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Abstract

We empirically evaluate a behavioural model with boundedly rational traders who disagree about

the persistence of deviations from the fundamental stock price. Fundamentalist traders believe

in mean-reversion, while chartists extrapolate trends. Agents gradually switch between the two

rules, based upon their relative performance, leading to self-reinforcing regimes of mean-reversion

and trend-following. For the fundamental price we use well-known models of Gordon (1962) and

Campbell and Cochrane (1999). We estimate the two-type switching model using U.S. stock

prices until 2012Q4 and find significant behavioural heterogeneity. Our model suggests that

behavioural regime switching strongly amplifies booms and busts in stock prices.

Keywords: behavioural finance, bounded rationality, heterogeneous expectations, stock prices,

financial crisis
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1. Introduction

Economic reality shows the limitations of standard asset pricing models with a representative

rational agent only concerned with economic fundamentals. In 2008 the S&P500 stock index,

the financial bellwether of the dominant market economy of the U.S., and many other stock

indices, lost around one half of their total value. While the bankruptcy of Lehman Brothers

amounted to a clear fundamental shock to the economy, it is difficult to explain all of this loss as

a rational re-evaluation of fundamentals. Other behavioural explanations need to be considered.

In this paper we present evidence from S&P500 data that market sentiment switches between

different behavioural regimes, which amplified shocks such as the Lehman bankruptcy, and more

generally amplifies booms and busts of the economy.

We first apply the idea of switching market sentiment to a basic framework that provides a

fundamental value of the price-dividend ratio: the standard Gordon solution based on a constant

risk premium. Within this framework we introduce a simple behavioural model with some agents

believing in mean-reversion of stock prices (called fundamentalists) and others (called chartists)

who expect a continuation of the trend. Agents gradually switch between the two rules, based

upon their relative performance, so they learn and adapt their behaviour if the market situation

changes and the losses of their strategy become too large. Because of the positive expectations

feedback in asset markets, self-reinforcing behavioural regimes of mean-reversion and trend-

following arise endogenously in the model, explaining large and persistent deviations of the

S&P500 from the Gordon fundamental value.

A convenient feature of our model is that it is formulated in deviations from a fundamen-

tal price, so that it can be tested against any suitable fundamental benchmark. Behavioural

heterogeneity can therefore complement the mainstream financial literature on stock market

fluctuations by providing an amplification mechanism to explain excess volatility (Shiller, 1981).

To this end we combine our model with the consumption-habit asset pricing model of Campbell

and Cochrane (1999). They argue in a standard representative-agent framework that booms

and busts in asset prices are driven by countercyclical variation in risk premia, which in turn

are inversely related to consumption relative to a slow-moving habit level. We show that even

if part of the variation in the price-dividend ratio can be explained by consumption-driven vari-

ation in risk premia, our model still gives significant parameter estimates and adds explanatory

power due to behavioural heterogeneity. Overall, we argue that there is strong evidence for

heterogeneous beliefs amplifying booms and busts in the stock market.

Standard asset pricing models do not take heterogeneity into account as these models assume

the expectations of individual investors are rational and can be described by a representative

agent. Asset prices should in this view equal the fundamental value of expected discounted sum

of future cashflows, or more specifically dividend payoffs (Campbell and Shiller, 1988a). Various
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reasons have been proposed why this fundamental value could change over time, as in Campbell

and Cochrane (1999). Bansal and Yaron (2004) argue for the effects of long-run economic

uncertainty on asset prices. Pástor and Veronesi (2006) and Ofek and Richardson (2003) give

particular (but very different) explanations for the high valuations of technology firms in the

late 1990s. Nevertheless, these explanations may not be sufficient to fully explain stock market

fluctuations. More specifically, we show that for the consumption-habit model of Campbell and

Cochrane (1999), behavioural heterogeneity is a significant amplification mechanism.

With the contention that the financial crisis cannot be sufficiently explained by economic

fundamentals, our paper fits within the behavioural finance literature. Departing from the

strongest form of rationality opens up the alternative view that stock prices may have been

overpriced. The behavioural finance literature is surveyed in e.g. Hirshleifer (2001) and Barberis

and Thaler (2003). Barberis and Thaler (2003) stress the finding that traders with flawed

expectations can not always be driven away from the market. As these traders distort supply

and demand based on fundamentals, assets can be partly mispriced. In their words: “One of

the biggest successes of behavioral finance is a series of theoretical papers showing that in an

economy where rational and irrational traders interact, irrationality can have a substantial and

long-lived impact on prices.” (Barberis and Thaler, 2003, p. 1053, their emphasis).

Barberis and Thaler (2003) also state that careful empirical analysis remains the main chal-

lenge for behavioural models. As one recent example, Branch and Evans (2010) develop a

framework with agents learning the parameters of their underparameterised forecasting mod-

els and reproduce regime-switching returns and volatilities in monthly U.S. stock data. Adam

and Marcet (2011) and Adam et al. (2013) provide another example where investors’ subjective

beliefs are shown to drive booms and busts in the S&P 500’s price-dividend ratio. In these exam-

ples however the model is calibrated to replicate certain characteristics in the data. Moreover,

these models assume learning by a homogeneous representative agent: see Pástor and Veronesi

(2009) for a stimulating survey. Our simple behavioural model assumes heterogeneous agents

and contains few parameters that can be estimated directly.

We will model our boundedly rational traders within the heterogeneous agents asset pricing

framework of Brock and Hommes (1997, 1998)1. The literature on heterogeneous agents models

(HAMs) has been growing in the last decades and is extensively reviewed in e.g. Hommes

(2006), LeBaron (2006) and Lux (2009). For example, HAMs have been applied to stock prices

empirically in Boswijk et al. (2007), Chiarella et al. (2014) and Lof (2012, 2014). Switching

models with heterogeneous agents have also been applied to other financial markets, in particular

1Other related early heterogeneous agents models include the noise trader models of DeLong et al. (1990a,b),
the model with ‘newswatchers’ versus momentum traders of Hong and Stein (1999) and the evolutionary belief
models of Jouini and Napp (2010) and Jouini et al. (2012). These models also assume bounded rationality of (at
least one type of) agents, but do not allow for switching between different strategies.
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exchange rates (Kirman and Teyssière, 2002; Westerhoff and Reitz, 2003; Alfarano et al., 2005;

de Jong et al., 2010), but also for example to option prices (Frijns et al., 2010) and oil prices

(ter Ellen and Zwinkels, 2010). This empirical literature is growing fast, see e.g. Chen et al.

(2012) for an overview.

Our paper makes four contributions to the empirical literature on behavioural asset pric-

ing. Most importantly, we generalise the asset pricing model with heterogenous agents and

test it against two benchmark fundamentals, the Gordon model and the Campbell-Cochrane

consumption-habit model. A second novelty in the literature is that we introduce agents’ mem-

ory of earlier realised excess returns. This will lead to gradual (rather than instant) switching

and makes the model applicable to quarterly data with a simple economic interpretation. A

third, methodological contribution is to run Monte Carlo simulations to clarify two difficulties

in estimating HAMs: the stationarity of the time series and the significance of the switch-

ing intensity. Finally, we look in greater detail at the price dynamics in the recent turbulent

years in terms of fundamentals and amplification mechanisms, as our time series includes both

the dot-com bubble and the global financial crisis. For example, for the Campbell-Cochrane

consumption-habit fundamental, our model explains the financial crisis as being triggered by an

exogenous shock (the Lehman Brothers bankruptcy) and strongly amplified by coordination on

trend-following behaviour.

Many factors have contributed to the rising interest in behavioural heterogeneity. First, lab-

oratory experiments with human subjects have been performed to study individual expectations

and aggregate outcomes, e.g. Hommes et al. (2005, 2008). Experimental studies have the benefit

that the underlying asset market fundamentals can be fully controlled; for an overview of the use

of laboratory experiments to test for heterogeneous expectations, see Hommes (2011). Anufriev

and Hommes (2012) find in experimental asset pricing data that subjects switch between differ-

ent forecasting rules, consistent with the theoretical model of Brock and Hommes (1998). An

interesting finding from these laboratory experiments is that under positive expectations feedback

coordination on trend-following strategies amplifies asset market fluctuations (Heemeijer et al.,

2009).

Second, empirical evidence has shown that switching based on past performance is relevant

for real financial markets. For example, Ippolito (1989), Chevalier and Ellison (1997), Sirri and

Tufano (1998) and Karceski (2002) found in mutual funds data that money flows out of past

poor performers into good performers. Pension funds also switch away from bad performers

(Del Guercio and Tkac, 2002). Investors in the stock market can be expected to display similar

switching behaviour when choosing between different strategies.

Third, there is growing interest in survey data on expectations of financial specialists, which

can be traced back to Frankel and Froot (1987). Comparing six different data sources, Green-
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wood and Shleifer (2013) show that surveys of stock market investors are highly positively

correlated with each other, supporting the idea that they do reflect actual beliefs. The het-

erogeneity in price expectations also changes over time, as shown in Shiller (1987, 2000) and

Vissing-Jorgensen (2004). All three forms of microlevel evidence of actual traders shifting be-

tween simple behavioural rules motivate our aggregate model.

We emphasise that the behaviourally heterogeneous expectations of our investors are not

model-consistent as in the traditional rational expectations framework. Yet agents are boundedly

rational in the sense that they switch to better performing rules, which then become almost self-

fulfilling. We show that the data supports self-reinforcing temporary coordination on either

mean-reversion or trend-following. Still, on which type of behaviour agents will coordinate is

difficult to foresee in advance: the market is unpredictable in the short run. Fundamentals play

a complementary role in explaining mean-reversion in stock market fluctuations and make prices

predictable in the long run. Overall, strategy switching serves as an amplification mechanism

for booms and busts.

The paper is organised as follows. Section 2 develops the general asset pricing model with

heterogeneous agents. In Section 3 we present our main estimation results under the standard

Gordon fundamental value. Section 4 provides Monte Carlo simulations to test the robustness of

our results, as well as simulated time series generated by our model that illustrate the endogenous

behavioural regimes. In Section 5 we combine our model with the consumption-habit model of

Campbell and Cochrane (1999) that has a time-varying risk premium. Section 6 concludes.

Further robustness checks are provided in the Appendix.

2. Model description

We derive a stylised asset pricing model with heterogeneous agents, generalising Brock and

Hommes (1998) and Boswijk et al. (2007) to a model that allows for time-variation in dividends

and discount rates.2 We assume that investors have perfect knowledge of the underlying funda-

mental process, and are therefore able to calculate the ‘fundamental value’, which in this section

will be derived in general terms. The general form of our model to be estimated is

xt =
1

R∗
H

∑
h=1

nh,tEh,t [xt+1], (1)

2In this paper we focus on the price-dividend ratio as it is the classical way to model stock prices. There
is also a large literature of modeling asset prices based on book values or earnings, e.g. Campbell and Shiller
(2001). Boswijk et al. (2007) estimate an asset pricing model with behavioural heterogeneity both for fundamental
valuation based on dividends and earnings, and find robust results.
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where xt is the price-dividend ratio in deviations from the fundamental value, nh,t the fractions of

agents having belief Eh,t , and 1/R∗ is the expected effective discount factor, to be specified below.

An advantage of this general form is that the model can be estimated around any benchmark

fundamental valuation model. In Section 3, we will specify the present value model with a con-

stant risk premium based on Gordon (1962) for the fundamental value. In Section 5, we consider

another benchmark fundamental value with a time-varying risk premium, the consumption-habit

model of Campbell and Cochrane (1999).

Even though agents know the fundamental value, they have different beliefs about how the

price of the asset deviates from its fundamental. The changes of agents’ beliefs will lead to fluc-

tuating market sentiment. For both benchmark fundamental value models in Sections 3 and 5,

we will show that there is significant evidence for behavioural heterogeneity in the data.

An important idea of our model is to separate behavioural factors influencing prices from fun-

damental factors. Our main assumptions aim to model heterogeneous beliefs of investors on top

of an asset pricing framework that is as general and flexible as possible. This two-step approach

allows us to estimate the model with heterogeneous beliefs in deviations from any specification

of the underlying fundamental process. In particular, our general heterogeneous agents model

can be directly applied to the Campbell-Cochrane fundamental asset pricing benchmark. In

Section 2.1 we discuss the fundamental value, and in Section 2.2 the behavioural expectation

rules of the agents. In Section 2.3 we present the econometric form of our model.

2.1. Fundamental value

Consider a risky financial asset that pays a random dividend payoff Dt at time t. The opportunity

cost for investing in the risky asset is captured by the discount rate Rt+1 which may in general

vary over time. The standard pricing equation (cf. e.g. Cochrane, 2001, p. 10) is

Pt = Et

[
Pt+1 + Dt+1

Rt+1

]
. (2)

As Cochrane (2001, p. 37) emphasises, this equation does not presupposes a representative agent;

it rather applies to each individual investor. Today’s price is the expected discounted sum of

tomorrow’s price and of tomorrow’s dividend payoff. Notice that Rt+1 here refers to an objective

ex ante discount rate about which agents have identical expectations, as specified below. The

heterogeneity will apply to expectations about the future price Pt+1.

We focus on possible belief disagreement about future prices, but assume agreement about

fundamentals. This approach reflects the idea of investors that prices are determined endoge-

nously and partly depend on expectations about the next period’s price, while the fundamentals

follow an exogenous stochastic process. Thus, all agents have identical beliefs about the dividend
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Dt+1 = (1 + gt+1)Dt and its discounted value:

Et

[
Dt+1

Rt+1

]
= Et

[
1 + gt+1

Rt+1

]
Dt . (3)

We can therefore rewrite the pricing equation (2) in terms of the price-dividend ratio (PD) ratio

δt ≡ Pt/Dt as

δt = Et

[
1

Rt+1

Dt+1

Dt
(δt+1 + 1)

]
= Et

[
1 + gt+1

Rt+1
(δt+1 + 1)

]
. (4)

The fundamental value P∗t is obtained under rational expectations from the present value

of all future cash flows (see e.g. Boswijk et al., 2007, p. 1965). Substituting the basic pricing

equation (2) forward under rational expectations, applying the law of iterated expectations, and

imposing the transversality condition leads to

P∗t = Et

[
∞

∑
j=1

(
j

∏
k=1

1
Rt+k

)
Dt+ j

]

= Et

[
∞

∑
j=1

(
j

∏
k=1

1 + gt+k

Rt+k

)
Dt

]
, (5)

and the fundamental PD ratio equals

δ
∗
t = Et

[
∞

∑
j=1

(
j

∏
k=1

1 + gt+k

Rt+k

)]
. (6)

The fundamental values of the price and PD ratio are presented here in the most general form,

but will simplify in subsequent sections to the special cases of Gordon (1962) and Campbell and

Cochrane (1999) by assumptions on gt+1 and Rt+1.

We assume that all agents know the fundamental price P∗t , but disagree about how the next

period’s price will deviate from P∗t+1, e.g. because some investors may use non-fundamental

trading decisions. Therefore agent type h tries to predict the next period’s Pt+1 by its subjec-

tive expectations Eh,t [Pt+1] which may differ from P∗t+1. To allow for a stationary underlying

process, we focus on the subjective expectation about the price-dividend ratio Eh,t [δt+1], which

consequently also possibly differ from δ∗t+1.
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2.2. Behavioural heterogeneous beliefs

To model heterogeneity we consider H types of investors using different expectation rules. The

fractions or weights of agents using a particular belief Eh,t are denoted by nh,t . We assume that

the PD pricing equation (4) holds at the aggregate level, averaging over all agents’ expectations,

i.e.

δt =
H

∑
h=1

nh,tEh,t

[
1 + gt+1

Rt+1
(δt+1 + 1)

]
. (7)

Equation (7), with the market price reflecting average beliefs, is typically derived in an underly-

ing model with market clearing and an appropriate utility function.3 The fractions nh,t of beliefs

are endogenous and will be modelled below.

We further specify the pricing process by separating behavioural heterogeneity from funda-

mental factors. More precisely, we assume common beliefs on fundamental factors such as growth

rates gt+1 and discount rates Rt+1. We also assume that agents’ behavioural beliefs Eh,t [δt+1] are

independent of objective expectations about fundamental factors, i.e.

Eh,t

[
1 + gt+1

Rt+1
(δt+1 + 1)

]
= Et

[
1 + gt+1

Rt+1

]
Eh,t [δt+1 + 1] . (8)

In order to simplify the behavioural beliefs around the fundamental δ∗t+1, we define the uncondi-

tional expectation 1/R∗ ≡ E
[

Et

[
1 + gt+1

Rt+1

]]
as the expected effective discount factor for pricing

stocks in terms of the PD ratio. Hence, our behavioural assumption is that the expected effective

discount factor is constant, while the rational-expectations fundamental δ∗t may be time-varying.

Equation (7) becomes

δt =
1

R∗
H

∑
h=1

nh,tEh,t [δt+1 + 1]. (9)

It will be convenient to formulate the model in deviations from the fundamental value

xt ≡ δt −δ∗t . We assume that all agents have common and rational beliefs about the fundamental

value:

Eh,t [δ
∗
t+1] = Et [δ

∗
t+1] = R∗δ∗t −1. (10)

3For example, Boswijk et al. (2007) derive equation (7) from a CARA utility function for a fixed discount rate
Rt+1 = 1 + r, as in the standard Gordon model. In Section 5 we directly apply equation (7) to the Campbell-
Cochrane benchmark fundamental.
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Agents’ behavioural beliefs about the next period’s PD ratio can be formulated as

Eh,t [δt+1] = Et [δ
∗
t+1]+ Eh,t [xt+1]

= Et [δ
∗
t+1]+ fh(xt−1, ...,xt−L), (11)

where Eh,t [xt+1] represents the expected deviation of the PD ratio from the fundamental value,

expressed as a function fh(·) of the L last observed deviations.4

Under these assumptions about heterogeneous expectations, price deviations from the fun-

damental can be simplified as

xt = δt −δ
∗
t =

1
R∗

H

∑
h=1

nh,tEh,t [δt+1 + 1]−δ
∗
t

=
1

R∗
H

∑
h=1

nh,tEh,t [xt+1]. (12)

The standard asset pricing model based on future stock prices and dividends (2) has now been

reformulated as a dynamic HAM (12) in which price deviations from the fundamental value

depend only on discounted expected future price deviations.

We stress that as the model is formulated in deviations from a fundamental PD ratio, it

can be used with different benchmark fundamentals. The crucial assumption that has been

made is that agents have common beliefs about fundamental factors, but have heterogeneous

beliefs about deviations from fundamental. Also note that the fundamental benchmark with a

rational representative agent is nested as a special case of our model when all agent types believe

Eh,t [xt+1] = 0, for all h = 1, . . . ,H. The model for price fluctuations around the fundamental value

(12) holds for any choice of agent types and for any choice of the fundamental value δ∗t . This

setup is convenient to test empirically whether any deviations from a benchmark fundamental

are significant.

For the empirical estimation, we consider the simplest form of heterogeneity in belief types

which are linear in the last observation:

Eh,t [xt+1] = φhxt−1. (13)

Choosing H = 2 types is sufficient to capture an essential difference between agents. Some agents

(called fundamentalists) believe in mean-reversion of the stock price to its fundamental value

and have a parameter (0 <)φ1 < 1. Other agents (called chartists) believe that the price (in

4Note that agents at time t do not observe the contemporaneous price and react to past realised prices only.
This assumption is common in the literature and for example used by Hong and Stein (1999) to model momentum
traders.
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the short run) will move away from the fundamental value and have φ2 > 1. Chartists expect

a continuation of the trend and will be a destabilising factor in the model when their impact

becomes large.

The behavioural finance literature has a long tradition of models with fundamentalists and

chartists; see Hommes (2006) and LeBaron (2006) for extensive surveys. In a recent overview of

the empirical HAM literature, Chen et al. (2012) classify the broad variety of agent-based eco-

nomic papers and underline that the simple fundamentalist-chartist opposition is often sufficient

to explain stylised facts from asset price data that seem ‘puzzles’ in a rational representative

agent framework. Aoki (2002) argues with a theoretical model that the behaviour of many

different market participants can often be clustered in just two groups. Another recent exam-

ple is Lof (2014), who applies the VAR approach to a heterogeneous asset pricing model with

fundamentalists and contrarians.5

Agents use simple rules to predict future prices, but switch to other strategies if their predic-

tions become too far-off from actual prices: investors learn from their mistakes. Our agents learn

through reinforcement learning or evolutionary selection based upon the relative performance

of their forecasting rule. The fractions of agents belonging to one of the two types are updated

with a multinomial logit model as in Brock and Hommes (1997) with intensity of choice β6:

nh,t+1 =
eβUh,t

∑
H
j=1 eβU j,t

. (14)

In order to specify the performance measure of belief type h, Uh,t , we need to consider the

profits of agent types. Following Brock and Hommes (1998) and Boswijk et al. (2007), we

consider the following profit function in price deviations xt :

πh,t+1 = (Eh,t [xt+1]−R∗xt)(xt+1−R∗xt). (15)

This expression for realised profits has the intuitive property that it is proportional to agents’

demand (depending on the expectations Eh,t [xt+1]−R∗xt) times the realised excess return (de-

pending on realisations xt+1−R∗xt).
7

5Others have proposed models with two types that have more advanced, time-varying adaptive learning beliefs,
for example Branch and Evans (2010).

6Again, our choice for fluctuating fractions is founded in earlier behavioural finance literature. Chen et al.
(2012) state that “evolving fractions have been considered to be a [main] cause of many stylised facts” (p. 15,
their emphasis).

7In a technical appendix accompanying this paper we show that this profit function is consistent with a myopic
mean-variance demand function, from which Boswijk et al. (2007) derive the market clearing equation (7) for the
Gordon fundamental value. Strictly speaking, the profit function in Boswijk et al. (2007) is proportional to the
expression in (15) by a constant factor C which is captured in the estimate β∗ = βC.
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It will turn out that for our application of the model to quarterly data, realised profits of

more than one period in the past should be accounted for in the performance measure. To this

end we introduce in the performance measure a memory parameter ω:

Uh,t = (1−ω)πh,t + ωUh,t−1, (16)

so that the most recent observed profit receives weight (1−ω). The relative weight of the j-th

lag of realised profits is thus ω j(1−ω) and decreases in j.

We now have a complete specification of the fluctuating fractions of the H = 2 belief types n1,t

and n2,t . As profits in equation (15) for a certain belief h increase and its performance measure

exceeds that of the other belief, more agents will choose this belief, according to the multinomial

logit model (14). Thus there is a positive relation between realised profits and fractions of the

agents’ belief types.

2.3. Econometric form

The HAM in equation (12) with the additional assumptions about expectation formation can

be written as an econometric AR(1) model with a time-varying coefficient after adding an error

term:

xt =
1

R∗
(n1,tφ1 + n2,tφ2)xt−1 + εt ,

≡ ϕtxt−1 + εt .
(17)

The error terms are assumed to be independently and identically distributed: εt ∼ IID(0,σ2).

Economically speaking, the error term εt captures exogenous fundamental shocks to underlying

dividends and discount rates, which affect prices but are unobserved to investors when making

expectations Eh,t [xt+1].

The time-varying coefficient ϕt replaces the constant parameter in a regular AR(1)-model

and is interpreted here as the average market sentiment. As market sentiment rises, prices stay

for a longer number of periods away from the fundamental value. Combining equations (14),
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(15) and (16), fractions depend nonlinearly on the four parameter and all past realisations:8

n1,t = fn1(φ1,φ2,β,ω;xt−1,xt−2, ...,x1), (18)

n2,t = 1−n1,t . (19)

Equations (17), (18) and (19) summarise our heterogeneous agents model for price deviations

from any fundamental value. The key idea of the model is positive expectations feedback. Initially

there is some distribution of fundamentalists and chartists. As shocks are feeded into realised

prices, one of the two strategies may receive a higher payoff and attracts more followers given

an intensity of choice β > 0. Because the price is determined by market clearing, these fractions

affect the next period price: if overall market sentiment is higher, the next period’s price will also

be higher. This leads to almost self-fulfilling expectations. For example, when chartists (with

φ2 > 1) dominate, temporary bubbles may arise triggered by fundamental shocks and amplified

by trend-following expectations.

The goal of estimating our model is to quantify the effect of positive feedback and switching

regimes of market sentiment. This obviously depends on the estimations of the parameters φ1

and φ2. If these parameters are closer to each other, the effects of switching decreases. We

will show that the difference between φ1 and φ2 is statistically significant, and also economically

significant, in the sense that the heterogenous agents model produces substantially different

market predictions than a representative agent model.

3. Estimation results for a simple behavioural model

The estimation follows a two-step procedure in line with the model description above. First we

estimate the fundamental value of the Gordon model based on dividends and a constant risk

premium. Second, we estimate the heterogeneous agents model summarised by equations (17),

(18) and (19) with nonlinear least squares. In Section 3.3 we introduce a linear representative

agent benchmark model to compare our estimation with.

8The exact mathematical formula for the fraction of fundamentalists (not important for our line of argument)
equals

n1,t = (1 + exp[β(φ1−φ2)
t−4

∑
j=0

[ω j(1−ω)xt−3− j(xt−1− j−R∗xt−2− j)]])
−1,

In this equation the index j = 1,2, ... corresponds to the j-th lag of realised profits that enters the performance
measure through memory in (16). At j = t − 4, the first observation x1 is used in determining the fraction nt ,
which puts an upper bound on the memory of realised profits. It should be clear that this formula can only be
used for t ≥ 4.

12



3.1. Estimating the fundamental value of the Gordon model

In this section we specify the fundamental values of stock prices P∗t and PD ratios δ∗t using the

standard model based on Gordon (1962). The textbook Gordon solution for the fundamental

PD ratio under discrete time is constant and equal to:

δ
∗ =

1 + g
r−g

, (20)

where g is the expected growth rate of dividends, and r = i + RP is the sum of the expected

risk free rate i and the risk premium on stocks RP, both assumed to be constant. This follows

immediately from substituting gt+1 = g and Rt+1 = 1 + r in equation (6).

We follow Boswijk et al. (2007) in using the dynamic Gordon model instead of the standard

(static) Gordon model. In the dynamic Gordon model, agents can extract possible changes

in the future parameters gt+1 and rt+1 = it+1 + RP from data on dividend growth rates and

interest rates available at time t. This approach is more flexible and allows for time variation

in the fundamental PD ratio around δ∗. We will show, however, that the time variation in the

fundamental PD ratio of the dynamic Gordon model is relatively small. Notice that the dynamic

Gordon model presupposes a fixed risk premium.

Agents use a simple AR(1) rule to update their beliefs with the last observation in the risk

free rate and growth rate:

Et [rt+ j] = r + ρ
j(rt − r)Et [gt+ j] = g + τ

j(gt −g) (21)

Boswijk et al. (2007) show, using the approach of Poterba and Summers (1988), that the time-

varying fundamental PD ratio is to a first-order Taylor approximation given by:

δ
∗
t =

1 + g
r−g

+
ρ(1 + g)

(r−g)(1 + r−ρ(1 + g))
(rt − r)+

τ(1 + r)

(r−g)(1 + r− τ(1 + g))
(gt −g). (22)

To estimate the static part δ∗ in equation (22), we use updated data on the S&P500 prices and

dividends originally provided by Shiller (2005), with T = 252 end-of-quarter observations from

1950Q1 until 2012Q4. For an easier interpretation, we will focus on the yearly price dividend

ratio even though it is based on quarterly observations. We also estimate the parameters using

yearly data for comparison. See Table 1 for the results.

Our findings are close to previous estimates on the postwar period, such as a real yearly

dividend yield of around 3.5% and a yearly risk premium of around 2.5%. We find some small

differences when we estimate the dynamic Gordon model directly on yearly data, because more

data points are used in the quarterly estimation. Ignoring deviations in the dividend growth
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Table 1: Estimation of the fundamental value.

Frequency π d/p g r i RP R∗ δ∗

Quarterly 0.91 0.84 0.40 1.24 0.54 0.70 1.008 119.5
Yearly equivalent 3.71 3.40 1.62 5.06 2.19 2.87 1.034 29.9
Yearly 3.71 3.37 1.31 4.69 2.25 2.43 1.033 30.1

Values used for estimating the static Gordon solution δ∗ = (1+g)/(r−g): π is the average inflation rate,
d/p is the average dividend yield Dt/Pt−1, g is the average dividend growth rate, r = d/p + g equals the
risk free rate plus the required risk premium on stocks, i is the average real return on T-notes with a
10-year maturity, RP = r− i is the risk premium and R∗ = (1 + r)/(1 + g) is the expected effective
discount rate. We use the CPI index to deflate the nominal variables. All numbers except R∗ and δ∗ are
multiplied by 100. The estimation is done using both quarterly and yearly data from 1951Q1-2012Q4;
yearly equivalent estimates based on the quarterly estimation are presented using geometric progression.

and risk free rates, we find a yearly constant value of δ∗ = 29.9 for the quarterly estimation.

Next, we estimate the AR(1) rules used by the agents to update the fundamental value. We

find quarterly values of ρ = 0.40 for the persistence in the risk free rate and τ = 0.50 for the

growth rate, and we calculate the fundamental value δ∗t according to equation (22). Figure 1

plots the fundamental value based on the price-dividend ratio δ∗t and dividends Dt next to the

observed value of the S&P500 index and observed PD ratios. As displayed in the bottom panel

of Figure 1, δ∗t fluctuates in the interval of [20.3,40.8], but for most periods it stays close to the

constant average value of δ∗ = 29.9.

The S&P500 clearly exhibits excess volatility, that is, it fluctuates much more than its un-

derlying fundamentals; an important point already made by Shiller (1981). Until 1990, the

S&P500 is seen to fluctuate relatively quietly around the value that was to be expected from

future dividends. After 1995 this changes: stock prices, most notably of firms in the internet

and information technology sector, rose much more than was justified by the dividend pay-outs.

At the top of the dot-com bubble in 2000, when the PD ratio reached almost 90 compared to

the fundamental value of around 30, the S&P500 was by a factor three overpriced relative to

the dividend-based fundamental.

One may argue that we find excess volatility and overpricing in Figure 1 because we do

not assume a time-varying risk premium. In Section 5, we follow the more standard approach

that at least part of the variation in asset prices is due to variation in risk premia, using

the consumption-habit asset pricing model of Campbell and Cochrane (1999) as fundamental

benchmark. Irrespective of the underlying prices, all agents in our behavioural model are aware

that prices differ from fundamentals, but do not believe that they can use this knowledge to

gain higher profits. This behavioural element is supported by survey data, in particular for the

period around the turn of the millennium. Both Shiller (2000) and Vissing-Jorgensen (2004)

found that the majority of respondent investors in 2000 were aware of the overvaluation of stock
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Figure 1: The S&P500 index with its fundamental value, corrected for inflation (top panel), and the
realised and fundamental yearly PD ratio (bottom panel).
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prices, but did not expect that the mispricing would be corrected within a period of a year.

Another observation is that, in our model with a fixed risk premium, the financial crisis of

2008 is of a quite different nature than the burst of the dot-com bubble. After 2000 prices went

down for three years, but stayed above the dynamic Gordon fundamental value. Partly driven

by the securitisation activities of large investment banks, dividends rose steadily from 2003 to

2008, which in turn drove prices up again, perhaps more than justified by fundamentals. After

the bankruptcy of Lehman Brothers on 15 September 2008, the stock market crashed and prices

returned very closely to the fundamental value. Only afterwards, when the market already

started to recover, dividends started to fall.

3.2. Estimation of the heterogeneous agents model

This section is devoted to the estimation of the heterogeneous agents model using the time series

xt = δt−δ∗t of price deviations from the Gordon benchmark. From Figure 1 it is clear that there

is quite some structure in xt . It is highly persistent and interrupted by phases of mean-reversion.

We perform nonlinear least squares to estimate the heterogeneous agents model and interpret

the asset price fluctuations by different behavioural regimes.

Table 2 shows the estimation results for our four parameters φ1, φ2, β and ω, under four differ-

ent model specifications (A), (B), (C) and (D). For model specification (A), we fix the intensity

of choice β = 1 for reasons discussed below, and estimate the remaining three parameters. For

model (B), we estimate all four parameters simultaneously, while model (C) fixes the intensity

of choice at a different, high value of β = 10. Model (D) fixes β = 1 as in model (A) and and has

no memory, i.e. the memory parameter ω = 0.

In all estimations, the belief parameters φ1 and φ2 are significantly different from zero, em-

phasising that the fundamental value is not very informative in the short run. In the model

specifications A, B and C with memory, the belief coefficients furthermore show the essential

difference between fundamentalism and chartism: φ1 < 1 and φ2 > 1. If the regression includes

memory the estimated difference ∆φ≡ φ2−φ1 is significant and around 0.07 to 0.09: the hypoth-

esis ∆φ = 0 is rejected at the 5% level. This is our main evidence for behavioural heterogeneity

in the S&P500 data.

The estimated intensity of choice β is not found to be significant in model version (B), where

all four parameters are estimated simultaneously. This is a typical finding in nonlinear “smooth

transition” AR models, as changes in β have often very little effect on the fit of the model. For

a detailed general discussion of this issue, see Teräsvirta (1994). In Section 4.1, we will use

Monte Carlo (MC) simulations and show that the insignificance should not be a concern, as the

t-test for β simply lacks power given the size of our sample. These MC simulations show that

for a sample size of 252, even if our estimated model (A) with a β = 1 > 0 would be the true
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Table 2: Estimation of the belief coefficients φ1 and φ2, the intensity of choice β and the memory
parameter ω in the heterogeneous agents model xt = 1

R∗ (n1,tφ1 +n2,tφ2)xt−1 +εt , with R∗ = 1.008
and the fractions n1,t and n2,t updated according to (18) and (19). All specifications are
estimated with nonlinear least squares except for specification (D), which is found by a grid
search.

(A) (B) (C) (D)
φ1 0.936∗∗∗ 0.947∗∗∗ 0.940∗∗∗ 0.981

(0.027) (0.023) (0.020) (-)
φ2 1.026∗∗∗ 1.017∗∗∗ 1.026∗∗∗ 0.981

(0.021) (0.021) (0.020) (-)
β 1 2.443 10 1

(7.268)
ω 0.824∗∗∗ 0.800∗∗∗ 0.852∗∗∗ 0

(0.154) (0.152) (0.190)
∆φ 0.090∗∗ 0.070∗∗ 0.087∗∗ 0

(0.039) (0.033) (0.029) (-)
T 252 252 252 252
s2 14.12 14.09 13.87 14.08
R2 0.952 0.953 0.954 0.951
AIC 2.579 2.583 2.552 2.592
BIC 2.649 2.667 2.623 2.698
∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

Standard errors are denoted in brackets.

The R2 denotes the proportion variation in δt explained by the model.

underlying data generating process, we would not reject the null hypothesis of β = 0. The MC

simulations also show that for sufficiently large sample sizes, this null hypothesis is correctly

rejected. Stated differently, the test for no switching (β = 0) has low power against the HAM

model in small samples. This result for nonlinear smooth transition models is similar in spirit

as for example the low power of the Dickey-Fuller unit root test for linear near unit-root AR(1)

processes, a well-known empirical problem for small samples.

A solution for the insignificant β is to fix it at, e.g. at β = 1. In the robustness checks in

Appendix A, we show that the explanatory power of the model (as measured by the R2) is

much less sensitive to the value of β than to the values of the other parameters (see in particular

Figure A.7). Notice also that with β = 10 fixed at a higher value, as in model (C), the remaining

estimated parameters hardly change. Because a non-zero β is necessary to identify different

regimes as well as the level of memory ω, the model (A) with a value of 1 is our main focus

in the rest of this paper. The model with only the three relevant parameters φ1, φ2 and ω

makes economic sense and is also preferred over model (B) on the basis of Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC). Taking β = 0 reduces the model

to a linear AR(1) model and seriously reduces the fit of the model, but any positive value from

say β≥ 1 can be used in the HAM and yields similar estimation results.

The memory parameter ω is strongly significant. This means that shocks that are observed

17



more than one period ago are also taken into account in the switching between beliefs. While

the value around 0.8 in model (A) might seem high, it implies that more than half of the infor-

mation is extracted from observations in the last year (1−0.8244 ≈ 54%). So while memory is

important in estimating HAMs on higher frequency data, it does not require unrealistic process-

ing abilities from the agents. The model remains consistent with the behavioural background

of bounded rationality. We also estimate model (D) without memory (ω = 0). In this case the

two estimated regimes become identical (φ2 = φ2) and the nonlinear least squares estimation is

no longer identified; the results for model (D) in Table 2 were found by a grid search. Because

of the equal belief parameters, the estimation of model (D) is identical to that of a linear AR(1)

model, as we will show in Section 3.3. This underlines our statement that memory is important

to explain the regime shifts in the given quarterly dataset of the stock index.

From the estimation of the HAM we can infer the estimated fraction of fundamentalists n1,t

over time (Figure 2, top panel). This plot points at a structural break in 1995.9 After some

initial large shocks in the beginning of the sample, the fraction remained within the interval

[0.4,0.7] for most of the periods. Starting from 1995, however, two successive regimes of trend-

following and mean-reversion are evident. Trend-following dominated in the 1990s, amplifying

the stock price run-up during the dot-com bubble. The mean-reversion regime continued until

prices came just below the Gordon fundamental value in 2009, but fundamentalists remained

to dominate the markets for most of the periods in recent years. The inclusion of a memory

parameter is needed to distinguish these transitions from the relatively high noise levels.10

9In the estimation of the HAM in Section 5 we allow for a structural break in 1995Q1, a jump in the risk
premium, in the Campbell and Cochrane (1999) fundamental benchmark. Allowing for a structural break in the
dynamic Gordon model as is done in Appendix A yields similar results and in particular significant behavioural
heterogeneity.

10Boswijk et al. (2007) estimate the model on annual stock price deviations from the static Gordon fundamental
value between 1871 en 2003. For their lower frequency data, they do find significant behavioural heterogeneity
without memory. Their estimated fractions fluctuate heavily over the whole period, sometimes with large swings
from close to 0 to close to 1.
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Figure 2: Estimated fraction of fundamentalists (top panel) and the corresponding market sentiment
(bottom panel) for the HAM (A) under the Gordon model.
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The fractions can be translated directly into the estimated market sentiment ϕt over time

(Figure 2, bottom panel). The system is locally stable, as for the market sentiment with equal

distribution of beliefs it holds that φ1+φ2
2R∗ = 0.973 < 1. However, the plot shows that temporary

destabilisation with explosive market sentiment, i.e. ϕt > 1, is possible when the market is

dominated by chartists. This happened for a consecutive number of quarters during 1995-2000,

and chartists strongly amplified the magnitude of the dot-com bubble. After the bubble burst,

market sentiment remained low for a relatively long period and slowly recovered, at which point

the financial crisis hit in 2008. The fact that the model generates these genuinely different and

intuitive regimes makes it economically of interest.

Under the assumption of a constant risk premium, the financial crisis was merely a correction

back to fundamentals. The relatively small fluctuations in market sentiment since 2001Q1

indicate two points at which some investors moved away from the fundamentalists belief. First,

in 2006 and 2007 the recovery of the stock market increased the fraction of chartists to almost

50% and the market sentiment up to 0.970; but already by 2008Q2, before the bankruptcy of

Lehman Brothers, fundamentalists constituted already almost 100% of the market. According

to our HAM around the Gordon fundamental benchmark, the financial crisis therefore has been

strongly amplified as a correction back to fundamentals. In 2010 a second temporary upheaval

can be observed, but again most agents turned back to mean-reversion.
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3.3. A representative agent benchmark model

The variable ϕt in equation (17) is a time-varying AR(1)-parameter within the interval [ φ1
R∗ ,

φ2
R∗ ].

As an obvious linear benchmark, we also estimate an AR(1) model with a constant parameter,

see Table 3. Notice that this is not the rational representative agent benchmark, which would

coincide with the fundamental benchmark, but rather a representative agent believe in constant,

linear mean reversion. The estimated coefficient of the linear model is 0.973, which is close to 1.

This points to the possibility of non-stationarity, implying that the estimated standard errors

should be interpreted with care. The Dickey-Fuller test shows that the null hypothesis of a unit

root (i.e. ϕ = 1) can not be rejected. In Section 4.1 we address the result of this test in more

detail by Monte Carlo simulations, and find that it is most probably caused by the Dickey-Fuller

test having low power in our relatively small sample of T = 252.

Table 3: Estimation of the AR(1) model xt = ϕxt−1 + εt

Variable Coefficient (Std. Err.)
ϕ 0.973∗∗∗ (0.013)
DF -2.414 p-value=0.402
T 252
s2 14.08
R2 0.951
AIC 2.584
BIC 2.626
∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

The R2 denotes the proportion variation in δt explained by the model.

From comparing the R2, the heterogeneous agents models with memory are seen to be an

improvement over the AR model. The result of a partial F-test shows that the improvement of

model (A) over the AR model is significant: the F-statistic is 4.90 and exceeds the 5%-critical

value of 3.84. Also, the heterogeneous agents model (A) is preferred over the AR model with

a lower AIC, although the HAM has a lower BIC than the AR model. Admittedly, in absolute

terms the explanatory power is roughly 95% for both models. The mild improvement of the

explanatory power should be considered in relation with the unpredictability of stocks. The

estimations on the shorter horizon suffer from considerable noise levels and different models are

therefore inevitably more alike. Campbell and Shiller (1988b) already noted that stock prices

become less predictable when they are measured over intervals of less than a year rather than

over intervals of several years.

We conclude that the HAM statistically outperforms the AR model. Another interesting

feature of our heterogeneous agents model is that it gives an intuitive economic interpretation

of medium-run bubbles that is lacking in representative agent benchmark models.11 The next

11It is not straightforward to improve the (extremely) simple AR(1) model in a way other than we propose. For
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section will discuss the differences between the linear and the nonlinear switching models in more

depth by Monte Carlo simulations. It will become clear that the two models are economically

very different.

4. Monte Carlo simulations

To gain understanding about the properties of the HAM and evaluate differences with the simple

representative agent AR(1) model, we use the estimated equations as Data-Generating Processes

(DGPs) in our Monte Carlo simulations. For these two DGPs we draw shocks from a normal

distribution with zero mean and variance equal to the sample variance of the errors s2. For the

HAM version (A) the DGP is

xt = ϕtxt−1 + εt , εt ∼ N(0,σ2 = 14.12), (23)

where ϕt ∈ [ φ1
R∗ ,

φ2
R∗ ] = [0.928,1.017] is updated according to (17), (18) and (19) with φ1 = 0.936,

φ2 = 1.026, β = 1 and ω = 0.824. For the model with a fixed AR(1)-coefficient the DGP is

xt = 0.973xt−1 + εt , εt ∼ N(0,σ2 = 14.08). (24)

Remember that the simple AR(1) model is a straightforward benchmark model to test for

homogeneity. The HAM is essentially an AR(1) model with a time-varying coefficient.

We first evaluate the power and size of the tests we have used in the estimation in Section 3,

by running these two DGPs for some number of periods T and considering the outcomes of these

tests. In Section 4.2 we use the DGPs to generate time series starting at three observed points

in time, in order to illustrate the potential differences between the nonlinear HAM and linear

benchmark models in predicting PD ratios.

4.1. Evaluating the power of the main tests

Our tests of interest are the test for homogeneity (H0 : φ1 = φ2) and for no switching (H0 : β = 0)

for the HAM, and the Dickey-Fuller test for a unit root (H0 : ϕ = 1) for the AR model. Since

the true DGP is unknown, we perform these three tests under both DGPs, resulting in six

combinations. For example, we estimate a HAM (including a free parameter β) on data generated

by a simple AR(1) model, and investigate whether we find significant switching or heterogeneity.

example, in estimations of more general AR(p) model the higher order autocorrelation terms are typically not
significant. Another possibility is to allow for time-varying volatility using GARCH-errors (Bollerslev, 1986), a
method that is successful in explaining daily stock returns. We estimated an AR(1)-GARCH(1,1) model, in which
the dynamics after 1995 can be interpreted with high clustered volatility. This interpretation, however, misses the
different regimes that seem present in the data. We find that the HAM also dominates the AR-GARCH model
in explaining the data.
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In this case it is unlikely that we reject the null hypotheses of no switching and homogeneity,

but by pure coincidence of the error realisations, it is possible.

For each of the six combinations of DGP and test, we make B simulation runs of sample size

T , make for every run estimations on the simulated time series and check whether the p-value

of the particular test is below the nominal significance level α. If the null hypothesis is false,

e.g. when homogeneity is tested on HAM-generated data, the proportion of times we reject it

measures the power of the test. If the null hypothesis is true, e.g. when homogeneity is tested

on AR-generated data, the rejection probability measures the size of the test. In Tables 4 and

5 the Monte Carlo-estimations of the power are shown, and between brackets the size.

To check the asymptotic properties of the tests, we take a large sample size of T = 5,000 and

B = 1,000 simulation runs (see Table 4). The DF test is asymptotically working correctly: in

large samples it successfully identifies the true underlying processes to be stationary, and always

rejects the null hypothesis of a unit root. Similarly the power of the homogeneity test is 100%

for a large sample size. However, the test for no switching fails to reject the null hypothesis in

12% of the cases, even for this large sample size. This already indicates that rejecting the null

of no switching may be difficult even when the true DGP is the HAM.

Table 4: Rejection probabilities: nominal significance level α = 5%, T = 5,000, B = 1,000,
parameters for HAM version (A) in Table 2 and for the AR model as in Table 3.

\taTest: unit root homogeneity no switching
True model: DGP \ tabH0 ϕ = 1 φ1 = φ2 β = 0

heterogeneous HAM 100% 100% 88%
representative AR 100% (2%) (0%)

We repeat the Monte Carlo evaluation for the actual sample size of the data (T = 252) and

B = 10,000 simulation runs. Table 5 shows the results. The DF test performs poorly in small

samples. While the low small-sample power of the DF test for near unit-root AR processes

is well-known in the literature, our results show that the power decreases even further if the

true model is a nonlinear HAM. In particular, for our estimated HAM parameters the power is

reduced to almost half of the power if the true model an AR process. Therefore, the fact that

we failed to reject a unit root in the data is not surprising.

Table 5: Rejection probabilities: nominal significance level α = 5%, T = 252, B = 10,000,
parameters for HAM version (A) in Table 2 and for the AR model as in Table 3.

\taTest: unit root homogeneity no switching
True model: DGP \ tabH0 ϕ = 1 φ1 = φ2 β = 0

heterogeneous HAM 6.6% 46.2% 0.0%
representative AR 11.1% (4.2%) (0.0%)
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The test for no switching is utterly uninformative in small samples, as it does not reject in

any of the replications when the true DGP is a HAM. In other words, the reason that we do

not find a significant β in the data is because the corresponding t-test lacks power. The test for

homogeneity on the other hand remains to have a relatively high power (46% rejections for the

HAM versus 4% for the AR model). This result underlines that the detected heterogeneity in

the data is much more likely to be driven by real heterogeneity in the underlying process than

by pure chance in a representative agent world.12

4.2. What are the economic effects of different behavioural regimes?

To understand the economic mechanism that is at play in our heterogeneous agents model, we

examine some simulated time series in greater depth. As an example, we simulate the model

after three periods: 1997Q3 (t = 191), 2002Q2 (t = 210) and 2004Q4 (t = 220). At each of

these points in time the PD ratio was close to 60, relatively far above the fundamental value.

Using the DGP given in (23), we calculate different quantiles of the simulated distribution over

a rolling horizon. To start the simulations from the initial market situation at t = 191, t = 210

and t = 220, the observed fractions nh,t and performances Uh,t of both rules are feeded into the

simulation. In the left panels of Figure 3, the median prediction and the 5%-, 30%-, 70%- and

95% quantiles for the heterogeneous agents model are presented.13

It is striking that the heterogeneous agents model allows for the possibility of a large bubble

after 1997Q3, but at the same time generates strong mean-reversion after 2002Q2. After 2004Q4

the median prediction is also decreasing quite quickly to the fundamental value. These differences

can be explained by the key mechanism in the model: positive expectations feedback. In 1997Q3,

the estimated fraction of fundamentalists is low (n1,t = 0.04, see Figure 2) and the market

sentiment parameter exceeds 1 (ϕt = 1.01). With partly self-fulfilling expectations and many

investors believing in a trend, stock prices typically move further away from fundamentals, which

also happened during the dot-com bubble. Our model suggests that the bubble could have been

even more pronounced: the top of the 95%-quantile is 106.6 and is reached after 26 quarters

in 2004Q1. Note though that bubbles end endogenously: the increasingly high expectations of

chartists are bound to overshoot the realised prices, leading to a fundamentalist mean-reverting

regime. Our model thus explains the stock market boom in the late 1990s as a temporary bubble

triggered by fundamentals and strongly amplified by trend-following behaviour.

12Under the Data-Generated Process by the AR(1) model, the tests for homogeneity and for no switching reject
the null hypothesis in less than 5% of the simulations, indicating that the size of these tests is not controlled
at the nominal level. This effect, probably due to the nonlinearity of the estimated model, does not affect our
conclusions.

13For simplicity we ignore here small deviations in the fundamental value of the dynamic Gordon model and
consider the static Gordon solution δ∗ = 29.9.
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Figure 3: Realised and simulated PD ratio after 1997Q3 (top panels), after 2002Q2 (middle panels)
and after 2004Q4 (bottom panels). The left panels show the simulated distributions for the
heterogeneous agents model, feeded with last observed fractions and performances, and the
right panels show the simulated distributions for the AR model.
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For comparison, we also simulate the representative agent AR model (right panels of Figure 3)

starting from the same periods. Note that the linear AR model gives almost identical predictions

in 1997Q3, 2002Q2 and 2004Q4, and completely misses the dot-com bubble. The AR simulations

are symmetrically distributed around the median and return slowly to the fundamental value

with a constant coefficient ϕ < 1. The HAM is nonlinear : it can allow for a bubble in the

short run, but also generates a faster return to the fundamental value if fundamentalists become

dominant. This rapid decline, as for example in the simulations after 2002Q2, occurs if after

some negative shocks the fundamentalists belief keeps attracting more followers, which decreases

market sentiment and consequently prices.

The heterogeneous agents model, built upon positive expectations feedback, generates simu-

lated time series of prices that are economically quite different from linear representative agent

models. Our model is suitable for making medium-run projections of future prices when pre-

dictions of rational representative agent models are unreliable. The financial crisis is within a

representative agent world typically perceived as an extreme event. The PD ratio of 27.8 in

2009Q1 is below its 5% quantile of the AR model simulated after 2004Q4, more than four years

before the crisis (bottom right panel of Figure 3). Because of the high estimated fraction of

fundamentalists, the heterogeneous agents model predicts lower prices after 2004Q4 than the

AR model, and its upper 95% confidence interval (above the 5% quantile) does contain the

possibility of the large drop in stock prices during the financial crisis.

5. Estimation results using a consumption-habit time-varying risk premium

We have seen that under a constant risk premium stock prices exhibit considerable deviations

from their fundamentals and in particular there is large overpricing after 1990. The hetero-

geneous agents model explains this overpricing as being triggered by fundamental shocks and

strongly amplified by a long regime of trend-following behaviour up to the end of 2000. A differ-

ent explanation from mainstream finance is that the discount rate changed to very low values,

such that the same expected future payoffs were valued higher. In Section 3 we allowed the

discount rate to vary, but only with predictable variation in the risk free rate; the risk premium

was assumed to be constant. In this section we relax the assumption of a constant risk premium

in order to study the robustness of our results. We will show that, even after introducing con-

siderable time-variation in the risk premium, significant evidence for behavioural heterogeneity

in beliefs remains.

We follow the consumption-habit model for stock price fluctuations by Campbell and Cochrane

(1999). This approach is well-known and recently summarised and advocated in Cochrane

(2011). The main idea of their model is that investors demand a higher risk premium as con-

sumption decreases during a recession, and conversely become less risk averse when consumption

goes up during an economic boom. In order to translate continuing rising consumption levels to a
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stationary level of risk aversion, Campbell and Cochrane (1999) define a slow moving “habit” or

moving average consumption level, and consider the relative distance between consumption and

this habit, called “surplus consumption”. Using this surplus consumption, the model predicts

the evolution of price-dividend ratios over time.14

Our two-step methodology in search for evidence of heterogeneous agents can be applied

to any benchmark model for the fundamental value, and here we use the consumption-habit

model as the fundamental stock index value. In the first step, we will use the specification

of Campbell and Cochrane (1999) for surplus consumption and fit their model on actual PD

ratios. Inspired by the line of thought in Cochrane (2011), we allow for one structural break

in surplus consumption to capture high asset price values after the 1990s. In the second step,

we will estimate the heterogeneous agents model on deviations from the fitted price-dividend

ratios, and test whether time-varying risk premia make a significant difference.

5.1. Estimating the Campbell-Cochrane model

Below we give a short summary of the habit consumption asset pricing model. We start by

recalling the two-period equation for the PD ratio (4) from Section 2:

δt = Et

[
1

Rt+1

Dt+1

Dt
(δt+1 + 1)

]
. (25)

To specify the discount rate Rt+1, in this case stochastic, Campbell and Cochrane (1999) stipulate

that agents maximise the utility function:

U = Et

∞

∑
j=1

κ
ju(Ct+ j,Ht+ j) = Et

∞

∑
j=1

κ
j (Ct+ j−Ht+ j)

1−γ−1
1− γ

, (26)

where C, H, κ and γ are respectively consumption, the habit level, the subjective time discount

factor and the utility curvature parameter. The surplus consumption ratio St is defined as the

relative difference between consumption and the habit level:

St =
Ct −Ht

Ct
. (27)

From the first-order conditions of (26), the discount rate Rt+1 equals the inverse of the intertem-

poral marginal rate of substitution Mt+1:

1
Rt+1

= Mt+1 = κ
uc(Ct+1,Ht+1)

uc(Ct ,Ht)
= κ

(
St+1

St

Ct+1

Ct

)−γ

. (28)

14The consumption-habit model has been challenged by Brunnermeier and Nagel (2008), who analyse microdata
on how households allocate their wealth between risky and riskless assets.

26



Combining equations (25) and (28), Campbell and Cochrane (1999) show that the fundamental

PD ratio can be expressed as a function of surplus consumption ratio St only, as it is the only

state variable.

We now focus on the calculation of the surplus consumption St . Campbell and Cochrane

(1999) assume that the log surplus consumption ratio st ≡ logSt evolves as a heteroskedastic

AR(1) process:

st+1 = (1−φ
s)s + φ

sst + λ(st)(ct+1− ct −µc). (29)

The symbols φs, µc and s denote parameters for the function of the surplus consumption ratio

and λ(st) is the sensitivity function of st+1 to the deviation of consumption growth from its long

run average. Consumption growth is modelled as an i.d.d. lognormal process on ct ≡ logCt :

ct+1 = ct + µc + vc
t+1, vc

t+1 ∼ IID(0,σ2
c). (30)

Campbell and Cochrane (1999) find the steady-state surplus consumption ratio S≡ exp(s):

S = σc

√
γ

1−φ
, (31)

where γ is a parameter of utility curvature. They define the sensitivity function as

λ(st) =

{
(S)−1

√
1−2(st − s)−1 if st ≤ smax

0 if st > smax,
(32)

where smax ≡ logSmax is the value of st at which the upper expression (32) becomes zero:

smax = s +
1
2

(1−S2
). (33)

Using the expressions above, we can relate observed consumption levels Ct to surplus con-

sumption ratios St by four free parameters: µc, σc, φs and γ. We use updated data on real

per capita U.S. consumption of nondurable goods and services originally provided by Chen and

Ludvigson (2009) with T = 243 observations from 1952Q1 to 2012Q3.15 We match the mean

and standard deviation of log consumption growth µc and σc to the data. The parameters φs

and γ are taken identical to Campbell and Cochrane (1999).

Table 6 presents the estimates of the parameters µc and σc with values of other parameters

that are either assumed or implied by the model. Our steady-state surplus consumption ratio S

is around 0.037 and somewhat lower than the value of Campbell and Cochrane (1999) of 0.057,

15Note that no data is available for the period 1950Q1-1951Q4, which reduces our sample for the PD ratio by
8 observations. At the time of writing also the last observation 2012Q4 was not available.

27



because we find smaller variation in consumption growth (σc = 0.94 rather than 1.50, on yearly

basis). There are also some small differences between quarterly and yearly surplus consumption

ratios; we will use the quarterly values in the further analysis.

Table 6: Parameter values for the habit consumption model.

Parameter Variable Value (quarterly) Value (yearly)
Matched :
Mean consumption growth (%) µc 0.46 1.84
S.d. of consumption growth (%) σc 0.47 0.94
Assumed :
Persistence coefficient φs 0.97 0.87
Utility curvature γ 2.00 2.00
Implied :
Steady-state surplus consumption S 0.038 0.037
Maximum surplus consumption Smax 0.063 0.061

Figure 4 shows consumption in logs and relative to consumption at the start of the sample, and

the habit level implied by the model under the assumption that the surplus consumption ratio

starts at the steady state at the beginning of the sample 1952Q1. The lower panel of Figure 4

shows the surplus consumption ratio. Similar to the estimations of Campbell and Cochrane

(1999), the estimated surplus consumption ratio tracks the macroeconomic trends, such as the

consumption boom in the 1960s (though with a lag) and the boom in the 1980s. The most recent

part of the time series shows the ongoing Great Recession during which consumption dropped

down abruptly and persistently to a level very close to the habit.

In the Campbell-Cochrane model the price-dividend ratio is a nearly log-linear function of

the surplus consumption ratio. We will estimate the log-linear relationship between the surplus

consumption ratio and the PD ratio δt as follows:

δt = b(St)
p + ut , (34)

where b > 0 and p > 0 are the parameters specifying the log-linear relationship, and ut is the

error term. Instead, Campbell and Cochrane (1999) search for a numerical solution of the

PD ratio (25) by plugging in discount rates (28) and using a numerical integrator to evaluate

the conditional expectation over the normally distributed consumption shocks vc
t+1. Direct

estimation is perhaps less precise but much simpler and leads to a graphical representation

similar to Cochrane (2011, p. 1073).

It turns out that the statistical fit of this relationship is rather poor, as seen in Table 7, with

an R2 of 4%. The estimate of p is below 0 (pointing to a negative relationship) but insignificant.16

16In fact, the fitted PD ratios of the consumption-habit model without structural break are almost constant
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Figure 4: Log consumption per capita of nondurable goods and services and the habit level (top panel),
and surplus consumption ratio (bottom panel), under the assumption that the surplus con-
sumption ratio starts at the steady state in 1952Q1.
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The main reason for the low fit is that the model does not capture the large stock market boom

in the 1990s. Cochrane (2011) circumvents this problem by focusing on PD ratios after 1990

only. As Campbell and Cochrane (1999) note: “Growth in consumption of nondurables and

services was surprisingly low in the early 1990s, so our model predicts a fall in price/dividend

ratios rather than the increase we see in the data.” They list (exogenous) reasons, such as

shifts in corporate financial policy and shifts in consumption due to rising income inequality or

demographic effects, why the model based on the time series Ct might underestimate the PD

ratio in this period.

Table 7: Estimation of the log-linear relation between the surplus consumption ratio and PD ratio.

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)
b 28.29 (589.3) 303.9∗∗∗ (78.59)
p -0.074 (1.18) 0.830∗∗∗ (0.149)
Sbreak 0 0.093∗∗∗ (0.007)
T 243 243
s2 260.5 58.43
R2 0.040 0.785
∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

To capture these “shifts”, we consider as a fundamental benchmark a consumption-habit

model with one structural break in the 1990s. More precisely, we allow for a structural break in

surplus consumption ratio in quarter 1995Q1 (corresponding to t = 173) by estimating

δt =

{
b(St)

p + ut if t < 173

b(St + Sbreak)
p + ut if t ≥ 173,

(35)

The last two columns of Table 7 present the results of this log-linear regression with one structural

break. All three coefficients are significant and of the expected sign. We observe that a very

large break in surplus consumption ratio of 0.093 is required, almost one and a half times the

maximum value S. Figure 5 plots the fitted PD ratios resulting from this model, δCC
t . Given the

large break, the model does track some of the variation in PD ratios, also after 1995, as argued

by Cochrane (2011). Allowing for a structural break in the consumption-habit fundamental

value improves the R2 from 4% to 79%.

The inclusion of one structural break seems, in principal, reasonable because we have a

relatively long time series.17 For example, Pástor and Stambaugh (2001) establish multiple

structural breaks in the equity premium of the CSRP NYSE value-weighted portfolio from 1840

and very close to those of the (dynamic) Gordon model. Estimation of the HAM using these fundamental PD
ratios leads therefore to similar results as in Section 3.

17In Appendix A, we also estimate our model using a Gordon fundamental value as in Section 3 with one
structural break in 1995Q1. These estimation results are very similar and support our main result of significant
behavioural heterogeneity.
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Figure 5: Realised PD ratio and its fitted values based on the Campbell-Cochrane model with a struc-
tural break in 1995Q1.
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to 1999 and identify the sharpest drop in the 1990s. Lettau and Van Nieuwerburgh (2008)

consider various econometric techniques to detect shifts in the mean of the price-dividend ratio

and estimate a similar timing of the largest break, which is also consistent with our finding of a

large and significant structural break in 1995.18

Although a structural break improves the fit of the model, for the estimates b = 303.9 and

p = 0.830 that are consistent with the whole sample, large deviations from the fundamental value

remain. A lower risk premium due to high surplus consumption ratios cannot fully explain the

dot-com bubble as can be seen from Figure 5. The consumption-habit model also fails to explain

why the stock market fell so deep in 2008Q3 and recovered so quickly afterwards, because the

surplus consumption ratio stayed low for the whole period after 2008Q3. So even after allowing

for one structural break, the fit of the Campbell-Cochrane model is far from perfect.

5.2. Estimation of the HAM under the consumption-habit fundamental value

The Campbell-Cochrane model, despite being able to reproduce some general patterns in asset

prices by a time-varying risk premium, does not fully explain asset price movements. Even if

we disregard the large unexplained structural break in the 1990s, the model fails to account

sufficiently for the two biggest events after 1990, namely the dot-com bubble and the financial

crisis. We therefore extend the model with behavioural heterogeneity between agents as we did

18Our results do not depend qualitatively on the exact timing of the structural break. For example, changing
the structural break to 1990Q1 (t = 153) leads to similar parameter estimates: b = 269.7∗∗∗, p = 0.773∗∗∗, Sbreak =
0.091∗∗∗; R2 = 0.647.
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for the Gordon model.19 In other words, we re-estimate the model summarised by equations

(17), (18) and (19) using the time series of PD ratios in deviation from the consumption-habit

‘fundamental value’:

xCC
t ≡ δt −δ

CC
t . (36)

The results for the HAM estimated on xCC
t are presented in Table 8.20

Table 8: Estimation of the belief coefficients φ1 and φ2, the intensity of choice β and the memory
parameter ω in the HAM xCC

t = 1
R∗ (n1,tφ1 + n2,tφ2)xCC

t−1 + εt , with R∗ = 1.008 and the fractions

n1,t and n2,t updated according to (18) and (19), using PD ratios δCC
t fitted to the Campbell-

Cochrane model as in the last two columns of Table 7. All specifications are estimated with
nonlinear least squares.

Variable (A) (B) (C) (D)
φ1 0.699∗∗∗ 0.733∗∗∗ 0.759∗∗∗ 0.796∗∗∗

(0.071) (0.058) (0.052) (0.100)
φ2 1.017∗∗∗ 0.985∗∗∗ 0.980∗∗∗ 0.933∗∗∗

(0.068) (0.052) (0.050) (0.098)
β 1 3.768 10 1

(6.035)
ω 0.686∗∗∗ 0.719∗∗∗ 0.817∗∗∗ 0

(0.129) (0.118) (0.016)
∆φ 0.318∗∗∗ 0.253∗∗∗ 0.221∗∗∗ 0.137

(0.121) (0.085) (0.078) (0.186)
T 243 243 243 243
s2 13.94 13.72 13.89 14.40
R2 0.948 0.949 0.948 0.946
AIC 2.664 2.654 2.657 2.687
BIC 2.750 2.755 2.744 2.759
∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

Standard errors are denoted in brackets.

The R2 denotes the proportion variation in δt explained by the model.

The parameter estimates are, perhaps surprisingly, in many ways similar to those in Section 3

under a constant risk premium. Most importantly, we find that the belief parameters φ1 and

φ2 are significantly different from each other. Comparing the estimations of model version (A)

with three parameters on xCC
t and xt , we find that the estimate of ∆φ is larger - 0.32 instead of

0.08 - and highly significant. Even when taking time-varying risk premia into account, there is

significant evidence for different behavioural regimes in the data.

19By extending the Campbell-Cochrane model with heterogeneous beliefs, we complement theoretical work by
Bhamra and Uppal (2014). They generalise a framework in which agents have “catching up with the Joneses”
utility functions to heterogeneous priors and heterogeneous preferences, and obtain a closed-form solution.

20For simplicity, we maintain the constant value of the expected effective discount rate at R∗ = 1.008, obtained
from the Gordon model in Section 3.1. The estimation results are robust to reasonable variations in R∗.

32



There is also significant memory for switching between the two behavioural rules. Setting

ω = 0 as is done in model version (D) leads to a lower fit and an insignificant ∆φ. The estimated

intensity of choice is again not significant, because the model fit is very insensitive to the exact

value of β > 0 and its t-test has low power; see Section 5.3 for a more detailed discussion. Model

version (A), in which the value is fixed at β = 1, has a higher AIC than model (B), but is preferred

over (B) based on the lower BIC. We focus on model specification (A), which raises the fit for

the consumption-habit model with one structural break from an R2 of 79% to 95% by allowing

for behavioural heterogeneity.21

The main differences with the predictions of the HAM estimation in Section 3 lie in the

values of the two beliefs, and make sense if we consider the different fundamental benchmark

we have used. The value of φ1 is much lower, because the fundamental value is generally closer

to the actual PD ratio. For example, after the burst of the dot-com bubble, prices came within

a few years back to the fundamental price based on a large surplus consumption ratio and a

low risk premium. Also the parameter φ2 is lower and in fact very close to 1, less than one

standard deviation away; slightly above 1 in (A) and slightly below 1 in (B) and (C). Hence,

while the ‘chartist’ belief is still significantly different from the mean-reverting fundamentalist

belief, it is not significantly different from predicting the last observed price, that is, ‘naive

expectations’, consistent with a belief that the PD deviation from the fundamental benchmark

follows a random walk.

Figure 6 plots the estimated fraction of fundamentalists n1,t and the market sentiment ϕt

with the time-varying risk premium. The most striking difference is that the fraction of fun-

damentalists is fluctuating heavily during the entire sample. Before 1995, the proportion of

chartists rarely becomes very high, and asset prices stay relatively close to fundamentals. In the

1990s and around the year 2000 market sentiment comes close to 1 (and sometimes exceeds it),

destabilising the market and amplifying the dot-com stock boom.

The heterogeneous agents model with a fundamental benchmark with time-varying risk pre-

mium based on surplus consumption gives an interesting explanation for the depth of the finan-

cial crisis. The model predicts that the fundamental price around 2008 is close to 50, based on

the higher surplus consumption ratio after the structural break in 1995 and the lower implied

risk premium (see Figure 5). The bankruptcy of Lehman Brothers lead to a large negative shock

at a time when a majority of investors was following a chartist strategy, as the fundamentalist

belief was unrewarding in the past periods. This behavioural overreaction of investors to the

21Note that the HAM using a time-varying risk premium has a slightly lower R2 (94.8% instead of 95.2%) while
having more parameters. The reason lies in the two-step estimation procedure of first the fundamental value
and then the heterogeneous agents part on price deviations from this fundamental. Estimating all parameters
simultaneously is possible and gives a higher R2 for the HAM using the consumption-habit time-varying risk
premium.
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Figure 6: Estimated fraction of fundamentalists (top panel) and the corresponding market sentiment
(bottom panel) for the HAM (A) using the Campbell-Cochrane model as fundamental bench-
mark.
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Lehman Brothers shock, with the market sentiment exceeding 1, strongly amplified the financial

crisis. Only starting from 2009Q3 price-dividend ratios returned to the fundamentals. During

this period dividends increased, so prices started increasing again.

5.3. Evaluating the tests for the model under a consumption-habit fundamental value

As a final robustness check for the model with a time-varying risk premium, we run Monte

Carlo simulations using the estimated HAM and a benchmark AR model as Data-Generating

Processes.22 We first estimate the linear benchmark model, see Table 9. The constant value ϕ

is as expected halfway the beliefs of the two heterogeneous groups φ1 and φ2: 0.863≈ (0.698 +

1.107)/(2∗1.008). The Dickey-Fuller test rejects the null hypothesis of a unit root in PD ratios

in deviation from the consumption-habit fundamental value with one structural break.

Using Monte Carlo simulations, we evaluate the Dickey-Fuller test for a unit root (ϕ = 1),

the test for homogeneity (φ1 = φ2) and the test for no switching (β = 0) given the estimated

parameters in the model with a time-varying risk premium (similar as in Section 4.1 for the

22It is not straightforward to make out-of-sample predictions for PD ratios with these DGPs as in Section 4.2,
because we would then have to make predictions about future consumption growth. This is outside the scope of
the current paper.
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Table 9: Estimation of the AR(1) model xCC
t = ϕxCC

t−1 + εt , using PD ratios fitted to the Campbell-
Cochrane model as in the last two columns of Table 7.

Variable Coefficient (Std. Err.)
ϕ 0.863∗∗∗ (0.032)
DF -4.284∗∗∗ p-value<0.01
T 243
s2 14.22
R2 0.946
AIC 2.684
BIC 2.742
∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

The R2 denotes the proportion variation in δt explained by the model.

model with a constant risk premium). In Table 10 this is done for a large sample size of

T = 5000 and in Table 11 for the actual sample size of 243. In both cases we generate a large

number of B simulated time series under the different DGPs and check the outcome of the three

tests for each simulation.

The results are qualitatively the same as in the case with a constant risk premium. The

Dickey-Fuller test is asymptotically correct in rejecting the unit root, but has lower power for

a smaller sample size of T = 243. Because the actual AR(1) parameter is here well below 1

(ϕ = 0.863) the power is still 98%; much higher than than the low power of 11% found in

Table 3 (for ϕ = 0.973). If the actual underlying DGP is a nonlinear HAM, the power of the

DF-test decreases to 80%.

Table 10: Rejection probabilities: nominal significance level α = 5%, T = 5,000, B = 1,000,
parameters for HAM version (A) in Table 8 and for the AR model as in Table 9.

\taTest: unit root homogeneity no switching
True model: DGP \ tabH0 ϕ = 1 φ1 = φ2 β = 0

heterogeneous HAM 100% 100% 100%
representative AR 100% (2%) (0%)

Table 11: Rejection probabilities: nominal significance level α = 5%, T = 243, B = 10,000,
parameters for HAM version (A) in Table 8 and for the AR model as in Table 9.

\taTest: unit root homogeneity no switching
True model: DGP \ tabH0 ϕ = 1 φ1 = φ2 β = 0

heterogeneous HAM 80.3% 84.0% 0.0%
representative AR 98.2% (3.2%) (0.0%)

When estimating a heterogeneous agents model one should be looking for significantly dif-

ferent beliefs (i.e. a significant ∆φ), and not necessarily for significant switching (a significant

β). Both tests work asymptotically correct (having a high power and low size), but the test for

no switching hardly ever rejects (0.0%) in small sample and is thus uninformative. Again, this
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explains why the estimated intensity of choice β is not significant. The test for homogeneity

has large power (84%) even in small sample. The detected heterogeneity in the S&P500 data is

therefore most probably not driven by random shocks in a representative agent model (as the

attributed p-value is 3.2%).

6. Conclusion

In this paper we investigate the value added of explaining asset pricing movements using a het-

erogeneous beliefs model. Motivated by the global financial crisis, our focus is on booms and

busts that take place in the medium run, and we estimate our model on quarterly data. A

convenient feature of our HAM is that it can be formulated around any benchmark fundamen-

tal. We use two well-known models as fundamental benchmark values for the price-dividend

ratio, the dynamic Gordon model with a constant risk premium and the Campbell-Cochrane

consumption-habit model with a time-varying risk premium. Using deviations from these funda-

mental benchmarks, we find a statistically significant improvement of the heterogeneous agents

model over these standard representative agent models, and significant evidence for behavioural

heterogeneity.

The global financial crisis displayed events that were sometimes inconceivable in a representa-

tive agent world. Our heterogeneous agents approach can shed light upon unexpected swings in

asset prices driven by positive expectations feedback. Investors switch between strategies based

upon their relative performance. When the group of fundamentalist traders gains momentum,

prices return more quickly to the fundamental value. Temporary bubbles, triggered by small

fundamental shocks, are strongly amplified when a majority of investors coordinates on chartist

beliefs. The endogenous transitions between the regimes driven by relative profitability makes

the model attractive in helping to explain booms and busts in asset pricing data.

In our simple heterogeneous agents model with fundamentalists and chartists, we find differ-

ences in expectations – measured quarterly and in deviations from the fundamental value – of

10 to 30 percentage points depending on the model that is used for the fundamental value. We

show (using Monte Carlo simulations) that this large and significant effect cannot be expected to

arise from standard representative agent models. Our model with different behavioural regimes

of market sentiment is economically significant in the sense that it gives better predictions than

representative agent models in periods before the dot-com bubble and the financial crisis.

A limitation of our methodology is that we only use aggregate data to estimate behavioural

rules of individual investors. The simple linear behavioural rules of our model are also found

laboratory experimental markets (e.g. Hommes et al., 2005) and describe individual forecasting

behaviour quite well. A recent and promising line of research combines stock market data with

increasingly reliable survey measures of investors’ expectations; e.g. Adam et al. (2013) present
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a model where agents are ‘internally rational’ but hold subjective beliefs about stock prices

and calibrate it on data from the S&P500 and the UBS Gallup Survey, showing robustness

to other survey data. These general patterns in survey data seem to be consistent with the

main conclusions in our paper. Our model predicts that during the dot-com bubble around

2000 investors were aware that prices were too high compared to measures of true fundamental

value, and surveys as in e.g. Shiller (2000) support this claim. An analysis of behavioural

heterogeneity combining aggregate price data and survey measures is an interesting possibility

for future research.

We pay specific attention to price dynamics around the financial crisis of 2008. Clearly,

the interpretation of this event generally depends on which benchmark fundamental is used to

estimate the model. If we consider the Gordon fundamental value, the stock market index has

been overpriced since 1995 (see Figure 1). Under this Gordon fundamental, the stock market

crash in 2008 is a correction towards the fundamental, while after 2008 a new bubble has

formed. If we instead use the Campbell-Cochrane consumption-habit fundamental model with

one structural break, the S&P500 seems to be fairly priced in recent years, although systematic

deviations remain (see Figure 5). The financial downturn in 2008 is here interpreted as a strong,

temporary overreaction to the bankruptcy of Lehman Brothers (see also Figure 6, bottom panel,

for the estimated market sentiment). These differences illustrate that policy makers should have

a good sense of the underlying fundamental value before they can consider measures to stabilise

financial markets. More research is required to investigate which policy measures should be used

to contain the amplifying effects of behavioural heterogeneity.

Our analysis adds to evidence that behavioural heterogeneity and strategy switching plays an

important role in asset price dynamics. Boundedly rational traders can be expected to survive

in financial markets and amplify booms and busts. In particular, we show that agents switched

between fundamentalist and chartist beliefs, and strongly reinforced the decline in asset prices

after the shock of the Lehman Brothers bankruptcy. Uncertainty due to behavioural heterogene-

ity has important implications for risk management. Policy makers should therefore not focus

exclusively on rational representative agent models, but should take behavioural heterogeneity

into account in assessing the systemic risk in financial markets.
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Appendix A. Robustness analysis

In this appendix we analyse the robustness of our estimation results of the heterogeneous agents

model of the PD ratios in deviations from the Gordon benchmark model.

In Figure A.7, we show that the explanatory power of the model (as measured by the R2)

is much less sensitive to the value of β than to that of the other parameters φ1, φ2 and ω. For

β≥ 1 the R2 is essentially flat. This is the reason why we often find a nonsignificant β coefficient.

Because a non-zero β is necessary to identify different regimes as well as the level of memory ω,

we have fixed β to the (arbitrary) value of 1 in most of our estimations. Fixing β to some larger

value yields very similar results.

Next, we try to improve the fundamental value of the Gordon model by adding a structural

break in the risk premium starting from 1995Q1, just as we did for the Campbell Cochrane

consumption-habit fundamental model in Section 5. We find that before 1995Q1, the risk

premium was high and around 0.85% per quarter; from 1995Q1 the risk premium was much lower

at around 0.32% per quarter. This leads to higher fundamental prices after 1995: δ∗pre95 = 25.3

versus δ∗post95Q1 = 54.2. We consider for the Gordon model with one structural break again both

the static and the dynamic model. For the dynamic Gordon model, there is a higher impact of

deviations from the average values g and r. See Figure A.8.

We reestimate model versions (A) with β = 1, (B) with all four parameters and (D) with

β = 1 and ω = 0, in Table A.12 for the static Gordon and in Table A.13 for the dynamic Gordon

model, both with a break in 1995Q1. The main result is robust for the structural break: if the

model includes memory, the two beliefs are significantly different from each other. The estimated

value of ∆φ is between the estimate for the Gordon model without break (around 0.09) and the

estimate for the Campbell Cochrane consumption-habit model (up to 0.30), namely 0.15 to 0.20.

The estimates of φ2 are very close to 1 (naive expectations), slightly above 1 for the static and

slightly below 1 for the dynamic Gordon model. In general, our results are robust and our

conclusions do not depend on our choice of the benchmark fundamental value.
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Figure A.7: Sensitivity of R2 in the HAM. The dot denotes the choice of parameters as in model (A)
giving R2 = 0.952. In each of the diagrams, one of the four parameters (φ1, φ2, ω or β) is
altered while retaining the values of the other three. The dotted line indicates the fit of
the AR(1) model (R2 = 0.951).
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Figure A.8: Realised PD ratio and its fundamental values based on the static and dynamic Gordon
model with one structural break in 1995Q1.

1950 1960 1970 1980 1990 2000 2010
0

20

40

60

80

100

t

δt

Realised PD ratio
Static Gordon model with break
Dynamic Gordon model with break

Table A.12: Estimation of the belief coefficients φ1 and φ2, the intensity of choice β and the memory
parameter ω in the HAM xSG+break

t = 1
R∗ (n1,tφ1 + n2,tφ2)xSG+break

t−1 + εt , with R∗ = 1.008 and
the fractions n1,t and n2,t updated according to (18) and (19), under a static Gordon model
with one structural break in 1995Q1. All specifications are estimated with nonlinear least
squares.

(A) (B) (D)
φ1 0.817∗∗∗ 0.827∗∗∗ 0.930∗∗∗

(0.053) (0.048) (0.150)
φ2 1.019∗∗∗ 1.010∗∗∗ 0.945∗∗∗

(0.036) (0.035) (0.164)
β 1 1.957 1

(3.106)
ω 0.640∗∗ 0.613∗∗ 0

(0.276) (0.271)
∆φ 0.203∗∗∗ 0.184∗∗ 0.016

(0.073) (0.067) (0.309)
T 252 252 252
s2 10.90 10.88 11.39
R2 0.955 0.955 0.953
AIC 2.525 2.531 2.556
BIC 2.581 2.601 2.598
The R2 denotes the proportion variation in δt explained by the model.
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Table A.13: Estimation of the belief coefficients φ1 and φ2, the intensity of choice β and the memory
parameter ω in the HAM xDG+break

t = 1
R∗ (n1,tφ1 + n2,tφ2)xDG+break

t−1 + εt , with R∗ = 1.008 and
the fractions n1,t and n2,t updated according to (18) and (19), under a dynamic Gordon
model with one structural break in 1995Q1. All specifications are estimated with nonlinear
least squares except for specification (D), which is found by a grid search.

(A) (B) (D)
φ1 0.816∗∗∗ 0.829∗∗∗ 0.914

(0.054) (0.052) (-)
φ2 0.989∗∗∗ 0.977∗∗∗ 0.914

(0.045) (0.043) (-)
β 1 2.359 1

(5.080)
ω 0.752∗∗∗ 0.759∗∗∗ -

(0.176) (0.123)
∆φ 0.174∗∗ 0.148∗∗ 0

(0.082) (0.075) (-)
T 252 252 252
s2 17.32 17.26 -
R2 0.945 0.945 0.944
AIC 2.728 2.731 2.738
BIC 2.813 2.829 2.808
The R2 denotes the proportion variation in δt explained by the model.
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