
Tranos, Emmanouil; Ioannides, Yannis

Conference Paper

Ubiquitous digital technologies and spatial structure: a
preliminary analysis

55th Congress of the European Regional Science Association: "World Renaissance: Changing
roles for people and places", 25-28 August 2015, Lisbon, Portugal

Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Tranos, Emmanouil; Ioannides, Yannis (2015) : Ubiquitous digital technologies
and spatial structure: a preliminary analysis, 55th Congress of the European Regional Science
Association: "World Renaissance: Changing roles for people and places", 25-28 August 2015, Lisbon,
Portugal, European Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/124806

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/124806
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


1 
 

Ubiquitous digital technologies and spatial structure: a preliminary 

analysis 
 

Emmanouil Tranos, University of Birmingham, e.tranos@bham.ac.uk 

Yannis Ioannides, Tufts University, yannis.ioannides@tufts.edu  

 

Abstract 

This paper sheds light on the potential effect that Information and Communication Technologies 

(ICT) might generate on cities and spatial structure. The extensive theoretical discussion and 

speculation on how cities and geography might be affected by digital technologies, which took place 

before the actual adoption of such technologies, have not been coupled by in depth empirical 

analysis to verify early predictions. The few examples of such studies, which approached such 

research questions both analytically and empirically, were insightful, but their results were to a 

certain extend contradictory. Most importantly, these studies took place before digital technologies 

such as the Internet had matured. Nowadays, these technologies have been adopted widely and we 

are thus in a better position to approach empirically such a research question and quantify the 

relation between ICTs and spatial structure. The preliminary empirical analysis presented in this 

paper suggests significant causal effects that ICT penetration generates on spatial structure.  

Internet and mobile phone penetration in non-EU/NAFTA countries have led to more spatially 

dispersed population and more uniform city size distribution. However, such effects are not present 

in non-EU/NAFTA countries, a phenomenon which might be related to the maturity of urban systems 

and advanced state of technological adoption in those countries. The proposed methodology, which 

relies on extensive econometric investigations with a number of models includes 2SLS regressions 

with instrumented variables, resulted to estimations which are robust against potential endogeneity 

problems.  

 

1. Introduction 

 

Substantial research effort has been spent on exploring spatial incidence of the Internet, even before 

its massive penetration, which took place during the last 15 years. Early research emphasized the 

Internet’s non-spatial nature (Mitchell 1995). Geographers, economists but also technologists 

theorised about the spatial impacts that rapid Internet penetration might generate on cities and the 

spatial structure. The outcome of various such attempts was rather deterministic declaring the 

emergence of “telecottages” (Toffler 1980), the rise of a “borderless world” (Ohmae 1995), the death 

of cities (Gilder 1995; Drucker 1998; Kolko 1999), and, in general, the “end of geography” (O'Brien 

1992), the “death of distance” (Cairncross 2001) and the emergence of a new flat world (Friedman 

2005). However, such narratives had not been accompanied by empirical investigations and hard 

evidence. Although we know that urbanisation rates have been steadily increasing, especially for the 

developing world, and nowadays more than half of earth’s population lives in cities, we still do not 
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know whether and how the Internet and other digital technologies have affected cities and spatial 

structure. Does the Internet and digital technologies, in general, act as a substitute or as a compliment 

of agglomeration forces? In other words, has the vast penetration of the economy by the Internet 

affected the tendency of economic activities to be concentrated in urban agglomerations? 

Early work by Gaspar and Glaeser (1998) suggested that telecommunication improvements will result 

in increased demand for face-to-face interactions (see also Brakman and Marrewijk 2008) and 

therefore, the importance of cities in spatial structure and economic activity, as centres of interaction, 

will also increase. Sinai and Waldfogel (2004) wondered about the Internet’s role as either a substitute 

or a complement for cities. Using data concerning the geographic scope of online information, they 

highlighted that the complementarity of local websites with local agglomeration overcomes any 

potential Internet substitution effect. In addition, Forman et al. (2005) concluded that despite the fact 

that the Internet adoption by firms with more than 100 employees was faster in smaller urban 

agglomerations, the adoption of more sophisticated Internet-based applications was positively related 

with city size in 2000. At a more aggregated level, Ioannides et al. (2008) examined the impact of ICT 

and more specifically fixed line telephony on urban structure. Using a panel dataset of spatial 

dispersion measures they found that contrary to the above presented studies, spatial dispersion of 

population is positively and causally affected by the fixed telephone penetration. 

The main argument behind the above – early – research on the impact of digital technologies on spatial 

structure is the economic role that distance performs given the vast penetration of digital 

technologies. As Gaspar and Glaeser (1998) highlighted and as we know from urban economics, 

agglomeration economies are triggered by physical proximity (Partridge et al. 2008). Face-to-face 

social interactions are facilitated within cities due to the opportunities for decreased transportation 

costs. A key  question is whether the generalised impact of the vast penetration of digital technologies 

on interaction cost, which is related with the decrease in spatial transmission costs (McCann 2013), is 

enough to offset the benefits derived by agglomeration economies and result in a more dispersed 

spatial structure. The early studies cited above proposed opposing patterns in regards to the 

dispersion or further concentration effects that the Internet and mobile technologies can generate. 

Nevertheless, the relevant studies did not incorporate in their analysis the full extent of the potential 

impact that digital technologies might generate either because of luck of appropriate  data or because 

of the timing of the study, which was characterised by low Internet penetration rates, at least when 

compared to today’s rates.  

To summarise the previous research, it is fair to claim that the death of distance discussion, which is 

related with the weakening  of agglomeration economies and the dominance of footloose economic 

activities, has been proved to be premature (Rietveld and Vickerman 2004). However, the exact 

impact of ICTs on spatial structure is still under question. Have agglomeration forces lost any of their 

glory because of the way people interact using digital tools? Have spatial interaction patterns been 

affected the increased opportunities for virtual interactions?  

Research questions such as the above can now be empirically approached for two reasons. Firstly, ICT 

such as the Internet and mobile technologies, are no longer exotic technologies. On the contrary, their 

penetration rates have been stabilised at very high levels (see for example Figure 1), at least for the 

developed world and therefore it can be safely assumed that such technologies and consequently the 

potential impacts they might generate, have reached a maturity level. Secondly, because of the 
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maturity level, we now have enough available time series data which enables us to empirically 

approach the above research questions 

 

Figure 1: Internet use in the US, 2000-2012 

Source: (Pew Internet 2014) 

This paper aims to contribute to the above discussion by presenting empirical research on whether 

ICTs have affected spatial structure and more specifically the distribution of cities. In order to do so, 

a quantitative approach is adopted here. Section 2 describes the methods employed in this paper 

and Section 3 discusses the data used.  Sections 4 and 5 present the preliminary results and the 

paper ends with a summary  of our  findings of the analysis and proposals  for further research.   

 

2. Methods 

 

The main aim of this paper is to estimate the potential impact that the vast penetration of ICT might 

have generated on the spatial dispersion of economic activities and consequently population. In 

order to do so, we adopt a two-step approach, using the work of Ioannides et al. (2008) as a starting 

point. First step in our approach is to estimate the Zipf coefficient for a broad sample of countries 

over time. Zipf coefficient is one of the most widely used measure of spatial dispersion. City sizes 

satisfy Zipf’s law, if  

𝑃(𝑠𝑖𝑧𝑒 > 𝑆) =
𝑎

𝑆𝜁
 ,             (1) 

where ζ =1 and a is  a constant that is equal to the minimum city size raised to the power of ζ   (e.g. 

Gabaix and Ioannides 2004). In other words, the percentage of cities with population greater than S 

equals to a constant α multiplied by the inverse population size S. An approximation of Zipf’s law is 

the rank-size rule. According to this deterministic rule, the population of the second largest city 

within an urban system equals to the population size of the largest city divided by two. Similarly, the 

population of the third largest city equals to the population size of the largest city divided by three. 

Therefore, eq. (1) can be approximated by the following equation (Gabaix and Ioannides 2004): 
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𝑆𝑖 ≈
𝑆0

𝑟
 ,             (2) 

where, So is a constant which is equal to the largest urban population of the urban system and r is 

the rank of the city i, the population of which Si we are trying to estimate. The estimation of the 

logarithmic form of eq. (2) has been extensively used in the relevant literature which yields to the 

estimation of ζ, known as the Zipf coefficient: 

𝑙𝑛𝑟𝑖 = 𝑙𝑛𝑆0 + 𝜁𝑙𝑛𝑆𝑖 + 𝑒.            (3) 

Based on the above discussion, Zipf rule holds when ζ is close to 1. More generally, estimations of 

city size distributions have also considered exponents ζ that are not necessarily equal to 1, in which 

case we refer to ζ  as the Pareto, or power law, exponent. Given that our aim here is to estimate the 

Zipf coefficient for a number of countries over time as a measure of dispersion, equation (3) 

describes the rank of city i in country c at time t::  

𝑙𝑛𝑟𝑖𝑐𝑡 = 𝑙𝑛𝑆0𝑐𝑡 + 𝜁𝑐𝑡𝑙𝑛𝑆𝑖𝑐𝑡 + 𝑒𝑐𝑡 .          (4) 

The above denotes the estimation of Zipf coefficient ζ for every country c in our sample in year t. The 

estimation of (4) has been traditionally based on OLS.  

 Zipf coefficients can also be approximated by the power law coefficient following the methodology 

proposed by Clauset, Shalizi, and Newman (2009). This methodology, which has been widely utilised 

in power law coefficient estimations for real world network node degree distributions, estimates a 

minimum city population size (xmin), above which the Pareto distribution applies. It is common that 

power laws and consequently the Pareto distribution do not apply for small cities. In order to 

estimate xmin , Clauset, Shalizi, and Newman (2009) suggest the use of the Kolmogorov-Smirnov (KS) 

statistic a commonly used measure of fit, which is the maximum distance between the real data and 

the Pareto distribution. The KS statistic is calculated for each unique value in the dataset and then 

xmin is defined as equal to the value which yields the smallest KS statistic. Then, the power law 

coefficient is estimated for x ≥ xmin using the method of maximum likelihood (ML). Following Adamic 

and Huberman (2002), the absolute value of Zipf coefficient equals the absolute value of the 

coefficient derived by the Clauset, Shalizi, and Newman (2009) methodology minus one, that is 

because the KS statistic works with the distribution function. For the purpose of this paper we refer 

to the estimated coefficient derived from the Clauset, Shalizi, and Newman (2009) method as power 

law coefficient. 

The above alternative estimations of Zipf coefficients leads us to the second and main element of 

our identification strategy, which involves the regression of the country and year-specific Zipf (or 

power law) coefficients against a number of right hand-side variables in order to explain the 

determinants of spatial dispersion. Our main interest here is to estimate whether the ICT-related 

variables have an effect on Zipf coefficients. Following Ioannides et al. (2008) as well as Soo (2005) 

and Rosen and Resnick (1980) we are aiming to estimate here the following empirical equation: 

𝑧𝑖𝑝𝑓𝑐𝑡 = 𝜃𝑐 + 𝛿𝑡 + 𝑋𝑐𝑡𝜂 + 𝜀𝑐𝑡 ,            (5) 

zipfct represents the Zipf coefficient for country c in year t, θc is a country-specific constant or, in 

other words, a country fixed effect, δ is a linear time trend, Xct is a vector of the determinants of  the 

city size distribution for country c in year t, and η is a vector of parameters; εct is the error term.  
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The availability of a panel dataset for city sizes across countries enables us to use country fixed 

effects, which can address potential endogeneity issues related to unobserved country specific 

characteristics of city size distributions. However, such a strategy does not address potential 

simultaneity issues. Simply put, ICT penetration might be affected by spatial structure, as reflected in 

Zipf coefficients, or both ICT penetration and spatial structure might be jointly determined by a third 

variable. E.g., if a country already has a dispersed spatial structure, ICT is particularly suitable in 

facilitating communication. Potential endogeneity in our specification will prevent us from being 

able to determine the causal impact of ICT penetration on spatial structure, which is the main aim of 

this paper. In order to address this problem, we will adopt an instrumented variable strategy, which 

will be further described below. 

3. Data 

 

Table 1 presents the descriptive statistics of the main variables utilised in this paper.  ols and ml are 

the two main left hand-side variables and represent the Zipf and power law coefficient, as described 

above. These left hand-side variables are proxies for the city size dispersion, the spatial structure, as 

previously discussed and are regressed against a number of explanatory variables. The estimation of 

these variables was based on data on city population collected from Citypopulation (2014). 

Following Ioannides et al. (2008) data on city population was used instead of urban agglomeration to 

achieve higher consistency. As it can be seen in Table 1, the two different measures of population 

dispersion, which are based on the different estimation methods for Zipf coefficient, vary 

significantly. The reader is reminded that the absolute value of the power law coefficient (ml) equals 

to the OLS based coefficient (ols) plus one. After such a transformation, it becomes apparent that 

the mean values of these variables are very similar, but ml is more dispersed than the OLS based Zipf 

coefficient.  

 

Table 1: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max Source 

ml 240 -2.187 0.344 -4.145 -1.640 Own calculation 

ols 240 -0.945 0.221 -1.662 -0.258 Own calculation 

ln(bbuser) 176 0.115 3.088 -8.537 3.686 (ITU 2014) 

ln(netuser) 238 2.060 2.310 -6.948 4.554 (The World Bank 2014) 

ln(mobile) 211 3.585 1.617 -3.982 5.243 (ITU 2014) 

ln(pop) 240 16.566 1.425 12.547 21.014 (The World Bank 2014) 

ln(gdppc) 230 8.961 1.294 5.743 10.786 (The World Bank 2014) 

trade 235 79.738 37.272 16.750 220.407 (The World Bank 2014) 

gov_exp 235 16.113 5.618 4.506 34.759 (The World Bank 2014) 

nonagri 217 87.473 12.736 32.738 99.307 (The World Bank 2014) 

ln(area) 240 12.506 1.697 7.616 16.612 (The World Bank 2014) 

press 187 41.861 23.261 8.000 94.000 (Freedom House 2014) 

polrights 238 2.866 2.035 1.000 7.000 (Freedom House 2014) 

eu 240 0.338 0.474 0.000 1.000 Own calculation 

nafta 240 0.046 0.210 0.000 1.000 Own calculation 
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To visually represent how ml  differs from  ols,  the OLS based Zipf coefficient, Figure 2 presents the 

probability distribution function for city size in the US in 2000. The continuous red line represent the 

real data, the dotted red line ml coefficient when all the data is included and the dotted blue line 

represents the ml coefficient for these cities the population of which was higher or equal to xmin in 

2000. This approach allow us to estimate the power law coefficient only for the upper tail of the 

distribution, which includes the cities with the highest population which usually are the cities which 

are known to follow closer a Pareto distribution. For example, as the blue line in Figure 2 indicates, 

the tail of the city size distribution in the US, which includes cities with less than 99,250 habitants, do 

not follow a Pareto distribution and therefore their inclusion in the sample would result in a 

significant change of the Zipf coefficient. Having said that, the estimation of xmin does not come 

without limitations.  

 
Figure 2: Probability distribution function for the US city size, 2000 

 

Table 1 also includes descriptive statistics for the explanatory variables included in equation 5 via Xct. 

Among them, netuser and mobile represent the number of internet users and the number of mobile 

phone users per 100 habitants.  
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The main aim of the empirical analysis is to estimate the impact of these variables on spatial 

structure. As discussed above some of these variables, may be endogenous to the determination of 

city sizes, and thus to equation 5, and therefore instrumenting for  these variables is necessary in 

order to  conduct causal inference on the impact that ICT penetration might have on spatial 

structure. Then, a number of other covariates are also introduced to control for other determinants 

of spatial structure. These covariates include population (pop), Gross Domestic Product per Capita 

expressed in Purchased Power Units (gdppc), international trade (trade) which is the sum of exports 

and imports of goods and services measured as a share of gross domestic product, the government 

expenditure as a percentage of GDP (gov_exp) and the share of non-agricultural activities in the 

economy (non_agri). 

 

4. Internet penetration and spatial structure 

 

The next step in the analysis is the estimation of (5). The estimation results are reported in Table 2 

using the Zipf coefficient, which has been estimated using the Zipf regression (eq. 4), as the LHS 

variable. All the available observations have been used for this estimation as no city size threshold 

was introduced. Column 1 in Table 2 presents the results of an OLS regression where the impact of 

ICT, proxied by ln(netuser), the number of Internet users per 100 inhabitants, is estimated. The 

regression also includes a year trend to control for changes in city size distribution over time. In this 

case, the Internet penetration does not have a significant impact on the city size distribution. The 

regression in Column 2 also includes a number of control variables which affect city size distribution. 

Given that the Zipf coefficient is inserted in the regression not as an absolute value but as a real 

number, a negative coefficient for a RHS variable indicates an impact towards the increase of the 

spatial dispersion of population.  In other words, a negative coefficient indicates an effect towards 

more uniform city sizes, that is less dispersion of city sizes. In this context, wealthy large countries in 

terms of GDP per capita and population are related with more uniform city size distributions, while 

the opposite effect is observed for government expenditure and the share of non-agricultural 

activities. Two more control variables included in (2) are notable: obs_avgpan captures the potential 

effect of countries with high number of cities as it expresses the mean number of cities per country 

over time; in addition, area represents the areas of the country in square kilometres.  Columns (3) 

and (4) report regressions as in (1) and (2) with the addition country fixed effects. Nevertheless, the 

main variable of interest, ln(netuser), remains statistically insignificant. In addition, most of the 

control variables lose their significance when country fixed effects are included.  

However, the main challenge of estimating (5) is the potential endogenous nature of the share of 

Internet users which might prevent us from being able to infer a truly causal effect. Endogeneity 

might be an issue here as spatial structure, which is represented by the Zipf coefficient, might be 

affected by another source, which also affects Internet penetration. For instance, economic 

development might affect the concentration of population in large cities and at the same time 

enable more people to go online. If we do not address this issue, the coefficient for the main 

variable of interest will capture potential effects that Internet penetration has on spatial structure, 

but also potential reverse causality effects that spatial structure might generate on Internet 

penetration. To overcome this potential problem, column (5) reports estimates of eq. (5) using two-
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stage least squares (2SLS) with instrumental variables (IVs). The latter refer to variables which are 

correlated with Internet penetration, but are not correlated with spatial structure. Such variables 

will enable the estimation of the causal effect – if any – of the Internet penetration on spatial 

structure. At a first stage, internet penetration is regressed against the IVs. Then, the predicted 

values of the Internet penetration based on the IVs and the other control variables are used instead 

of the endogenous variable from eq. (5). A significant effect will verify the causal impact of Internet 

penetration on spatial structure as the IVs are correlated with Internet penetrations, but are not 

themselves affected by changes in urban structure.  

The main challenge for such an exercise is to find relevant IVs. Using the work of Jha and Sarangi 

(2014) as a starting point, we utilize here variables reflecting political rights (polrights) and freedom 

of press (press) as IVs in our regressions (see descriptive statistics in Table 1). The proposed 

underpinning mechanism is that the internet penetration is directly affected by freedom of press 

and political rights, but these variables are not related with spatial structure. So, the regression in 

column (5) mirrors the regression in column (1), but the endogenous variable is instrumented by the 

IVs described above.  

The significant endogeneity test flags endogeneity as a problem, and therefore 2SLS estimations are 

preferred than the OLS ones. In addition, the significant underidentification test (LM test) enables 

the rejection of the test’s null hypothesis according to which the model is under-identified. Also, the 

significant F test of the excluded instruments in the first stage indicates the relevance of the IVs. 

However, the Sargan test is significant for all 2SLS regressions (col. 5-8) posing doubts on the validity 

of the IVs. So, although endogeneity is a problem, our identification strategy did not manage to 

unpack the underlying relation. 

Table 2: Internet users and city size distribution using OLS-based Zipf coefficient 

  (1) (2) (3) (4) (5) (6) (7) (8) 

                  

ln(netuser) 0.00102 0.0110 0.00149 -0.00477 -0.0342 0.119 -0.0185 -0.0532*** 

 (0.00990) (0.0133) (0.00429) (0.00555) (0.0211) (0.101) (0.0173) (0.0150) 

year -0.00580 -0.00261 -0.00179 -0.000805 -0.00667 -0.0186 0.00116 -0.00407*** 

 (0.00392) (0.00373) (0.00122) (0.00169) (0.00567) (0.0141) (0.00269) (0.000863) 

ln(pop)  -0.126***  -0.0585  -0.108***  0.352*** 

  (0.0155)  (0.102)  (0.0227)  (0.0631) 

ln(gdppcppt)  -0.106***  -0.0192  -0.203**  0.0805 

  (0.0274)  (0.0501)  (0.0886)  (0.0537) 

trade  0.00115**  0.000605  0.00180***  0.00190*** 

  (0.000473)  (0.000423)  (0.000621)  (0.000335) 

gov_exp  -0.00981***  -0.00350  -0.00737*  0.00154 

  (0.00316)  (0.00312)  (0.00383)  (0.00173) 

nonagri  0.00656**  0.00725*  0.00256  0.0164*** 

  (0.00316)  (0.00420)  (0.00524)  (0.00382) 

ln(area)  0.0868***  -0.179  0.0832***  -0.0219 

  (0.00955)  (1.478)  (0.0125)  (0.180) 

obs_avgpan  0.0295    -0.0139   

  (0.146)    (0.192)   

FE   yes yes   yes yes 

         

Constant 10.66 5.716 3.011 4.046 12.53 38.33 -2.893 0 

 (7.848) (7.545) (2.440) (19.92) (11.34) (28.95) (5.381) (0) 
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Observations 206 206 206 206 156 156 156 156 

R-squared 0.016 0.439 0.984 0.986 0.002 0.431 0.995 0.996 

sargan     22.70 28.21 26.83 20.29 

sargan_p     0.00005 0.00000 0.00000 0.00001 

under     71.08 10.97 9.523 21.34 

under_p     0 0.0269 0.00855 2.32e-05 

endogeneity     6.963 0.537 3.318 59.11 

endogeneity_p     0.00832 0.464 0.0685 0 
F test of excluded 

instruments         31.39 2.704 1.593 3.408 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

The next step in the analysis is to use as the LHS variable the power law exponent (ml) instead of the 

Zipf coefficient. Table 3 presents these regressions following the structure of Table 2. Again, our 

specifications identified endogeneity as a problem, but the IVs did not pass the relevant statistical 

tests. 

Table 3: Internet users and city size distribution using ML-based Zipf coefficient  

  (1) (2) (3) (4) (5) (6) (7) (8) 

                  

ln(netuser) 0.00133 0.0115 -0.00671 -0.0124* -0.0323 0.0772 -0.0395** -0.141 

 (0.0103) (0.0156) (0.00557) (0.00734) (0.0233) (0.0964) (0.0177) (0.0987) 

year -0.00690 -0.00493 0.000258 0.00145 -0.00154 -0.0152 0.00715** 0.0103 

 (0.00423) (0.00469) (0.00178) (0.00241) (0.00716) (0.0160) (0.00344) (0.00638) 

ln(pop)  -0.121***  -0.0282  -0.113***  0.217 

  (0.0174)  (0.133)  (0.0225)  (0.366) 

ln(gdppcppt)  -0.0995***  0.0232  -0.158*  0.177 

  (0.0373)  (0.0597)  (0.0907)  (0.138) 

trade  0.000255  -0.000313  -0.000144  0.00124 

  (0.000507)  (0.000615)  (0.000739)  (0.00138) 

gov_exp  -0.0131***  -0.00706  -0.0100**  -0.0135** 

  (0.00356)  (0.00434)  (0.00415)  (0.00556) 

nonagri  0.00900**  0.00310  0.00603  0.0283 

  (0.00364)  (0.00509)  (0.00508)  (0.0188) 

ln(area)  0.101***  0.453  0.103***  -2.194*** 

  (0.0127)  (1.900)  (0.0162)  (0.544) 

obs_avgpan  0.119    0.114   

  (0.151)    (0.190)   

FE   Yes yes   yes yes 

         

Constant 11.79 8.821 -2.365 -10.63 1.142 29.77 -16.17** 0 

 (8.468) (9.496) (3.567) (25.36) (14.33) (32.76) (6.888) (18.14) 

         

Observations 206 206 206 206 156 156 156 156 

R-squared 0.019 0.339 0.975 0.976 -0.036 0.343 0.987 0.648 

sargan     23.84 14.71 1.374 320.2 

sargan_p     2.69e-05 0.00209 0.241 0 

under     61.37 16.19 23.89 14.91 

under_p     0 0.00277 6.50e-06 0.000577 

endogeneity     5.902 0.275 0.813 14.72 

endogeneity_p     0.0151 0.600 0.367 0.000125 
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F test of excluded 
instruments         24.32 4.141 4.430 2.273 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

         

 

As an effort to overcome the above misspecification of our IV strategy, we are proposing here a 

sample split. Arguably, the initial sample of countries was very heterogeneous including countries 

with very different levels of urban and technological maturity as far as it concerns their urban 

systems. Therefore, the initial sample is split in two parts: one which includes EU/NAFTA countries 

and one which includes non-EU/NAFTA countries. Table 4 presents regression (4) and (8) from the 

above tables for the two sub-samples and also for the two different LHS variables.  

 

Table 4: Regressions for EU & NAFTA countries and non-EU, non-NAFTA countries  

  (1) (2) (3) (4) (5) (6) (7) (8) 

LHS variable: ml ml ml ml ols ols Ols ols 

                  

ln(netuser) -0.00907 -0.112 -0.00716 -0.121*** 0.00804 -0.193*** -0.0173* -0.0272* 

 (0.0112) (0.0742) (0.0135) (0.0263) (0.00922) (0.0516) (0.00906) (0.0145) 

Year 0.00322 0.00247 0.000532 0.0280*** -0.000639 0.0185*** 0.00224 -0.0120*** 

 (0.00299) (0.00553) (0.00653) (0.00510) (0.00211) (0.00303) (0.00500) (0.00258) 

ln(pop) -0.202 0.107 0.0493 -0.661*** -0.271 -0.866*** -0.0228 0.643*** 

 (0.209) (0.577) (0.272) (0.248) (0.173) (0.323) (0.229) (0.127) 

ln(gdppcppt) -0.0757 0.253 0.0233 0.0406 -0.0209 -0.191 -0.0725 0.0897* 

 (0.118) (0.183) (0.0917) (0.0962) (0.0924) (0.133) (0.0819) (0.0531) 

trade -0.00123 0.00248 -0.000283 0.00136* -0.000160 0.00106 0.000670 0.000634* 

 (0.000938) (0.00226) (0.000891) (0.000744) (0.000699) (0.00125) (0.000647) (0.000358) 

gov_exp -0.0105 0.00419 -0.00632 -0.0142*** -0.00581 -0.00578 -0.00201 0.00404** 

 (0.00901) (0.0141) (0.00578) (0.00387) (0.00632) (0.00873) (0.00451) (0.00175) 

nonagri 0.00705 0.0292 -0.000445 0.0174** 0.000960 0.0361** 0.0126* 0.00942** 

 (0.00890) (0.0288) (0.00739) (0.00692) (0.00779) (0.0169) (0.00633) (0.00451) 

ln(area) -22.02*** -0.310 1.551 -3.599*** 0.484 -2.533*** -0.654 0.824** 

 (5.839) (1.380) (2.390) (0.624) (3.411) (0.153) (1.861) (0.331) 

FE yes yes yes yes yes yes Yes yes 

         

Constant 220.1*** -9.754 -24.57 0 -0.248 0 3.657 0 

 (60.68) (0) (33.08) (0) (36.02) (6.658) (25.88) (0) 

         

Observations 78 60 128 96 78 60 128 96 

Sample EU & NAFTA non EU & NAFTA EU & NAFTA non EU & NAFTA 

R-squared 0.994 0.953 0.954 0.981 0.997 0.999 0.950 0.991 

sargan  85.12  0.529  3.435  6.476 

sargan_p  0  0.467  0.0638  0.0109 

under  2.187  23.24  8.692  24.09 

under_p  0.335  8.97e-06  0.0130  5.88e-06 
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endogeneity  81.27  13.27  -1.747  7.656 

endogeneity_p  0  0.000270  1  0.00566 
F test of 
excluded 
instruments   0.303   2.875*   1.355   3.015* 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Regressions in columns (1)-(4) use the power law coefficient (ml) as the LHS variable, while 

regression (5)-(8) use the OLS-based Zipf coefficient (ols). Columns (1), (2), (5) and (6) include only 

the EU and NAFTA countries. Coefficients in columns (1), (3), (5) and (7) are estimated using OLS, 

while the other regressions are based on 2SLS. Starting with the regressions using ml as the LHS 

variable, we observe again a non-significant effect for columns (1)-(3). However, the effect of the 

internet penetration appears to be significant and negative only when we work with the non-EU, 

non-NAFTA countries and 2SLS is utilised. Moreover, our instrumentation variables strategy seems 

to work for this case: Sargan test is not significant and the null hypothesis of the validity of the 

instruments cannot be rejected. Underidentification is not a problem and endogeneity can be 

detected in our specification. Moreover, the F test of the excluded instruments is marginally 

significant indicating rather relevant IVs. The use of OLS-based Zipf coefficients as the LHS variable 

(columns 5-8) did not result to any fruitful results. In a nutshell, the above analysis results to a 

significant and causal negative effect of the Internet penetration on the power law coefficient, when 

only the non-EU and non-NAFTA countries are included in the analysis. In other words, Internet 

penetration appears to have decreased the variance of city sizes and result to an increase of the 

spatial dispersion of population in non-EU/NAFTA countries. 

In order to address the potential critique against the endogenous nature of the estimated threshold 

utilised for the ml coefficient, we exogenously impose a cut-off value for the estimation of the Zipf 

coefficient. Table 5 below replicates the basic regressions (e.g. columns 4 and 8 from Table 2), but in 

this case the LHS variable is the OLS-based coefficient estimated for the cities which have population 

equal or higher than 50,000. As before, both the results of WLS and 2SLS are presented for all the 

countries in our sample, for the EU and NAFTA countries and for non-EU and non-NAFTA countries. 

According to the relevant test, endogeneity is not a problem here and therefore we can use the WLS 

results. What is interesting here is that the results for the specifications where the LHS variable is 

based on an exogenously imposed population threshold matches the previously presented results 

from Table 4, where ml was the LHS variable. Again, the only significant effect that was diagnosed 

was the negative effect that the share of Internet users has on the Zipf coefficient for the non-EU 

and non-NAFTA countries.   

Table 5: Regressions for Zipf coefficient for cities > 50.000  

  (1) (2) (3) (4) (5) (6) 

 all countries EU & NAFTA non-EU & non-NAFTA 

              

ln(netuser) -0.00447 0.628*** -0.00641 -0.0148 -0.0159** -0.00884 

 (0.00428) (0.0960) (0.00556) (0.0299) (0.00694) (0.0103) 

year -0.00216 0.0316*** 0.00194 -6.11e-05 0.00995* 0.00200 

 (0.00166) (0.00663) (0.00129) (0.000985) (0.00523) (0.00170) 
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ln(pop) -0.125 -6.238*** -0.158 -0.0546 -0.547** 0.0132 

 (0.107) (0.513) (0.111) (0.159) (0.216) (0.0598) 

ln(gdppcppt) -0.0499 -0.278 -0.0420 0.137*** -0.170** -0.0341 

 (0.0394) (0.538) (0.0586) (0.0519) (0.0706) (0.0298) 

trade 0.00161*** 
-

0.0187*** 0.000191 0.000715 0.00208*** 0.000465** 

 (0.000412) (0.00359) (0.000438) (0.000813) (0.000587) (0.000212) 

gov_exp -0.00528 
-

0.0961*** 
-

0.0230*** 
-

0.0143*** -0.00609 -0.00102 

 (0.00352) (0.0298) (0.00404) (0.00351) (0.00527) (0.00124) 

nonagri 0.0115** -0.155*** 0.000425 -0.00365 0.0174** 0.000608 

 (0.00442) (0.0466) (0.00557) (0.00837) (0.00666) (0.00363) 

ln(area) -0.118 4.285*** 1.020 0.0553 0.697 -0.349 

 (1.018) (0.796) (2.358) (0.286) (1.238) (0.537) 

FE yes yes yes yes Yes yes 

       

Constant 6.922 0 -12.39 -1.412 -20.66 0 

 (13.56) (0) (24.59) (0) (18.62) (6.790) 

       

Observations 198 151 73 56 125 95 

R-squared 0.993 0.998 0.999 0.993 0.970 0.998 

sargan  0.124  294.4  0.735 

sargan_p  0.725  0  0.391 

under  9.183  6.085  13.30 

under_p  0.0101  0.0477  0.00130 

endogeneity  -5.686  -0.973  -0.0259 

endogeneity_p  1  1  1 
F test of 
excluded 
instruments   1.327   0.914   1.383 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
  

5. Mobile telephony and spatial structure 

 

In order to further investigate the effect of ICT on spatial structure, the share of mobile phone users 

is utilised as the main RHS variable of interest. Table 6 replicates the regressions presented in Table 

4, but the RHS variable netuser has been replaced by the variable mobile, which indicates the 

number of mobile phone users per 100 habitants. As before, the sample is split to EU/NAFTA and 

non-EU/NAFTA countries. Two different LHS variables are utilised as above: the power law 

coefficient based on ML (ml) and the OLS-based Zipf coefficient (ols). Starting with the former, a 

significant negative coefficient is estimated using the 2SLS for the non-EU/NAFTA countries, which is 

actually the only significant coefficient estimated for the ml RHS variable. As discussed before, 

endogeneity is the main concern, but according to the relevant tests this specification addresses this 

issue. As indicated by the endogeneity test, endogeneity is indeed a problem here and therefore 

2SLS is preferred than OLS. Our IVs are valid and relevant as indicated by the non-significant Sargan 
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test and the significant F test. Moreover, underidentification is not a problem according to the 

relevant test.  

The results are more difficult to interpret when the LHS variable is the OLS-based Zipf coefficient. 

When the focus is on the EU/NAFTA countries (col. 5 and 6 in Table 6), the coefficient for the 

variable indicating mobile phone penetration is significant and negative. Endogeneity is again a 

problem, as indicated by the relevant test, but the IVs included in regression (6) address this 

problem and enable us to argue that there is a   causal negative effect of mobile phone penetration  

on the OLS-based Zipf coefficient and thus on the spatial structure. However, when only the non-

EU/NAFTA countries are included in the analysis, then our IV strategy does not result to valid 

instruments (significant Sargan test). Therefore, the significant negative coefficient of the variable 

mobile in columns (7) and (8) in Table 6 might be biased because of endogeneity issues. In a nutshell, 

although the regressions using the power law coefficient as a measure of spatial structure result in 

similar effects for both Internet and mobile phone penetration, this is not the case for the regression 

using the OLS-based Zipf coefficient, which result in opposing effects.  

Table 6: Regressions for EU & NAFTA countries and non-EU, non-NAFTA countries for mobile phone users 

  (1) (2) (3) (4) (5) (6) (7) (8) 

LHS variable: ml ml ml ml ols ols ols ols 

                  

ln(mobile) 0.00178 0.0339 -0.0192 -0.0650*** -0.0936*** -0.667*** -0.0335*** -0.0165* 

 (0.0240) (0.0458) (0.0164) (0.0136) (0.0167) (0.111) (0.0114) (0.0100) 

Year 0.00262 0.00442 2.45e-05 0.0166*** 0.00464** 0.0460*** 0.000865 -0.0141*** 

 (0.00385) (0.00299) (0.0101) (0.00457) (0.00177) (0.00688) (0.00584) (0.00242) 

ln(pop) -0.309 -0.580 0.0338 -0.623** -0.344* -0.113 0.231 0.644*** 

 (0.310) (0.374) (0.513) (0.242) (0.169) (0.456) (0.308) (0.125) 

ln(gdppcppt) -0.151 -0.0687 0.0537 0.177 0.166** 0.492* -0.132 0.115** 

 (0.154) (0.186) (0.153) (0.108) (0.0770) (0.299) (0.107) (0.0568) 

Trade 

-
0.000911 -0.000933 -0.000200 0.000716 -0.000562 -0.00482*** 0.000197 0.000527 

 (0.00112) (0.000924) (0.00104) (0.000657) (0.000486) (0.00141) (0.000665) (0.000334) 

gov_exp -0.00627 -0.00859 -0.00349 -0.0147*** -0.00371 -0.0521*** -0.00401 0.00392** 

 (0.00928) (0.0106) (0.00799) (0.00375) (0.00441) (0.0165) (0.00484) (0.00169) 

Nonagri 0.00766 -0.0101 0.00575 0.0105* 0.00434 0.0632*** 0.0314*** 0.00778* 

 (0.0103) (0.0114) (0.0114) (0.00639) (0.00534) (0.0220) (0.00787) (0.00409) 

ln(area) 

-
23.12*** 0.411 -2.916 -1.961*** -2.104 -9.541*** -2.812 1.143 

 (5.505) (0.336) (7.407) (0.433) (2.253) (1.504) (3.500) (1.698) 

FE yes yes yes yes yes yes yes yes 

Constant 234.6*** -4.801 35.87 0 15.19 0 30.10 0 

 (57.07) (5.748) (102.0) (0) (22.96) (0) (48.19) (22.02) 

         

Observations 71 60 109 96 71 60 109 96 

Sample EU + NAFTA non EU + NAFTA EU + NAFTA non EU + NAFTA 

R-squared 0.995 0.993 0.964 0.982 0.999 0.999 0.973 0.992 

Sargan  37.14  0.123  0.240  8.525 

sargan_p  1.10e-09  0.725  0.624  0.00350 
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Under  53.54  30.95  42.96  17.91 

under_p  0  1.91e-07  4.68e-10  0.000129 

endogeneity  -527.0  13.71  111.0  2.861 

endogeneity_p  1  0.000214  0  0.0908 
F test of 
excluded 
instruments   66.27   4.281**   20.18   2.064 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

        
To further address this issue, Table 7 utilises the OLS-based Zipf coefficient estimated only for these 

cities with population above 50,000 habitants. In essence, Table 7 reproduces the regressions 

presented in Table 5, but the main RHS variable of interest here is the mobile phone penetration. 

When all the countries are included in the analysis, endogeneity does not appear to be a problem 

given the non-significant endogeneity test (col. 2) and therefore we can accept the OLS estimation 

(col. 1), according to which mobile phone penetration has a negative effect on Zipf coefficient. 

However, such an effect is not apparent when only the EU/NAFTA countries are included in the 

analysis (col. 3 and 4 in Table 7), but it is present when sample only includes non-EU/NAFTA 

countries (col. 5 and 6). While the latter agrees with the previous results, this is the only time that a 

significant effect, which is not potentially biased by endogeneity issues, becomes evident for all the 

countries. What is interesting though is that no significant effect has been observed for the EU and 

NAFTA countries, a finding which is in agreement with the previous results. 

 

  (1) (2) (3) (4) (5) (6) 

VARIABLES all countries EU & NAFTA non-EU & non-NAFTA 

              

ln(mobile) -0.0336*** -0.00930** 0.00665 -0.00191 -0.0355*** -0.00237 

 (0.00575) (0.00419) (0.0199) (0.0103) (0.00698) (0.00459) 

Year -0.00121 -0.000444 -0.000748 -0.000307 0.00892* 0.000986 

 (0.00153) (0.00114) (0.00185) (0.000586) (0.00477) (0.00137) 

ln(pop) 0.146 -0.0436 -0.161 -0.0629** -0.179 0.00581 

 (0.113) (0.0363) (0.207) (0.0263) (0.239) (0.0549) 

ln(gdppcppt) -0.0269 0.0659* 0.0614 0.123*** -0.176** -0.0297 

 (0.0435) (0.0398) (0.0776) (0.0331) (0.0777) (0.0304) 

Trade 0.00139*** 0.000509** 0.000722 0.000465** 0.00123** 0.000546*** 

 (0.000406) (0.000255) (0.000550) (0.000196) (0.000530) (0.000190) 

gov_exp -0.00717* -0.00345* 
-

0.0189*** -0.0164*** -0.0108* -0.000883 

 (0.00379) (0.00202) (0.00527) (0.00162) (0.00537) (0.00132) 

Nonagri 0.0237*** -0.000808 0.00166 -0.00689** 0.0309*** -0.000848 

 (0.00495) (0.00338) (0.00635) (0.00285) (0.00643) (0.00325) 

ln(area) -0.977 0.0487 3.653 0.0717 -0.443 -0.182 

 (1.474) (0.144) (2.602) (0.0957) (1.773) (0.969) 

FE yes yes yes yes yes yes 

Constant 10.94 0 -34.96 -0.568 -10.43 0 

 (19.84) (0) (25.80) (0) (25.07) (13.12) 
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Observations 173 151 66 56 107 95 

       

R-squared 0.992 0.998 0.998 0.999 0.986 0.998 

Sargan  44.22  18.00  0.865 

sargan_p  0  2.20e-05  0.352 

Under  30.39  40.46  24.18 

under_p  2.52e-07  1.64e-09  5.63e-06 

endogeneity  0.514  444.5  0.0330 

endogeneity_p  0.474  0  0.856 

F test of excluded instruments   5.165   19.53   2.901 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
 

6. Discussion and further research 

 

The above analysis resulted to some preliminary, but still interesting patterns. ICTs penetration, as 

reflected in Internet and mobile phone penetration appears to have a significant effect on the spatial 

structure of countries which are not part of what one could call the ‘Western World’. This effect is 

negative which indicates an impact towards the increase of the spatial dispersion of population. In 

other words, this negative effect results to more uniform city size distribution. Although the above 

results are preliminary, the effects appears to be robust against different specifications and different 

proxies of spatial pattern. In addition, the above analysis appears to be robust against potential 

endogeneity problems as the proposed IVs managed to address this issue in most of the cases.  

Conceptually, the above preliminary results add to the existing literature in various ways. Firstly, the 

econometric analysis indicates that ICTs had an effect on spatial structure. Although Internet and 

mobile phone access are almost universal nowadays, their penetration rates appeared to have had a 

significant causal effect towards more balanced urban systems. However, this effect is not universal. 

On the contrary, no such effect was apparent for western countries, while such effected was flagged 

for non-EU/NAFTA countries. A possible explanation of the spatial heterogeneity of the effects of 

ICTs on spatial structure might be the combination of the level of maturity of urban systems and ICTs 

in western countries. Urbanisation and agglomeration forces are historically much more a western 

story as they played more pivotal role in the growth of western countries (see discussion in McCann 

2013). Therefore, agglomeration forces have been carving cities and urban systems in western 

countries for centuries. On the contrary, very high urbanisation rates and strong agglomeration 

forces are a much more recent phenomenon in non-western countries. This difference in the levels 

of maturity of urbanisation and agglomeration forces might be part of the explanation of the 

patterns emerged from the above analysis. 

In the same vein, technological improvements are historically rooted in western countries. First long 

haul communication systems, such as the telegraph and fixed line telephony, but also more recent 

infrastructural systems such as the submarine cable, which form the core of the Internet, were firstly 

established in the western world. Hence, it is not surprising that the recent introduction of 

ubiquitous technologies, such as the Internet and mobile telephony, resulted to more radical effects 

in non-western countries. 
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More research is necessary in order to further validate the above analysis. For instance, different 

measures of spatial dispersion should also be tested as LHS variables as a sensitivity analysis. In 

addition, more effort should be spent in unpacking the spatial heterogeneity of the effect of ICTs on 

spatial structure either in terms of interactions but also in terms of different sub-sampling of our 

dataset. It might also be useful to test whether such heterogeneity is present on the potential effect 

that older technologies, such as fixed telephony, had on spatial structure. 
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