with respect to the labor tax) by origin-
destination pair.31 This elasticity is in accordance with values considered in previous studies and it varies 
considerably in the plausible range between -0.028 and -0.296. Appendix A provides a complete 
summary of the endogenous, exogenous variables and parameters (including their values) of the model.  
 
 
5. Policy analysis 

                                                           
30 Exogenous price of car use per unit of distance is set to 0.05. Dividing by the number of kilometers per unit of 
distance (i.e. 405.4), and then by 0.0697 (the equilibrium after-tax income) yields an annual kilometer cost equal to 
0.00177 of after tax income.   
31 This is approximated numerically using finite differences. That is, first compute the labor supply matrix in the 
benchmark equilibrium, 𝑳𝟎𝑺, whose element in the 𝑖-th row and 𝑗-collumn is 𝑳𝟎𝑖𝑖𝑺 = ∑ {𝐼(𝑖, 𝑗|a) 𝑃a𝐷𝑊a

∗ }a∈𝒞 . Then let 
the tax rate 𝜏𝐿 increase by Δ𝜏𝐿. Compute the tax rate change in monetary units for each employment zone: this is 
𝑑𝑑𝑗 = Δ𝜏𝐿𝑤𝑗. Solve for the general equilibrium and compute the new labor supply matrix 𝑳𝟏𝑺. The approximation for 

the elasticity of labor supply for the OD-pair aij is ��𝑳𝟏𝑖𝑖𝑺 − 𝑳𝟎𝑖𝑖𝑺 � 𝑑𝑑𝑗� ���𝜏𝐿𝑤𝑗�/𝑳𝟎𝑖𝑖𝑺 �. 
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We now consider a series of interventions that are highly relevant for policy analysis: the Pigouvian toll, 
partial taxation of the network, uniformly-priced and differentiated cordon tolls around the three largest 
employment zones of Randstad (Amsterdam, Rotterdam and the Hague). In section 5.1 we assume that 
revenue recycling takes its simplest form, i.e. a lump-sum transfer to the representative household. In 
section 5.2 we search for realistic revenue recycling strategies that may reverse the findings of section 
5.1.  
 
5.1 Lump-sum revenue recycling 

While the Pigouvian toll is the most efficient intervention in a setting where road traffic externalities pose 
the only failure in the economy, a series of contributions have shown that large welfare losses may occur 
from a such policy in the presence of a pre-existing distortionary tax that remains intact (Parry and Bento 
2001; Tikoudis et al., 2015a).32  
 Since road congestion is generated by identical vehicles, the marginal external congestion cost 
(mecc) of an additional unit of traffic is independent of both the origin and destination of the vehicle that 
enters the link, as well as of the characteristics of its driver. To compute this cost, we need to decompose 

the traffic demand of the link by user type, i.e. by alternative a = �a𝑖𝑖, 𝑞�. This is because every additional 

trip that uses link 𝑙𝐶
(𝑠𝑠) delays all drivers in the same link by ℓ𝑅𝑠𝑠𝜉1𝑅𝑠𝑠 , as (29) suggests.33 However, this 

delay is valued differently by each user type, as the value of time varies not only across OD-pairs, but 
also across routes.34 Therefore, to compute the link-specific marginal external congestion cost, 𝑚𝑚𝑚𝑚𝑅𝑠𝑠, 

we have to: go through each alternative a = �a𝑖𝑖, 𝑞� in the choice set 𝒞, check if the associated route 𝑞 

implies the use of 𝑙𝑅
(𝑠𝑠) (using again the indicator function 𝐼 �𝑙𝑅

(𝑠𝑠)|𝑞� as in (31)) and, if yes, compute how 

many users of this type are using the link (i.e.𝑁𝑃a𝐷𝑊a
∗ ); then, this demand has to be multiplied with their 

value of time (𝑣a). Summing across all alternatives yields the aggregate value of time in 𝑙𝑅
(𝑠𝑠). Multiplying 

this with the delay per user, ℓ𝑅𝑠𝑠𝜉1𝑅𝑠𝑠 , yields:  
 

𝑚𝑚𝑚𝑚𝑅𝑠𝑠 = ℓ𝑅𝑠𝑠𝜉1𝑅𝑠𝑠�

⎩
⎪
⎨

⎪
⎧
𝐼 �𝑙𝑅

(𝑠𝑠)|𝑞�𝑁𝑃a𝐷𝑊a
∗

�������������
𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓 𝑢𝑢𝑢𝑢𝑢 

𝑜𝑜 𝑡𝑡𝑡𝑡 a

𝑣a

⎭
⎪
⎬

⎪
⎫

a∈𝒞
�������������������
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑡𝑡𝑡𝑡 𝑖𝑖 𝑙𝑅

(𝑠𝑠)

.  (56) 

Using the above formula, we calculate the quasi first-best Pigouvian toll scheme and apply it in our 
model. The scheme causes considerable welfare losses that account for approximately 1.83% of the after-
tax, disposable labor income, although it is efficient from an environmental point of view (i.e. in terms of 

                                                           
32 To the knowledge of the author, this is the first study to approach the issue using real data from a 
polycentric network. 
33 This is simply the derivative of link travel time in (29) with respect to the demand/load in the link. 
34 There is, therefore, a unique value of time for each alternative, since by definition a = �a𝑖𝑖 , 𝑞�. 
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reducing traffic).35 On the other hand, the same toll rule applied in a setting where the labor tax is set at 
0% has been confirmed to be first-best and welfare increasing.36 
 This finding corroborates earlier computations of the welfare effects from Pigouvian pricing 
under pre-existing distortionary labor taxation in the setting of Parry and Bento (2001). In this 
contribution, the environmental, or Pigouvian effect (i.e. the first dividend) from a road pricing policy, 
despite positive in itself, falls short of the negative tax interaction effect at the margin of the no-toll 
equilibrium.37 As a result, the optimal congestion taxes are not only below their Pigouvian levels (as 
expressed in (56)); they are essentially negative. 
 However, Tikoudis et al. (2015a) illustrate a case in which partial network taxation that takes the 
form of a cordon toll in a monocentric serial network may not only be less harmful than the quasi first-
best Pigouvian toll, but it can also reverse the sign of the welfare effect, even in the case in which a pre-
existing labor tax exceeds 40%. The key driver behind this result was that the cordon toll can be imposed 
in a certain distance from CBD, affecting only the subgroup of the population that provides labor 
relatively inelastically, provided that the elasticity of labor supply falls with distance from the CBD. 
 To test if the above result still holds in our polycentric setting, we perform additional 
computations regarding systems of uniformly- and differentially-priced cordon tolls around zones 1, 11 
and 14 (i.e. Amsterdam-Amstelveen, Rotterdam and the Hague respectively). For the uniformly-priced 
cordon toll system, it holds that: 
 
 𝜏𝑅𝑠𝑠 = �𝜏̅𝑅             𝑖𝑖 𝑒 ∈ {1, 11, 14}

 0                         𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒.
      (57) 

For the differentially-priced cordon toll system, the toll is: 
 
 𝜏𝑅𝑠𝑠 = �𝜏̅𝑅𝑅             𝑖𝑖 𝑒 ∈ {1, 11, 14}

 0                         𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒.
      (58) 

 In the benchmark equilibrium considered (where 𝜏𝐿 = 0.40) the above measures prove to be less 
harmful than the Pigouvian toll. This is because a large part of the network (i.e. the majority of road links) 
is left untaxed. These untaxed links generally decrease the size of the environmental/transport benefits 
that can be realized with a given pricing scheme, but this decrease is small relative to the labor market 
effect. That is, setting the road tax to zero in a large part of the network reduces significantly the private 
cost of labor supply (and therefore the marginal excess burden of the labor tax), especially for alternatives 
that involve long commutes. But despite cordon toll systems provide an improvement vis-à-vis the 
Pigouvian toll, they still generate welfare losses. Therefore, the finding by Tikoudis et al. (2015a) is 
probably network specific, as it fails to be confirmed in a less stylized, mixed network. Consequently, 
optimal cordon charges in the level of the labor tax considered are negative. The threshold labor tax 
values at which the three pricing schemes (quasi first-best Pigouvian, uniform cordon system, 
differentiated cordon system) generate positive welfare effects are 18%, 24% and 25.5% respectively. 

                                                           
35 Considering an average, annual after tax income of € 30000, this welfare loss is € 549 per capita. 
36 Setting the labor tax at 0% leaves the road traffic externalities as the only remaining source of inefficiency in the 
model. The researcher can use the Pigouvian equilibrium as a starting point to check whether deviations from the 
toll rule in (56) can increase utility. Such an increase is a sign of model misspecification.  
37 The environmental or Pigouvian effect is the welfare gain from a marginal adjustment of the externality tax. When 
the latter is set at its Pigouvian level, the above effect is zero. The tax interaction effect is the welfare loss from the 
erosion of the base that corresponds to a distortionary tax, caused by a marginal increase of the environmental tax.  
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 In a setting where traffic externalities would be the only failure, i.e. when 𝜏𝐿 is set to zero, the 
above schemes would be second-best to Pigouvian pricing.38 Since (in this case) tax interaction effects are 
absent, the latter produces significant welfare gains, accounting for approximately 0.33% of the after-tax 
labor income.39 Because a large portion of the total external costs is generated on the links ending on the 
above three large employment centers, the relative efficiency of the above second-best measures is high: 
they are found to capture 48.2% and 48.8% of the Pigouvian gains respectively. This result is roughly in 
accordance with Mun et al. (2005).  
  
5.2 Intelligent revenue recycling (Labor tax cuts) 

The general failure of pricing policies with lump-sum revenue recycling leads naturally to the 
investigation of policies that return the road tax revenue in the form a labor tax cut.40 Because the labor 
tax is distortionary to begin with, this cut generates a positive welfare effect that is widely known in the 
theory of double dividend as the revenue-recycling effect. When the latter effect is strong enough to offset 
the tax interaction effect, the second dividend emerges.   
 The welfare gains, as well as the link charges of the optimal road tax scheme are of special 
interest to the policy maker, because they provide the theoretical benchmark against which other second-
best interventions (e.g. cordon tolls, fuel taxes and area fees) can be compared. In the context of this 
paper, the above policy leaves the charge in each road link free to acquire any value, even a negative 
one.41 Computing the optimal tax scheme, we find that link charges exhibit a large variation around their 
Pigouvian levels. 42  This deviation (roughly) ranges from -400% to +50%, with 27 of the 52 links 
considered in the study receiving subsidies (negative charges).43 The second dividend emerges in six 
links; the remaining links receive a positive charge below the marginal external cost of congestion (Table 
B1 in Appendix B provides the values for each link).   
 The size of these deviations underlies a surprising finding, namely that the quasi first-best 
Pigouvian pricing scheme is welfare decreasing even in the case in which road tax revenue finances labor 
tax cuts. The result may at first appear counter-intuitive, since a set of Pigouvian tolls replaces part of a 
distortionary tax in the form of a revenue-neutral tax swap. However, nothing prevents the tax interaction 

                                                           
38 Here, we keep all parameters to their calibrated values and set 𝜏𝐿 equal to zero. 
39 Despite being in the range proposed by prior literature (e.g. Anas and Hiramatsu, 2013), the reader may find this 
value relatively low. A key contributing factor to this result is that the model bounds the value of time to a ceiling 
that equals the nominal wage associated with each alternative.  
40 To compute the equilibrium for a policy with the labor tax cut, one has to fix 𝐵 to the value it obtains in the 
benchmark equilibrium, and replace 𝐵 with 𝜏𝐿 in the vector of endogenous variables, ℘ = (𝑤𝑗 , 𝑝𝐻𝐻 , 𝑝𝐿𝐿 , 𝑝𝑗, 𝑄𝑗𝑆, 𝐻𝑖𝑆, 
𝐷𝑇 , 𝑅𝐿, 𝑅𝑅,𝑅ℓ, 𝐵, 𝑌, 𝑡𝑞, 𝑐𝑞), as defined in section 3.  
41 This necessitates the exclusion of cyclical paths, which has been discussed in section 2.1.  
42 The optimal tax has been computed using variants of Newton-Raphson (NR) and BFGS methods with line search. 
The NR algorithms we used proceed with sequential updates of the road tax, in each iteration for a set of links that 
share the same start node s or the same end node e. The gradient vector and the Hessian matrix are computed 
exclusively for this set of links using finite differences. The BFGS algorithms we used produce updates for the entire 
network at each iteration, using approximations of the Hessian matrix. In both cases, a line search method is 
employed to maximize the value of the objective function across the proposed direction. To test for local extrema 
points we repeat the computations with different starting values.   
43 This result is in line with Tikoudis et al. (2015a). With a parameterization similar to the one used here, it is shown 
that the location-based optimal road tax scheme in a monocentric city can be non-monotonic when the benchmark 
labor tax is high. Considering the monocentric city as a serial network with a unique destination implies that the 
above result can be expressed as a link-based road tax scheme in which the most distant links receive negative 
charges.  
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effect in many of the network links from being strong enough to offset the sum of the environmental 
(Pigouvian) and revenue recycling effects at the margin of the no-toll equilibrium. Since the optimal road 
tax scheme lies far away from the quasi first-best Pigouvian, the latter may, as it turns out to be the case 
here, be welfare decreasing.44  
 Apart from the above schemes, we compute the optimal charges and welfare levels for: i) a 
uniformly-priced and ii) a differentially-priced cordon toll system around zones 1, 11, 14 (i.e. around 
Amsterdam, Rotterdam and the Hague). Because these schemes leave a large set of links untaxed, 
especially most of those receiving a negative charge in the optimal scheme, they generate considerable 
welfare gains: their efficiency relative to the optimal tax scheme is 28.5% and 32% respectively. In the 
case of the differentiated cordon toll, the road tax revenue can finance a labor tax cut of approximately 
0.55%. The results suggest that the entire tax reform might be feasible from a political point of view as 
well, since the above tax cut can take the form of a regional labor subsidy, and the optimal cordon toll 
prices (which vary between 1.15% and 1.50% of the average wage) are found in the range of urban tolls 
already imposed with considerable levels of public acceptability elsewhere in Europe (e.g. Oslo and 
Stockholm). 
 
6. Concluding remarks 
 

This study presented an application of a polycentric general equilibrium model of transport and land-use 
designed to capture the exact interaction between the set of the externality-correcting road taxes in a 
network and the spatially uniform, distortionary labor tax. Because the latter underlies labor supply, it 
indirectly affects the level of traffic during commuting hours. Earlier contributions provided strong 
insights, but were referring to more abstract, spaceless or monocentric settings.  
 In this paper we derived new insights by incorporating the two core mechanisms that generate the 
double dividend (i.e. the tax interactions and revenue-recycling effects) in a spatial setting with multiple 
externalities (i.e. a road network where each link is modeled as a different congestible facility), some of 
which may be left untaxed (partial taxation). Among others, this setting facilitates the identification of  
circumstances, under which partial taxation of these externalities may be Pareto preferred vis-à-vis the 
textbook quasi first-best Pigouvian toll (marginal external cost pricing) not only with revenue returned 
lump-sum, but also in the form of a distortionary tax cut.  
 The model has a clear geographical reference, i.e. the polycentric urban conglomeration in the 
area of Randstad, which comprises the country's four largest cities (Amsterdam, Rotterdam, the Hague 
and Utrecht). In line with more stylized models, the introduction of a quasi first-best Pigouvian toll in the 
base calibration is shown to generate considerable welfare losses. Partial taxation that involves a system 
of cordon tolls around the largest employment zones of the conglomeration is found to mitigate these 
losses. Surprisingly, marginal external cost pricing is found to be welfare decreasing even with revenue 
used to finance a labor tax cut. The computation of the optimal tax scheme reveals that this is, among 
others, due to the large deviation of optimal link charges from their Pigouvian levels; in a significant part 
of the network links are charged negatively. With labor tax cuts, a system of differentially-priced cordons 
around Amsterdam, Rotterdam and the Hague leaves most of these links unpriced and is found to capture 
approximately 27% of the gains generated by the optimal tax scheme. The optimal charges and the labor 
tax reduction indicate that the entire reform may be politically feasible. That is, charges vary between 

                                                           
44  The welfare loss from the quasi first-best Pigouvian toll in this case accounts (in absolute value) for 
approximately % of the gains of the optimal tax scheme. 
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1.15% and 1.50% of the average wage and the resulting labor tax cut (which can be implemented as a 
regional labor subsidy) is approximately 0.55%.  
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Appendix A: notation 
 
Table A1.  Variables, prices and policy instruments  
 𝑦a consumption of a composite good 𝑌𝑆 supply of composite good  (numéraire)  
 𝑠a housing consumption 𝑄𝑗𝐷 intermediate demand  by assembly industry 

 𝑇𝐹a leisure  𝑠𝑖𝑆 supply of floor space by local developer 
𝐷𝑊a labor supply 𝐾𝑖

𝐷𝑑  demand for capital by local developer 
𝑀a full income 𝑋𝑖𝐷 demand for land by local developer 
𝑣a value of time  𝑑𝑅𝑠𝑠 demand for road link s→e   
𝜏𝑅𝑠𝑠 toll on road link s→e    𝑡𝑅𝑠𝑠 travel time for the road link s→e   
𝑡a assumed commuting time 𝑡𝑃𝑠𝑠 travel time for the public transport link s→e   
𝑐a assumed commuting cost 𝑡̂𝑞  resulting commuting time 
𝑃a alternative’s choice probability  𝑐̂𝑞 resulting commuting cost 
𝑉a∗ maximum (indirect) utility obtained  𝑝𝑗 price of intermediate produced in zone j 

𝐿𝑗𝐷 labor demand by local firm 𝑄𝑗𝑆 intermediate supply  by local firm  

𝐾𝑗
𝐷𝑓 capital demand by local firm 𝐷𝑇 transport provision deficit 

𝑅𝐿  total labor tax revenue 𝑅𝑅 total road tax revenue 

𝑅ℓ aggregate land rents 𝑌𝐷 demand for the composite good  (numéraire) 

𝑤𝑗 wage at zone j 𝑝𝐻𝐻 housing price at zone i 

𝑝 price of composite good  (numéraire) 𝑝𝐿𝐿 price of land at zone i 

𝐿𝑃a kilometers generated with public transport 
under alternative a = {𝑖, 𝑗, 𝑞} 

𝐿𝑅a kilometers generated with car under alternative 
a = {𝑖, 𝑗, 𝑞} 

𝜏𝐿 labor income tax rate 𝐵 lump-sum transfer (exogenous income) 
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𝑝𝑔 
cost of car use inputs (gasoline, vehicle 
depreciation, etc.) per unit of distance (as 
faced by households)  

𝑝̂𝑔 
import price of car use inputs (gasoline, vehicle 
depreciation, etc.) per unit of distance (as faced by 
the importer) 

𝑝𝑃 
per passenger price for a unit of distance 
commute with public transport (as faced by 
households) 

𝑝̂𝑃 per passenger cost for a unit of distance commute 
with public transport (as faced by government) 

Notes: the subscript 𝐚 denotes that the variable is conditional on the choice of a given alternative. Because every 
route 𝑞 corresponds to a unique alternative a, subscripts that refer to a specific route 𝑞 can be replaced by a (e.g. 
𝐿𝑅a = 𝐿𝑅𝑅).  

 
Table A2.  Network and choice notation  
𝒥 an order set of 𝐽 zones i an index pointing at the i-th zone of 𝒥 

𝑗 an index pointing at the j-th zone of 𝒥 𝒞𝑂𝑂 a set of all possible origin-destinations 
i   a𝑖𝑖 an arbitrary origin-destination pair 

i→j  
𝑙𝑚

(𝑠𝑠) an arbitrary link from node s to node e with 
transport mode m 

𝑞 route: a sequence of neighboring links 
𝑙𝑚

(𝑠𝑠) 
ℓ𝑚𝑠𝑠  the length of link 𝑙𝑚

(𝑠𝑠) 

𝒬(a𝑖𝑖)  
the set of all routes 𝑞 that are compatible 
to a𝑖𝑖, i.e. they depart from the i-th zone 
and terminate to the j-th zone 

a 
alternative: an arbitrary origin destination 
pair, a𝑖𝑖 , coupled with a route 𝑞 ∈ 𝒬�a𝑖𝑖�.  
Denoted as  a = �a𝑖𝑖 , 𝑞� = {𝑖, 𝑗, 𝑞} 

𝒞 Choice set containing all possible 
alternatives 𝐼 �𝑙𝑚

(𝑠𝑠)|𝑞� indicator function that equals one if route 
𝑞 contains link  𝑙𝑚

(𝑠𝑠)and zero otherwise 

𝐼(𝑗|a) 
indicator function that equals one if 
alternative a implies the j-th zone of 𝒥 as 
destination  

𝐼(𝑖|a) 
indicator function that equals one if 
alternative a implies the i-th zone of 𝒥 as 
origin 

 
Appendix B: optimal tolls against the marginal external cost of congestion   
 
Table B1.  Optimal toll and marginal external congestion cost (by link) in the case of labor tax cut revenue 
recycling.  
start node → end node toll mecc  start node → end node toll mecc 

1→2 0.00261 0.00237 2→1 -0.00143 0.00307 
1→3 0.00225 0.00256 3→1 -0.00086 0.00287 
1→16 0.00381 0.00414 16→1 0.00064 0.00484 
1→18 0.00018 0.00137 18→1 -0.00448 0.00205 
2→6 -0.00002 0.00265 6→2 0.00285 0.00284 
4→6 -0.00048 0.00304 6→4 0.00000   0.00276 
5→6 -0.00215 0.00159 6→5 -0.00427   0.00104 
8→6 -0.00013 0.00190 6→8 0.00201   0.00181 
7→6 -0.00180 0.00251 6→7 0.00150   0.00235 
3→9 -0.00035 0.00134 9→3 -0.00490   0.00126 
3→4 0.00022 0.00315 4→3 0.00216   0.00367 
4→9 0.00011 0.00184 9→4 -0.00573   0.00158 
4→5 -0.00449 0.00096 5→4 -0.00190   0.00099 

8→100 -0.00127 0.00133 100→8 0.00033   0.00172 
12→100 0.00033 0.00327 100→12 -0.00127 0.00253 
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11→12 -0.00182 0.00199 12→11 -0.00097 0.00310 
11→10 0.00285 0.00321 10→11 0.00436 0.00356 
11→13 -0.00057 0.00213 13→11 0.00479 0.00296 
13→14 0.00191 0.00246 14→13 0.00013 0.00176 
14→15 0.00432 0.00338 15→14 -0.00036 0.00368 
15→16 -0.00077 0.00790 16→15 -0.00154 0.00642 
16→17 -0.00384 0.00231 17→16 -0.00423 0.00296 

15→101 0.00096 0.00248 101→15 0.00153 0.00320 
10→101 0.00021 0.00302 101→10 -0.00091 0.00222 
7→101 -0.00052 0.00241 101→7 0.00036 0.00288 
10→13 -0.00299 0.00342 13→10 0.00200 0.00498 

Notes: Values have been computed using a BFGS algorithm. Different starting values generated by the no-toll and 
the Pigouvian quasi first-best equilibrium were used, providing a convergence to (roughly) the same optimum.  

Appendix C:  Replicability of simulation experiments 
 
The following tables provide the calibrated values of parameters used in the simulation experiments, as 
well as the values of the exogenous variables in the model. A vector of satisfactory initial values of the 
endogenous variables is available upon request.  
 
Table C1.  Values of parameters and exogenous variables  
𝛼 0.65 z𝑃 -5.0 𝜁11 0.140 z𝐼5 -1.47 z𝐼17 0.00 z𝐽11 2.60 𝑝𝑔 0.05 
𝛽 0.35 z𝑡 -3.0 𝜁12  0.040 z𝐼6 0.20 z𝐼18 0.20 z𝐽12 0.80 𝑝̂𝑔 0.05 
𝛾 0.40 𝜁1 0.210 𝜁13 0.055 z𝐼7 -4.0 z𝐽1 4.10 z𝐽13 2.90 𝑝𝑃 0.015 
𝜋0 23.6 𝜁2  0.015 𝜁14 0.110 z𝐼8 -1.55 z𝐽2 -2.80 z𝐽14 2.00 𝑝̂𝑃 0.015 
𝜋1 3.1 𝜁3 0.015 𝜁15 0.040 z𝐼9 -1.82 z𝐽3 -2.80 z𝐽15 -0.40 𝑅 0.001 
𝜆 3.0 𝜁4 0.025 𝜁16  0.060 z𝐼10 -0.70 z𝐽4 -0.40 z𝐽16 1.50   
𝛿 0.3 𝜁5 0.025 𝜁17 0.035 z𝐼11 2.20 z𝐽5 -0.50 z𝐽17 0.10   
𝜃 0.3 𝜁6  0.070 𝜁18 0.035 z𝐼12 1.30 z𝐽6 0.15 z𝐽18 -0.70   
𝜉0𝑅𝑠𝑠   0.25 𝜁7 0.020 z𝐼1 3.70 z𝐼13 2.70 z𝐽7 -4.10 𝐴𝑗 1.0   
𝜉1𝑅𝑠𝑠  17.0 𝜁8 0.035 z𝐼2 -2.50 z𝐼14 2.00 z𝐽8 -1.40 𝑇 1.0   
𝜉0𝑃𝑠𝑠  0.50 𝜁9 0.035 z𝐼3 -3.90 z𝐼15 0.00 z𝐽9 -1.40 𝑁 1.0   

z𝑅 -2.5 𝜁10 0.035 z𝐼4 -1.25 z𝐼16 0.00 z𝐽10 -0.60 𝐹 0.0   

Notes: Capital shares are assumed to be constant across zones for both firms (𝛿 = 0.3) and developers (𝜃 = 0.3). 
Volume delay function parameters are constant across all (road and rail) links; this is a weak assumption because all 
links represent large parts of a highway system which, at this level of aggregation, is relatively homogenous. Total 
factor productivity is uniform over space: differences in factor employment (including job concentration) and output 
level are generated through non-uniform cost shares (𝜁 ) of the assembly industry. This prevents wages from 
displaying a spatial variation that would be incompatible with data. 

    

Table C2.  Land endowment (𝑋�) of each zone 
1     2  3    4  5     6  7     8  9   10   11   12   13    14   15    16   17   18 

.208 .222 .068 .223 .158 .095 .127 .140 .363 .126 .206 .233 .378 .082 .204 .236 .208 .187 
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Notes: Surface endowments are in accordance with the municipal aggregations displayed in Figure 2.   
 

Appendix D:  Numerical approximation of the key double-dividend effects 
 
We finally approximate numerically the double dividend effects discussed in the text. The reader should 
bear in mind that, given the size, detail and complexity of the model, an analytic decomposition of a total 
effect (i.e. the total welfare change caused by a marginal increase in the toll of an arbitrary link) in its 
Pigouvian, Tax Interaction and Revenue Recycling components is not possible. 
 Instead, what we attempt here is an improvised adoption of the general idea behind 
decomposition formulas that have appeared with significant variations in the literature of double-dividend 
(Bovenberg and de Mooij, 1994; Goulder et al. 1999; Parry and Bento, 2000; Bento and Jacobsen, 2007; 

Carbone and Smith, 2008; Bento et al., 2011). Define the Pigouvian effect in link 𝑙𝑅
(𝑠𝑠) as: 

 
𝑃𝑠𝑠 = (𝜏𝑅𝑠𝑠 − 𝑚𝑚𝑚𝑚𝑅𝑠𝑠)

d(𝑑𝑅𝑠𝑠)
d𝜏𝑅𝑠𝑠

 ,  (D1) 

where the total derivative of the link load (i.e. the total demand for the road link, 𝑑𝑅𝑠𝑠, as defined in (31)) 
with respect to the link toll is approximated by using finite differences (i.e. by computing 𝑑𝑅𝑠𝑠 in two 
general equilibria between which 𝜏𝑅𝑠𝑠 has been increased) and 𝑚𝑚𝑚𝑚𝑅𝑠𝑠 denotes the Pigouvian level of the 
toll as given by (56).  
 Next, define the total (general equilibrium) derivative of labor tax revenue (𝑅𝐿 as it is expressed 
in equation (39)) as: 
 

d𝑅𝐿
d𝜏𝐿

=
d[𝜏𝐿𝐿𝐿(𝜏𝐿)]

d𝜏𝐿
= 𝐿𝐿(𝜏𝐿)���

𝑓𝑓𝑓𝑓𝑓−𝑜𝑜𝑜𝑜𝑜 
𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝜏𝐿
d𝐿𝐿(𝜏𝐿)

d𝜏𝐿�������
𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 𝑡ℎ𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑜𝑜 𝑡𝑡𝑡 𝑏𝑏𝑏𝑏

 ,  (D2) 

where 
d𝐿𝐿(𝜏𝐿)
d𝜏𝐿

 is approximated again using finite differences. We define the marginal excess burden of the 

labor tax as: 
 

𝑀 = −
�𝜏𝐿

d𝐿𝐿(𝜏𝐿)
d𝜏𝐿

�

�𝐿𝐿(𝜏𝐿) +  𝜏𝐿
d𝐿𝐿(𝜏𝐿)
d𝜏𝐿

�
.  (D3) 

Finally, we compute the tax interaction effect in the link 𝑙𝑅
(𝑠𝑠) as: 

 

𝑇𝑇𝑠𝑠 = (1 + 𝑀)
d𝑅𝐿
d𝜏𝑅𝑠𝑠

 ,  (D4) 

and the revenue recycling effect in the same link as: 
 

𝑅𝑅𝑠𝑠 = 𝑀
d𝑅𝑅
d𝜏𝑅𝑠𝑠

 .  (D5) 
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Table D1 presents the sum of 𝑃𝑠𝑠, 𝑇𝑇𝑠𝑠 and 𝑅𝑅𝑠𝑠 computed for each link in the base, no-toll equilibrium. 
In general, the sign of the total effect is in accordance with the sign and the magnitude of the optimal toll 
(toll characterization), although the alignment is imperfect (the sign is opposite in a few cases). The 
imperfection can be attributed to three non-mutually-exclusive factors: i) local (instead of global) 
optimum reached by the optimization algorithm (in this case most probably the global optimum lies in the 
close neighborhood of the local optimum, since the difference in this case is hard to detect using heuristic 
tests with different starting values), ii) the above approximation is incomplete, in the sense that residual 
effects are missing or analytic formulas differ from the above, and iii) numerical errors in the above 
approximations.  
 

Table D1. Double dividend (DD) approximation of the total effect in the untolled (base) equilibrium versus optimal 
link toll characterizations: double dividend emerges (++), positive without double dividend (+), approximately zero 
(≈0), negative (-). 

startnode → 
endnode 

toll 
characterization 

total effect-
approximation 

 startnode → 
endnode 

toll 
characterization 

total effect-
approximation 

1→2 (++) 0.00119 2→1 (-) 0.00096 
1→3 (+) 0.00159 3→1 (-) -0.00019 

1→16 (+) 0.00321 16→1 (+) 0.00624 
1→18 (+) 0.00090 18→1 (-) -0.00029 
2→6 (≈0) 8E-05 6→2 (++) 0.00158 
4→6 (-) -0.00207 6→4 (≈0) 0.00038 
5→6 (-) -0.00252 6→5 (-) -0.00110 
8→6 (≈0) -0.00065 6→8 (++) -0.00231 
7→6 (-) 0.00061 6→7 (+) -0.00271 
3→9 (-) 0.00024 9→3 (-) -0.00140 
3→4 (≈0) -9E-05 4→3 (+) 0.00051 
4→9 (≈0) 0.00025 9→4 (-) -0.00192 
4→5 (-) -0.00197 5→4 (-) -0.00087 

8→100 (-) -0.00342 100→8 (+) -0.00029 
12→100 (+) -0.00029 100→12 (-) -0.00342 
11→12 (-) 0.00069 12→11 (-) -0.00124 
11→10 (+) 0.00252 10→11 (++) 0.00212 
11→13 (-) 0.00144 13→11 (++) 0.00313 
13→14 (+) 0.00473 14→13 (≈0) 0.00340 
14→15 (++) 0.00643 15→14 (≈0) 0.00223 
15→16 (≈0) 0.00786 16→15 (-) 0.00056 
16→17 (-) 0.00027 17→16 (-) -0.00159 

15→101 (+) -0.00028 101→15 (+) 0.00316 
10→101 (≈0) 0.00378 101→10 (-) -0.00406 
7→101 (-) -0.00322 101→7 (+) 0.00116 
10→13 (-) -0.00369 13→10 (+) 0.00312 

Notes: We classify a link toll as being approximately zero (≈0) if the absolute value of the optimal toll is below 
10% of the marginal external congestion cost in this link.   
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