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Abstract

We explore the nature of �sharing externalities� in a non-CES model of monopolistic com-

petition with a di�erentiated intermediate good. We �nd that, in addition to the e�ect that

an increase in the number of available varieties of intermediate inputs may have on the total

factor productivity of the �nal good sector (specialization/complexity e�ect), another impor-

tant e�ect comes to play a prominent role in shaping market outcomes. This second e�ect

is due to market interactions between producers of intermediate inputs (competition e�ect).

These two e�ects may work either in the same or in opposing directions, depending on how

the elasticity of technological substitution across intermediate inputs varies with the number

of inputs (number of �rms). The competition e�ect vanishes in the limiting case in which the

technology employed in the �nal good sector is a traditional CES.
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1 Introduction

Since Adam Smith (1776), it is widely acknowledged that an e�cient division of labor is

a key driver of increasing returns and gains from specialization. However, explicit ways of

modeling these gains have been developed solely in the last few decades. In fact, only in

the wake of the path-breaking papers by Dixit and Stiglitz (1977), Ethier (1982), Krugman

(1979; 1981) and Lancaster (1980), a huge number of models has been put forward where

free entry is combined with product di�erentiation and various forms of specialization.

Ethier (1982), in particular, developed a model of monopolistic competition with inter-

mediate goods, which later on has become a workhorse in endogenous growth theory with

horizontal innovations and in agglomeration economics. The key feature of his model is

the presence of sharing externalities (Duranton and Puga, 2004; Fujita and Thisse, 2013),

which generate endogenous increasing returns to scale. More precisely, it is postulated that

a larger market leads to a wider di�erentiation of intermediate inputs, which, in turn, re-

sults in deeper specialization and higher total factor productivity (TFP) in the �nal good

sector. This is the specialization e�ect , which makes deeper product di�erentiation in the

intermediate sector bene�cial to the producers of the �nal good.

However, in addition to the specialization e�ect, an increase in the degree of intermediate

inputs' di�erentiation also triggers other important e�ects. First, according to Kremer

(1993), using more complex technologies (i.e., those that involve a larger number of pro-

duction tasks and/or more varieties of an intermediate input) may hinder the manufacturing

activity, the reason being that such technologies entail higher risks of failure. As a result,

complexity diseconomies occur, as opposed to specialization economies. Second, the pro-

liferation of varieties of intermediate inputs also implies a larger number of �rms in the

intermediate sector. Accordingly, the toughness of competition in the market for interme-

diate goods may increase or decrease, depending on the shape of demand for inputs. This

e�ect, which we call competition e�ect , may also have a non-trivial impact on aggregate

output and other key market variables.

In this paper, we undertake an in-depth inquiry into the nature of sharing externalities,

and study how they a�ect market outcome. In more detail, we aim at showing that what

is really key for understanding sharing externalities is the interplay between two forces:

the specialization/complexity e�ect, on the one hand, and the competition e�ect, on the

other hand. How the interaction between these two forces generates endogenous increasing

returns to scale is de�nitely understudied in the literature, mainly because of the widely

used assumption that technology in the �nal sector displays constant elasticity of substitu-

tion (henceforward CES) across the employed intermediates. Assuming CES technologies
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is appealing as it simpli�es enormously the description of market interactions between mo-

nopolistically competitive �rms, thus increasing a model's tractability. The �ipside of the

coin, however, is that the equilibrium markup, which may serve as a reverse measure of

the toughness of competition, remains una�ected by entry, as well as by market-size shocks.

As a consequence, the competition e�ect is washed out. Both the �horizontal innovation�

paradigm in endogenous growth theory (proposed �rst by Grossman and Helpman, 19901),

and the Marshallian externalities approach (�rst used by Abdel-Rahman and Fujita, 1990

to study agglomeration economies at the city level2) are essentially based on the CES as-

sumption. For this reason, neither of these literatures allows to distinguish clearly between

the impacts of specialization/complexity and toughness of competition on aggregate output

and wages. The aim of our article is to �ll this gap.

In order to achieve our purpose, we develop an extension of the Ethier's (1982) model

to the case of a non-speci�ed constant-returns-to-scale (CRS) technology in the �nal-good

sector. The main result of our approach is a lucid decomposition of external increasing re-

turns to scale into two components: (i) a competition e�ect , which stems from the market

interactions between producers of intermediate inputs, and (ii) a specialization/complexity

e�ect , which we model as a supply-side counterpart of the notion of �love/aversion for va-

riety�.3 Through this decomposition, we show that the gains from specialization are, in

general, not the only factor responsible for the emergence of external increasing returns to

scale. Competition in the intermediate sector also plays a fundamental role, except when

the �nal good is produced by means of a CES technology. In this common, yet very special,

case external increasing returns to scale are fully driven by the gains from specialization. At

the other extreme is the translog technology, where the external increasing returns to scale

are induced solely by the competition e�ect. In between these two limit-situations, we �nd

that both e�ects (specialization/complexity and competition) do matter in shaping market

outcomes.

The other �ndings of the paper may be summarized as follows. First, we provide a

micro-foundation of the complexity externality, which may lead to a reduction of TFP in

the �nal output sector in response to expanding variety of intermediate inputs. Examples of

how such an externality may work in the new growth theory can be found, just to mention

some examples, in Howitt (1999), Dalgaard and Kreiner (2001), and Bucci (2013).

Second, we obtain a full characterization of the impact of horizontal innovation (which

1See also Krugman (1990, Ch. 11), Romer (1990), and Rivera-Batiz and Romer (1991).
2Duranton and Puga (2004) and Fujita and Thisse (2013) provide extensive and masterful surveys of this

strand of literature.
3See Benassy (1996) and Zhelobodko et al. (2012) for recent models where �love for variety� plays a

crucial role.
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is embodied in the entry of new intermediate inputs' producers into the market) on prices,

markups, and wages. Our model allows us to make a distinction between price-decreasing/increasing

and markup-decreasing/increasing competition, and provides necessary and su�cient condi-

tions for each type of competition to occur. We believe that this result represents a further

theoretical advancement with respect to the treatment of the monopolistic competition pro-

cess recently proposed by Zhelobodko et al. (2012). These authors, in fact, distinguish only

between price-increasing and price-decreasing competition, the reason being that in their

model prices and markups always move in the same direction in response to entry or exit of

�rms, as well as to market size shocks.

Third, we also discriminate between wage-increasing and wage-decreasing competition.

Wage inequality is an issue which is important also from an international-trade perspective,

as recently discussed, among others, by Amiti and Davis (2012) and Helpman et al. (2010).

In this respect, our �ndings suggest that this kind of inequality may stem, at least in part,

from the di�erent nature of the interaction between the specialization/complexity and the

competition e�ects across countries. Another issue that, in this regard, motivates empirically

our theoretical analysis is the relationship between city size and wages. The exact form of

this relationship is ambiguous, even though it is widely acknowledged by urban and regional

economists that larger cities pay, on average, higher wages. In many papers, a log-linear

relationship, implied by the CES model, is estimated. However, to improve the �t, city-

speci�c dummies are commonly used (see, for example, Duranton, 2014). A more �exible

strategy, for which our paper provides a microeconomic foundation, could be trying a non-

linear speci�cation.4

In addition, we �nd that the competition e�ect may either reinforce or weaken the im-

pact of the specialization e�ect on aggregate output. This possibility is almost completely

overlooked, for example, by horizontal R&D-based endogenous growth models (including

Benassy, 1998) that consider only the positive e�ects of specialization, disregarding other

possible e�ects (which may be both positive or negative in sign) which can come from an

increase in the toughness of competition in the product market. In our analysis, the way

in which the competition e�ect interacts with the specialization e�ect depends on whether

the inverse demand elasticity for the intermediate inputs is a decreasing or an increasing

function of the number of such inputs.

Finally, our main results are robust in the sense that they hold for any well-behaved

technology which satis�es the (rather general) properties of symmetry and constant returns

4Needless to say, we acknowledge that factors other than specialization economies and market competition
also play a signi�cant role in determining the city size-wage gap. Moreover, Baum-Snow and Pavan (2012)
clearly point out that this gap may be di�erent across workers being heterogeneous in experience, ability,
etc. However, these further dimensions of the problem are outside the scope of our paper.
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to scale.

We are aware that extensions of our model along di�erent lines and applications of it in

many speci�c contexts are de�nitely possible. We brie�y discuss some of these extensions

and possible applications of our approach in the concluding section.

The article is structured as follows. In section 2 we set the model. In section 3 we

characterize the equilibrium for a given number of input-producing �rms. We also suggest a

classi�cation of competitive regimes in the intermediate input sector, based on the impact of

entry on prices, markups, and wages. In section 4 we deal with a free-entry equilibrium, and

study how the interaction between the specialization/complexity e�ect and the competition

e�ect generates external increasing returns to scale. Section 5 concludes.

2 The Model

The economy is composed by two sectors that are involved into a vertical relationship. The

intermediate inputs sector (henceforth sector I), produces a di�erentiated intermediate good

under monopolistic competition. The number of �rms in this sector (I-�rms) is endogeneous

due to free entry, while the only production factor is labor. Workers are homogeneous,

and each of them inelastically supplies one unit of labor. The labor market is perfectly

competitive.

The �nal good sector (hereafter sector F) involves a unit mass of perfectly competitive

�rms (F -�rms) sharing the same CRS technology, which uses varieties of the intermediate

good as inputs. The main departure of our modeling strategy from Ethier (1982) and other

numerous subsequent papers lies in working with a non-speci�ed production function instead

of the widely used CES technology.

2.1 Sector F

Production of the homogenous �nal good requires a continuum [0, n] of varieties, hencefor-

ward inputs, of a horizontally di�erentiated intermediate good. All �rms operating in sector

F are endowed with the same production function F :

Y = F (q), (1)

where q = (qi)i∈[0,n] is the vector of intermediate inputs employed, while n stands for the

number (more precisely, the mass) of intermediate inputs, as well as for the number of �rms

producing these inputs.
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We make standard assumptions about F (q). First, F (q) is concave in q, which implies

that each input exhibits a diminishing marginal product. Second, F (q) is positive homoge-

nous of degree 1, so that returns to scale are constant. Finally, we focus on symmetric

production functions, i.e. such that any permutation of intermediates does not change the

�nal output, Y . The reason for imposing such a kind of symmetry, which typically holds

in monopolistic competition contexts, is to refrain from placing any ad-hoc asymmetries on

sector I.
For illustrative purposes, we provide some examples.

1. CES: variations on a theme. The three assumptions just introduced (concavity,

CRS, and symmetry) are simultaneously satis�ed by the standard CES production function

(Dixit and Stiglitz, 1977):

F (q) ≡

 nˆ

0

qρi di

1/ρ

, 0 < ρ < 1. (2)

One may think of at least two possible departures from production function (2). The

�rst one is a production function where ρ is no longer a constant, but depends on n. This

is the case studied by Gali (1995), who assumes that varieties become better and better

technological substitutes as their number increases, i.e. ρ′(n) > 0. A second departure is the

production function used in Ethier (1982):5

F (q) = nν

 nˆ

0

qρi di

1/ρ

, 0 < ρ < 1. (3)

In equation (3), when su�ciently negative, ν is a measure of the magnitude of the com-

plexity e�ect : a larger number of intermediate inputs being simultaneously combined within

the same production process can lead to a reduction in aggregate output (we come back

to this issue immediately below). To be more precise, complexity diseconomies are said to

occur if and only if ν < 1 − 1/ρ. Otherwise (ν > 1 − 1/ρ), specialization economies take

place. The logic behind these de�nitions is as follows. Evaluating (3) at a symmetric output

vector, in which qi = q for all i ∈ [0, n], and where q is given, we obtain Y = nν+1/ρq. The

above inequalitites keep track of whether Y increases more or less than proportionately with

n. The baseline case described by (2) corresponds to ν = 0, hence the CES technology can

only account for specialization economies.

2. Translog production function. For a tractable example of a non-CES technology

satisfying our assumptions, consider a production function given by

5See also Benassy (1998).
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lnF (q) =
1

n

nˆ

0

ln qidi−
α

2n

 nˆ

0

(ln qi)
2di− 1

n

 nˆ

0

ln qidi

2 (4)

One may treat (4) as an in�nite-dimensional counterpart of the translog speci�cation,

which has been widely used in early empirical works on production functions estimation (see,

e.g., Kim, 1992).

3. Kimball-type production functions. Kimball (1995) represents, to the best of

our knowledge, one of the very �rst (and few) macroeconomic papers where a non-CES

production technology is employed in sector F . Namely, the production function Y = F (q)

is implicitly de�ned by means of the so-called ��exible aggregator�:

nˆ

0

φ
( qi
Y

)
di = 1, (5)

where φ(·) is some function, which is assumed to be increasing and concave.6

Specialization economies vs complexity diseconomies. In order to extend the

de�nitions of specialization economies and complexity diseconomies from the CES technology

(ν ≷ −1/ρ) to any symmetric CRS technology, we consider the behavior of F at a symmetric

outcome, i.e. when qi = q for all i ∈ [0, n]. Denote by ϕ(n) the level of output that can be

produced when a �rm uses one unit of each intermediate input.7

Given total expenditure E allocated by a �nal good producer on the purchase of interme-

diate inputs under unit price for all of them, the specialization economies capture the idea

that the division of labor generates productivity gains, namely a larger variety of intermedi-

ate inputs allows to produce a larger amount of �nal output. To put this in a more formal

way, note that, due to constant returns to scale, output of the �nal good equals qϕ(n) when

q units of each intermediate are employed. Hence, the specialization e�ect takes place if and

only if

E

n
ϕ(n) >

E

k
ϕ(k), where k < n.

In other words, specialization economies occur if and only if ϕ(n)/n increases with n, or

equivalently when the elasticity of ϕ(n) exceeds 1:

ϕ′(n)n

ϕ(n)
> 1. (6)

6To guarantee that a solution to (5) does exist for any n, one may assume additionally that φ(0) ≤ 0,
while φ(∞) =∞. When φ(·) is a power function, we obtain the CES speci�cation as a special case of (5).

7Formally, ϕ(n) ≡ F
(
I[0,n]

)
, where IS is an indicator of S ⊆ [0, n].
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Otherwise output of the �nal good decreases with the intermediate inputs' range. In the

latest case, we face complexity diseconomies.

In order to provide some intuition about how the trade-o� between specialization economies/complexity

diseconomies can take place, consider the following examples.

For the standard CES technology (2) we have ϕ(n)/n = n(1−ρ)/ρ. Since 0 < ρ < 1, this

implies that just specialization economies take place. More generally, this is true for any

production function satisfying (5) with φ(0) = 0 (see Appendix 2).

For an example of a well-behaved technology which always displays complexity disec-

onomies, consider again the translog production function. Evaluating (4) at a symmetric

input vector, we �nd that ϕ(n) = 1 for all n > 0. As a consequence, (6) is violated, which

means the presence of complexity diseconomies.

Is it possible that specialization economies change into complexity diseconomies as n

becomes su�ciently large? For this to happen, ϕ(n)/n must be non-monotone. Apparently,

the Kimball's ��exible aggregator� seems to be �exible enough to capture this possibility. To

show this, consider a Kimball-type production function with φ(q/Y ) ≡ a(q/Y )ρ − b, where
a, b > 0, 0 < ρ < 1. Here, a can serve as a measure of overall TFP, while b shows the strength

of the complexity externality. This yields the following modi�cation of the �augmented CES�

technology:

F (q) = A(n)

 nˆ

0

qρi di

1/ρ

, A(n) ≡
(

a

1 + bn

)1/ρ

. (7)

The interaction between specialization and complexity underlying (7) is summarized by

ϕ(n)

n
=

1

n

(
an

1 + bn

)1/ρ

. (8)

As implied by (8), ϕ(n)/n is bell-shaped, 8 i.e. specialization economies always prevail

over complexity diseconomies whenever the intermediate input is not �too much� di�erenti-

ated, otherwise complexity diseconomies always prevail over specialization economies.

Cost function and price index. Each F -�rm seeks to minimize production costs,

min
q

nˆ

0

piqidi s.t. F (q) ≥ Y, (9)

treating Y as given. The approach based on the cost function C (p, Y ), which is de�ned as

8Indeed, it is readily veri�ed that the right-hand side of (8) increases in n for all n < 1/(ρb) and decreases
otherwise.
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the value function of the cost minimization problem (9), provides a description of technology

dual to the one based on the production function.9 Because of constant returns to scale, a

well-de�ned price index for intermediate goods P (p) exists, which satis�es

C (p, Y ) = Y P (p). (10)

In the CES case, the price index is given by

P (p) =

 nˆ

0

p1−σi di

1/(1−σ)

. (11)

An example of a price index which describes a tractable non-CES production function is

the translog price index :

lnP (p) =
1

n

nˆ

0

ln pidi−
β

2

 nˆ

0

(ln pi)
2di− 1

n

 nˆ

0

ln pidi

2 . (12)

Demand for inputs. The �rst-order condition for cost minimization is given by

pi = λΦ(qi,q), (13)

where Φ(qi,q) ≡ ∂F/∂qi is the marginal product10 of input i, while λ is the Lagrange

multiplier of the �rm's program (9). It follows from the envelope theorem that the value of

λ equals the marginal production cost, i.e. λ = ∂C /∂Y for all Y and p. Combining this

with (10), we obtain the following inverse demand schedule for input i:

pi
P (p)

= Φ(qi,q). (14)

Weak interactions. As stated in the introduction, market interactions between pro-

ducers of inputs are crucial for our results. For a better understanding of the nature of these

interactions, a further inquiry on the properties of the marginal products Φ(qi,q) is needed.

First, Φ(qi,q) decreases in qi, which is a straightforward implication of diminishing

marginal returns. This property means that inverse demands (14) are downward-sloping.

9Duality theory in production, for the case of a �nite set of inputs, was developed in pioneering works by
Shephard (1953) and Uzawa (1964).

10A purist would correctly note at this stage that the partial derivatives ∂F/∂qi are not well-de�ned in
the case of a continuum of inputs, which may create some mathematical troubles in a framework where F
is non-speci�ed. We are aware of this problem. However, if we put some minor additional structure on
the space of input vectors q potentially available for the �nal-good producers, everything works as if the
marginal products were well-de�ned. See Appendix 1 for technical details.
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Second, Φ(qi,q) does not vary with individual output qj of any �rm j 6= i, given that the

outputs of �rm i and all the other �rms (except j) remain unchanged (see Appendix 1 for

details). This second property has a far-fetched implication: input-producing �rms are not

involved into truly strategic market interactions, but rather into weak interactions, mean-

ing that the individual impact of each �rm on the demand schedules of its competitors is

negligible.11 In other words, it is the aggregate behavior of �rms to determine the market

outcome, as no single �rm has per se enough market power to strategically manipulate the

market. This is typical in existing monopolistic competition models and is in the line with

Chamberlin's �large group� assumption.

For the sake of illustation, consider again the CES case. The marginal products are given

by

Φ(qi,q) = qρ−1i A(q), A(q) ≡

 nˆ

0

qρjdj

(1−ρ)/ρ

. (15)

As implied by (15), in the CES case Φ is downward-sloping in qi, while the demand shifter

A(q) is invariant to individual changes in qi.

A dual description of specialization/complexity (dis)economies. We now come

to developing a dual description of the trade-o� between specialization and complexity, as

these two concepts have been de�ned before. To do so, we observe that when the price

schedule for the intermediate inputs is symmetric, i.e. when pi = p for all i ∈ [0, n], then the

�nal-good producer will purchase all inputs in equal volumes: q = Y/ϕ(n). As a consequence,

total cost equals Y pn/ϕ(n), while the price index at a symmetric outcome boils down to

P =
n

ϕ(n)
p. (16)

Combining (16) with our de�nition of specialization economies, we may conclude that

the price index decreases (increases) with the range of inputs if and only if specialization

economies (complexity diseconomies) take place.

This dual approach to specialization economies/complexity diseconomies allows to see

that the translog technology (12) is, in a sense, a borderline case. Indeed, as implied by (12),

under a symmetric price schedule we have P = p. Comparing this with (16), we conclude

that ϕ(n) = n. Thus, neither specialization economies nor complexity diseconomies occur ,

11See Combes et al. (2008, Ch. 3) for a thorough discussion on the nature of weak interactions in
monopolistic competition models.
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i.e. these two forces exactly balance each other.12

The next proposition summarizes the main properties of all the production functions

mentioned as examples so far.

Proposition 1. (i) The augmented CES (3), the translog production function (4), the

translog price index (12), and the Kimball's �exible aggregator (5) specify technologies which

are all di�erent with respect to each other, except the CES that can be obtained as a spe-

cial case of production functions satisfying (5); (ii) Kimball-type technologies (5) satisfying

φ(0) = 0 exhibit specialization economies rather than complexity diseconomies; (iii) The

translog production function (4) generates complexity diseconomies, while under the produc-

tion function characterized by the translog price index (12) neither specialization economies

nor complexity diseconomies take place.

Appendix 2 provides the proof of Proposition 1. This result reveals the �exibility of

our approach, which encompasses a wide variety of technologies with a di�erentiated input,

including most of those that have been considered by previous works in the literature. In

particular, our framework is more general than the one proposed by Kimball (1995), the

reason being that, as implied by (i), the latter does not include the augmented CES, nor the

translog production function.

2.2 Sector I

There is a continuum of intermediate input producers sharing the same technology, which

exhibits increasing returns to scale. Firm i's labor requirement for producing output qi is

given by f + cqi, where f > 0 is the �xed cost and c > 0 is the constant marginal production

cost. Thus, the pro�t πi of �rm i is de�ned by πi ≡ (pi − cw)qi − f , where w stands for the

wage rate.

Firm i faces the inverse demand schedule (14) and seeks to maximize its pro�t. Formally,

the pro�t-maximization program of �rm i is given by

max
pi,qi

[(pi − cw) qi] s.t. pi = P (p)φ(qi,q), (17)

where P (p) is the price index, which now plays the role of a market aggregate.

In accordance with the idea of weak interactions, individual changes in �rms' prices have

a negligible impact on P (p), which is illustrated by (11) for the special case of the CES

technology in sector F . In other words, each I-�rm takes the value of P as a given. Hence,

12For another example of production function where the aggregate e�ect of variety expansion is suppressed
(because the specialization and complexity consequences of an increase in the number of available varieties
of intermediate inputs have the same magnitude but opposite sign), see Chen and Chu (2010, Eq. 4, p, 250).
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(17) may be restated as

max
qi

[(PΦ(qi,q)− cw) qi] . (18)

The �rst-order condition for �rm i's program (18) is given by

Φ(qi,q) + qi
∂Φ

∂qi
=
cw

P
. (19)

Observe that the left-hand side of (19) is positive homogenous of degree zero. This

implies that the solution of (19) cannot be unique. Indeed, multiplying a solution of (19) by

a constant yields another solution. The �proper� equilibrium is pinned down by the labor

balance condition

c

nˆ

0

qidi+ fn = L, (20)

which equates total labor supply to total labor demand.

To guarantee that equation (19) is compatible with pro�t-maximizing behavior by �rms,

the second-order condition must hold, which amounts to assuming that the real operating

pro�t [Φ(qi,q)− cw/P ] qi of �rm i is strictly quasi-concave in qi for all q. Moreover, in order

to ensure that a continuum of asymmetric Nash equilibria in the �rms' quantity-setting game

does not arise, we introduce a stronger assumption:

(Assumption A) The left-hand side of (19) is decreasing in qi for any q.

Imposing (Assumption A) is equivalent to assuming that the operating pro�t of each �rm

is strictly concave in its output. This assumption holds for the CES and, more generally, for

any production function of the type (5) such that

−φ
′′′(q/Y )

φ′′(q/Y )

q

Y
< 2 for all q/Y > 0.

(Assumption A) rules out asymmetric equilibria13 because (19) has a unique solution

q∗i (q), which is the same for all �rms i ∈ [0, n].

13See Gorn et al. (2012) for a recent formal treatment of multiple asymmetric equilibria in monopolistic
competition.
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3 Equilibrium for a given number of I-�rms

3.1 Equilibrium in sector F .

Because the �nal output is consumed only by workers, product market balance suggests that

Y = wL. This is possible only if P = 1. Indeed, �rms' pro�ts are given by (1−P )Y . Hence,

if P < 1, each �rm would supply in�nitely many units of Y . On the contrary, if P > 1, total

supply of the �nal good is zero, for no �rm is willing to start production under negative

pro�ts.

Combining P = 1 with (16) pins down the equilibrium price for the intermediate inputs

at a symmetric market con�guration:

p∗(n) =
ϕ(n)

n
. (21)

The intuition behind (21) is as follows. If the price for inputs exceeds ϕ(n)/n, then the

supply of �nal good, hence the demands for inputs, are equal to zero. Consequently, �rms

producing intermediate goods will reduce prices in order to attract at least some demand.

If, on the contrary, prices are lower than ϕ(n)/n, the supply of Y will be in�nitely large, and

so will be the demands for inputs, which would lead to a swell of prices.

Equation (21) may seem puzzling, as it implies that market interactions in sector I
are fully irrelevant in determining input prices.14As a matter of fact, on the one hand it is

absolutely true that the game between inputs' producers depends crucially on the market

structure, and so do the pro�t-maximizing prices when the number of �rms in endogenous

(see Section 4.1 below). On the other hand, however, input-producing �rms accurately

anticipate the equilibrium value of the price index, which is determined outside the game

among �rms. Namely, it is driven to P = 1 by (i) perfect competition in sector F , and (ii)

correctness of the intermediate �rms' expectations. In other words, under the assumption

that the number of input-producing �rms is given, things work as if these �rms were price-

takers, even though they are actually price makers . This property is a distinctive feature of

Ethier's framework (as well as ours) compared to models of monopolistic competition a lá

Dixit-Stiglitz (1977), where the �nal good is di�erentiated.

It is also worth mentioning that, because the labor market is perfectly competitive, the

I-�rms take the wage w as given. Thus, the role of the equilibrium wage in this context is

to align pro�t-maximizing prices with (21) (see Section 3.3).

Another important implication of (21) is that the inputs' price at a symmetric equilibrium

14Moreover, observe that (21) is fully independent of our assumption that sector I is monopolistically
competitive. This relationship, indeed, would hold under any market structure which allows for a symmetric
equilibrium (e.g., under symmetric Cournot or Bertrand oligopoly).
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increases (decreases) with the number of �rms n in sector I when specialization economies

(complexity diseconomies) take place (see Section 2.1).

3.2 Equilibrium in sector I.

Combining (14) with P = 1, the �rst order condition for pro�t maximization (19) may be

recast as

pi − cw
pi

= η(qi,q), (22)

where η is the marginal product elasticity :

η(qi,q) ≡ −∂Φ

∂qi

qi
Φ(qi,q)

. (23)

At a symmetric outcome, when pi = p and qi = q for all i ∈ [0, n], (22) boils down to

p− cw
p

= r(n), (24)

where r(n) is de�ned by

r(n) ≡ η(qi,q)|qj=qi ∀j∈[0,n] . (25)

Being a key ingredient of our model, r(n) deserves some further comment. In general, r(n)

allows several di�erent, though closely related, interpretations. First of all, r(n) represents

the pro�t-maximizing markup, which may serve as an inverse measure of the degree of product

market competition. Thus, the behavior of r(n) with respect to n shows how the toughness

of competition varies with �rm-entry. In particular, r′(n) < 0 would mean that competition

gets tougher when more �rms enter the market, which is probably the most plausible case,

though not the only possible one. Second, as stated by (25), r(n) is also the marginal product

elasticity. In other words, r(n) keeps track of whether the marginal product decreases at a

higher or lower rate when the intermediate good becomes more di�erentiated. Finally, r(n)

also re�ects the degree of product di�erentiation. Indeed, note that in the CES case we have

1

r(n)
=

1

1− ρ
= σ,

where σ is the elasticity of technological substitution across inputs. Hence, the higher σ, the

lower product di�erentiation. In the non-CES case, setting σ(n) ≡ 1/r(n) yields a measure

of product di�erentiation which varies with n. It can be shown that σ(n) is, in fact, the true

elasticity of technological substitution across inputs (Nadiri, 1982) evaluated at a symmetric

outcome.
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In what follows, we prefer to view r(n) mainly as the pro�t-maximizing markup. This

interpretation is directly related to the notion of toughness of competition, which is of

paramount importance for our results.

Before proceeding, it is legitimate to ask why r(n) is independent of q. The key feature

of the model which drives this result is the presence of constant returns to scale in sector

F . Indeed, due to the CRS property, Φ(qi,q) is positive homogenous of degree zero (in

Appendix 1, we provide a formal proof of this statement under a continuum of varieties).

Combining this with (23), we �nd that η is also homogeneous of degree zero. This, in turn,

implies that changing q in (25) under any given n does not perturb the right-hand side of

(25). As a result, the pro�t-maximizing markup r(n) depends solely on the number of �rms.

The pricing rule (24) implies that competition gets tougher (softer) in response to entry

of new I-�rms when r(n) decreases (increases). In other words, competition may be either

markup-increasing or markup-decreasing. Which of these two types of competition occurs

in sector I is fully determined by the demand for inputs, which stems from sector F . To

illustrate this point, consider some examples. For the standard CES technology we have

r(n) = 1− ρ, i.e. pro�t-maximizing markups are not a�ected at all by entry of new I-�rms.

Furthermore, for the cases of the translog production function (4) and the translog price

index (12), the pro�t-maximizing markups are as follows:

Translog production function Translog expenditure function

r(n) = 1− αn r(n) = 1
1+βn

Hence, both these technologies induce markup-decreasing competition.

When the production function is given by (5), we have

r(n) = −ξφ
′′(ξ)

φ′(ξ)

∣∣∣∣
ξ=φ−1(1/n)

, (26)

i.e. competition is markup-decreasing if and only if the elasticity of φ′(·) is an increasing

function.

Specialization/complexity and competition. We now come to determining the

equilibrium wages and aggregate �nal output, along with the equilibrium output per-�rm.

Combining (24) with (21) yields

w∗(n) =
1

c
[1− r(n)]

ϕ(n)

n
. (27)

Furthermore, plugging (27) into the product market balance Y = Lw, we obtain:

Y ∗(n) =
L

c
[1− r(n)]

ϕ(n)

n
, (28)
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Equations (27) and (28) are important because they suggest a decomposition of equi-

librium wages and aggregate �nal output (up to the coe�cients 1/c and L/c, respectively)

into the product of the competition e�ect, 1− r(n), and the specialization/complexity e�ect,

ϕ(n)/n. The former increases with n if and only if r′(n) < 0, while the latter increases if

specialization economies prevail over complexity diseconomies.

Finally, the per-�rm output q∗(n) is determined from the labor balance condition (20),

which takes the form

(cq + f)n = L (29)

at a symmetric outcome. Clearly, q∗(n) = (L− fn)/(cn) always decreases with n.

3.3 The impact of entry on prices, wages, and markups

In our model, prices, wages, and markups are all endogenous. Moreover, putting together

(21), (24), and (27), we observe that entry of new �rms a�ects these variables not necessarily

in the same direction. To be more precise, in what follows we say that competition is (i)

Price-decreasing if ∂p∗/∂n < 0, and price-increasing otherwise; (ii) Markup-decreasing if

∂[(p∗−cw∗)/p∗]/∂n < 0, andmarkup-increasing otherwise; (iii)Wage-decreasing if ∂w∗/∂n <

0, and wage-increasing otherwise.

The next Proposition summarizes the main results of the previous sub-section in terms

of the above taxonomies.

Proposition 2. In the framework of the model presented, competition is (i) Price-

increasing (price-decreasing) if and only if the F-�rms enjoy specialization economies (su�er

from complexity diseconomies); (ii) Markup-decreasing (markup-increasing) if and only if

r′(n) < 0 (r′(n) > 0); and (iii)Wage-increasing (wage-decreasing) if and only if the following

inequality holds (does not hold):

ϕ′(n)n

ϕ(n)
> 1 +

r′(n)n

1− r(n)
. (30)

Observe that, as implied by (27), the condition (30) is virtually dw∗/dn > 0 when written

in terms of elasticities.

Proposition 2 highlights a crucial di�erence between our results and those recently ob-

tained by Zhelobodko et al. (2012). These authors �nd that additional entry of �rms leads

to a reduction or hike in markups depending on how the elasticity of substitution varies with

the individual consumption level. However, in their setting markup-decreasing competition

is also price-decreasing and (because labor is chosen to be the numeraire) wage-decreasing,

16



and vice versa. In our model, this is not necessarily the case. To show this, we �nd it worth

contrasting in a visual way our results about the impact of I-�rms' entry on prices, markups

and wages across di�erent types of production functions. Table 1 provides a summary for

the CES and both types of translog technologies.

Translog cost CES production Translog production

function function function

Price No e�ect ↑ ↓
Markup ↓ No e�ect ↓
Wage ↑ ↑ No e�ect

Table 1: The impact of entry on prices, markups and wages for di�erent types of production functions

Table 1 reveals that under translog cost function prices are neutral to entry, while

markups (wages) decrease (increase) in response to a larger number of �rms. In the CES

case, both prices and wages increase in response to more �rms entering the intermediate

input market, while the markup remains unchanged. Finally, with a translog production

function wages remain unchanged when new �rms enter, while both prices and markups fall.

These �ndings highlight the key role of the interaction between the specialization/complexity

e�ect and the competition e�ect in determining the nature of market outcomes.prices.15

4 External increasing returns to scale

This section describes in detail the interaction between the specialization/complexity e�ect

and the competition e�ect in creating production externalities. Hence, it plays a central role

within the whole analysis.

4.1 Free-entry equilibrium

We de�ne a symmetric free-entry equilibrium as a vector (p∗, q∗, n∗, w∗, Y ∗), which satis�es

(21), (24), (27), the labor balance condition (29), and the zero pro�t condition

15As an example of how our theory may be used, notice that both in trade and urban economics empirical
evidence (???) tends to suggest that larger cities exhibit higher prices, lower markups, and higher wages.
Table 1 reveals that neither the CES production function, nor any of the two translog technologies can fully
capture this pattern. Proposition 2, however, suggests a quali�ed answer to the question of which production
function would ultimately be able to reproducing these facts. Indeed, according to (30), if competition is
both price-increasing and markup-decreasing, then it is also wage-increasing. Hence, any production function
that exhibits both specialization economies (nϕ′(n)/ϕ(n) > 1) and decreasing marginal product elasticities
(r′(n) < 0) can replicate the empirical evidence for large cities mentioned above . This holds, in particular,
for all Kimball-type production functions such that (i) φ(0) = 0, and (ii) the elasticity of φ′(·) is increasing.
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(p− cw)q = wf. (31)

Equilibrium number of �rms. We �rst pin down the equilibrium number n∗ of I-
�rms. To do so, observe that (31) may be restated as follows:

p− cw
p

=
f

f + cq
. (32)

In other words, at a symmetric free-entry outcome the markup of any intermediate �rm

equals the share of �xed cost in �rm's total production cost. This makes sense because it is

the presence of a �xed cost which generates increasing returns to scale.

Combining (32) with the pricing rule (24) and the labor balance (29), we obtain:

r(n) =
f

L
n. (33)

The equilibrium number of �rms n∗ is uniquely pinned down by (33) when r(n) is either

decreasing or �su�ciently slowly� increasing in n,16 i.e. when competition is either markup-

decreasing or �not too markup-increasing�. If this is not the case, then multiple equilibria

may arise. However, since we assume 0 < r(n) < 1, (33) has always at least one solution

n∗ > 0, which means that a symmetric free entry equilibrium does always exist. In order

to choose meaningful equilibria when they are multiple, we can restrict ourselves to stable

equilibria, for which r′(n∗) < f/L.

Specialization and competition under free entry. Given n∗, using (24) and (31)

yields the equilibrium �rm's size:

q∗ =
f

c

1− r(n∗)
r(n∗)

(34)

According to (34), any shock that generates additional entry in the intermediate sector

(and preserves the ratio f/c) would lead to a hike (respectively, a reduction) in �rms' size if

and only if r(n) is a decreasing (respectively, increasing) function of n.

After plugging (34) into the production function of sector F , we obtain the resulting

aggregate production function:

Y ∗(L) =
L

c
[1− r (n∗(L))]

ϕ[n∗(L)]

n∗(L)
, (35)

while plugging n∗ into (27) pins down the equilibrium wage w∗:

16By �su�ciently slowly� we mean that the elasticity of r(n) never exceeds 1.
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w∗ =
1

c
[1− r (n∗(L))]

ϕ [n∗(L)]

n∗(L)
. (36)

In equations (35) and (36), 1 − r (n∗(L)) captures the competition e�ect, which stems

from sector I . It increases (decreases) with n (and hence with the total labor supply,

L) if and only if r(n) is a decreasing (increasing) function of n, i.e. when competition is

markup-decreasing (markup-increasing). The term ϕ(n∗(L))/n∗(L) describes the specializa-

tion/complexity e�ect.

In order to clarify how the degree of competition in sector I may impact the sector F 's
aggregate production function, we observe that total output Q∗ ≡ n∗q∗ in sector I is given

by

Q [L, n∗(L)] =
L

c

[
1− f n

∗(L)

L

]
=
L

c
[1− r (n∗(L))] . (37)

Equation (37) follows from (29), (33), and (34). Using (37), the aggregate production

function (35) may be restated as follows:

Y ∗(L) =
ϕ [n∗(L)]

n∗(L)
Q [L, n∗(L)] . (38)

The �rst term in (38) captures the specialization/complexity e�ect in sector F , while
the second term keeps track of the competition e�ect. In other words, in our framework

competition among input-producing �rms a�ects total output of the �nal good through the

aggregate output of the intermediate good. More precisely, equations (33) and (37) imply

that Q [L, n∗(L)] increases more (respectively, less) than proportionally with L if and only

if competition is markup-decreasing (respectively, markup-increasing). This, in turn, leads

to competition generating a tendency toward external increasing (decreasing) returns to

scale in sector F . Compared to the standard CES model (where Q is readily veri�ed to

be exactly proportional to L, so that a competition e�ect cannot be taken into account),

in the general case that we are analyzing there are two sources of sharing externalities: the

specialization/complexity e�ect and the competition e�ect.

This explains why appealing to a CES production function may cause some limitations in

various economic contexts. To see this in more detail, consider again equations (35) and (36)

above. These two equations are basically the same and di�er just by a constant term (L/c

and 1/c , respectively). When specialization economies take place, the term ϕ[n∗(L)]/n∗(L)

increases with n∗. As for the term capturing the competition e�ect, [1 − r(n∗(L))], it rises

with n∗ under markup-decreasing competition (r′(n∗) < 0), and falls otherwise. There-

fore, solely in the former case (markup-decreasing competition) the specialization e�ect on
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both aggregate output and wages is reinforced by the competition e�ect. This is no longer

true when competition is markup-increasing (in this case, the specialization e�ect would

be weakened by the competition e�ect stemming from a larger number of �rms entering

the intermediate sector). Notice that, if the production function were CES, then the term

[1−r(n∗(L))], appearing in both (35) and (36), would be constant. Hence, the specialization

e�ect would represent the only source of external increasing returns to scale in the �nal good

sector.

4.2 The aggregate production function

We are now equipped to characterize the main properties of the aggregate production func-

tion, as well as to perform comparative statics of the free-entry equilibrium with respect to

the number L of workers. Our main interest in this excercise is to reveal how aggregate

output varies with L, namely how the external increasing/decreasing returns to scale in the

F -sector endogenously emerge. Under a positive shock in L, the left-hand side of equation

(33) remains unchanged, while the right-hand side is shifted downwards. As a consequence,

the equilibrium number of �rms n∗ increases with L whenever the equilibrium is stable, i.e.

when r′(n∗) < f/L (see Section 4.1). Combining this with (35), we �nd that at equilibrium

the average product of labor, Y ∗(L)/L, increases with L if and only if [1 − r(n)]ϕ(n)/n is

an increasing function of n, or, equivalently, if and only if competition is wage-increasing.

Thus, we can now state the following proposition.

Proposition 3. Endogenous increasing returns to scale take place if and only if (30)

holds, or, equivalently, competition is wage-increasing.

As discussed in Section 3, what renders competition wage-increasing or wage-decreasing in

our model is the interplay between the competition e�ect and the specialization/complexity

e�ect. Therefore, Proposition 3 stresses the importance of the interaction between the two

e�ects in generating Marshallian externalities. Indeed, by comparing (30) with (6), which

is a necessary and su�cient condition for specialization economies to arise, one immediately

notices that the major di�erence between the two conditions resides in the fact that the

former contains an additional term, nr′(n)/[1− r(n)], which is due to the competition e�ect.

In particular, it is possible to see that (30) and (6) coincide if and only if r(n) is constant,

which corresponds to the classical case of a CES technology. This explains why both en-

dogenous growth and agglomeration economics literatures have generally explained so far

the emergence of external increasing returns to scale by appealing solely to the presence of

specialization economies, so almost totally (and perhaps undeservedly) neglecting the role

of market interactions among �rms in this process.
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Concerning the relationship between n∗ and L, our analysis reveals that n∗increases less

(more) than proportionally in L if and only if r(n) is a decreasing (increasing) function of n.

In other words, when competition is markup-decreasing (markup-increasing), the number of

�rms increases less (more) than proportionally in response to an increase in L. Combining

this with (35), we can state the following result.

Proposition 4. Compared to the CES case, markup-decreasing competition damps the

specialization e�ect, but simultaneously triggers a positive competition e�ect. Under markup-

increasing competition, the situation is reversed.

Table 2 summarizes in a compact way our results about the roles that market-size and

the interaction between the specialization e�ect and the competition e�ect play in deter-

mining the equilibrium market-outcome under markup-decreasing and markup-increasing

competition:

r′(n) < 0 r′(n) > 0

n∗
increases less than proportionally increases more than proportionally

in response to an increase in L in response to an increase in L

Y ∗, w∗
specialization e�ect weakened, specialization e�ect reinforced,

positive competition e�ect negative competition e�ect

Table 2: The impact of market-size and the interplay between the competition and the specialization

e�ects in determining the equilibrium market-outcome, depending on the nature of competition

(markup-decreasing vs. markup-increasing)

To illustrate further the role of the interaction between the specialization/complexity ef-

fect and the toughness of competition in shaping the aggregate production function, consider

some examples.

CES production function. In this case, equation (33) is linear, i.e. the number of

�rms is proportional to total labor supply L. Hence, the competition e�ect is washed out,

and the specialization e�ect is the only source of external increasing returns. The aggregate

production function is given by

Y ∗(L) = AL1/(1−ρ), A ≡ ρ

c

[
1− ρ
f

]ρ/(1−ρ)
.

Translog price index. Combining (12) with (33) yields βn2 + n = L/f , which implies

n∗ =
(√

1 + 4L/f − 1
)
/(2β). In this case the number of �rms grows proportionally to

√
L.

This is because, unlike the CES case, here competition becomes tougher and tougher as the

market gets larger. Hence, following an increase in the number of �rms, complexity disec-

onomies and specialization economies exactly o�set each other. Meanwhile, the competition
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e�ect becomes the main force shaping the resulting aggregate production function which is

given by

Y ∗(L) =
f

4βc

(√
1 + 4L/f − 1

)2
. (39)

Equation (39) suggests that the average product of labor Y ∗(L)/L increases in L for

all L ≥ 0. In other words, external increasing returns take place. However, the source

of these increasing returns is radically di�erent from the one in the CES case. Namely,

agglomeration economies stem here solely from market interactions between �rms, while in

the classical CES-based models they are generated entirely by technological externalities

embodied in the specialization/complexity tradeo�.

Translog production function. In this case, the competition e�ect is even stronger.

Indeed, as implied by (4), (33) takes the form: 1 − αn = fn/L. Hence, n∗ = L/(αL + f),

which implies that the equilibrium number of �rms is bounded from above by 1/α. In other

words, even when L grows unboundedly, the number of �rms the market invites to operate

remains limited due to very tough competition. The aggregate production function is given

by

Y ∗(L) =
α

c
L. (40)

Thus, in the case of translog production function, the resulting technology exhibits con-

stant returns to scale. This result stems from the fact that, according to Proposition 3, ag-

glomeration economies/diseconomies arise only when competition is wage-increasing/decreasing.

As found in Section 3.2 (Table 1), under translog production function entry has no impact

on wages.

A micro-foundation for an S-shaped aggregate production function. Consider

again the production function given by (7). The resulting aggregate production function

Y ∗(L) reads as

Y ∗(L) =
f

1− ρ

(
L

L+ af/(1− ρ)

)1/ρ

. (41)

According to (41), increasing returns to scale arise when L is su�ciently small; otherwise,

decreasing returns to scale occur. Thus, (7) provides a simple micro-foundation for an S-

shaped aggregate production function, which dates back to Shapley and Shubik (1967) and

has been widely used in growth theory and development economics, especially in the analysis

of poverty traps.17

17See Skiba (1978), and, more recently, Azariadis and Stachurski (2005), as well as Banerjee and Du�o
(2005), for examples on the possible consequences of using S-shaped production functions within these two
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5 Concluding remarks

The �CES-paradigm� is now among the best-established ones in micro- and macro-economic

theory. However, while easy to handle, this paradigm fails to capture the fact that the

substitutability across varieties of an intermediate input may not be constant, but linked to

the evolution of the number of these varieties/the number of �rms producing these inputs.

Using a two-sector model in which a perfectly competitive �nal good sector and a monopolis-

tically competitive intermediate input sector are vertically integrated, we have disentangled

the interplay between two e�ects: the specialization/complexity e�ect, arising from the �nal

output sector (employing more varieties of intermediate inputs fosters/deters production of

the �nal good), and the competition e�ect, stemming from the market interactions among

�rms within the intermediate input sector. The latter e�ect is driven by the presence of

a variable elasticity of technological substitution and would vanish in the limiting case in

which technology were CES.

In our model, the nature of product market competition and the interaction between the

competition e�ect and the specialization/complexity e�ect are determined by the behavior

of the marginal product elasticity. More speci�cally, depending on whether the marginal

product elasticity decreases or increases with the number of inputs at a symmetric outcome,

competition may be either markup-increasing or markup-decreasing. This distinction is

decisive in our framework because, conditional on the type of competition, we �nd that:

(i) The competition e�ect can be either positive or negative, thus it can either strengthen

or weaken the specialization e�ect on both equilibrium total output and wages; (ii) The

equilibrium number of �rms can increase more or less than proportionally in response to a

rise in the total labor supply, which is generally regarded as a proxy for the market size;

(iii) Whether external increasing returns to scale do emerge or not depends crucially on the

interaction of the competition e�ect with the specialization/complexity externality, not just

on the degree of gains from specialization.

We believe that these results may be useful for further advancements in economic models

based on the joint presence of increasing returns to scale and imperfect competition in

the product market, which are extensively used in international trade and agglomeration,

economic geography, and endogenous growth. Furthermore, our treatment of production

functions may also turn out to be helpful in development economics and the analysis of

poverty traps. In order to better �t our approach to current research agenda in these various

�elds of economics, several extensions of the baseline model come to mind. To mention

just a few, one may think of (i) accounting for heterogeneity of �rms in productivity, and

branches of economic literature.
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studying the role of selection among �rms in generating sharing externalities, (ii) more

realistic frameworks in which more than two productive sectors are simultaneously active in

the economy, and (iii) considering market structures di�erent from monopolistic competition

in the input-producing sector. We leave the formal development of these more specialized

issues for future research.
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Appendices

Appendix 1. Marginal products under a continuum of inputs

We restrict our attention to such input vectors q that have a �nite second moment, i.e.´ n
0
q2i di < ∞. In other words, q ∈ L2 ([0, n]). Intuitively, this assumption allows mean and

variance of the input vector to be well-de�ned.

We also assume Frechet-di�erentiability, i.e. we postulate that there exists a functional

Φ : R+ × L2 → R+, such that

F (q + h) = F (q) +

nˆ

0

Φ(qi,q)hidi+ ◦ (||h||2) for all q,h ∈ L2. (42)

In Eq. (42), || · ||2 stands for the L2-norm, i.e. ||h||2 ≡
√´ n

0
h2idi, whereas Φ(qi,q) is the

marginal product of intermediate input i. Concavity of F implies that Φ is decreasing in qi.

Lemma. Let F : L2 → R+ be a Frechet-di�erentiable functional, which is positive

homogeneous of degree 1. Then (i) Φ(qi,q) is positive homogenous of degree zero in (qi,q),

and (ii) the Euler's identity

F (q) =

nˆ

0

qiΦ(qi,q)di, (43)

holds.

Proof. To prove (i), rewrite (42) as follows:

F (tq + th) = F (tq) +

nˆ

0

Φ(tqi, tq)thidi+ ◦ (t||h||2) for all q,h ∈ L2, t ∈ R+. (44)

Dividing both sides of (44) by t and using homogeneity of F , we obtain

F (q + h) = F (q) +

nˆ

0

Φ(tqi, tq)hidi+ ◦ (||h||2) . (45)
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Combining (42) with (45), we �nd that φ(tqi, tq) is a Frechet derivative of F computed at

q for any t > 0. By uniqueness of Frechet derivative, φ(tqi, tq) must be independent of t,

which proves part (i) of the Lemma.

To prove part (ii), note that (42) implies the following identity:

F ((t+ τ)q)− F (tq)

τ
=

nˆ

0

Φ(tqi, tq)qidi+
◦(τ)

τ
for all τ ∈ R. (46)

Using homogeneity of F and Φ, we obtain (43) as the limiting case of (46) under τ → 0.

Q.E.D.

Appendix 2. Proof of Proposition 1.

We �nd it convenient to prove (i) � (iii) in reverse order.

As shown in Section 2.1, under (4), (respectively (12)), we have ϕ(n) = 1, (respectively,

ϕ(n) = n) for all n > 0. Thus, claim (iii) follows immediately.

We now move to verifying claim (ii). If a production function satis�es (5), we have

ϕ(n)

n
=

1/n

φ−1(1/n)
. (47)

Because φ(·) is increasing and concave, it must be that φ−1(·) is increasing and convex. If

φ(0) = 0, then the elasticity of φ−1(·) always exceeds 1. As a consequence, ϕ(n)/n decreases

in 1/n and increases with n.

When φ(0) 6= 0, the above argument is no longer valid. Indeed, as implied by (8),

production function given by (7) provides a counterexample. This completes the proof of

(ii).

Finally, to prove claim (i), we proceed in four steps.

Step 1. Assume there exists an α > 0 and an increasing convex function φ(·), such
that the translog production function (4) satis�es (5). When production is given by (4),

then ϕ(n)/n = 1/n. Comparing this with (47) yields that φ−1(·) must be a constant, which

contradicts the fact that it is strictly increasing.

Step 2. Assume that (4) belongs to (5). More precisely, let a β > 0 and a function φ

do exist, such that the cost function dual to (5) is given by (12). Under (12), ϕ(n)/n = 1.

Comparing this with (47) yields that φ−1(·) must be the identity mapping, and so is φ(·).
In this case, (5) de�nes a linear production function, for which the dual cost function is

Leontief, not translog.

Step 3. Since (4) and (12) give rise to di�erent pro�t maximizing markups, these two
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technologies also di�er with ech other.

Step 4. To show that (3) cannot satisfy (5) when ν 6= 0, we �rst de�ne a generalized

augmented CES production function:

F (q) ≡ A(n)

 nˆ

0

qρi di

1/ρ

, 0 < ρ < 1, (48)

where A(n) is an exogenous externality. We now show that if a production function satis�es

simultaneously (5) and (48) for some functions A(·) and φ(·), then it must be that A(n) =

[a/(1 + bn)]1/ρ, i.e. (48) coincides with (7). Indeed, the multiplier A(n) does not have an

impact on η(qi,q). Hence, r(n) = 1− ρ. Combining this with (5), which implies

r(n) = −φ
′′[φ−1(1/n)]

φ′[φ−1(1/n)]
φ−1(1/n),

we conclude that φ′(·) must be a power function. This, in turn, implies φ(q/Y ) ≡ a(q/Y )ρ−b.
As a result, (7) holds. Because it is impossible under ν 6= 0 that [a/(1 + bn)]1/ρ = nν for all

n, this proves that (3) and (5) cannot be satis�ed together when ν 6= 0.

Setting ν = b = 0 and a = 1, we obtain the standard CES production function as a special

case of both (7) and (3). Otherwise, (3), (4), (12), and (5) specify di�erent technologies.

Q.E.D.
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