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Abstract

A Bayesian nonparametric predictive model is introduced to construct

time-varying weighted combinations of a large set of predictive densities. A

clustering mechanism allocates these densities into a smaller number of mutually

exclusive subsets. Using properties of the Aitchinson’s geometry of the simplex,

combination weights are defined with a probabilistic interpretation. The class-

preserving property of the logistic-normal distribution is used to define a
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compositional dynamic factor model for the weight dynamics with latent factors

defined on a reduced dimension simplex. Groups of predictive models with

combination weights are updated with parallel clustering and sequential Monte

Carlo filters. The procedure is applied to predict Standard & Poor’s 500 index

using more than 7000 predictive densities based on US individual stocks and finds

substantial forecast and economic gains. Similar forecast gains are obtained in

point and density forecasting of US real GDP, Inflation, Treasury Bill yield and

employment using a large data set.

JEL codes: C11, C15, C53, E37.

Keywords: Density Combination, Large Set of Predictive Densities, Compositional

Factor Models, Nonlinear State Space, Bayesian Inference, GPU Computing.

1 Introduction

Forecasting with large sets of data is a topic of substantial interest to academic

researchers as well as to professional and applied forecasters. It has been studied in

several papers (e.g., see Stock and Watson, 1999, 2002, 2004, 2005, 2014, and Bańbura

et al., 2010). The recent fast growth in (real-time) big data allows researchers to

predict variables of interest more accurately (e.g., see Choi and Varian, 2012; Varian,

2014; Varian and Scott, 2014; Einav and Levin, 2014). Stock and Watson (2005, 2014),

Bańbura et al. (2010) and Koop and Korobilis (2013) suggest, for instance, that there

are potential gains from forecasting using a large set of predictors instead of a single

predictor from a univariate time series. However, forecasting with many predictors

and high-dimensional models requires new modeling strategies (to keep the number

of parameters and latent variables relatively small), efficient inference methods and

extra computing power like parallel computing. We refer to Granger (1998) for an

early discussion of these issues.

We propose a Bayesian nonparametric model in order to deal with large set of

predictive densities. The proposed model is still relatively parsimonious in the number

of parameters and latent variables and has a representation in terms of a dependent

sequence of random measures on the set of predictors of different models, with common

atoms and component-specific random weights. Our model extends the mixture of the

experts and the smoothly mixing regression models (Jacobs et al., 1991, Jordan and

Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996, Wood et al., 2002, Geweke and

Keane, 2007, Villani et al., 2009, Norets, 2010) by allowing for dependence between

the random weights of the mixture and for model incompleteness. In this sense,
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our combination model shares some similarities with the dependent random measures

used in Bayesian nonparametric models (see Müller and Quintana, 2010 and Müller

and Mitra, 2013).

The proposed approach introduces an information reduction step by making use

of a clustering mechanism where allocation variables map the original set of predictive

densities into a relatively small number of mutually exclusive subsets with combination

weights driven by cluster specific latent processes specified as a compositional factor

model, see Pawlowsky-Glahn and Buccianti (2011) for details on compositional data

analysis. This structure of the latent space allows for a probabilistic interpretation of

the weights as model probabilities in the combination scheme that are evolving over

time. There exists an issue of analytic tractability of the probabilistic information

in the information reduction step. Here the class-preserving property of the logistic-

normal distribution (see Aitchinson and Shen, 1980, Aitchinson, 1982) is used. The

complete model is represented in a nonlinear state space form where the measurement

equation refers to the combination model and the transition function of the latent

weights is a dynamic compositional factor model with a noise process that follows

a multivariate logistic-normal distribution.1 Given that the space of the random

measures is equipped with suitable operations and norms, we also show that this

nonlinear state space model may be interpreted as a generalized linear model with

a local level component. Sequential prediction and filtering is applied in order to

efficiently update the dynamic clustered weights of the combination model. In this

sense the paper contributes to the literature on time series on a bounded domain

(see, e.g., Aitchinson, 1982, Aitchinson, 1986 and Billheimer et al., 2001) and on state

space models for compositional data analysis (see, e.g., Grunwald et al., 1993). In that

literature the compositional data are usually observed, while in our model the weights

are latent probabilities.

Our model extends Stock and Watson (2002) and Stock and Watson (2005) along

two directions. First, we propose a joint prediction model for a group of variables

of interest instead of a single variable; second, we combine large sets of predictive

densities instead of large sets of point forecasts. We also extend Billio et al. (2013)

and Casarin et al. (2015) substantially by making a connection with the mixture of

experts literature and by allowing for a high dimensional combination model that is

still parsimonious in the number of parameters and latent variables.

Another contribution of this paper refers to the literature on parallel computing.

1This distribution has arisen naturally in the reconciliation of subjective probabilities assessments,
see Lindley et al. (1979) and also Pawlowsky-Glahn et al. (2015), chapter 6 for details.
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We provide an estimate of the gain, in terms of computing time, of the GPU

implementation of our density combination strategy with respect to CPU multi-

core implementation. This approach to computing has been successfully applied in

econometrics for Bayesian inference (Geweke and Durham, 2012 and Lee et al., 2010)

and in economics for solving DSGE models (Aldrich et al., 2011 and Morozov and

Mathur, 2012).

The proposed method is applied to two well-known problems in finance and

economics: predicting stock returns and predicting macro-finance variables using the

Stock and Watson (2005) dataset. In the first example, we use more than 7000

predictive densities based on 3712 US individual stock return series to replicate the

daily aggregate S&P 500 returns over the sample 2007-2009 and predict the economic

value of tail events like Value-at-Risk. We find large accuracy gains with respect to

the no-predictability benchmark and predictions from individual models estimated on

the aggregate index. In the second example, we find substantial gains in point and

density forecasting of US real GDP, GDP deflator inflation, Treasury Bill yield and

employment over the last 25 years for all horizons from one-quarter ahead to five-

quarter ahead. The highest accuracy is achieved when the four series are predicted

simultaneously using our combination schemes within and across cluster weights based

on log score learning. We emphasize that the cluster-based weights contain relevant

signals about the importance of the forecasting performance of each of the models

used in the clusters. Some clusters have a substantial weight while others have only

little weight and such a pattern may vary over long time periods. This may lead to

the construction of alternative model combinations for more accurate out-of-sample

forecasting.

As far as computational gains using parallel computing is concerned, we find that

the GPU algorithm reduces the computation time with respect to the CPU version of

several multiples of CPU computing time.

The paper is structured as follows. Section 2 describes the Bayesian nonparametric

predictive model and presents the strategy of the dimension reduction of the latent

space. Section 3 provides details of the probabilistic information reduction and a

representation of our model as a nonlinear compositional state space model. Section 4

presents the inference procedure. Section 5 applies our model to large set of US stocks

are used to predict the aggregate index. Section 5.2 presents an analysis of the Stock

and Watson (2005) macroeconomic data set. Section 6 concludes. The Appendices

contain more details on data, derivations and results.
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2 Density combination and clustering for large data sets

This paper builds on the combination of predictive densities with time-varying weights

and on a information reduction technique based on sequential clustering.

2.1 Model uncertainty and model combination

Our combination approach is based on a convolution of predictive densities that

consists of a model combination density, a time-varying weight density and a density

of the predictors of many models (Billio et al., 2013, Casarin et al., 2015). See also

Waggoner and Zha (2012) and Del Negro et al. (2014) who propose time-varying

weights in the linear opinion framework and Fawcett et al. (2015) who introduce

time-varying weights in the generalized linear pool. Conflitti et al. (2012) propose

optimal combinations of large set of point and density survey forecasts; their weights

are, however, not modeled with time-varying patterns. Finally, Raftery et al. (2010)

develop Dynamic Model Averaging that allows the “correct” model to vary over time.

In this paper we provide a representation of the density combination approach in

terms of a Bayesian nonparametric predictive model and show the relationship with

the mixture of experts approach to construct predictive densities, elaborating on the

model presented in Billio et al., 2013 Appendix B and in Del Negro et al. (2014).

Let yt = (y1t, . . . , yKt)
′ be the K-dimensional vector of variables of interest, and

ỹt = (ỹ1t, . . . , ỹnt)
′ a vector of n random predictors for the variables of interest with

densities fit(ỹit), i = 1, . . . , n, conditional on the information set available at time

t − 1. We introduce a sequence of discrete probability distributions over the set of

predictors, which defines the probability, wi,kt, of the i-th predictive model at time t

to be used in forming the prediction for the variable of interest ykt. Thus, we define

the following sequence of possibly dependent random measures

Pkt(dϑk) =
n
∑

i=1

wi,ktδỹit
(dϑk) (1)

t = 1, . . . , T , k = 1, . . . , K. where δx is a point mass at x, ϑk is a parameter of interest

of the predictive distribution of the variable ykt, and wkt = (w1,kt, . . . , wn,kt)
′ is a set

of random weights defined by the following multivariate logistic construction

wi,kt =
exp{xi,kt}

∑n
i=1 exp{xi,kt}

(2)

where xkt = (x1,kt, . . . , xn,kt)
′ ∈ R

n is a vector of latent variables. We denote
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with wkt = φ−1(xkt) the multivariate logistic transform. The random measures Pkt,

k = 1, . . . , K, contain extra-sample information about the variables of interest, and we

assume that each random measure can be used as prior distribution for a parameter

ϑk of a given predictive distribution for the variable of interest ykt. The sequence of

dependent random measures can be interpreted as an expert system and shares some

similarities with the hierarchical mixtures of experts, the dependent Dirichlet processes

and the random partition models as discussed in Müller and Quintana (2010). See

also Müller and Mitra (2013) for a review. Finally, note that the random measures

share the same atoms, but have different weights. See, e.g. Bassetti et al. (2014), for a

different class of the random measures based on the stick-breaking construction of the

weights and measure-specific atoms. Section 3 discusses some features of the space of

the random weights used in this paper.

At time t − 1, the sequence of random measure Pkt, k = 1, . . . , K can be employed

as a prior distribution for the following sequence of conditional predictive densities

ykt ∼ Kkt(ykt|ϑ) (3)

k = 1, . . . , K, in order to obtain the following conditional predictive density

fkt(ykt|ỹt) =

∫

Kkt(ykt|ϑ)Pkt(dϑ) =
n
∑

i=1

wi,ktKkt(ykt|ỹit) (4)

If one chooses Kkt(ykt|ϑ) to be the pdf of a normal distribution N (µ, σ2) and let µ

be the parameter of interest, then ykt follows a Gaussian mixture combination model

(see Billio et al. (2013) for alternative specifications),

fkt(ykt|wkt, σ2
kt, ỹt) ∼

n
∑

i=1

wi,ktf(ykt|ỹit, σ2
k,t) (5)

fkt(log σ2
kt) ∼ f(log σ2

kt| log σ2
k,t−1, σ2

ηk
) (6)

k = 1, . . . , K, t = 1, . . . , T , where f(y|µ, σ2) is the pdf of the normal distribution

N (µ, σ2), and σ2
kt, t = 1, . . . , T , is a stochastic volatility process. As shown in the

following, the process σ2
kt controls the overall uncertainty level about the prediction

models used in the combination. When the uncertainty level tends to zero then we

recover as a limiting case the mixture of experts or the smoothly mixing regressions

models (see Appendix B in Billio et al., 2013).

Proposition 2.1 (Mixture representation). Under standard regularity conditions,
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the marginal predictive density has the following discrete and continuous mixture

representation

fkt(ykt|wkt) =
n
∑

i=1

wk,it

∫

R

Kkt(ykt|ỹit)fit(ỹit)dỹit (7)

Under the assumption of a Gaussian predictive distribution one has Kkt(y|ỹit) =

f(y|ỹit, σ2
kt) and

fkt(ykt|wkt) −→
n
∑

i=1

wi,ktfit(ykt) (8)

k = 1, . . . , K, for σkt → 0.

We emphasize that in our approach the overall level of uncertainty, controlled

by σ2
kt is a major indicator of incompleteness of the set of predictive models. The

importance of measuring model incompleteness is shown in our empirical analyses.

2.2 Information reduction

In the specification of the combination model given in the previous section, the

number of latent processes to estimate is nK at every time period t which can be

computationally heavy, even when a small number of variables of interest, e.g. 4, and

a moderate number of models, e.g. K = 100, are considered. The second contribution

of the paper is to diminish the complexity of the combination exercise by reducing the

dimension of the latent space.2

As a first step, the n predictors are clustered into m different groups, with m < n,

following some (time-varying) features ψit, i = 1, . . . , n, of the predictive densities.

We introduce ξj,it as an allocation variable, which takes the value 1 if the i-th predictor

is assigned to the j-th group of densities and 0 otherwise. We assume each predictor

belongs to only one group, that
∑m

j=1 ξj,it = 1 for all i. Also, the grouping of the

predictors can change over time, following a learning mechanism which is defined by

a sequential clustering rule. Details of the sequential clustering rule are given in the

following section.

Given the clustering of the predictors, we specify how to reduce the dimension of

the latent weight space from nK to mK with m < n. To this aim, we specify the

(n×m) allocation matrix Ξt = (ξ1t, . . . , ξmt), with ξjt = (ξj,1t, . . . , ξj,nt)
′, j = 1, . . . , m,

the vector of allocation variables ξj,it ∈ {0, 1}, and a (m × n) coefficient matrix Bkt

2We note that, although our aim is full Bayesian analysis, the very large scale of some problems
and the implied heavy computations may lead to pragmatic decisions in this context in the sense that
the very large set of predictive densities may be the result from applying either Bayesian or other
inferential methods, see section 5.
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with the i-th row and j-th column element given by bij,kt ∈ R. The two matrices allow

us to project the n-dimensional latent variable xkt onto a reduced dimension latent

space, through the following latent factor model

xkt = (Ξt ◦ Bkt)vkt (9)

where ◦ denotes the element-by-element Hadamard’s product, and vkt =

(v1,kt, . . . , vm,kt)
′ is a m-variate normal random walk process

vkt = vk,t−1 +χkt, χkt
iid
∼ Nm(0m, Υk) (10)

The process vkt, t = 1, . . . , T , is latent and is driving the weights of the predictive

densities which are used to forecast the k-th variable of interest. The set of all variable-

specific latent processes, is associated width a latent space of dimension mK. The

coefficients, ξj,it and bij,kt, j = 1, . . . , m, for each variable of interest k, predictor j

and time t, are crucial in order to obtain a parsimonious latent variable model and

consequently to reduce the computational complexity of the combination procedure.

For specific values of the coefficients bij,kt, we propose two alternative strategies.

The first one is where all coefficients in the cluster have the same weights, which

corresponds to set bij,kt as:

bij,kt =

{

1/njt if ξj,it = 1

0 otherwise
(11)

where

njt =
n
∑

i=1

ξj,it

is the number of predictive densities in the j-th cluster at time t. Note that, following

this specification of the coefficients, the weights of the n predictors for the k-th variable

of interest are

wi,kt =
exp{vji,kt/njit}

∑m
j=1 exp{vj,kt/njt}

, i = 1, . . . , n

where ji =
∑m

j=1 jξj,it indicates the group to which the i-th predictor belongs. The

latent weights are driven by a set of m latent variables, with m < n, thus the

dimensional reduction of the latent space is achieved. Moreover, let Nit = {j =

1, . . . , n|ξi,jt = 1} be the set of the indexes of all models in the cluster i, then one can

see that this specifications may have the undesirable property that the weights are

constant within a group, that is for all j ∈ Nit.
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For this reason, we also propose the second specification strategy where we assume

that each model contributes to the combination with a specific weight that is driven

by a model-specific forecasting performance measure. If we assume git is the log score

(see definition in (B.50)) of the model i at time t then

bij,kt =

{

∑t
s=1 exp{gis}/ḡit if ξj,it = 1

0 otherwise
(12)

where ḡit =
∑

l∈Nit

∑t
s=1 exp{gls}.

All the modeling assumptions discussed above allow us to reduce the complexity

of the combination exercise because the set of time-varying combination weights to

estimate is of dimension mK < nK.

3 Reduced-dimension state-space representation

The density combination model proposed in this paper can be written in terms

of a nonlinear state space model defined on a reduced-dimension latent space.

Moreover, thanks to the class-preserving property of the logistic-normal distribution,

the proposed transition density can be represented as a compositional latent factor

model. We also show that this nonlinear state space model may be written in the

form of a generalized linear model with a local level component when the space of the

random measures is equipped with suitable operations and norms.

3.1 Probabilistic information reduction

We start to introduce some useful results and definitions. Let S
n = {u ∈ R

n
+|u1 +

. . . + un < 1} be the n-dimensional standard simplex, where R
n
+ denotes the positive

orthant of Rn. Proofs of results are presented in Appendix A.1.

Definition 3.1 (Composition function). The function Cm(u) : R
m
+ → S

m−1, u 7→

v = Cm(u) with the i-the element of v defined as vi = ui/vm, i = 1, . . . , m − 1, with

vm = u′ιm.

Proposition 3.1 (Logistic-normal distribution). Let v ∼ Nm (µ, Υ), and define

u = exp(v), that is the component-wise exponential transform of v, and z = Cm(u),

that is the composition of u, then u follows a m-variate log-normal distribution,

Λm(µ, Υ), and z follows a logistic-normal distribution Lm−1(Dmµ, DmΥD′
m) with
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density function

p(z|µ, Υ) = |2πDmΥD′
m|−1/2





m−1
∏

j=1

zj





−1

exp
(

−
1

2
(log(z/zm) − Dmµ) (13)

(DmΥD′
m)−1 (log(z/zm) − Dmµ)′

)

(14)

where z ∈ S
m−1, zm,kt = 1 − z′ιm−1, Dm = (Im−1, −ιm−1) and ιm−1 is the (m − 1)

unit vector.

Corollary 3.1. Let vkt ∼ Nm (vkt−1, Υk), and zkt = Cm(exp(vkt)), then zkt ∈ S
m−1

follows the logistic-normal distribution Lm−1(Dmvkt−1, DmΥkD′
m).

The class-preserving property of the composition of the logistic-normal vectors (see

Aitchinson and Shen, 1980) will be used in the proof of the main result of this section.

We show how this property adapts to our state space model.

Proposition 3.2 (Class-preserving property). Let zkt ∼ Lm−1(Dmvkt−1, DmΥkD′
m)

a logistic-normal vector, and A a (c × m − 1) matrix. Define the following transform

w = φA(z) from S
m−1 to S

c , with in our case m < c,

wi,kt =
m−1
∏

j=1

(

zj,kt

zm,kt

)aij



1 +
c
∑

i=1

m−1
∏

j=1

(

zj,kt

zm,kt

)aij





−1

, i = 1, . . . , c

then wkt = (w1,kt, . . . , wc,kt) follows the logistic-normal Lc(ADmvkt−1, ADmΥkD′
mA′).

3.2 A reduced-dimension state-space representation

Given the results in the preceding subsection, we can now state the main result.

Proposition 3.3 (State-space form). Let Akt = Ξt ◦ Bkt, k = 1, . . . , K, be a matrix

of coefficients, then the model given in equations 5-9 can be written in the following

state space form

yt ∼
K
∏

k=1

n
∑

i=1

wi,ktN
(

ỹit, σ2
kt

)

(15)

w̃kt ∼ Ln−1

(

˜̃AktDmvkt−1, ˜̃AktDmΥkD′
m

˜̃A′
kt

)

, k = 1, . . . , K (16)

w̃kt = (w1,kt, . . . , wn−1,kt)
′ and wn,kt = 1−w̃′

ktιn−1, ⊗ denotes the Kronecker’s product,
˜̃Akt = (Ã′

kt, O′
(n−ñt)×(m−1))

′, with ñt = Card(Ñt) and Ñt = {i = 1, . . . , n|ξm,it 6= 1}

the set of indexes of the models allocated in the cluster m.
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Figure 1: Relationships between the latent variables (left) and the latent probability
spaces (right) involved in our compositional latent factor model. The origin of the
directed edge indicates the transformed variable, the arrow indicates the results of
the transformation, and the edge label defines the transform applied. The symbol ∗
indicates a composition of functions.

The previous proposition establishes a relationship between the set of latent

weights wkt and their projection, zkt, on the lower dimension latent space S
m−1. The

diagram on the left side of Figure 1 summarizes the relationships between the latent

variables involved in our compositional latent factor model. The symbol ∗ indicates

function composition. The diagram on the right shows the relationship between the

probability latent spaces. In both diagrams, the chaining process given by the function

composition φA ∗ Cm ∗ exp indicates that the probabilistic interpretation of the n-

dimensional weight vector wkt naturally transfers to the m-dimensional vector zkt,

with m < n.

In the same diagram an alternative chaining process is given by the function

composition Cn ∗ exp ∗(Ξt ◦ Bkt), which allows for the following alternative

representation of the latent factor model as a logistic-normal factor model.

Corollary 3.2. The transition density given in Proposition 3.3 can be written as

w̃kt ∼ Ln−1 (DnAktvkt−1, DnAktDnΥkD′
nA′

kt) and wn,kt = 1 − w̃′
ktιn−1.

Distributions other than the logistic-normal can be used for weights such as the

Dirichlet distribution, but as noted in Aitchinson and Shen (1980) this distribution

may be too simple to be realistic in the analysis of compositional data since the

components of a Dirichlet composition have a correlation structure determined solely

by the normalization operation in the composition. See, Aitchinson and Shen

(1980) for a complete discussion of the advantages of the logistic-normal distribution

compared to the Dirichlet.
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We also present another result that shows how the state space model can be written

as a generalized linear model with a local level transition function when the space of

the random measures is equipped with suitable operations and norms. Moreover, we

show that the probabilistic interpretation is preserved for the lower dimensional set of

latent weights.

Define the observation real space R
K equipped with the inner product < x, y >=

∑K
i=1 xiyi, x, y ∈ R

K and scalar product ax = (ax1, . . . , axK)′, x ∈ R
K , a ∈ R

operations. Also, define the simplex (state) space, Sn−1 equipped with a sum operation

(also called perturbation operation), u⊕v = C(u◦v), u, v ∈ S
n−1 and a scalar product

operation (also called power transform) a⊙u = C((ua
1, . . . , ua

n−1)′), u ∈ S
n−1, a ∈ R+.

For details and background, see Aitchinson (1986) and Aitchinson (1992). Billheimer

et al. (2001) showed that Sn−1 equipped with the perturbation and powering operations

is a vector space. Moreover S
n−1 is an Hilbert space, i.e. a complete, inner product

vector space, equipped with the inner product < u, v >N= u, v ∈ S
n−1 space. These

properties enable us to state the following result.

Corollary 3.3. Let st = (s
′

1t, . . . , s
′

Kt)
′ be an allocation vector, with skt ∼ Mn(1, wkt),

k = 1, . . . , K, where Mn(1, wkt) denotes the multinomial distribution, and Σt =

diag{σ2
1t, . . . , σ2

Kt} a covariance matrix. Then, the state space model given in

Proposition 3.3 can be written as

yt = (IK ⊗ ỹ′
t)st + εt, εt ∼ NK(0, Σt) (17)

si,kt =

{

1 with probability wi,kt

0 otherwise
(18)

wt = φ(zt) (19)

zkt = zkt−1 ⊕ ηkt, ηkt ∼ Lm−1
(

0, DnΥkD′
m

)

(20)

where φ(zt) = (φA1t
(z1t), . . . , φAKt

(zKt)) is a function from S
m−1 to S

n−1, where the

function φA(z) has been defined in 3.2.

The representation in corollary 3.3 shows that the model is a conditionally linear

model with link function defined by φA and a linear local level factor model on the

simplex. Also, by extending the ⊙ product operation to the case of a matrix of real

numbers and exploiting the Euclidean vector space structure of (Sn, ⊕, ⊙) allow us to

write the transform φA, for special values of A, as a linear matrix operation between

simplices of different dimensions as stated in the following remark. In the following

we introduce the symbol ⊞ and define the matrix multiplication operation.

12



Remark 1. Let z ∈ S
m−1 be a composition, A a (n × m) real matrix and define

the matrix multiplication A ⊞ z = Cn

(

∏m
j=1 z

a1j

j , . . . ,
∏m

j=1 z
an−1j

j

)

. If A is such that

Aιm = 0n and aim = −1, i = 1, . . . , n − 1 and an,j = 0 j = 1, . . . , m, the transform

defined in proposition 3.2 can be written as φA(z) = A ⊞ z.
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Figure 2: First row: De Finetti’s diagram (left) and the time series plot (right) of the ternary
(z1,t, z2,t, z3,t). Other rows: De Finetti’s diagram of the ternary (wi,t, wj,t, w−(i,j)t), j > i. In
each plot the trajectory (blue line), the starting (red) and ending (black) points and the equal
weight composition (square).

A simulated example of compositional factor model is given in Fig. 2 by using

the De Finetti or ternary diagram (see Cannings and Edwards (1968) and Pawlowsky-

Glahn et al. (2015), Appendix A). The first row presents the evolution of three driving
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factors (z1,t, z2,t, z3,t) by using a De Finetti’s diagram (left) and a time series plot

(right). The other rows present the pairwise comparisons of the weight dynamics by

the De Finetti’s diagram of the trajectory (blue line) of the ternary (wi,t, wj,t, w−(i,j),t)

where w−(i,j),t =
∑

l 6=i,j wl,t is the other model total weight. The red and black dots

are the initial and final values. Further details of this example are given in section

B.1 of the Online Appendix. We refer to the Billheimer et al. (2001) for further

details on the algebraic structure of the simplex equipped with the perturbation and

powering composition and for a Gibbs sampling scheme for compositional state space

model. See also Egozcue et al. (2003), Egozcue and Pawlowskky-Glahn (2005) and

Fîserová and Hron (2011) for further details on the isometric transforms from the real

space to the simplex and and for further geometric aspects and property analysis of

operations on the simplex, such as the amalgamation and subcomposition operations.

See also Pawlowsky-Glahn and Buccianti (2011) and Pawlowsky-Glahn et al. (2015)

for up-to-date and complete reviews on compositional data models.

4 Sequential inference

The analytical solution of the optimal filtering problem is generally not known, also the

clustering-based mapping of the predictor weights onto the subset of latent variables

requires the solution of an optimization problem which is not available in closed form.

Thus, we apply a sequential numerical approximation of the two problems and use an

algorithm which, at time t iterates over the following two steps:

1. Parallel sequential clustering computation of Ξt

2. Sequential Monte Carlo approximation of combination weights and predictive

densities

As regards the sequential clustering, we apply a parallel and sequential k-means

method with a forgetting factor for the sequential learning of the group structure.

K-means clustering, see for an early treatment Hartigan and Wong (1979), is a

method partitioning a set of n vectors of parameters or features of the predictors,

ψit, i = 1, . . . , n, into m disjoints sets (clusters), in which each observation belongs

to the cluster with the least distance. Moreover, the sequential k-means algorithm

is easy to parallelize and it has been done on multi core CPU and GPU computing

environments, see Favirar et al. (2008) and the reference therein. The details of the

algorithm and its parallel implementation are given in Appendix A.2.
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As regards the sequential filtering we apply sequential Monte Carlo as in Billio

et al. (2013). Let θt ∈ Θ be the parameter vector of the combination model, that

is θt = (log σ2
1t, . . . , log σ2

Kt, vecd(Υ1t), . . . , vecd(ΥKt)). Let w′
t = (w′

1t, . . . , wkt) the

vector of weights, and u1:t = (u1, . . . , ut) the collection of vectors ut from time 1 to

time t. Following Kitagawa (1998), Kitagawa and Sato (2001), and Liu and West

(2001), we define the augmented state vector wθ
t = (wt,θt) ∈ Z, and the augmented

state space W = S
n−1 × Θ. Our combination model writes in the state space form

yt ∼ p(yt|w
θ
t , ỹt) (measurement density) (21)

wθ
t ∼ p(wθ

t |wθ
t−1, y1:t−1, ỹ1:t−1) (transition density) (22)

wθ
0 ∼ p(wθ

0) (initial density) (23)

where the measurement density is

p(yt|w
θ
t , ỹt) ∝

K
∏

k=1

n
∑

i=1

wi,ktN (ỹit, σ2
kt) (24)

and the transition density is the probability density function of the distribution given

in equation 16, that is

p(wt|θt, wθ
t−1, y1:t−1, ỹ1:t−1) ∝ (25)

∝
K
∏

k=1

δ1−ιn−1w̃kt
(wn,kt)





n−1
∏

j=1

wj,kt





−1
n−1
∏

j=1

exp
(

−
1

2

(

log(wj,kt/wn,kt)

− ˜̃AktDmνkt−1

)

( ˜̃AktDmΥtD
′
m

˜̃A′
kt)

−1
(

log(wj,kt/wn,kt) − ˜̃AktDmνkt−1

)′ )

(26)

The state predictive and filtering densities are

p(wθ
t+1|y1:t, ỹ1:t) =

∫

W
p(wθ

t+1|wθ
t , y1:t, ỹ1:t)p(wθ

t |y1:t, ỹ1:t)dwθ
t (27)

p(wθ
t+1|y1:t+1, ỹ1:t+1) =

p(yt+1|wθ
t+1, ỹt+1)p(wθ

t+1|y1:t, ỹ1:t)

p(yt+1|y1:t, ỹ1:t)
(28)

The marginal predictive density of the observable variables is

p(yt+1|y1:t) =

∫

Y
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1
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where p(yt+1|y1:t, ỹt+1) is defined as

∫

W×Yt
p(yt+1|wθ

t+1, ỹt+1)p(wθ
t+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dwθ

t+1dỹ1:t

and represents the conditional predictive density of the observable given the past values

of the observable and of the predictors. Further details of the algorithm is given in

Appendices A.3, A.2 and B.2.

5 Results

The first example focuses on replicating the daily Standard & Poor 500 (S&P500)

index return and predicting the economic value of tail events like Value-at-Risk. As

a second example we consider the extended Stock and Watson (2005) dataset, which

includes 142 series sampled at a quarterly frequency from 1959Q1 to 2011Q2. Finally,

we compare the computational speed of CPU with GPU in the implementation of our

combination algorithm for the financial and macro applications.

5.1 Predicting Standard & Poor 500 (S&P500)

The econometrician interested in predicting this index (or a transformation of it as

the return) has, at least, two standard strategies. First, she can model the index with

a parametric or non-parametric specification and produce a forecast of it. Second, she

can predict the price of each stock i and then aggregate them using an approximation

of the unknown weighting scheme.

We propose an alternative strategy based on the fact that many investors, including

mutual funds, hedge funds and exchange-traded funds, try to replicate the performance

of the index by holding a set of stocks, which are not necessarily the exact same stocks

included in the index. We collect the S&P500 index and 3712 individual stock daily

prices quoted in the NYSE and NASDAQ from Datastream over the sample March

18, 2002 to December 31, 2009, for a total of 2034 daily observation. To control for

liquidity we impose that each stock has been traded a number of days corresponding

to at least 40% of the sample size. We compute log returns for all stocks. S&P500 and

cross-section average statistics are reported in Table B.1 in section B.4 of the Online

Appendix. We produce a density forecast for each of the stock prices and then apply

our density combination scheme to compute clustered weights and a combined density

forecast of the index. The output is a density forecast of the index with clustered

weights that indicate the relative forecasting importance of these clusters. That is,
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a side output of our method is that it produces a replication strategy of the index,

providing evidence of which assets track more accurately the aggregate index. We

leave a detailed analysis of this last topic for further research.

Individual model estimates

We estimate a Normal GARCH(1,1) model and a t-GARCH(1,1) model via

maximum likelihood (ML) using rolling samples of 1250 trading days (about five years)

for each stock return:

yit = ci + κitζit (29)

κ2
it = θi0 + θi1ζ2

i,t−1 + θ2κ2
i,t−1 (30)

where yit is the log return of stock i at day t, ζit ∼ N (0, 1) and ζit ∼ T (νi) for the

Normal and t-Student cases, respectively. The number of degrees of freedom νi is

estimated in the latter model. We produce 784 one day ahead density forecasts from

January 1, 2007 to December 31, 2009 using the above equations and the first day

ahead forecast refers to January 1, 2007. Our out-of-sample (OOS) period is associated

with high volatility driven by the US financial crisis and includes, among others, events

such as the acquisitions of Bern Stearns, the default of Lehman Brothers and all the

following week events. The predictive densities are formed by substituting the ML

estimates for the unknown parameters (ci, θi0, θi1, θi2, νi).

As first step, we apply a sequential cluster analysis to our forecasts. We compute

two clusters for the Normal GARCH(1,1) model class and two clusters for the t-

GARCH(1,1) model class. The first two are characterized by low and high volatility

density predictions from Normal GARCH(1,1) models; the third and the fourth ones

are characterized by thick or no thick tail density predictions from t-GARCH(1,1)

models.3 A detailed description of the cluster dynamics is given in section B.4 the

Online Appendix.

Weight patterns, model incompleteness and signals of instability

For convenience, we specified the parameter matrices Bkt in equation (11), the

cluster weights, as equal weights.4 We also allow for model incompleteness to be

modeled as a time-varying process and estimate σ2
kt in (5). We label it DCEW-SV

and compare it with a combination scheme where σ2
kt = σ2

k is time-invariant and label

3Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur jointly
with a low scale.

4See the macroeconomic case below for a comparison with a different scoring rule.
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that as DCEW. We compare our two combination methods, DCEW and DCEW-SV

described in section 5.1 to the standard no predictability white noise benchmark and

also apply the Normal GARCH(1,1) model and the t-Student GARCH(1,1) model

to the index log returns. The comparison is done by applying the predictive ability

measures defined in Appendix B.3.

Plots of the estimated weights zk,t defined in Corollary 3.1 are shown in Figure

3. The same figure shows the De Finetti’s diagrams for a pairwise comparison of the

weight dynamics. In the diagrams the blue line represents the trajectory of the ternary

(zi,t, zj,t, z−(i,j),t) where z−(i,j),t =
∑

l 6=i,j zl,t is the other model total weight. The red

and black dots are the initial and final values.

One can distinguish three different subperiods. In the subperiod before the crisis,

the Normal GARCH cluster with high volatility, cluster 2, and the t-GARCH cluster

with low degrees of freedom, cluster 3, have almost equal high weights while clusters

1 and 4 play a much less important role. In the crisis period of 2008, cluster 3 receives

almost all the weight with clusters 1 and 2 almost none. Some of the assets lead

the large market decrease in that period. This results in very fat tail densities and

our combination scheme takes advantage of this information and assigns to cluster 3

more weight. RW and GARCH forecasts based on the index are less informative and

before these models can show forecasts of negative returns they need evidence that the

index is declining. In the period after the Lehman Brothers collapse cluster 3 receives

again a substantial weight while the normal cluster 2, with large variance, is getting

gradually more weight. Summarizing, it is seen that the t-GARCH(1,1) cluster with

small degrees of freedom has most of the period the largest weight. What implications

this may have for constructing model combinations that forecast more accurately is a

topic for further research.

Signals of model incompleteness and instability are shown in the top right panel of

Figure 3 where plots of the posterior mean estimate for σ2
kt in the DCEW-SV scheme

are presented. The estimates have a 7% increase in September 2008, which is due

to the default of Lehman Brothers and related following events. Interestingly, the

volatility does not reduce in 2009, a year with large positive returns opposite the large

negative returns in 2008.

From the results so far, we conclude that the combination of several time-varying

volatility models with time-varying cluster weights copes with instability in our set

of data. There is a clear signal of increased model incompleteness after the 2008

crisis. Individual flexible models that focus more on jumps in volatility and use data

on realized volatility may be included in the analysis. This is an interesting topic of
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Figure 3: Top left: the mean logistic-normal weights for the two normal GARCH clusters,
labeled in the graph “Norm1” and “Norm2”, and for the two t-GARCH clusters, labeled in
the graph “t3” and “t4”. Top right: posterior mean estimate for σkt in the scheme DCEW-SV.
Other rows: De Finetti’s diagram for the pairwise subcomposition comparison between model
weights over time. In each plot the trajectory of the ternary (zit, zjt, z−(i,j)t), j > i (blue line),
the starting point (red dot), the ending point (black dot) and the equal weight composition
(square).
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further research.

Forecast accuracy and economic value

Out-of-sample forecasting result are presented in Table 1. Our combination

schemes produce the lowest RMSPE and CRPS and the highest LS. The results

indicate that the combination schemes are statistically superior to the no predictability

benchmark. The Normal GARCH(1,1) model and t-GARCH(1,1) model fitted on the

index also provide more accurate density forecasts than the WN, but not on point

forecasting. For all three score criteria, the statistics given by the two individual

models are inferior to our combination schemes. Therefore, we conclude that our

strategy to produce forecasts from a large set of assets, cluster them in groups

and combine them to predict the S&P500 produces very accurate point and density

forecasts that are superior to no predictability benchmark and classical strategies of

modeling directly the index.

Apart from forecasting accuracy, we investigate whether the results documented in

the previous paragraphs also possess some economic value. Given that our approach

produces complete predictive densities for the variable of interest, it is particularly

suitable to compute tail events and, therefore, Value-at-Risk (VaR) measures, see

Jorion (2006). We compare the accuracy of our models in terms of violations, that is

the number of times that negative returns exceed the VaR forecast at time t, with the

implication that actual losses on a portfolio are worse than had been predicted. Higher

accuracy results in numbers of violation close to nominal value of 1%. Moreover, to

have a gauge of the severity of the violations we compute the total losses by summing

the returns over the days of violation for each model.

The last two columns of Table 1 show that the number of violations for all models

is high and well above 1%, with the RW higher than 20%. The dramatic events in our

sample, including the Lehman default and all the other features of the US financial

crisis, explain the result. However, the two combination schemes provide the best

statistics, with violations almost 50% lower than the best individual model and losses

at least 15% lower than the best individual models. The DCEW-SV provides the

most accurate results, but the difference with DCEW is marginal. The property of

our combination schemes to assign higher weights to the fat tail cluster 3 helps to

model more accurately the lower tail of the index returns and covers more adequately

risks.

Finally, Table B.6 in Appendix B.6 compares the execution time of the GPU

parallel implementation of our density combination strategy and the CPU multi-core
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implementation and show large gains from GPU parallelization.

RMSPE LS CRPS Violation Loss

WN 1.8524 -9.0497 0.0102 20.3% -50.1%
Normal GARCH 1.8522 -4.1636∗∗ 0.0096∗∗ 16.5% -42.2%
t-GARCH 1.8524 -2.7383∗∗ 0.0094∗∗ 11.4% -32.9%
DCEW 1.8122∗∗ 2.2490∗∗ 0.0091∗∗ 6.6% -28.1%
DCEW-SV 1.8165∗∗ 2.2060∗∗ 0.0091∗∗ 6.5% -27.7%

Table 1: Forecasting results for next day S&P500 log returns. For all the series are
reported the: root mean square prediction error (RMSPE), logarithmic score (LS) and the
continuous rank probability score (CRPS). Bold numbers indicate the best statistic for each
loss function. One or two asterisks indicate that differences in accuracy from the white noise
(WN) benchmark are statistically different from zero at 5%, and 1%, respectively, using the
Diebold-Mariano t-statistic for equal loss. The underlying p-values are based on t-statistics
computed with a serial correlation-robust variance, using the pre-whitened quadratic spectral
estimator of Andrews and Monahan (1992). The column “Violation” shows the number of
times the realized value exceeds the 1% Value-at-Risk (VaR) predicted by the different models
over the sample and the column “Loss” reports the cumulative total loss associated to the
violations.

5.2 A large macroeconomic dataset

As a second example, we consider the extended Stock and Watson (2005) dataset,

which includes 142 series sampled at a quarterly frequency from 1959Q1 to 2011Q2.

A graphical description of the data is given in Figure B.3, in section B.5 of the Online

Appendix. The dataset includes only revised series and not vintages of real-time data,

when data are revised. See Aastveit et al. (2014) for a real-time application (with

a dataset that includes fewer series) of density nowcasting and on the role of model

incompleteness over vintages and time. In order to deal with stationary series, we

apply the series-specific transformation suggested in Stock and Watson (2005). Let

yit with i = 1, . . . , n and t = 1, . . . , T , be the set of transformed variables.

For each variable we estimate a Gaussian autoregressive model of the first order,

AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ) (31)

using the first 60 observations from each series. Then we identify the clusters

of parameters by applying our k-means clustering algorithm on the vectors, θ̂i =

(α̂i, β̂i, σ̂2
i )′, of least square estimates of the AR(1) parameters. Since we are interested

in an interpretation of the clusters over the full sample, differently than in the previous

financial application, we impose that cluster allocation of each model is fixed over the
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forecasting vintages, i.e. Ξt = Ξ, t = 1, . . . , T . The first 102 observations, from

1959Q3 to 1984Q1, are used as initial in-sample (IS) period to fit AR(1) models to

all the individual series and construct the clusters. We assume alternatively 5 and 7

clusters. A detailed description of the 7 clusters is provided in Table B.4 in section

B.5 of the Online Appendix, together with further results.

Set-up of the experiment

We split the sample size 1959Q3-2011Q2 in two periods. The initial 102

observations from 1959Q3-1984Q1 are used as initial in-sample (IS) period; the

remaining 106 observations from 1985Q1-2011Q2 are used as an OOS period. The AR

models are estimated recursively and h−step ahead (Bayesian) t−Student predictive

densities are constructed using a direct approach extending each vintage with the new

available observation; see for example Koop (2003) for the exact formula of the mean,

standard deviation and degrees of freedom. Clusters are, however, not updated and

kept the same as the ones estimated in the IS period.

We predict four different series often considered core variables in monetary policy

analysis: real GDP growth, inflation measured as price deflator growth, 3-month

Treasury Bill rate and total employment. We consider h = 1, 2, 3, 4, 5 step-ahead

horizons. For all the variables to be predicted, we apply an AR(1) as benchmark

model.

As we described in Section 2, we consider two alternative strategies for the

specification of the parameter matrices Bkt: equal weights and score recursive weights,

where in the second case we fix gi = LSi,h for the various horizons h presented in the

following subsection. Further, the predictive densities can be combined with each

of the four univariate series and/or with a multivariate approach. Following the

evidence in Appendix B.5 we apply two clusters, k = 5 and 7. We note that we keep

the volatility of the incompleteness term constant. To sum up, we have eight cases

defined as UDCEW5 (univariate combination based on 5 clusters with equal weights

within clusters), MDCEW5 (multivariate combination based on 5 clusters with equal

weights within clusters), UDCLS5 (univariate combination based on 5 clusters with

recursive log score weights within clusters), MDCLS5 (multivariate combination based

on 5 clusters with recursive log score weights within clusters), UDCEW7 (univariate

combination based on 7 clusters with equal weights within clusters), MDCEW7

(multivariate combination based on 7 clusters with equal weights within clusters),

UDCLS7 (univariate combination based on 7 clusters with recursive log score weights

within clusters), MDCLS7 (multivariate combination based on 7 cluster with recursive
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log score weights within clusters).

Apart from the AR(1) benchmark we also compare our combinations to a

benchmark that is specified as Dynamic Factor Model (DFM) with 5 factors described

in Stock and Watson (2012). This DFM expresses each of the n time series as

a component driven by the latent factors plus ad idiosyncratic disturbance. More

precisely:

yt = Λft + εt, Φ(L)ft = ηt, (32)

where the yt = (y1,t, . . . , yn,t)
′ is an n × 1 vector of observed series, ft = (f1,t, . . . , fr,t)

′

is an r vector of latent factors, Λ is a n × r matrix of factors loadings, Φ(L) is an r × r

matrix lag polynomial, εt is an n vector of idiosyncratic components and ηt is an r

vector of innovations. In this formulation the term Λft is the common component of

yt. Bayesian estimation of the model described in equation (32) is carried out using

Gibbs Sampling given in Koop and Korobilis (2009).

Weight patterns and forecasting results

Table 2 reports the results to predict real GDP growth, inflation measured by

using the price deflator of GDP growth, 3-month Treasury Bills and total employment

for five different horizons and using three different scoring measures. For all variables,

horizons and scoring measures our methodology provides more accurate forecasts than

the AR(1) benchmark and the Bayesian DFM. The Bayesian DFM model provides

more accurate forecasts than the AR(1) for real GDP and inflation at shorter horizons

and gives mixed evidence for interest rates and unemployment, but several of our

combination schemes outperform this benchmark. The combination that provides the

largest gain is the multivariate one based on seven clusters and log score weights

within clusters (MCDLS7), resulting in the best statistics 56 times over 60. In most of

the cases, the difference is statistically credible at the 1% level. This finding extends

evidence on the scope for multi-variable forecasting such as in large Bayesian VAR,

see e.g. Bańbura et al. (2010) and Koop and Korobilis (2013). Fan charts in Figure

B.8 in the Appendix B.5 show that the predictions are accurate even at our longest

horizon, h = 55. The variable with low predictive gains is inflation, although our

method provides credibly more accurate scores at (at least) 5% credible level in 8

cases over 15, but none in terms of point forecasting. The multivariate combination

based on 5 clusters and equal weights yields accurate forecasts, see clusters MCDEW5.

We conclude that combining models using multiple clusters with cluster-based weights

provides substantial forecast gains in most cases. Additional gains may be obtained by

playing with a more detailed cluster grouping and different performance scoring rules
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h=1 h=2 h=3 h=4 h=5

PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS

RGDP

AR 0.647 -1.002 0.492 0.658 -1.005 0.496 0.671 -1.007 0.501 0.676 -1.009 0.503 0.682 -1.009 0.506

BDFM 0.649 -1.091 0.382∗∗ 0.651 -1.066 0.385∗∗ 0.654 -1.138 0.388∗∗ 0.652 -1.060 0.384∗∗ 0.655 -1.099 0.388∗∗

UDCEW5 0.644 -0.869 0.333∗∗ 0.655 -0.893 0.340∗∗ 0.657∗ -0.900 0.341∗∗ 0.655∗ -0.902 0.341∗∗ 0.658∗ -0.912 0.343∗∗

MDCEW5 0.630 -0.928 0.326∗∗ 0.645 -0.987 0.336∗∗ 0.638∗ -0.924 0.330∗∗ 0.637∗ -0.897 0.328∗∗ 0.636∗ -0.844 0.324∗∗

UDCLS5 0.773 -1.306 0.464 0.663 -1.275 0.433∗∗ 0.687 -1.339 0.446∗∗ 0.689 -1.327 0.448∗∗ 0.715 -1.380 0.481

MDCLS5 0.725 -1.145 0.505 0.591∗ -1.071 0.365∗∗ 0.581∗∗ -1.041 0.340∗∗ 0.591∗ -1.079 0.354∗∗ 0.557∗ -1.005 0.358∗∗

UDCEW7 0.649 -0.875 0.334∗∗ 0.652 -0.880 0.335∗∗ 0.655 -0.889 0.337∗∗ 0.654 -0.886 0.336∗∗ 0.657∗ -0.891 0.338∗∗

MDCEW7 0.642 -0.979 0.334∗∗ 0.648 -1.012 0.338∗∗ 0.652∗ -1.016 0.342∗ 0.651 -1.015 0.339∗∗ 0.654∗ -1.009 0.342∗∗

UDCLS7 0.646 -0.868∗ 0.332∗∗ 0.645 -0.905 0.338∗∗ 0.650∗ -0.918 0.341∗∗ 0.655 -0.939 0.352∗∗ 0.657∗ -0.914 0.342∗∗

MDCLS7 0.596
∗

-0.586
∗∗

0.275
∗∗

0.586
∗

-0.582
∗∗

0.275
∗∗

0.607
∗∗

-0.632
∗∗

0.288
∗∗

0.588
∗

-0.637
∗∗

0.287
∗∗

0.610
∗∗

-0.634
∗∗

0.286
∗∗

GDP deflator

AR 0.220 -0.933 0.356 0.214 -0.932 0.357 0.206 -0.932 0.358 0.207 -0.932 0.359 0.208 -0.932 0.361

BDFM 0.220 -0.676∗∗ 0.123∗ 0.214 -0.225 0.441 0.221 -0.768∗∗ 0.373 0.223 -1.005 0.378 0.276 -1.072 0.382

UDCEW5 0.230 -0.429 0.169 0.220 -0.427 0.167 0.212 -0.422 0.165 0.214 -0.425 0.166 0.213 -0.426 0.166

MDCEW5 0.204 -0.053 0.110∗ 0.205 -0.285 0.115 0.203 -0.234 0.114 0.202 -0.167 0.112 0.204 -0.194 0.113

UDCLS5 0.485 -1.085 0.354 0.313 -1.001 0.294 0.259 -0.873 0.250 0.241 -0.875 0.248 0.228 -0.892 0.252

MDCLS5 0.291 -0.280 0.309 0.161 0.003 0.143∗∗ 0.143 0.031 0.125∗∗ 0.132 0.072 0.122∗ 0.159 -0.226 0.147∗

UDCEW7 0.223 -0.425∗∗ 0.166∗∗ 0.214 -0.420 0.164∗∗ 0.207 -0.416 0.163 0.209 -0.416∗ 0.163∗ 0.210 -0.416 0.164

MDCEW7 0.208 -0.214∗∗ 0.115∗∗ 0.200∗ -0.186∗ 0.111∗∗ 0.197∗ -0.172∗∗ 0.109∗∗ 0.197 -0.175∗ 0.110∗ 0.199 -0.200 0.111

UDCLS7 0.235 -0.507∗∗ 0.179∗∗ 0.220 -0.519 0.180∗∗ 0.224 -0.514 0.179 0.221 -0.516 0.179 0.214 -0.475 0.171

MDCLS7 0.197 0.436
∗∗

0.098
∗∗

0.183 0.462
∗∗

0.092
∗∗

0.165 0.571
∗

0.083
∗

0.160 0.570
∗∗

0.082
∗∗

0.175 0.495 0.088

3-month Treasury Bills

AR 0.569 -1.058 0.363 0.605 -1.074 0.374 0.518 -1.038 0.343 0.530 -1.037 0.353 0.545 -1.041 0.358

BDFM 0.522∗ -1.190 0.359 0.694 -1.394 0.386 0.545 -1.092 0.392 0.552 -1.092 0.396 0.541 -1.089 0.401

UDCEW5 0.519 -0.778∗∗ 0.288∗∗ 0.521 -0.782∗∗ 0.288 0.509 -0.772∗∗ 0.283 0.517 -0.782∗∗ 0.288∗ 0.525 -0.791∗∗ 0.292∗

MDCEW5 0.517∗∗ -0.764∗∗ 0.285∗∗ 0.506 -0.752∗∗ 0.279∗∗ 0.502∗
-0.749

∗∗
0.276

∗∗
0.506

∗∗
-0.755

∗∗
0.278

∗∗ 0.505∗∗ -0.751∗∗ 0.278∗∗

UDCLS5 0.740 -1.254 0.448 0.678 -1.301 0.453 0.532 -1.210 0.381 0.528 -1.216 0.385 0.584 -1.286 0.424

MDCLS5 0.710 -1.322 0.491 0.688 -1.297 0.454 0.491∗∗ -1.143 0.346 0.487 -1.143 0.351 0.572∗∗ -1.196 0.378

UDCEW7 0.525 -0.783∗∗ 0.289∗ 0.526 -0.784∗∗ 0.289∗ 0.514 -0.768∗∗ 0.284∗ 0.518 -0.774∗∗ 0.286∗ 0.522 -0.786∗∗ 0.289∗

MDCEW7 0.526 -0.775∗∗ 0.289∗ 0.527 -0.777∗∗ 0.290∗ 0.515 -0.761∗∗ 0.283∗ 0.516 -0.765∗∗ 0.284∗ 0.513 -0.766∗∗ 0.283∗

UDCLS7 0.512 -0.773∗∗ 0.284∗ 0.521 -0.799∗∗ 0.291∗ 0.514 -0.770∗∗ 0.284∗ 0.519 -0.783∗∗ 0.286∗ 0.521 -0.793∗∗ 0.289∗

MDCLS7 0.488
∗∗

-0.725
∗∗

0.270
∗∗

0.484
∗∗

-0.771
∗∗

0.275
∗

0.515
∗∗ -0.755∗∗ 0.283 0.513∗∗ -0.771∗∗ 0.283 0.496

∗∗
-0.736

∗∗
0.275

∗∗

Employment

AR 0.564 -0.995 0.447 0.582 -0.999 0.454 0.597 -1.003 0.460 0.612 -1.007 0.464 0.622 -1.009 0.468

BDFM 0.571 -1.064 0.339∗∗ 0.565 -1.057 0.614 0.956 -1.192 0.907 0.724 -1.226 0.922 0.876 -1.892 0.998

UDCEW5 0.585∗∗ -0.906∗∗ 0.308∗∗ 0.582∗∗ -0.889∗∗ 0.307∗∗ 0.579 -0.955∗∗ 0.305∗∗ 0.584 -0.931∗∗ 0.308∗∗ 0.587 -0.951∗∗ 0.311∗∗

MDCEW5 0.541∗∗ -0.926∗∗ 0.277∗∗ 0.554∗∗ -0.960∗∗ 0.284∗∗ 0.558 -0.917∗∗ 0.285∗∗ 0.560∗∗ -0.740∗∗ 0.284∗∗ 0.571∗∗ -0.790∗∗ 0.294∗∗

UDCLS5 0.752 -1.301 0.456 0.548 -1.265 0.414 0.565 -1.305 0.426 0.648 -1.372 0.472 0.628 -1.335 0.438

MDCLS5 0.654 -1.180 0.568 0.416 -0.964 0.325 0.487 -1.010 0.338 0.478∗ -0.976 0.340 0.569 -1.076 0.360

UDCEW7 0.535∗∗ -0.801∗∗ 0.283∗∗ 0.555∗∗ -0.828∗ 0.290∗∗ 0.570 -0.854∗∗ 0.298∗∗ 0.577 -0.867∗∗ 0.303∗∗ 0.583∗ -0.881∗∗ 0.306∗∗

MDCEW7 0.523∗∗ -0.735∗∗ 0.266∗∗ 0.548∗∗ -0.775∗∗ 0.278∗∗ 0.565 -0.827∗∗ 0.288∗∗ 0.571 -0.855∗∗ 0.293∗∗ 0.578∗ -0.885∗∗ 0.297∗∗

UDCLS7 0.552∗∗ -0.767∗∗ 0.289∗∗ 0.535∗∗ -0.805∗∗ 0.294∗∗ 0.562 -0.849∗∗ 0.302∗∗ 0.572 -0.878∗∗ 0.320∗∗ 0.588∗ -0.895∗∗ 0.313∗∗

MDCLS7 0.516
∗∗

-0.452
∗∗

0.236
∗∗

0.440
∗∗

-0.437
∗∗

0.219
∗∗

0.507 -0.479
∗∗

0.237
∗∗

0.495
∗

-0.488
∗∗

0.241
∗∗

0.560
∗∗

-0.680
∗∗

0.275
∗∗

Table 2: Forecasting results for h steps ahead. For all the series: root mean square prediction
error (PE), logarithmic score (LS) and the continuous rank probability score (CRPS). Bold
numbers indicate the best statistic for each horizon and loss function. One or two asterisks
indicate that differences in accuracy versus the AR benchmark are statistically different from
zero at 5%, and 1%, respectively, using the Diebold-Mariano t-statistic for equal loss. The
underlying p-values are based on t-statistics computed with a serial correlation-robust variance,
using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).

for weights associated with models inside a cluster. Figure 4 shows the De Finetti’s

diagram of the two largest weights in the seven clusters for each of the variables to be

predicted and a selection of horizons, h = 1, 2, 5, using multivariate combinations and

assuming bk,ij equal to the recursive log score for model i in cluster j when predicting

the series k. The diagrams show a substantial time stability of the two largest weights,

a weight composition that is far from the equal weight case and a substantial relevance

of the sixth cluster for all variables and horizons.

From the analysis of the weight time patterns in Figure 5 (see Figure B.6 in

Appendix B.5 for weights in the univariate combination), we notice that the weights

for the univariate are often less volatile than the weights in the multivariate approach.
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All figures confirm he result that the sixth cluster has the largest weight, but several

other clusters have large positive weights, like clusters 2, 4, and 5 while clusters 1 and

7 do not receive much weight. Apparently, variables such as Exports, Imports and

GDP deflator included in the sixth cluster play an important role in forecasting GDP

growth, inflation, interest rate and employment, although this role may differ across

variables and horizons.
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Figure 4: De Finetti’s diagrams for the dynamic comparison of the two largest weights. Rows:
diagrams for the four series of interest (real GDP growth rate, GDP deflator, Treasury Bills,
employment). Columns: forecast horizons (1, 3 and 5 quarters). In each plot the trajectory
(blue line), the starting (red) and ending (black) points and the equal weight composition
(square).

The forecast gains are similar across horizons for the five variables, that is around

10% relative to the AR benchmark in terms of RMSPE metrics and even larger

for the log score and CRPS measures. The lowest improvements are evident when

predicting the 3-month Treasury Bills. Despite these consistent gains over horizons,

the combination weights in Figure 5 differ across horizons. For example, when

forecasting GDP growth (panel 1) cluster 4 has a weight around 20% at horizons

1 and 5, but half of this value at horizon 3, where clusters 2 and 5 have larger weights.

The change is even more clear for inflation, where cluster 2 has a 20% weight at

horizon 1 and increases to 40-45% at horizon 5. The latter case also occurs when

there is substantial instability over time. Changes over horizons are less relevant for
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Figure 5: In each plot the logistic-normal weights (different lines) for the multivariate
combination model are given. Rows: plot for the four series of interest (real GDP growth
rate, GDP deflator, Treasury Bills, employment). Columns: forecast horizons (1, 3 and 5
quarters).
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the other two predicted variables.

Figure B.7 in the Online Appendix shows a typical output of the model weights

(bk,ij) in the seven clusters. There are large differences across clusters: the clusters

2, 4, 5 and 6 have few models with most of the weights; the other clusters, 1, 3 and

7, have more similar weights across models. This finding should be associated with

the largest weights in Figure 5 for the clusters 2, 4, 5 and 6 and indicates that using

recursive time-varying bk,ij weights within the clusters increases forecast accuracy for

GDP growth relative to using equal weights. Figure B.7 also indicates that the weights

within clusters are much more volatile than the cluster common component, indicating

that individual model performances may change much over time even if information

in a given clusters is stable.

Evidence is similar for the GDP deflator and employment, but this finding is less

clear for bond returns. For this variable, MDCEW5 also predicts accurately. Also

notice that cluster 3, which includes the 3-month Treasury Bills, has the lowest weight

in Figures 5. The explanation appears to be that the returns on the 3-month Treasury

Bills are modeled with an AR model, which is probably less accurate for the series.

Furthermore, the third cluster also contains stock prices and exchange rates that are

different from other series with very low persistence and high volatility, making our

combination to interpret this cluster more like a noisy component.

We conclude that the cluster-based weights contain relevant signals about the

importance of the forecasting performance of each of the models used in the these

clusters. Some clusters have a substantial weight while others have only little weight

and such a pattern may vary over long time periods. This may lead to the construction

of alternative model combinations for more accurate out-of-sample forecasting and is

an interesting line of research to pursue.

6 Conclusions

We proposed in this paper a Bayesian nonparametric model to construct a time-varying

weighted combination of many predictive densities that can deal with large data sets in

economics and finance. The model is based on clustering the set of predictive densities

in mutually exclusive subsets and on a hierarchical specification of the combination

weights. This modeling strategy reduces the dimension of the parameter and latent

spaces and leads to a more parsimonious combination model. We provide several

theoretical properties of the weights and propose the implementation of efficient and

fast parallel clustering and sequential combination algorithms.
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We applied the methodology to large financial and macro data sets and find

substantial gains in point and density forecasting for stock returns and four key macro

variables. In the financial applications, we show how 7000 predictive densities based

on US individual stocks can be combined to replicate the daily Standard & Poor 500

(S&P500) index return and predict the economic value of tail events like Value-at-

Risk. In the macroeconomic exercise, we show that combining models for multiple

series with cluster-based weights increases forecast accuracy substantially; weights

across clusters are very stable over time and horizons, with an important exception

for inflation at longer horizons. Furthermore, weights within clusters are very volatile,

indicating that individual model performances are very unstable, strengthening the

use of density combinations.

The line of research presented in this paper can be extended in several directions.

For example, the cluster-based weights contain relevant signals about the importance

of the forecasting performance of each of the models used in the these clusters.

Some clusters have a substantial weight while others have only little weight and

such a pattern may vary over long time periods. This may lead to the construction

of alternative model combinations for more accurate out-of-sample forecasting and

improved policy analysis. We notice also a potential fruitful connection between our

approach and research in the field of dynamic portfolio allocation.
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Raftery, A. E., Kárńy, M., and Ettler, P. (2010). Online prediction under model

uncertainty via Dynamic Model Averaging: Application to a cold rolling mill.

Technometrics, 52:52–66.

Stock, J. H. and Watson, W. M. (1999). Forecasting inflation. Journal of Monetary

Economics, 44:293–335.

Stock, J. H. and Watson, W. M. (2002). Forecasting using principal components from

a large number of predictors. Journal of American Statistical Association, 97:1167–

1179.

Stock, J. H. and Watson, W. M. (2004). Combination forecasts of output growth in a

seven - country data set. Journal of Forecasting, 23:405–430.

Stock, J. H. and Watson, W. M. (2005). Implications of dynamic factor models for

VAR analysis. Technical report, NBER Working Paper No. 11467.

Stock, J. H. and Watson, W. M. (2012). Disentangling the channels of the 2007-09

recession. Brookings Papers on Economic Activity, pages 81–156, Spring.

Stock, J. H. and Watson, W. M. (2014). Estimating turning points using large data

sets. Journal of Econometris, 178:368–381.

Varian, H. (2014). Machine learning: New tricks for econometrics. Journal of

Economics Perspectives, 28:3–28.

Varian, H. and Scott, S. (2014). Predicting the present with bayesian structural

time series. International Journal of Mathematical Modelling and Numerical

Optimisation, 5:4–23.

Villani, M., Kohn, R., and Giordani, P. (2009). Regression density estimation using

smooth adaptive Gaussian mixtures. Journal of Econometrics, 153:155–173.

Waggoner, D. F. and Zha, T. (2012). Confronting model misspecification in

macroeconomics. Journal of Econometrics, 171:167–184.

Wood, S. A., Jiang, W., and Tanner, M. (2002). Bayesian mixture of splines for

spatially adaptive nonparametric regression. Biometrika, 89:513–528.

32



A Appendix

A.1 Proofs of the results in sections 2 and 3

Proof of Proposition 2.1 The marginal predictive density is obtained by integrating

out the predictors with respect to their distributions. Under regularity condition it is

possible to exchange the order of integration and obtain

fkt(ykt|wkt)
def
=

∫

Rn
fkt(ykt|ỹt)

n
∏

j=1

fjt(ỹjt)dỹjt (A.33)

=
n
∑

i=1

wk,it

∫

Rn
f(ykt|ỹit, σ2

kt)
n
∏

j=1

fjt(ỹjt)dỹjt (A.34)

=
n
∑

i=1

wk,it

∫

R

f(ykt|ỹit, σ2
kt)fit(ỹit)dỹit (A.35)

where f(y|ϑ, σ2) is the pdf of the normal distribution N (ϑ, σ2). Now, by letting

σ2
kt → 0 for all k, one has that fkt(ykt) converges to

n
∑

i=1

wk,it

∫

R

δỹit
(ykt)fit(ỹit)dỹit =

n
∑

i=1

wi,ktfit(ykt) (A.36)

k = 1, . . . , K.

Proof of Proposition 3.1 See Aitchinson and Shen (1980), Section 2.

Proof of Corollary 3.1 It follows from 3.1 by taking v = vkt and z = zkt.

Proof of Proposition 3.2 It follows from a direct application of the results in Aitchinson

and Shen (1980), Section 2.

Proof of Proposition 3.3 From equations 5-9 it is easy to show that the measurement

density for each variable of interest is ykt ∼ N
(

ỹ′
tskt, σ2

kt

)

with skt ∼ Mn(1, wkt),

k = 1, . . . , K, where Mn(1, wkt) denotes a multinomial distribution, and due to the

conditional independence assumption one gets the joint measurement density as the

product of the variable specific densities.

As regards the transition density, first observe that, thanks to proposition

3.1, zkt = Cm(exp(vkt)) follows Lm−1(Dmvkt−1, DmΥkD′
m). Then note that the

multivariate transform xi,kt =
∑m

j=1 ξij,ktbij,ktvj,kt, j = 1, . . . , m, i = 1, . . . , n

implies that xkt = Aktvkt, xkt ∼ Nn(Aktvkt−1, AktΥkA′
kt), with Akt = (Ξt ◦ Bkt)
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and that, from Proposition 3.1, Cn(Aktvkt) follows Ln−1(DnAktvkt−1, DnΥkD′
n).

Without loss of generality, we assume that Bkt = ιnι
′
n and that the n − ñt

elements in the cluster m correspond to the last n − ñt element of ỹt. This

implies the following partition of Ξ′
t = ((Ξ̃t, Oñt×1)′, (O(n−ñt)×(m−1), ιn−ñt)

′) and of

A′
kt = ((Ãkt, Oñt×1)′, (O(n−ñt)×(m−1), ιn−ñt)

′), where (Ξ̃t, Oñt×1) and (Ãkt, Oñt×1) are

a (ñt × m) matrices. Note that

DnAkt = (In−1, −ιn−1)((Ãkt, (Oñt×1)′, (O(n−ñt)×(m−1), ιn−ñt)
′)′

= ((Ãkt, −ιñt)
′, O′

(n−ñt−1)×m)′

= (Ã′
kt, O′

(n−ñt−1)×(m−1))
′Dm

The result then follows by applying Proposition 3.2 to the set of weights zj,kt,

j = 1, . . . , m − 1, with transform coefficients A = (Ã′
kt, O′

(n−ñt)×(m−1))
′.

Proof of Corollary 3.2 The representation follows directly from the application of

Proposition 3.1 to xkt ∼ Nn(Aktvkt−1, AktΥkA′
kt).

A.2 Sequential Clusering

The sequential clustering algorithm is summarized as follows. Let cj0, j = 1, . . . , m,

an initial set of random points and let cjt, j = 1, . . . , m be the centroids, defined as

cjt =
1

njt

∑

i∈Njt

ψit

where njt and Njt have been define in the previous sections. At time t + 1 a new

set of observations ψit+1 ∈ R
d, i = 1, . . . , n is assigned to the different m groups

of observations based on the minimum distance, such as the Euclidean distance,

|| · ||, between the observations and the centroids cjt ∈ R
d, j = 1, . . . , m. Assume

ji = arg min{j = 1, . . . , m| ||ψit − cjt||}, i = 1, . . . , n, then the allocation variable ξij,t

is equal to 1 if j = ji and 0 otherwise and the centroids are updated as follows

cjt+1 = cjt + λt(mjt+1 − cjt) (A.37)

where

mjt+1 =
1

njt+1

∑

i∈Njt+1

ψit (A.38)

and λt ∈ [0, 1]. Note that the choice λt = njt+1/(nc
jt + njt+1), with nc

jt =
∑t

s=1 njs,
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implies a sequential clustering with forgetting driven by the processing of the blocks

of observations. In the application we fix λ = 0.99.

A.3 Nonlinear sequential filtering

Each particle set Φj
t = {w

θ ij
t , γ̃ij

t }N
i=1, j = 1, . . . , M , is updated through the following

steps.

1. Conditional combination weights. The approximated state predictive density is

pN,j(w
θ
t+1|y1:t, ỹ

j
1:t) =

N
∑

i=1

p(wθ
t+1|wθ

t , y1:t, ỹ
j
1:t)γ̃

ij
t δ

w
θ ij
t

(wθ
t ) (39)

2. Conditional prediction. The predictive density allows us to obtain the weight

predictive density

pN,j(zt+1|y1:t+1, ỹ
j
1:t+1) =

N
∑

i=1

γij
t+1δ

w
θ ij
t+1

(wθ
t+1) (40)

where γij
t+1 ∝ γ̃ij

t p(yt+1|wθ ij
t+1, ỹ

j
t+1) is a set of normalized weights, and the observable

predictive density

pN,j(yt+1|y1:t, ỹ
j
1:t+1) =

N
∑

i=1

γij
t+1δ

yij
t+1

(yt+1) (41)

where yij
t+1 has been simulated from the combination model p(yt+1|wθ ij

t+1, ỹ
j
t+1)

independently for i = 1, . . . , N .

3. Resampling. Since the systematic resampling of the particles introduces extra

Monte Carlo variations and reduces the efficiency of the importance sampling

algorithm, we do resampling only when the effective sample size (ESS) is below a

given threshold. See Casarin and Marin (2009) for ESS calculation. At the t + 1-th

iteration if ESSj
t+1 < κ, simulate Φj

t+1 = {w
θ kij
t+1 , γ̃ij

t+1}N
i=1 from {w

θ ij
t+1, γij

t+1}N
i=1 (e.g.,

multinomial resampling) and set γ̃ij
t+1 = 1/N . We denote with ki the index of the i-th

re-sampled particle in the original set Φj
t+1. If ESSj

t+1 ≥ κ set Φj
t+1 = {w

θ ij
t+1, γ̃ij

t+1}N
i=1.
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B Online Appendix

B.1 Simulation example

To provide a graphical illustration of our compositional factor model, a simulated

example is presented. Let there be only one variable of interest y1t = yt, with values

given by the combination of five predictors (i.e. K = 1 and n = 5)

yt =
5
∑

i=1

ỹitsit + εt, εt ∼ N (0, 0.2) (B.42)

t = 1, . . . , T , where ỹit ∼ N (i, 0.1i) i.i.d. i = 1, . . . , 5 are the predictive distributions,

(s1t, . . . , s5t)
′

∼ Mn (1, (s1t, . . . , s5t)), and
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(B.43)

with (ς1t, ς2t, ς3t, ς4t)
′ ∼ L4(04, 0.1D5D′

5) i.i.d. and ς5t = 1 − ς1t − . . . − ς4t.

For expository purposes, in order to show graphically the relationship between the

components of wt, which are on the 4-dimension simplex, we assume wt is a transform

of zt with some noise. The dynamics of the latent factors on the simplex of dimension

2 are given by
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(B.44)

with (η1t, η2t) ∼ L2(02, 0.2D3D′
3) i.i.d. and η3t = 1−η1t−η2t. We generate a trajectory

of T = 500 points from the latent factor process (blue line in the top-left chart of Fig.

B.1) starting at z0 = ι3/3 (black dot). The top-right chart of the same figure shows

the scatter plot of wkt, k = 2, 3, 4 against the first weight w1t. One can easily see that

w2t moves along the same direction of w1t, that is it lies on the 45-degree line, whereas

w3t and w4t move together and their relationship with w1t reflects the relationship

between z1 and z2t. The bottom-left chart shows the trajectory of yt which exhibits a

change in mean and variance following the features of the largest combination weight

at time t (see bottom-right chart).
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Figure B.1: Simplicial random walk trajectory zt (top-left), scatter plot of elements of the
latent weight vector wt (top-right), observable process yt (bottom-left) and the largest weight
indicator w∗

t = max{wkt, k = 1, . . . , 5} (bottom-right).

B.2 Sequential approximation of combination weights and predictive

densities

B.2.1 Parallel sequential filtering

With regard to the filtering part, we use M parallel conditional SMC filters, where

each filter is conditioned on the predictor vector sequence ỹs, s = 1, . . . , t. We initialise

independently the M particle sets: Φj
0 = {w

θ ij
0 , γ̃ij

0 }N
i=1, j = 1, . . . , M . Each particle

set Φj
0 contains N i.i.d. random variables w

θ ij
0 with random weights γ̃ij

0 . We initialise

the set of predictors, by generating i.i.d. samples ỹ
j
1, j = 1, . . . , M , from p(ỹ1|y0)

where y0 is an initial set of observations for the variable of interest.

Then, at the iteration t + 1 of the combination algorithm, we approximate the

2



predictive density p(ỹt+1|y1:t) as follows

pM (ỹt+1|y1:t) =
1

M

M
∑

j=1

δ
ỹ

j
t+1

(ỹt+1)

where ỹ
j
t+1, j = 1, . . . , M , are i.i.d. samples from the predictive densities and δx(y)

denotes the Dirac mass at x.

We assume an independent sequence of particle sets Φj
t = {w

θ ij
1:t , γ̃ij

t }N
i=1, j =

1, . . . , M , is available at time t+1 and that each particle set provides the approximation

pN,j(w
θ
t |y1:t, ỹ

j
1:t) =

N
∑

i=1

γ̃ij
t δ

wθ ij (wθ
t ) (B.45)

of the filtering density, p(wθ
t |y1:t, ỹ

j
1:t), conditional on the j-th predictor realisation,

ỹ
j
1:t. Then M independent conditional SMC algorithms are used to find a new sequence

of M particle sets, which include the information available from the new observation

and the new predictors. Each SMC algorithm iterates, for j = 1, . . . , M , the steps

given in Appendix A.

After collecting the results from the different particle sets, it is possible to obtain

the following empirical predictive density

pM,N(yt+1|y1:t) =
1

MN

M
∑

j=1

N
∑

i=1

δ
y

ij
t+1

(yt+1) (B.46)

For horizons h > 1, we apply a direct forecasting approach (see Massimiliano et al.,

2006) and compute predictive densities pM,N (yt+h|y1:t) following the steps previously

described.

B.2.2 Parallel sequential clustering

The parallel implementation of the k-means algorithm can be described as follows.

Assume, for simplicity, the n data points can be split in P subsets, Np = {(p − 1)np +

1, . . . , pnp}, p = 1 . . . , P , with the equal number of elements nP . P is chosen according

to the number of available cores.

1. Assign P sets of nP data points to different cores.

2. For each core p, p = 1, . . . , P

3



2a. find ji = arg min{j = 1, . . . , m| ||ψit − cjt||}, for each observation i ∈ Np

assigned to the core p.

2.b find the local centroid updates mp,jt+1, j = 1, . . . , m

3. Find the global centroid updates mjt+1 = 1/P
∑P

p=1 mp,jt+1, j = 1, . . . , m

4. Update the centroids as in Eq. A.37.

The k-means algorithm is parallel in point 2) and 3) and this can be used in the GPU

context as we do in this paper.

B.3 Forecast evaluation

To shed light on the predictive ability of our methodology, we consider several

evaluation statistics for point and density forecasts previously proposed in the

literature. Suppose we have i = 1, . . . , n different approaches to predict the variable y.

We compare point forecasts in terms of Root Mean Square Prediction Errors (RMSPE)

RMSPEi,h =

√

√

√

√

√

1

t∗

t
∑

t=t

ei,t+h

where t∗ = t − t + h, t and t denote the beginning and end of the evaluation period,

and ei,t+h is the h-step ahead square prediction error of model i.

The complete predictive densities are evaluated using the Kullback Leibler

Information Criterion (KLIC)-based measure, utilising the expected difference in the

Logarithmic Scores of the candidate forecast densities; see, for example, Mitchell and

Hall (2005), Hall and Mitchell (2007), Amisano and Giacomini (2007), Kascha and

Ravazzolo (2010), Billio et al. (2013), and Aastveit et al. (2014).

The KLIC is the distance between the true density p(yt+h|y1:t) of a random

variable yt+h and some candidate density pi(yt+h|y1:t) obtained from the approach

i and chooses the model that on average gives the higher probability to events that

actually occurred. An estimate of it can be obtained from the average of the sample

information, yt+1, . . . , yt+1, on p(yt+h|y1:t) and pi(yt+h|y1:t):

KLICi,h =
1

t∗

t
∑

t=t

[ln p(yt+h|y1:t) − ln pi(yt+h|y1:t)] (B.47)

Although we do not know the true density, we can still compare different densities,

pi(yt+h|y1:t), i = 1, . . . , n. For the comparison of two competing models, it is sufficient

4



to consider the Logarithmic Score (LS), which corresponds to the latter term in the

above sum,

LSi,h = −
1

t∗

t
∑

t=t

ln pi(yt+h|y1:t) (B.48)

for all i and to choose the model for which it is minimal, or, as we report in our tables

and use in the learning strategies, its opposite is maximal.

Secondly, we also evaluate density forecasts based on the continuous rank

probability score (CRPS); see, for example, Gneiting and Raftery (2007), Gneiting

and Roopesh (2013), Groen et al. (2013) and Ravazzolo and Vahey (2014). The

CRPS for the model i measures the average absolute distance between the empirical

cumulative distribution function (CDF) of yt+h, which is simply a step function in

yt+h, and the empirical CDF that is associated with model i’s predictive density:

CRPSi,t+h =

∫ +∞

−∞

(

F (z) − I[yt+h,+∞)(z)
)2

dz (B.49)

= Et|ỹi,t+h − yt+h| −
1

2
Et|ỹ

∗
i,t+h − ỹ′

i,t+h|

where F is the CDF from the predictive density pi(yt+h|y1:t) of model i and ỹ∗
i,t+h and

ỹ′
i,t+h are independent random variables with common sampling density equal to the

posterior predictive density pi(yt+h|y1:t). We report the sample average CRPS:

CRPSi,h = −
1

t∗

t
∑

t=t

CRPSi,t+h (B.50)

Smaller CRPS values imply higher precisions and, as for the log score, we report the

average CRPSi,h for each model i in all tables.

Finally, following Clark and Ravazzolo (2015), we apply the Diebold and Mariano

(1995) t-tests for equality of the average loss (with loss defined as squared error,

log score, or CRPS). In our tables presented below, differences in accuracy that

are statistically different from zero are denoted by one, two, or three asterisks,

corresponding to significance levels of 10%, 5%, and 1%, respectively. The underlying

p-values are based on t-statistics computed with a serial correlation-robust variance,

using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).

Monte Carlo evidence in Clark and McCracken (2015) and Clark and McCracken

(2011) indicates that, with nested models, the Diebold-Mariano test compared against
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Subcomponents S&P500

Lower Median Upper
Average -0.002 0.000 0.001 0.000
St dev 0.016 0.035 0.139 0.019
Skewness -1.185 0.033 1.060 -0.175
Kurtosis 8.558 16.327 65.380 9.410
Min -1.322 -0.286 -0.121 -0.095
Max 0.122 0.264 1.386 0.110

Table B.1: Average cross-section statistics for the 3712 individual stock daily log returns
in our dataset for the sample 18 March 2002 to 31 December 2009. The columns “Lower”,
“Median” and “Upper” refer to the cross-section 10% lower quantile, median and 90% upper
quantile of the 3712 statistics in rows, respectively. The rows “Average”, “St dev”, “Skewness”,
“Kurtosis”, “Min” and “Max” refers to sample average, sample standard deviation, sample
skewness, sample kurtosis, sample minimum and sample maximum statistics, respectively.
The column “S&P500” reports the sample statistics for the aggregate S&P500 log returns.

normal critical values can be viewed as a somewhat conservative (conservative in the

sense of tending to have size modestly below nominal size) test for equal accuracy in the

finite sample. Since the AR benchmark is always one of the model in the combination

schemes, we treat each combination as nesting the baseline, and we report p-values

based on one-sided tests, taking the AR as the null and the combination scheme in

question as the alternative.

B.4 Additional details on the financial application

Table B.1 reports the cross-section average statistics, together with statistics for the

S&P500. Some series have much lower average returns than the index and volatility

higher than the index up to 400 times. Heterogeneity in skewness is also very evident

with the series with lowest skewness equal to -42.5 and the one with highest skewness

equal to 27.3 compared to a value equal to -0.18 for the index. Finally, maximum

kurtosis is 200 times higher than the index value. The inclusion in our sample of

the crisis period explains such differences, with some stocks that realized enormously

negative returns in 2008 and impressive positive returns in 2009.

Figure B.2 presents the mean values of the predicted features ψit which belong

to the j−th cluster at each of the 784 vintages, labeled as mjt+1. The clusters for

the Normal GARCH(1,1) models differ substantially in terms of predicted variance

with cluster 1 having a rather low constant variance value over the entire period while

cluster 2 has a variance more than double in size including a shock in the latter

part of 2008. For the t-GARCH(1,1) model it is seen that cluster 3 has a relatively
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Figure B.2: The figures present the average variance of the predictions from the two clusters
for the Normal GARCH(1,1) models based on low (cluster 1) and high (cluster 2) volatility in
the left panel; and the average degree of freedom of the predictions from the two clusters for
the t-GARCH(1,1) models based on low (cluster 3) and high (cluster 4) degrees of freedom in
the right panel. The degrees of freedom are bounded to 30.

constant thick tail over the entire period while cluster 4 has an average value of 10

for the degrees of freedom and in the crisis period the density collapses to a normal

density with degrees of freedom higher than 30. In summary, The Lehman Brother

effect is visible in the figure, with an increase of volatility in the normal cluster 2 and,

interesting, an increase of the degrees of freedom in the t-cluster 4.

B.5 Additional details and on the macroeconomic application

This section reports a detailed description of the cluster composition, in terms of

predictors, for the 5 and 7 clusters analysis of the series given in Fig. B.3, and

additional figures and tables related to their analysis and forecasting results.

The left and right columns in Fig. B.4) show the clusters of series in the parameter

space. The results show substantial evidence of different time series characteristics

in several groups of series. The groups are not well separated when looking at the

intercept values (see Fig. B.4, first and second row). However, the groups are well

separated along two directions of the parameter space, which are the one associated

with the variance and the one associated with persistence parameters (Fig. B.4, last

row). The differences in terms of persistence, in the different groups, is also evident

from the heat maps given in Fig. B.5. Different gray levels in the two graphs show

the value of the variables (horizontal axis) over time (vertical axis). The vertical red

lines indicate the different clusters. One can see for example that the series in the
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Table B.2: Predictors classification in 7 clusters (columns).

1 2 3 4 5 6 7
FixedInv Cons-Serv Empmining IPfuels RGDP Exports NAPMprodn
NonResInv NonResInv-Bequip CPI-ALL PCED Cons Imports CapacityUtil
NonResInv-Struct Res.Inv PCED-NDUR CPI-Core Cons-Dur Ul5wks Empwholesale
IPproducts GovStateLoc PCED-NDUR-CLTH PCED-DUR-OTH Cons-NonDur Orders(NDCapGoods) Helpwantedindx
IP:buseqpt IPtotal PCED-NDUR-ENERGY PCED-SERV GPDInv PGDP Avghrs
IP:nondblemats IPfinalprod PCED-SERV-H0-ELGAS PCED-SERV-HOUS Gov PCED-NDUR-FOOD HStartsTotal
Emptotal IP:consnondble FedFunds PCED-SERV-HO-OTH GovFed PCED-SERV-HOUSOP BuildPermits
Empgdsprod IPmfg 3moT-bill PCED-SERV-TRAN IPconsgds PCED-SERV-MED HStartsNE
Empmfg Empdblegds 6moT-bill PCED-SERV-REC IPconsdble PGPDI HStartsMW
Empnondbles Helpwantedemp 1yrT-bond PCED-SERV-OTH IPmatls PFI HStartsSouth
Empservices Overtimemfg 5yrT-bond PFI-NRES-STRPrInd IPdblemats PFI-NRES HStartsWest
EmpTTU Orders(ConsGoods) 10yrT-bond Pimp Empconst PFI-RES PMI
Empretail PCED-Core M1 PgovFed EmpCPStotal Pexp NAPMnewordrs
EmpFIRE PFI-NRES-EQP MZM Pgovstatloc U5-14wks Pgov NAPMvendordel
EmpGovt Comspotprice(real) MB M2 U15-26wks BUSLOANS OilPrice(Real)
EmpCPSnonag RealAHEconst Reservestot U27pwks NAPMcomprice
EmpHours RealCompHour Reservesnonbor PCED-DUR Conscredit
Uall UnitLaborCost ExrateUK PCED-DUR-MOTOR Consumerexpect
Umeanduration S&P500 EXrateCanada RealAHEgoods fygm10-fygm3
U15pwks fygm6-fygm3 S&Pindust RealAHEmfg Fyaaac-fygt10
NAPMInvent DJIA LaborProd Fyaaac-fygt10
PCED-DUR-HHEQ S&Pdivyield
PCED-NDUR-OTH
Aaabond
Baabond
Exrateavg
ExrateSwitz
ExrateJapan
S&PPEratio
fygm1-fygm3
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Figure B.3: Gray area: the set of series (standardised for a better graphical representation),
at the monthly frequency, of the Stock and Watson dataset. Solid line: growth rate of real
GDP (seasonally adjusted) for the US. Dashed line: inflation measured as the change in the
GDP deflator index (seasonally adjusted). Dotted line: yields on US government 90-day T-
Bills (secondary market). Dashed-dotted: total employment growth rate for private industries
(seasonally adjusted).

2nd and 4th cluster (of 5) are more persistent then the series in the clusters 1, 3 and

5 (see also Fig. B.4, bottom left). Series in cluster 1, 2 and 4 are less volatile than

series in the cluster 3 and 5. This information is also summarised by the mean value of

the parameter estimates for the series that belong to the same cluster. See the values

in Table B.5. Looking at the composition of the predictor groups (see also Tables

B.3-B.4), we find that:

1. The first cluster comprises capacity utilisation, employment variables, housing

(building permits and new ownership started) and manufacturing variables (new

orders, supplier deliveries index, inventories).

2. The second cluster contains exports, a large numbers of price indexes (e.g. prices

indexes for personal consumption expenditures, and for gross domestic product)

some money market variables (e.g. M1 and M2).

3. The third cluster includes real gross domestic product, consumption and

consumption of non-durables, some industrial production indexes, and some

financial market variables (e.g., S&P industrial, corporate bonds and USD -

GBP exchange rate).
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Figure B.4: Pairwise scatter plots of the series features: αi and βi (first row), αi and σ2
i

(second row) and βi and σ2
i (last row). In each plot the red dots represent the cluster means.

We assume alternatively 5 (left) and 7 (right) clusters.
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4. The fourth cluster includes imports, some price indexes and financials such as

government debt (3- and 6-months T-bills and 5- and 10-years T-bonds), stocks

and exchange rates.

5. The fifth cluster mainly includes investments, industrial production indexes

(total and many sector indexes), and employment.
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Table B.3: Predictors classification in 5 clusters (columns).

1 2 3 4 5
NAPMprodn Exports RGDP Cons-Dur Cons-Serv
CapacityUtil PGDP Cons Imports FixedInv
Emptotal PCED Cons-NonDur GovFed NonResInv
Empgdsprod CPI-ALL GPDInv IPfuels NonResInv-Struct
Empdblegds PCED-Core Gov Ul5wks NonResInv-Bequip
Empservices CPI-Core GovStateLoc U5-14wks Res.Inv
EmpTTU PCED-DUR-HHEQ IPconsgds Orders(NDCapGoods) IPtotal
Empwholesale PCED-DUR-OTH IPconsdble PCED-DUR IPproducts
EmpFIRE PCED-NDUR IP:consnondble PCED-DUR-MOTOR IPfinalprod
Avghrs PCED-NDUR-FOOD Empmining PCED-NDUR-OTH IP:buseqpt
HStartsTotal PCED-NDUR-CLTH EmpCPStotal PFI-NRES IPmatls
BuildPermits PCED-NDUR-ENERGY Overtimemfg PFI-NRES-EQP IPdblemats
HStartsNE PCED-SERV Umeanduration Pimp IP:nondblemats
HStartsMW PCED-SERV-HOUS U15-26wks LaborProd IPmfg
HStartsSouth PCED-SERV-HOUSOP Orders(ConsGoods) RealCompHour Empconst
HStartsWest PCED-SERV-H0-ELGAS Comspotprice(real) 3moT-bill Empmfg
PMI PCED-SERV-HO-OTH OilPrice(Real) 6moT-bill Empnondbles
NAPMnewordrs PCED-SERV-TRAN RealAHEgoods 5yrT-bond Empretail
NAPMvendordel PCED-SERV-MED RealAHEmfg 10yrT-bond EmpGovt
NAPMInvent PCED-SERV-REC UnitLaborCost Reservesnonbor Helpwantedindx
NAPMcomprice PCED-SERV-OTH Aaabond ExrateSwitz Helpwantedemp
Consumerexpect PGPDI Baabond ExrateJapan EmpCPSnonag
fygm10-fygm3 PFI Exrateavg DJIA EmpHours
Fyaaac-fygt10 PFI-NRES-STRPrInd ExrateUK Uall
Fyaaac-fygt10 PFI-RES EXrateCanada U15pwks

Pexp S&P500 U27pwks
Pgov S&Pindust RealAHEconst
PgovFed S&Pdivyield Conscredit
Pgovstatloc S&PPEratio fygm1-fygm3
FedFunds fygm6-fygm3
1yrT-bond
M1
MZM
M2
MB
Reservestot
BUSLOANS

12



Table B.4: Predictors classification in 7 clusters (columns).

1 2 3 4 5 6 7
FixedInv Cons-Serv Empmining IPfuels RGDP Exports NAPMprodn
NonResInv NonResInv-Bequip CPI-ALL PCED Cons Imports CapacityUtil
NonResInv-Struct Res.Inv PCED-NDUR CPI-Core Cons-Dur Ul5wks Empwholesale
IPproducts GovStateLoc PCED-NDUR-CLTH PCED-DUR-OTH Cons-NonDur Orders(NDCapGoods) Helpwantedindx
IP:buseqpt IPtotal PCED-NDUR-ENERGY PCED-SERV GPDInv PGDP Avghrs
IP:nondblemats IPfinalprod PCED-SERV-H0-ELGAS PCED-SERV-HOUS Gov PCED-NDUR-FOOD HStartsTotal
Emptotal IP:consnondble FedFunds PCED-SERV-HO-OTH GovFed PCED-SERV-HOUSOP BuildPermits
Empgdsprod IPmfg 3moT-bill PCED-SERV-TRAN IPconsgds PCED-SERV-MED HStartsNE
Empmfg Empdblegds 6moT-bill PCED-SERV-REC IPconsdble PGPDI HStartsMW
Empnondbles Helpwantedemp 1yrT-bond PCED-SERV-OTH IPmatls PFI HStartsSouth
Empservices Overtimemfg 5yrT-bond PFI-NRES-STRPrInd IPdblemats PFI-NRES HStartsWest
EmpTTU Orders(ConsGoods) 10yrT-bond Pimp Empconst PFI-RES PMI
Empretail PCED-Core M1 PgovFed EmpCPStotal Pexp NAPMnewordrs
EmpFIRE PFI-NRES-EQP MZM Pgovstatloc U5-14wks Pgov NAPMvendordel
EmpGovt Comspotprice(real) MB M2 U15-26wks BUSLOANS OilPrice(Real)
EmpCPSnonag RealAHEconst Reservestot U27pwks NAPMcomprice
EmpHours RealCompHour Reservesnonbor PCED-DUR Conscredit
Uall UnitLaborCost ExrateUK PCED-DUR-MOTOR Consumerexpect
Umeanduration S&P500 EXrateCanada RealAHEgoods fygm10-fygm3
U15pwks fygm6-fygm3 S&Pindust RealAHEmfg Fyaaac-fygt10
NAPMInvent DJIA LaborProd Fyaaac-fygt10
PCED-DUR-HHEQ S&Pdivyield
PCED-NDUR-OTH
Aaabond
Baabond
Exrateavg
ExrateSwitz
ExrateJapan
S&PPEratio
fygm1-fygm3
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5 clusters

k α β σ2

1 0.049 0.752 0.270
2 0.021 -0.074 0.390
3 0.124 0.157 1.260
4 0.054 -0.338 1.335
5 0.100 0.466 0.811

7 clusters

k α β σ2

1 0.109 0.434 0.454
2 0.185 0.263 0.862
3 0.019 -0.116 0.224
4 0.090 -0.321 0.665
5 0.137 0.091 1.250
6 0.124 -0.437 1.297
7 0.026 0.817 0.197

Table B.5: Cluster means for the 5 (top table) and 7 (bottom table) cluster analysis.
The first column, k, indicates the cluster number given in Fig. B.4 and the remaining
three columns the cluster mean along the different directions of the parameter space.
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Figure B.5: Normal cumulative density function for the standardised series. The series are
ordered by cluster label. We assume alternatively 5 (left) and 7 (right) clusters.
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Figure B.6: In each plot the mean logistic-normal weights (different lines) for the univariate
combination model are given. Rows: plot for the four series of interest (real GDP growth rate,
GDP deflator, 3-month Treasury Bills, employment). Columns: forecast horizons (1, 3 and 5
quarters).
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Figure B.7: The plots show the model weights (bk,ij) in each cluster (i = j) when forecasting
GDP growth (k = 1) at the 1-step ahead horizon. The first row refers to clusters 1, 2, and 3;
the second row to clusters 4, 5, and 6; the last row to cluster 7.
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Figure B.8: 5-step ahead fan charts for demeaned GDP (top panel) and demeaned GDP
deflator (bottom panel). Estimated mean (solid blue line) and 5% and 95% quantiles (gray
area) of the marginal prediction density. (Demeaned) realizations in red dashed line
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B.6 Computing time

In this section we compare the computational speed of CPU with GPU in the

implementation of our combination algorithm for both the financial and macro

application. Whether CPU computing is standard in econometrics, GPU approach

to computing has been received large attention in economics only recently. See, for

example, Aldrich (2014) for a review, Geweke and Durham (2012) and Lee et al. (2010)

for applications to Bayesian inference and Aldrich et al. (2011), Morozov and Mathur

(2012) and Dziubinski and Grassi (2013) for solving DSGE models.

The CPU and the GPU versions of the computer program are written in MATLAB,

as described in Casarin et al. (2015). In the CPU setting, our test machine is a server

with two Intel Xeon CPU E5-2667 v2 processors and a total of 32 core. In the first

GPU setting, our test machine is a NVIDIA Tesla K40c GPU. The Tesla K40c card is

with 12GB memory and 2880 cores and it is installed in the CPU server. In the second

GPU setting, our test machine is a NVIDIA GeForce GTX 660 GPU card, which is

a middle-level video card, with a total of 960 cores. The test machine is a desktop

Windows 8 machine, has 16 GB of Ram and only requires a MATLAB parallel toolbox

license.

We compare two sets of combination experiments, the density combination based

on 4 clusters with equal weights within clusters and time-varying volatility, DCEW-

SV, see Section 5, and the density combination with univariate combination based on

7 clusters with recursive log score weights within clusters, UDCLS75, see Section 5.2,

for an increasing number of particles N . In both sets of experiments we calculated, in

seconds, the overall average execution time reported in Table B.6.

As the table shows, the CPU implementation is slower then the first GPU set-up in

all cases. The NVIDIA Tesla K40c GPU provides gains in the order of magnitude from

2 to 4 times than the CPU. Very interestingly, even the second GPU set-up, which can

be installed in a desktop machine, provides execution times comparable to the CPU

in the financial applications and large gains in the macro applications. Therefore, the

GPU environment seems the preferred one for our density combination problems and

when the number of predictive density becomes very large a GPU server card gives

the highest gains.

5The case MCDCLS7 provide similar relative timing, in absolute terms a bit faster than the
univariate ones.
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DCEW-SV UDCLS7
Draws 100 500 1000 100 500 1000

CPU 1032 5047 10192 5124 25683 51108
GPU 1 521 2107 4397 1613 6307 14017
GPU 2 1077 5577 13541 2789 13895 27691

Ratio 1 1.98 2.39 2.32 3.18 4.07 3.65
Ratio 2 0.96 0.90 0.75 1.84 1.85 1.85

Table B.6: Observed total time (in seconds) and CPU/GPU ratios for the algorithm on CPU
and GPU on different machines and with different numbers of particles. The CPU is a 32
core Intel Xeon CPU E5-2667 v2 two processors and the GPU1 is a NVIDIA Tesla K40c GPU
and the GPU2 is a NVIDIA GeForce GTX 660. “Ratio 1” refers to the CPU/GPU 1 ratio
and “ratio 2” refers to the CPU/GPU 2 ratios. Number below 1 indicates the CPU is faster,
number above one indicates that the GPU is faster.
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