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ABSTRACT
Spatial simulation is an analysis discipline in the Geographic
Information Systems field where techniques such as cellular
automata and agent-based modelling are employed to study
the evolution of spatial information with time. These tech-
niques are largely reliant on code libraries and pre-compiled
models, either requiring advanced programming skills or im-
posing scope constraints. Several domain specific languages
have been proposed in this context, but mostly resulting in
new textual programming languages.

DSL3S is a domain specific language for spatial simula-
tion, synthesising relevant concepts in a UML profile, per-
mitting the design of simulation models through graphi-
cal elements. MDD3S is an implementation of this lan-
guage relying on model-driven development (MDD) tools
built around the Eclipse IDE; it produces ready to run simu-
lations from DSL3S models, supported by the MASON sim-
ulation tool-kit. Additionally, this article portraits the us-
age of DSL3S through a set of simple models implementing
classical constructs in spatial simulation.

Keywords
Domain Specific Language, Spatial Simulation, UML Pro-
file, Model-Driven Development

1. INTRODUCTION
In the Geographic Information Systems (GIS) domain, ex-

ploring how spatial variables and features evolve with time
is often necessary. To this purpose several techniques have
been developed, comprising a sub-domain of GIS referred as
Spatial Simulation [de Smith et al., 2013]. They provide un-
derstanding on geographic phenomena in two essential ways
[Batty, 2007]: (i) disclosing the dynamics that drove changes
observed in the past and (ii) forecasting future changes.

The first code libraries integrating functionality dedicated
to Spatial Simulation date back to the 1990s [Minar et al.,
1996]. Many other tools followed, in a sprout of expansion
around the turn of the century, today amounting to more
than one hundred [de Smith et al., 2013]. However, they still
pose important challenges to the spatial analyst, starting
with a non trivial choice for the most suitable tool, plus the
requirement for solid programming skills, or in exchange the
compromise of application scope.

Among the many Spatial Simulation tools available today
two essential groups stand out: Program-level and Model-

level tools [de Sousa and da Silva, 2011]. The first are
conceived for the programmer, mostly code libraries that
encapsulate some of the complexity in specific methods or
functions. Examples are Swarm [Iba, 2013], REPast [North
et al., 2005] and MASON [Luke et al., 2005]. By their very
nature, Program-level tools are not accessible to spatial an-
alysts lacking programming skills and may require a long
learning process. In contrast, Model-level tools, such as
SLEUTH [Clarke et al., 1997], LANDIS [Mladenoff, 2004]
or TELSA [Merzenich and Frid, 2005], are pre-programmed
models that the user can parametrise, setting inputs and
tuning pre-defined variables. They are easier to use, but
also restrict the application scope; in some cases integration
with spatial data is poor or non-existent.

Beyond these difficulties it has been recognised that an
integrated approach to the description of agent-based mod-
els is largely lacking [Müller et al., 2014]. The reliance on
source code or static documentation can create extra barri-
ers when communicating model dynamics to stakeholders or
peer analysts; model comparison and reuse are also difficult.

The Domain Specific Language for Spatial Simulation Sce-
narios (DSL3S) is a Domain Specific Language (DSL) for
spatial simulation in the GIS context. It tries to ease the
development of simulation models through a Model-Driven
Development (MDD) approach [Silva, 2015], whereby mod-
els are developed through the arrangement of graphical el-
ements and their relationships, dispensing formal program-
ming knowledge. These graphical models can then be trans-
lated into ready to run simulations through the application
of a model-to-code transformation [Selic, 2003].

The MDD approach raises the level of abstraction at which
development takes place, thus simplifying the communica-
tion between programmers and analysts, and other stake-
holders lacking programming skills [Mohagheghi et al., 2013].
It can also allow prototyping by non-programmers. By de-
taching model development from specific technologies, it can
improve interoperability with geo-spatial data, generating
ad hoc code as needed. Lastly, it can lay the foundations
for a standard language in this domain, as successful efforts
in parallel fields have proved, such as SysML1 (for systems
engineering) or ModelicaML2 (for complex systems).

From the several specific MDD approaches available, the
option rested on the Model-Driven Architecture (MDA)3

1http://www.sysml.org/
2https://www.openmodelica.org/index.php/home/tools/134
3http://www.omg.org/mda/

http://www.sysml.org/
https://www.openmodelica.org/index.php/home/tools/134
http://www.omg.org/mda/


proposed by the Object Management Group (OMG), that
promotes UML profiles for the definition of DSLs. UML
2.0 allows the extension of its core primitives (graphical el-
ements, links, etc) through specialisation for different appli-
cation domains [OMG, 2005].

DSL3S takes spatial simulation as a branch of the wider
Spatial Analysis GIS field, where model inputs primarily
originate from a GIS and whose outputs also have geo-refe-
renced relevance. At this time the language does not con-
template actors of change with internal cognitive capacities –
commonly known as adaptive agents [Franklin and Grasser,
1997] – neither are considered any explicit concepts of soci-
ety or societal interaction. All actors of change are assumed
to exist in the space of simulation, thus forcefully being geo-
graphic entities. The language does not employ a distinction
between agent based models and cellular automata, aiming
at a single approach to both schools of spatial simulation,
hiding such design and implementation details from the user.

This article exemplifies the usage of DSL3S through a set
of use cases that portrait its application to common spatial
simulation scenarios. Section 2 reviews previous DSLs at-
tempted in the field, noting how DSL3S differs. The abstract
syntax of the language is briefly described in Section 3, as
so MDD3S, its implementation framework. Use cases are
described in Section 4; Section 5 summarises the article and
discusses future work.

2. RELATED WORK
There have been several attempts to create DSLs for Spa-

tial Simulation. They present ways to bridge the gap be-
tween Program-level and Model-level tools, approaching mo-
del description to natural language but still retaining some
of the freedom of general purpose programming languages.

NetLogo is a specialisation of the Logo functional pro-
gramming language, directed at Agent based simulations.
It was initially an educational project to help students ex-
ploring emergent behaviour; progressively it evolved into a
multi-platform tool with a Java based engine. A library of
over 300 pre-built models has been gathered on-line 4, that
has powered wide adoption in academia. NetLogo is rel-
atively easy to learn, especially when compared with code
libraries, dispensing the skills required in object oriented
programming [Railsback et al., 2006].

SELES (the Spatially Explicit Landscape Event Simu-
lator) is a declarative DSL for Landscape Dynamics [Fall
and Fall, 2001]. It was conceived to be used closely with
geo-spatial data, supporting a vast range of different input
raster formats (most common in Land Use / Land Cover
data). It functions by interpreting a set of text files that
declare variables, agents and events.

MOBIDYC (Modelling Based on Individuals for the Dy-
namics of Communities) is an agent based approach to the
study of population dynamics, directed at the fields of Bi-
ology and Ecology [Ginot et al., 2002]. MOBIDYC is in
essence a Smalltalk code package, defining a set of simple
primitives, such as environment, agent and state; to these
adds a set of pre-defined behaviours. These primitives are
designed to make the language close enough to natural lan-
guage, facilitating its usage by non-programmers. However,
it has no support for the direct input of geo-spatial data.

Ocelet is a declarative DSL for landscape dynamics aimed

4http://ccl.northwestern.edu/netlogo

at tackling common difficulties in capturing space-time dy-
namics with traditional modelling techniques [Degenne et al.,
2009]. It takes an unconventional approach to this field
by mimicking the concept of service-oriented architecture,
with models built by components interacting with each other
through services. The language is supported by two Eclipse
plug-ins: a language editor and a code generator.

These DSLs focus mainly on providing a refined concrete
syntax but still framed in older programming paradigms
such as declarative or functional languages; the formal ab-
stract is often not formalised and/or not documented. They
still require the user to understand keywords and how to
compose a coherent set of instructions or declarations into a
specific model. Lack of interoperability with geo-spatial data
is also an issue to some of these languages, as so platform or
system dependency. In essence, these efforts relying on tex-
tual languages fall into the same pitfalls identified by [Selic,
2008], regarding fourth generation languages: they struggle
to hike the level of abstraction at which model development
takes place.

A DSL not conceived for spatial simulation, but worthy of
mention, is the Agent Modelling Language (AML [Trencan-
sky and Cervenka, 2005], proposed for social dynamics. It
is rather extensive, containing a wide range of UML stereo-
types that use a large number of different UML meta-classes.
Its concepts are organised hierarchically, through several lev-
els of generalisation. No model-to-code transformation has
ever been developed for AML and no applications could be
found in the literature.

3. DSL3S: LANGUAGE AND TOOLS
This section provides a brief description of DSL3S and the

prototype framework developed to support it.

3.1 Language
Three main constructs can be identified underpinning a

spatial simulation: Animats and Spatial and Global vari-
ables. Animat is a term coined by [Wilson, 1991], signify-
ing artificial animal ; in this context it is used more widely,
representing all spatial elements that evolve themselves or
induce change in their surroundings; examples are: fire (in a
wildfire model), urban areas (in an urban sprawl model) or
predators (in a population dynamics model). Spatial vari-
ables are spatial information layers that have some sort of
impact on the dynamics of a simulation, e.g. slope that de-
ters urban sprawl or biomass that feeds a wildfire. Beyond
these key concepts, other elements can also be found in a
simulation. Global variables may also exist, setting infor-
mation that is constant across the space of simulation, such
as capital stock in an urban sprawl model.

An Animat is composed by a set of Attributes, that
describe its internal state at each moment in time. Op-
erations make explicit the way animats act and react to
the environment, thus encoding spatial dynamics. Six basic
types of Animat operations are considered in DSL3S:

• Emerge: sets the probability or conditions under which
a new animat can appear in the simulation space, e.g.,
the act of ”birth”. An example may be an urban devel-
opment simulation where the emergence of new urban
spots is possible in an area that meets a certain set
of criteria, like distance to transport infrastructure or
topography.

http://ccl.northwestern.edu/netlogo


• Move: relates an animat with spatial variables or with
other animats, determining the locations that are more
or less favourable to be in.

• Replicate: captures behaviours where an animat repli-
cates itself, such as an organism in a biological simu-
lation reproducing a sibling.

• Supply: provides access to the animat internal prop-
erties, thus supplying resources or information to other
animats.

• Harvest: an act by which an animat may change
other elements in its surroundings; it can act on a
spatial variable, such as a wildfire consuming bush,
or by seizing resources from another animat, as in a
predator-prey simulation.

• Perish: defines the circumstances under which an an-
imat may cease to exist during simulation; examples
can be a biological animal starving or a fire extinguish-
ing.

This strict set of operations tries to match the essen-
tial properties of an agent, as outlined by [Franklin and
Grasser, 1997]: (autonomous, continuous, reactive, proac-
tive and mobile with the core concepts found in Cellular
Automata (state, neighbourhood, transition rules and time.
In their seminal work [Epstein and Axtell, 1996] conceive
a considerably larger set of operations, including elaborate
processes such as trade and cultural exchange. DSL3S re-
stricts its set of operations for three reasons: (i) because
such refined operations are less common in spatial simulation
applications and can eventually be composed with simpler
primitives; (ii) to keep the language compact and easy to
learn; and (iii) to insulate the user from the technical imple-
mentation details in the choice between Cellular Automata
and Agent based models.

Figure 1 presents these key constructs in a conceptual
model. Each of these constructs is realised by a specific
stereotype in the DSL3S UML profile; a stereotype exists
also for each operation type. A Simulation is composed
by a set of Animats, Spatial and Global variables; Ani-
mats are composed by a set of Attributes and Operations,
that determine how their internal state evolves. An animat
acts through different types of Operations, that can induce
changes on spatial variables or the state of other animats.

A more detailed account of the language can be found in
de Sousa and Silva, 2012.

3.2 Tool Support
Model Driven Development for Spatial Simulation Scenar-

ios (MDD3S) is the name of the prototype framework devel-
oped to support the DSL3S language. MDD3S relies solely
on open source tools: (i) Papyrus - an Eclipse5 add-on for
UML modelling; (ii) Acceleo - another Eclipse add-on sup-
porting model-to-code transformation templates; (iii) MA-
SON - a Program-level spatial simulation framework used
as a library by the code generated. The full software stack
is described in Figure 2.

Papyrus is a graphical editor for the UML language based
on the Eclipse Modelling Framework6 (EMF). It allows the

5http://www.eclipse.org/modeling
6http://www.eclipse.org/modeling/emf/

Figure 1: The DSL3S meta-model.

edition and visualisation of structured models defined with
the XMI language, providing a set of Java classes that fa-
cilitate its manipulation. Papyrus evolved to support the
development of ad hoc DSLs, through the definition of UML
profiles. It is presently close to fully support version 2 of the
UML language.

Acceleo7 is an open source code generator also built on
EMF. Acceleo interprets templates written with the MOF
Model to Text Transformation Language8 (MOFM2T), also
an OMG standard. It fully supports model-to-code transfor-
mations from meta-models, identifying stereotypes applied
on classes and providing access to its properties. The later
is not based on MOFM2T, rather provided by a special ser-
vice – essentially a user developed Java method that browses
through the UML2 object model associated with each class.

MASON (acronym for “Multi-Agent Simulator Of Neigh-
bourhoods”) aims to be a light-weight, highly portable, multi-
purpose agent-based modelling package [Luke et al., 2005].
It is fully written in Java and open source, and is likely the
most performant of the main Program-level tools for spatial
simulation [Railsback et al., 2006]. GeoMASON9 is an ex-
tension that provides Java objects to deal specifically with
geo-referenced data. Input and output functionality is avail-
able for both raster and vector datasets, relying on third
party packages: the Java Topology Suite10, GeoTools11 for
vector input and output and GDAL12 for raster formats.

Further details on the tools supporting DSL3S can be ac-
cessed in [de Sousa and da Silva, 2015].

7http://www.acceleo.org/pages/introduction/en
8http://www.omg.org/spec/MOFM2T/1.0/
9http://cs.gmu.edu/ eclab/projects/mason/extensions/geomason/

10http://www.vividsolutions.com/JTS/JTSHome.htm
11http://www.geotools.org/
12http://www.gdal.org/

http://www.eclipse.org/modeling
http://www.eclipse.org/modeling/emf/
http://www.acceleo.org/pages/introduction/en
http://www.omg.org/spec/MOFM2T/1.0/
http://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/
http://www.vividsolutions.com/JTS/JTSHome.htm
http://www.geotools.org/
http://www.gdal.org/


Figure 2: The technologies used to implement
MDD3S.

4. CASE STUDIES
The DSL3S UML profile and its accompanying MDD3S

framework are publicly available at the code sharing plat-
form GitHub13. Some examples are also available to show-
case the usage of the language that can be accessed with
Papyrus or any other software able to interpret the XMI
language. In this section three of these simulation models
are discussed.

4.1 Simulation Model A – Urban Sprawl
The study of urban dynamics was one of the first applica-

tions of spatial simulation techniques. The growth of cities is
taken generally as an emergent process, by which the urban
fabric sprawls, bounded by spatial restrictions and enablers.
SLEUTH [Clarke et al., 1997], a Model-level tool dating back
to the 1990s, proved particularly successful in this domain
and has been applied to varied geographic contexts.

4.1.1 The DSL3S model
In this example space is vacant at simulation start and is

progressively occupied by urban elements. The simulation
is built around four elements: (i) an Animat named Urbe
that possesses a single Attribute, storing its Age; (ii) a
Global variable termed Speed that declines with time; (iii)
a Spatial element to input a vector layer with Protected
areas, where urban growth is not possible; (iv) another Spa-
tial variable that inputs a Roads layer, an enabler of urban
sprawl. Figure 3 presents the full model in three views.

At simulation start a single Urbe animat is cast at random
in the simulation space; it is not mobile, with the dynamics
defined through Emerge operations. In first place there is
the SprawlAge operation that sets the probability of a new
Urbe animat emerging nearby an existing Urbe; this opera-
tion is linked to the Age attribute, to render emergence less
probable near older urban areas. Also to constraint growth
with time (mimicking diminishing capital investment) is the
SprawlSpeed operation, linking to Speed – as its internal
value declines with time, it slows downs growth. Sprawl-
Roads relates Urbe with Roads, increasing the probability of
emergence around spatial features of this layer. In similar
fashion, SprawlProtect sets the probability of emergence to

13https://github.com/MDDLingo/DSL3S

zero (with a large negative weight) over spatial features in
the Protected areas layer. The Simulation space is set to
a grid of 100 by 100 cells, this way determining the space
between adjacent emerging urban elements.

Figure 3: Urban Sprawl model in DSL3S.

4.1.2 The resulting application
Figure 4 shows the simulation space resulting from this

model at time steps 0, 100 and 400. In the very beginning
there is a single urban element, presented in red; in dark blue
are represented Protected areas, while yellow lines portrait
Roads. Development is fast in the beginning, with new ur-
ban elements emerging along road features; as they age, the
colour of Urbe elements slowly fades to a light cyan. With
time sprawl slows down and a larger number of steps is re-
quired for changes in the urban fabric to become apparent.
With the areas surrounding Roads taken, sprawl then turns
inwards, but avoiding Protected polygons.

4.2 Simulation Model B – Predator-Prey
Predator-Prey simulations are one of the oldest applica-

tions of spatial simulation techniques [Dewdney, 1988], used
to study population dynamics in the field of Biology. It
usually features two animal species, where one feeds off the
other; energy flows through the food chain in waves whose
period and amplitude are function of the growth rates of the
several species.

https://github.com/MDDLingo/DSL3S


t = 0 t = 100 t = 400

Figure 4: A sample run of the Urban Sprawl DSL3S
simulation; Urbe is portrayed with a red to cyan
ramp, Roads are portrayed in yellow and Protected
areas in dark blue.

4.2.1 The DSL3S model
This example takes place in a synthetic plane of 100 by

100 abstract space units. There are three main elements
to this simulation: a Spatial variable named Pasture and
two animats: Predator and Prey. Pasture covers the whole
simulation space and is initiated from a sample raster file
that represents energy available at each space unit. This
energy at each location increases at each time step, at a
fixed rate during simulation, up to a defined limit.

Prey is an herbivore animat composed by a single At-

tribute: Energy. At simulation start a number of these an-
imats are cast randomly across the simulation space, with
its Energy state also randomly initialised. Energy declines
steadily at each time step by a defined amount. A Per-

ish operation attached to Energy sets a lower threshold
below which the animat is discarded from the simulation.
A Supply operation linked to Energy makes this attribute
available for the Predator animat. A Harvest operation
parametrises the feeding act of Prey over Pasture; at each
time step the animat can take all the Pasture energy avail-
able at the location it occupies into its own Energy state.
Two Move operations relate Prey with both Pasture and
Predator, making it prefer locations with high Pasture en-
ergy and free of Predator instances. Finally, a Replicate

operation sets a threshold above which the Prey can repro-
duce itself, as so the amount of energy passed on to the
offspring in the process (the DSL3S view for Prey is shown
in Figure 5).

Predator is a carnivore animat that shares many similar-
ities with Prey (Figure 6). It also possesses a single state
(Energy) and its instances are created from an input vector
layer, using its attributes for state initialisation. Its state
also declines with time and a Perish operation determines
when it ceases to exist. Predator feeds on Prey, according
to an Harvest operation linking to the Supply operation of
Prey. When a Predator feeds off a Prey it takes up all of
its energy, triggering its Perish operation. A single Move

operation links Predator to the Prey energy state, this way
compelling it to move towards locations where well nurtured
Prey instances exist. A Replicate operation sets similar re-
production conditions to those for Prey.

4.2.2 The resulting application
The simulation generated from this model produces the

typical population cycles seen in this type of models, as in
the case of the historical WATOR model [Dewdney, 1988].
Figure 7 shows the simulation space during a sample run at

Figure 5: Predator-Prey model in DSL3S; Simula-
tion, Scenario and Prey Views.

time-steps 0, 30, and 90. Prey animats reproduce faster and
thus dominate space during the first time steps, producing
an initial wave reaping the fertile feed stock. In time, Preda-
tor animats feed off the excessive amount of Prey animats
creating a new wave; this Predator wave clears some areas,
fostering growth of Pasture in certain patches.

4.3 Simulation Model C – Game of Life
The Game of Life [Gardener, 1970] is a cellular automata

simulation that had a capital role in popularising spatial sim-
ulation techniques. It does not have any direct real world
application, but showcases the emergence of complex pat-
terns in a system with very simple rules.

4.3.1 The DSL3S model
Implementing the Game of Life with DSL3S is an inter-

esting exercise since this simulation is composed of a single
static element, the Life animat, from which all operations
must be derived. This animat is composed by two attributes,
Alive, a binary variable that indicates if the animat is dead
or alive, and Neighbours, that stores the amount of living
animats in its neighbourhood. The Life animat makes it
state known through a Supply operation, a linked Harvest

operation is used to count the number of neighbours at each
time step. Having no impact on the harvested animats, this
setting exemplifies the usage of Harvest for mere informa-
tion collection.

The rules of this famous simulation are implemented us-
ing in first place an Emerge operation linked to the Alive
attribute. Using a scope encompassing the immediate neigh-



Figure 6: Predator-Prey model in DSL3S; Predator
and Interaction Views.

bourhood of a location, the resulting Emerge class counts the
number of animats in the surroundings and creates a new
Life animat if this number is three. The death of a Life
instance is defined with a Perish operation associated with
the Neighbours attribute, setting an admissible interval be-
tween two and three neighbours for the animat to survive.
The Neighbours attribute is reset to its minimum at the be-
ginning of each time step to force the re-evaluation of the
survival conditions for the Life animat (figure 8 presents the
Life model described in DSL3S).

4.3.2 The resulting application
The definition of this historical model with DSL3S may

not be the most obvious – even though fitting in three small
diagrams – but serves to prove that a simulation like the
Game of Life can be implemented with the language. In
the model available at GitHub some classical initial config-
urations are provided in a vector layer to test this example,
but by default the simulation space is initialised randomly,
providing for some interesting evolutions from chaos into
repetitive patterns.

Figure 9 shows snapshots of a simulation run with 1 000
random locations set as alive at time-step 0. After 50 time-
steps stable structures already start appearing, but chaotic
patches can still grow or move in ways to disturb surround-
ing spaces. At time-step 200 there are still large chaotic
patches and some stable structures that emerged previously
have been destroyed; at this time the emergence of glider

t = 0 t = 30 t = 90

Figure 7: A sample run of the Predator Prey DSL3S
simulation; Pasture is portrayed with a yellow to
green colour ramp, Prey is portrayed in blue and
Predator in red.

elements is still common. With an initial random configu-
ration as this, it can take in the order of 500 time-steps for
the entire space to stabilise.

4.4 Discussion
These three case studies show how DSL3S elements can be

combined to produce diverse simulations on different fields of
application. An Urban sprawl model exemplifies the devel-
opment of non mobile agents that emerge over the simulation
space; it demonstrates how to combine different input spa-
tial layers to influence Animat behaviour. A Predator-Prey
model portraits other classical spatial dynamics elements:
mobile agents that move towards and away spatial objects
and perform changes to the landscape and other agents. Fi-
nally, a realisation of the classical Game Of Life cellular
automata demonstrates how DSL3S constructs can be com-
posed to create models with less obvious dynamics.

Table 1 presents basic statistics on the source code gener-
ated. The Urban Sprawl model, that is relatively complex,
with one Global and two Spatial elements, results in over
1 000 lines of code; this from a DSL3S model with just three
views, that fit in a single picture. The Predator-Prey model
produces less classes but more code, since it includes more,
and more diverse, operations. If for the first two examples
the amount of code generated may indicate that much com-
plexity is represented at model level, the Game of Life model
hints at an exaggerated amount of code generated. Even
though this particular model realisation takes in geo-spatial
data and sets up a graphical interface, it can be argued that
an ad hoc implementation with an object oriented language
would be leaner. This may be one of the short-comings of
the MDD approach, even if the user is not expected to work
directly on the source code.

Table 1: Statistics on the code generated.

Model Number of classes Lines of code

Urban Sprawl 11 1075

Predator Prey 10 1192

Game of Life 7 757



Figure 8: The Game of Life model in DSL3S.

The Game of Life model also points to eventual difficul-
ties with the relatively strict size of the language. Although
DSL3S is able to represent and generate this sort of simula-
tion, the graphical model may not be straightforward. The
employment of the language may thus require substantial
guidance in the form of a manual or other methodological
support documents.

5. CONCLUSION AND FUTURE WORK
The application of spatial simulation techniques to the

GIS domain remains today locked in the choice between ver-
satile tools, that require advanced programming skills, and
the option for ease of use with pre-built models, in such case
implying relevant compromises of transparency and scope.
Several DSLs, and respective tools, such as NetLogo, SE-
LES or MOBIDYC, were tried in this field, but invariably
producing declarative or functional languages. They also
impose compromises with platform dependence and in some
cases with weak GIS support and interoperability.

DSL3S proposes an MDD approach to this subject, under-
pinned by an UML profile that forms a graphical language.
MDD3S is a prototype framework that implements this lan-
guage, composed by a modelling designer and a model-to-
code transformation infrastructure. These assets are able
to translate a graphical, abstract and platform independent
model produced with DSL3S into a coded simulation sup-
ported by a Program-level tool. In other applications, the
employment of MDD methodologies has proved capable of
inducing faster development [Clark and Muller, 2012], re-
duce coding errors [Paige and Varró, 2012] and improve

t = 0 t = 50 t = 200

Figure 9: A sample run of the Life DSL3S simula-
tion, with living cells portrayed in white.

model readability [Mohagheghi et al., 2013].
The MDD3S framework currently relies on MASON, a

modern Java library for spatial simulation. This option also
guarantees interoperability with geographic data, namely
through the GeoMASON extension. This framework is be-
ing developed on the Eclipse IDE, using the MDD plug-ins
Papyrus, for UML modelling, and Acceleo, for model-to-
code transformations. Both the DSL3S UML profile, the
MDD3S framework and the example models presented are
in the public domain.

DSL3S will be further assessed through its application
to real world scenarios. An iterative process shall provide
an understanding of how far it can go in its current form
and if extensions are necessary. Graphical semantics is an-
other area where improvements are possible, in particular
through the employment of stereotype icons proposed before
[de Sousa and Silva, 2012]. Such feature is not presently sup-
ported by the MDD tools used, but hopefully will be avail-
able in the following release of the Eclipse software stack.

A series of support contents has been produced to facili-
tate the first contact with the language 14. These contents
are presently being used in an evaluation experience 15 where
international spatial simulation experts and environmental
and computer sciences professional are invited to test the
language and feed back on its usability and productivity.
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