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Abstract 
The innovation output of the photovoltaics sector has rapidly expanded during the past decade-and-a 
half as investment have increased in an attempt to increase solar energy in the energy mix. Using a 
quantitative model based on bibliometric data, this study identifies clusters and explores the influence 
of global knowledge networks on innovation performance. Up to129 clusters are identified around the 
world, of which less than 50 can be considered as major clusters. By extracting innovation input and 
output indicators from the bibliometric data (patent grants and scientific publications) and various 
forms of co-authorship or assignee-inventor relationships, a model of cluster innovation performance is 
constructed that incorporates input, output and knowledge network indicators. The estimation results of 
this model suggest that both agglomeration effects and relational proximity influence innovation 
performance, and that this occurs in a non-linear way. Furthermore, certain kinds of knowledge 
relations appear to reduce innovation performance while the presence of headquarters within a cluster 
appears to be beneficial. Although second-degree network effects are also explored in this study, their 
effect on innovation performance is not clear. A number of practical conclusions can also be drawn 
based on the results. 
 
 
1 Introduction  
This paper presents a quantitative assessment of the influence of global knowledge networks on the 
innovation of industry clusters in the photovoltaics sector. Photovoltaics is a knowledge intensive and 
globally distributed sector that incorporates multiple technological domains, including electronics and 
materials science, like nanotechnology. The photovoltaic sector has also received large inflows of 
public and private research investment during recent decades as part of a global push towards green 
growth. Photovoltaics by means of using solar energy are expected to contribute to the reduction of 
greenhouse gas emissions and the diversification of energy supply (Breyer, Birkner, Meiss, 
Goldschmidt, & Riede, 2013). 
 
It is therefore not surprising that the innovation performance of the sector has been the subject of 
significant attention, both in the academic community and among policy makers. Academic research 
has generally focused on the photovoltaic sector in one or a small number of countries in the context of 
industrial policy, international technology transfer and international competition (de la Tour, Glachant, 
& Meniere, 2011; Grau, Huo, & Neuhoff, 2012; Kim & Kim, 2015; Klitkou & Godoe, 2013; Lo, Wang, 
& Huang, 2013; Vidican, McElvaney, Samulewicz, & Al-Saleh, 2012; Wu, 2014; Zheng & Kammen, 
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2014). There are also numerous studies of specific photovoltaic industry clusters which address similar 
aspects (Dewald & Fromhold-Eisebith, 2015; Klitkou & Coenen, 2013; Luo, Lovely, & Popp, 2013; 
West, 2014). And there is a small number of global studies (Breyer et al., 2013; Leydesdorff & 
Alkemade, 2014) which explore the size, growth and geographic distribution of innovation output in 
the photovoltaic sector. 
 
This study focuses on the role of global knowledge networks in the photovoltaics sector. Global 
knowledge networks are networks of personal and institutional relationships that enable the transfer 
and transformation of knowledge on a global scale. Examples include the global research collaboration 
network (De Prato & Nepelski, 2014) and the global academic network (Barnett, Park, Jiang, Tang, & 
Aguillo, 2014). Other salient examples include the cross-border knowledge transfers that take place 
within multinational corporations (MNCs) which are enabled by MNCs private network of branch 
laboratories located in industry clusters worldwide (Castellani, Jimenez, & Zanfei, 2013).  
 
While it is clear that international research activities are rapidly growing, especially in terms of their 
global distribution and the increasing importance of global knowledge networks (Audretsch, Lehmann, 
& Wright, 2014; Locke & Wellhausen, 2014), there are also indications that internationalization may 
weaken or limit the development of internal knowledge networks (Kwon, Park, So, & Leydesdorff, 
2012; Van Geenhuizen & Nijkamp, 2012; Ye, Yu, & Leydesdorff, 2013), and lower the innovation 
performance of some knowledge intensive industries. However it is unclear what the effects of a shift 
from local towards global knowledge networks is on the innovation performance of industry clusters, 
including in the photovoltaics sector. 
 
To address this knowledge gap a quantitative model is proposed to assess the influence of multiple 
(local and global) knowledge networks on the innovation performance of industry clusters. This multi-
scalar approach is based on recent re-evaluation of the influence of spatial proximity and of the 
influence of relational proximity in innovation, and on a multidimensional understanding of knowledge 
networks as consisting of different types of relationships. In this study four types of knowledge 
network are investigated: personal collaboration networks, institutional collaboration networks 
(Dodgson, 1992), Triple Helix (university-government-industry relations) networks (Etzkowitz & 
Leydesdorff, 2000) and MNC branch networks. Together these networks provide a broad and 
differentiated perspective on relational proximity. 
 
The study makes various contributions to the understanding of innovation. It makes a theoretical 
contribution by exploring how relational proximity (global networks) influences spatially concentrated 
knowledge creation in industry clusters, including the possibility of knowledge flows mainly in one 
direction, which might raise the innovation performance of the receiving industry cluster at the expense 
of the sending cluster. This latter option is considered to be a possibility for the Triple Helix and MNC 
branch networks, which are conceptualized as directed networks. 
 
The study makes a methodological contribution by using only bibliographic data to develop a model of 
innovation performance, combining spatial analysis, scientometric network analysis and the knowledge 
production function. This approach involves the identification of industry clusters (independent of 
administrative boundaries), the extraction of cluster innovation input and output indicators and the 
construction of multiple inter-cluster knowledge networks from which network indicators are extracted. 
These innovation input, output and network indicators are then used to estimate a quantitative model of 
innovation performance. Because only bibliographic data are used, the method has the potential to be 
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applied in many other knowledge- intensive sectors, especially when innovation data in terms of 
production for the market are not available. And the study also provides practical results that can help 
regional policy makers and cluster managers optimize the external relations policy of their clusters to 
enhance innovation performance. 
 
The study is centered on the following research questions: 

1. What is the pattern of global development of the photovoltaic sector in terms of growth in 
innovation output, geographic distribution and the prevalence of knowledge networks during 
the past decade? 

2. What is the influence of global knowledge networks (personal collaboration, institutional 
collaboration, Triple Helix, MNC branch) on the innovation performance of industry clusters in 
the photovoltaic sector? 

 
These research questions are first discussed on the basis of the current literature (section 2), which 
forms the basis for the research model and hypotheses (section 3). This is followed by a description of 
the data and methodology (section 4) which precedes the results and analysis (section 5). The final 
section (6) of the paper contains a discussion and conclusion. 
 
2 Literature review  
This review touches on the significant theoretical and empirical advances that have recently been made 
in relation to global knowledge networks and innovation performance. The section begins by 
discussing the idea of spatial and relational proximity and theory on agglomeration economies and 
regional innovation. This is followed by three more empirically-focused sections on the differentiation 
in knowledge relations, the mapping and analysis of knowledge networks and incorporating network 
indicators into cluster models. 
 
Spatial and relational proximity 
Regional approaches to international research interaction have been dominated for years by a rather 
one-dimensional approach in which spatial proximity enhances knowledge spillovers (Acs, Audretsch, 
& Feldman, 1994; Audretsch & Feldman, 1996). In the course of the past decades, an increased 
attention has been developed for other types of proximity (Boschma, 2005; Breschi & Lissoni, 2001) 
and these include among others networks of cooperation in knowledge production (relational 
proximity)  (Asheim & Isaksen, 2002; Bathelt, Malmberg, & Maskell, 2004). Relational proximity may 
be defined as the capability of regions or clusters (and their organizations and firms) to learn through 
cooperation with other regions or clusters (Camagni & Capello, 2002). Relational proximity is seen as 
being facilitated by socio/cultural similarity that enables the absorption of knowledge spillovers from 
other regional contexts, through a common set of values and beliefs (Fazio & Lavecchia, 2013). In 
addition, an approach which puts an emphasis on synergies between different proximities, like between 
spatial and relational proximity has also been developed (Ponds, Van Oort, & Frenken, 2007; Ponds, 
van Oort, & Frenken, 2010). 
 
Agglomeration economies 
The influence of spatial proximity on innovation performance under the label of agglomeration 
economies, has been studied theoretically and empirically for decades (Capello, 2009). The first source 
of these localized advantages originates from being spatially close in larger cities or clusters, including 
lower transport and transmission costs, proximity to final markets (for firms) or test/launching markets 
(for innovations), a larger chance for meeting of two agents eventually leading to serendipity, and 
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easier exchange of creative ideas (Morgan, 2004). The second source of advantages draws on 
productivity increases due to cost reductions (scale effect) and localized accumulation of production 
skills (labor market).  A third source of agglomeration advantages originates from synergy and refers to 
the rise of a set of common values and beliefs which in fact act as the economic rationale for the 
reduction of transaction costs (Williamson, 1981). In so-far the advantages deal with knowledge, the 
appropriate concept is localized knowledge spillovers, and invention and innovative activity at 
universities, research institutes and companies in cities or clusters are regarded as benefiting from them 
(Acs et al., 1994; Anselin, Varga, & Acs, 1997; Audretsch & Feldman, 1996; Autant-Bernard, 2001; 
Jaffe, 1989). However, various doubt have been casted on the condition of spatial proximity in 
productive inter-organizational learning, summarized in the assumption that spatial proximity is neither 
a necessary nor a sufficient condition for creative learning and innovation. Rather, it merely facilitates 
(Boschma, 2005; D’Este, Guy, & Iammarino, 2012; Karlsson, 2010). 
 
Relational economies 
The idea that ‘advantages of spatial proximity’ also work on a distance and in a similar manner 
compared to the ones that are localized, has emerged in the literature since the early 2000s and has been 
increasingly elaborated ever since (Ertur & Koch, 2011). Thus, Breschi and Lissone (2003) argue that 
collaborative networks are channels for knowledge spillovers that are not limited to local environments, 
instead, they can span long physical distances (Maggioni, Nosvelli, & Uberti, 2007; Maggioni & 
Uberti, 2009; Ponds et al., 2007). According to this line of thinking, the study of regional invention and 
innovation has shifted from a focus on close territorial relationships towards an emphasis on 
technological collaboration that increasingly occurs between cities or clusters as widely spread 
network-based systems through which knowledge circulates, is transformed and enriched (Cohendet & 
Amin, 2006). And in the past years, it has been increasingly recognized that relational proximity 
between the organizations involved (whether local or global) is key in productive collaborative learning 
(e.g. Bathelt et al., 2004; Cook, 2007).  
 
Often such a situation has been viewed as merely positive in enhancing innovation. Particularly in 
high-tech sectors, research collaboration through global networks has been regarded as crucial for 
corporate innovative performance, like in the biotechnology industry (Cooke, 2007; Gertler & Levitte, 
2005). What however might occur, if local firms are strongly collaborating with Multinational 
Corporations (MNCs) from elsewhere or if they are established or acquired by such companies, is that 
these local firms develop knowledge strategies depending on their role in the production organization 
of the (parent) MNC. Particularly, the role of producing knowledge for the MNC means that MNCs 
learn from their foreign subsidiaries, which is named ‘reverse’ knowledge transfer in some studies 
(Ambos, Ambos, & Schlegelmilch, 2006; Awate, Larsen, & Mudambi, 2014; Castellani et al., 2013; 
Dunning, 2000; Frost & Zhou, 2005; Frost, 2001). Under these conditions, foreign MNCs extract 
knowledge from the cluster and if this is based on exclusivity, the cluster might weaken instead of grow 
due to global research interaction. 
 
Firms within a cluster can leverage their relationships with partners inside and outside of the cluster. In 
smaller clusters which lack the local networking advantages of agglomeration economies, it is likely 
that knowledge relations with partners outside of the cluster play a more prominent role (Tödtling & 
Trippl, 2005). At the same time, the strong relational proximity of a cluster to other clusters may be 
strengthening the agglomeration effect, as large clusters tend to be important nodes in national and 
global knowledge networks (Bathelt et al., 2004), for example in biotechnology (Huallacháin & Lee, 
2014). However, as the example of knowledge relations within MNCs shows, the type of knowledge 



5 of 30 

and the type of knowledge relationship influences a cluster's innovation performance. 
 
Differentiation in knowledge and knowledge relations 
In addition to considering the spatial dimension (local relationship inside the cluster and relationships 
between organizations in different clusters), there are significant differences in type of knowledge and 
knowledge relations. Most prominent is perhaps the ‘classic’ distinction between tacit and codified 
knowledge (Polanyi, 1958) and its empirical application (e.g. Gertler, 2003; Simmie, 2003), both of 
which play an important role in the innovation process. Because codified knowledge is easier to 
communicate, it is understandable that formal research collaboration between clusters has been 
identified as a factor that enhances regional innovation performance (Huallacháin & Lee, 2014), but 
this is not evident from formal within-cluster research collaboration (Fritsch, 2004). Within-cluster 
collaboration may involve primarily tacit exchanges of knowledge, which are not captured by formal 
research collaboration indicators such as co-invented patents. 
 
In fact research collaboration, which has often been measured through co-authorship only accounts for 
a small share of the total knowledge transfer that takes place between institutions, including between 
university and industry (Bekkers & Bodas Freitas, 2008; Bukvova, 2010). In addition to this, research 
collaboration is sensitive to ‘power realities’  between the research partners (Hervas-Oliver & Albors-
Garrigos, 2013; Van Geenhuizen & Nijkamp, 2012), with a stronger partner often exerting more 
influence over how the relationship is conducted and how potential benefits are appropriated. Even 
within MNCs, larger labs in more prominent clusters tend to have significant autonomy over how and 
what kind of research they conduct (Mudambi & Navarra, 2004).  
 
Patterns of knowledge relations may also vary depending on the industry sector (Iammarino & 
McCann, 2006; Jensen, Johnson, Lorenz, & Lundvall, 2007), the knowledge resource base and the 
social capital of the region (Masciarelli, Laursen, & Prencipe, 2010; Tödtling & Trippl, 2005). Finally 
the type of actors involved in the collaboration, such as universities, government or industry, and user 
groups (Etzkowitz & Leydesdorff, 2000; Ranga & Etzkowitz, 2011). 
 
In the context of the spatial and relational proximity discussed earlier, and in the context of the 
knowledge networks discussed below, this suggests that a plurality of relations and networks co-exist 
which may influence innovation performance in different ways. 
 
Mapping and analysis of knowledge networks 
The diffusion of computing power and the internet, and easier access to databases of scientific 
documents, have made it possible to map the geographic distribution and network relations of scientific 
output on a worldwide basis (Leydesdorff & Alkemade, 2014; Leydesdorff & Persson, 2010). In 
addition to mapping at the micro-level (i.e. individual addresses or institutions), relational knowledge 
networks such as co-invention networks have also been mapped and analyzed at higher geographic 
agglomeration levels, such as at the level of urban areas (Huallacháin & Lee, 2014) or countries (De 
Prato & Nepelski, 2014). These studies reveal that network indicators such as degree centrality 
(Wasserman & Faust, 1994) correlate closely to the size of the cluster or of a country's innovation 
output. 
 
Weblinks between university websites have also been used as an indicator of relational knowledge 
networks (Barnett et al., 2014), and network indicators such as degree centrality show a statistically 
significant correlation to the size and academic reputation of the institution. Interestingly, physical 
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distance is not identified as a statistically significant factor in any of the studies mentioned in this 
paragraph, thus reaffirming the importance of relational proximity in knowledge networks. However 
there appears to be a hierarchy in knowledge networks, with national sub-networks in which a few 
dominant national institutions maintain most international relations (Ortega & Aguillo, 2009). 
 
Triple Helix relations between university, industry and government actors (Etzkowitz & Leydesdorff, 
2000) have also been analyzed in a number of studies, providing an evolutionary and comparative 
perspective on (national) innovation systems. Of note is the finding that international collaboration, as 
measured by co-authorship of scientific papers, tends to weaken domestic Triple Helix relations (Kwon 
et al., 2012; Leydesdorff & Sun, 2009; Ye et al., 2013), although the effect of this collaboration shift on 
innovation growth and performance is unclear. 
 
Incorporating network indicators into a cluster model 
Given the predictive potential shown by network indicators, incorporating them into a model that 
predicts innovation performance is a logical next step. Several models for understanding innovation 
systems have been proposed at the national scale (Edquist, 1997; Freeman, 1995; Lundvall, 1992; 
Nelson, 1993), regional scale (Cooke, 2001; Porter, 1998; Tödtling & Trippl, 2005) and at the sectoral 
scale (Malerba & Orsenigo, 1997; Porter, 1998). All of these models incorporate the three core Triple 
Helix actor groups of university, industry and government (Etzkowitz & Leydesdorff, 2000), in 
addition to many other actor groups such as knowledge intensive business services that can be viewed 
as intermediaries (Hertog, 2000; Schlierf & Meyer, 2013). 
 
In addition to intermediaries, there is a growing literature exploring the influence of factors such as 
entrepreneurship (Autio, Kenney, Mustar, Siegel, & Wright, 2014) and the contribution of universities 
to entrepreneurship (Van Looy et al., 2011; Perkmann et al., 2013) on cluster innovation performance, 
to name but a few recent studies. However, to include network and other indicators in the model and to 
then estimate it, quantitative innovation performance models tend to be reduced to a knowledge 
production function in which the influence of a smaller number of factors is studied. This approach has 
led to insights such as: the institutional and policy factors that influence national innovation 
performance (de Rassenfosse & van Pottelsberghe de la Potterie, 2009; Furman, Porter, & Stern, 2013), 
the geographic distribution of university-industry knowledge spillovers within a country (Ponds et al., 
2010) and the low importance of formal research collaboration within clusters to explain cluster 
innovation performance (Fritsch, 2004). So although the knowledge production function typically 
represents a simplification, it can be considered as a well-accepted methodology. 
 
When certain factors influence innovation at different spatial levels (e.g. national vs. local), then the 
estimation of the knowledge production function (or similarly expressed models) benefits from 
multilevel regression analysis, which allows these effects to be incorporated into the model (Fischer & 
Getis, 2010; Fotheringham, Brunsdon, & Charlton, 2003; Raspe & van Oort, 2009; Raspe & van Oort, 
2011). 
 
3 Research model and hypotheses 
In this section the research model is presented followed by the formulation of a number of hypotheses. 
 
Research Model 
The model used in this study is described in figure 1. Innovation outputs are the dependent variable, 
while innovation inputs are the independent variables,  and network characteristics are regarded as 



7 of 30 

moderating variables. The respective innovation and network indicators are described in more detail in 
section 3.  
 
 

 
 

Figure 1: Research model 
 
The model is mathematically expressed as a knowledge production function (Jones, 1995; Romer, 
1990). The basic form of the knowledge production function is given in equation 1. 
 

Pi=δ Li
λ

 (1) 

 
Here Pi is the innovation output in cluster i, Li is the innovation input in cluster i, δ is the innovation 
propensity and λ the research productivity. Innovation propensity is understood to be determined by the 
national science and technology policy environment (de Rassenfosse & van Pottelsberghe de la 
Potterie, 2009) as well as the specific technological and competitive features of the sector (Arundel & 
Kabla, 1998; Kleinknecht, Montfort & Brouwer, 2002), which have an influence of the production of 
intellectual property, specifically patents. Patent-based indicators are used to measure innovation output 
in this study. Because this study considers only a single sector, innovation propensity is assumed to 
vary only by country. 
 
If researchers innovate equally well, then there should be no differences in research productivity 
between clusters. However the literature cited in the previous section suggests that researcher's social 
network and various institutional factors do influence research productivity. Equation 1 can be 
transformed as equation 2. Here εi is an error term for each cluster i.  
 

log Pi=logδ+λ log Li+εi  (2) 

 
Equation 2 can be re-written as equation 3 by taking into account the following. Innovation propensity 
varies by country m. Innovation output Pi can be decomposed into the number of claims in patent 
grants (CLM) and the number of patent citations (PCT). Innovation input Li can be decomposed into the 
number of scientific publication citations (ACT) and the number of active researchers (RES). Network 
indicators (NET) act as moderating variables and various different network indicators are to be tested. β 
represent the model parameters that are to be estimated. 
 

log(CLM i∗PCTi )=βm+β1 NETi∗( log(RESi∗ACTi))  (3) 
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Hypotheses 
The hypotheses presented here are based on results of the literature review (section 2). The first 
hypothesis presented here aims to evaluate evidence of an agglomeration economy in the photovoltaic 
sector: 
 
H1 Cluster size correlates positively to cluster innovation performance 
 
The other hypotheses consider relational economies by addressing the correlation between cluster 
centrality and innovation performance. If relational economies are conceived as derived from networks, 
then clusters can be seen as vertices, and the relationships maintained by researchers within those 
clusters with researchers from other clusters as the networks’ edges. There are various measures of 
centrality in networks, the simplest of which is degree centrality: the number of direct connections a 
cluster (vertex) has with other clusters (Wasserman & Faust, 1994). Other measures include between-
ness centrality, which is the number of shortest paths between all vertices in a network that pass 
through a particular vertex; closeness centrality, which is an inverse measure of the total number of 
shortest paths between a vertex and all other vertices in the network; and eigenvector centrality, which 
is a measure of how closely connected a vertex is to other well-connected vertices (Wasserman & 
Faust, 1994). 
 
Therefore two pairs of hypotheses about network centrality are formulated, the first pair, H2a  and H2b, 
test the influence of direct network links on innovation performance. These direct links are typically the 
focus of the literature on inter-organizational learning (Dodgson, 1992, 1993). 
 
H2a Network degree centrality correlates positively to cluster innovation performance 
H2b Network degree centrality does not correlate to cluster innovation performance 
 
The second pair of hypotheses, H3a and H3b, considers the fact that the existence of links between two 
clusters can affect the establishment or existence of links between another pair of clusters. This is often 
the case if the network has a hierarchical structure, meaning that some vertices are significantly better 
connected than others. A hierarchical network structure has been found in international co-invention 
networks (De Prato & Nepelski, 2014) and the academic weblink network (Barnett et al., 2014).  
  
H3a Network betweenness, closeness or eigenvector centrality correlate positively to cluster 
innovation performance 
H3b Network betweenness, closeness or eigenvector centrality do not correlate to cluster innovation 
performance 
 
The hypotheses concerning network centrality are intentionally ambiguous with respect to the different 
types of networks. In this study we consider the following network types: 
 

1. Inter-personal innovation networks based on patent co-invention 
2. Inter-organizational innovation networks based on patent co-assignment 
3. Research networks based on scientific paper co-affiliation 
4. Triple Helix networks of university, industry and government relations based on patent co-

assignment and scientific paper co-affiliation (directed network with knowledge flowing from 
university/government to industry) 
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5. Branch networks between inventors and firms headquartered outside the cluster (directed 
network with knowledge flowing from inventors to headquarters outside the cluster) 

 
In addition to these networks, the possibility of weighted and non-weighted networks is considered. For 
weighted networks the “thickness” of the relationships are also explored (i.e. how frequently do 
knowledge interactions occur?), whereas in non-weighted networks only the number of cluster 
connections are considered. In effect, the four hypotheses about the relational economy are 40 sub-
hypotheses if one considers the various network types. As with other innovation indicators (Hagedoorn 
& Cloodt, 2003), we except a high degree of correlation between the various knowledge networks and 
their respective indicators. 
 
4 Data, methodology and indicators 
This study considers the 2000-2009 period, which is the most recent decade for which detailed 
bibliometric data is available (see below). In this section the data, methodology, indicator development 
and the model estimation strategy are described. 
 
Data 
This study is based exclusively on bibliographic sources (patents and scientific publications) which 
enable the observation of changes over longer time periods, while offering global coverage at a local 
scale by using the address information contained in the bibliographic sources. These bibliographic 
sources form a “paper trail” of innovation activity (Jaffe, Trajtenberg, & Henderson, 1993), the data 
from which can be used to estimate the knowledge production function. On the one hand the use of 
bibliometric data as an innovation indicator has disadvantages, including variations in patenting 
propensity between sectors (Kleinknecht et al., 2002). On the other hand bibliometric indicators such as 
patent counts and citation counts in high-technology industries tend to show close statistical overlap 
with other innovation indicators such as R&D inputs and new product announcements, which are also 
used to measure innovation performance (Hagedoorn & Cloodt, 2003). A summary of the data sources 
used in this study is provided in table 1. 
 
 

Features Patent grants Scientific publications 

Home address Available None 

Institutional address Available Available 

Inbound citations data Available Available 

Publication lag up to 5 years, sometimes more None 

Most active institutions Industry University 

Data source (for this study) 
United States Patent & Trademark 

Office 
Scopus® by Elsevier 

Selection criterion 
Y02E/50 (Cooperative 
Patent Classification) 

“photovoltaic cell” 
(keyword search of abstracts) 

Documents selected (this study) 5,524 5,270 

 
Table 1: Patent grants and scientific publication data used in the study 
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For this study, bibliometric data is obtained from patent grants from the United States Patent & 
Trademark Office (USPTO) and scientific publications are downloaded from the Scopus® database, 
which is maintained by Elsevier, an academic publisher. The USPTO data was accessed through its 
website1 on 17 July 2015 using automated means. Elsevier has an application programming interface 
(API) for automated access to its Scopus database. All data processing, as well as all model estimation 
is carried out using R (R Core Team, 2015), using rvest (Wickham, 2015) to download to bulk data and 
communicate with the Scopus API and RMySQL (Ooms, James, DebRoy, Wickham, & Horner, 2015) 
to communicate with and populate a MySQL database of bibliographic data. All R scripts in this study 
are available for download2. 
 
An overview of the number of patent grants and scientific publications during the 1975-2014 period is 
given in figure 2. This clearly shows the rapid increase in innovation output during the 2000-2009 
period, which is being studied. Note that the “decline” in patent grants is due to their publication time-
lag: many patent applications filed after 2009 are still pending. Next, one of the challenges of this 
research is the delineation of both the sector (technological) and cluster domains. 

 
Figure 2: Documents in data set, by type 

 
Sector Identification 
For the delineation of the sector (technology) domain we rely on the new Y02E cooperative patent 
classification (CPC) from the USPTO and the European Patent Office (EPO) which contains renewable 
energy technologies, including a subcategory for photovoltaics (Y02E/50). For scientific publications 

                                      
1 Available at: http://patft.uspto.gov/netahtml/PTO/search-adv.htm 
2 Available at: http://stek.in/papers/tha2015bj.zip 
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we are not aware of such a classification, and so rely on a keyword search of journal paper abstracts 
which contain the phrases “photovoltaic cell”. Inclusion of the word “cell” is important to distinguish 
from papers about astronomy, which are not directly related to the knowledge base of the industry. 
 
Cluster identification 
“Clusters are geographic concentrations of industries related by knowledge, skills, inputs, demand, 
and/or other linkages” (Delgado, Porter, & Stern, 2014). Given the bibliometric data in this study and a 
focus on innovation performance, which is just one cluster activity, a cluster identification strategy that 
focuses on innovation output concentration is used. 
 
Patents and scientific publications contain (partial) addresses of the affiliated institutions (including 
assignees) and addresses of inventors. These addresses can be assigned coordinates using commercial 
mapping applications, such as the Bing Maps API, which is used for the initial screening, and the 
website findlatitutdeandlongitude.com for the second screening in case of irregularities. This approach 
is not original and has been used previously, although with a smaller dataset (Leydesdorff & Alkemade, 
2014; Leydesdorff & Persson, 2010). As these mapping applications and the bibliographic data are not 
perfect, some semi-manual corrections need to be made. These include removing or re-searching 
addresses that only yield country coordinates (only acceptable for small countries and territories such 
as Singapore, Bermuda, Hong Kong or Luxembourg), and dealing with clearly erroneous and 
frequently occurring classifications, such as “Yokohama, Japan”, where the Yokohama in Aomori 
prefecture (a town with less than 5,000 inhabitants) is frequently identified instead of Yokohama in 
Kanagawa prefecture (a city with 3.7 million inhabitants). In total 97% of addresses are identified using 
the Bing Maps API. But in actual use the accuracy is higher because more documents carry addresses 
of large cities, which have a higher chance of being correctly identified than, say, a small village. 
 
The conversion of addresses into coordinates allows the locations of document authors to be plotted on 
a map. Based on a plot of these document-authors, clusters are identified by using the standard “heat 
map” algorithm, formally known as kernel density estimation (Parzen, 1962; Rosenblatt, 1956). In this 
study a quartic (biweight) kernel shape is used and a cell size of approximately 36 km2. One concern of 
any clustering methodology is robustness and therefore we identify two sets of clusters. The first set are 
“cities” and are identified by making a heat map with a radius of 50 km and a density threshold of 7.5 
document authors per cell. This yields 129 clusters which produced both scientific publications and 
patent grants during the study period. These 129 clusters hold 93% of all document-authors. The 
second set of clusters are “regions” and are identified using the same process, but with a radius of 100 
km and density threshold of 15. Using this method 69 clusters are identified which hold 92% of all 
document-authors. We consider both the “city” and “regional” cluster sets, to allow for comparisons. 
 
Indicator development 
Finally, we discuss the indicators, which are summarized in table 2. The innovation indicators are 
largely based on previous studies. Patent claims (CLS) and patent citations (PCT), along with the 
number of countries in which a patent has been applied for ('family size') have been used as indicators 
of patent quality and are therefore preferable as knowledge output indicators than simple patent counts 
(Lanjouw & Schankerman, 2004). The number of researchers (RES) has been used as a knowledge 
input indicator in various studies, while academic paper citation counts (ACT) are widely used in 
various university rankings3 to measure the quality and impact of scientific output.  
                                      
3 Examples include: QS University Rankings (UK), Times Higher Education University Rankings (UK), 
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Indicator  
 

Description and measurement “ City clusters”  (n = 129) “ Regional clusters”  (n = 69) 

RES Unique researchers listed on 
patent applications 

minimum = 1 
median = 8 
mean = 50.54 
maximum = 1,119 

1 
20 
96.74 
1,854 

ACT Scientific publication citations minimum = 0 
median = 191 
mean = 1,086 
maximum = 25,892 

0 
422 
1921 
26,938 

PCT Patent citations derived from 
USPTO full patent grant web 
application 

minimum = 0 
median = 49 
mean = 923 
maximum = 29,364 

0 
130 
1,756 
57,830 

CLM Patent claims derived from 
patent grant documents 

minimum = 1 
median = 240 
mean = 1,564 
maximum = 33,904 

3 
680 
3'045 
37,612 

NETIP Inter-personal innovation 
network derived from the 
bidirectional co-invention 
network as extracted from 
patent grants 

vertices = 76 
edges = 294 (w) 147 (n) 
density = 0.10 (w) 0.05 (n) 
 

vertices = 47 
edges = 261 (w) 106 (n) 
density = 0.24 (w) 0.10 (n) 
 

NETIO Inter-organizational innovation 
network derived from the 
bidirectional co-assignment 
network as extracted from 
patent grants 

vertices = 19 
edges = 20 (w) 15 (n) 
density = 0.12 (w) 0.09 (n) 
 

vertices = 20 
edges = 22 (w) 17 (n) 
density = 0.12 (w) 0.09 (n) 

NETRE Research network derived from 
the bidirectional co-affiliation 
network as extracted from 
scientific publications 

vertices = 73 
edges = 108 (w) 82(n) 
density = 0.04 (w) 0.03 (n) 
 

vertices = 45 
edges = 88 (w) 66 (n) 
density = 0.09 (w) 0.07 (n) 

NETTH Triple Helix network derived 
from the directional 
university/government → 
industry network as extracted 
from patent grants 

vertices = 17 
edges = 13 (w) 11 (n) 
density = 0.05 (w) 0.04 (n) 

vertices = 17 
edges = 16 (w) 13 (n) 
density = 0.06 (w) 0.05 (n) 

NETBR The branch network is derived 
from the directional inventor → 
assignee network as extracted 
from patent grants 

vertices = 88 
edges = 536 (w) 197 (n) 
density = 0.07 (w) 0.03 (n) 

vertices = 53 
edges = 484 (w) 152 (n) 
density = 0.18 (w) 0.06 (n) 

Table 2: Model indicators and statistical summaries, w = weighted network, n = non-weighted network 
 

                                                                                                                               
CWTS Leiden Ranking (Netherlands) and the Academic Ranking of World Universities (China). 
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Further, network indicators are derived for the five networks that are analyzed in this study (inter-
personal, inter-organizational, research, Triple Helix and branches), in both weighted and non-weighted 
form. Degree, closeness, betweenness and eigenvector centrality are calculated; for directed networks 
in-degree, out-degree, in-closeness and out-closeness centralities are also considered (Wasserman & 
Faust, 1994). All network indicators are calculated using the igraph package in R (Csardi & Nepusz, 
2006). 
 
A pairwise correlation analysis is conducted between all indicators which is provided in table 7 in the 
appendix. The main findings based on this correlation analysis and the statistical summary in table 2, 
are as follows: 
 

1. Weighted and non-weighted network indicators tend to have a strong positive correlation, so the 
use of separate indicators is not necessary (in the remaining paper non-weighted network 
indicators are used). 

2. The inter-organizational (NETIO) and Triple Helix (NETTH) networks are too small, and so 
cannot be used for any generalizations. They are therefore excluded from further analysis. 

3. 42 city clusters and 32 regional clusters are part of the three remaining large networks (NETIP, 
NETRE and NETBR) and also have a complete nonzero set of innovation input and output 
indicators. The correlation between the above three networks' centrality indicators also varies. 
There is especially significant variation in correlation between closeness centrality and degree 
centrality (including in/out-degree and in/out-closeness centralities). Other centrality indicators 
such as betweenness and eigenvector centrality tend to be positively correlated to degree 
centrality. 

 
Model estimation strategy 
The model estimation is attempted using a multilevel regression analysis (also known as mixed effect 
modeling). As with other parts of the methodology, this process is carried out in R, with the aid of the 
lme4 package (Bates, Machler, Bolker & Walker, 2014). Because multilevel regression analysis is 
being used, a step-wise estimation is conducted in which new models are compared using analysis of 
variance (ANOVA). Models that show a statistically significant reduction in variance are subsequently 
adopted as the core model. The two levels considered in this multilevel regression analysis are the 
country level and the cluster level. 
 
5 Results and analysis 
The results of the model estimation, accompanied by analysis, are presented here in two parts, the 
model estimation results and the evaluation of the hypotheses. 
 
Model estimation results 
The model estimation follows a step-wise selection process, which is described in more detail in table 
8. The first estimation round is used to assess whether the model will benefit from a multi-level 
regression approach instead of simple regression analysis. The results of the first round suggest that 
there the model improvement of a multi-level regression model  are negligible, both for the city and 
regional cluster sets. This outcome is significant in itself because it suggests that national factors do not 
have a strong influence on the innovation performance of photovoltaic clusters. However the analysis 
nevertheless continues with multi-level regression because of the sound theoretical reasons for 
including national factors in the model. 
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In the next estimation round 10 knowledge network indicators are tested, along with the agglomeration 
effect, where the number of researchers in the cluster, RES, serves as the indicator. The knowledge 
network indicators selected are degree and closeness centrality for the three largest networks (inter-
personal, branch and research). This selection is made based on the earlier pair-wise correlation 
analysis (see table 7 in the appendix). Based on the statistical significance of the second-round 
indicators, combinations of indicators are tested in the third round. Using ANOVA analysis a “winning” 
model is then chosen. 
 
For the city cluster set, the ANOVA analysis of the third round reveals three “winning” models (MC3.1, 
MC3.5 and MC3.7). The same situation occurs for the regional cluster set, also with three “winning” 
models (MR3.3, MR3.5 and MR3.7). Of these models MC3.7 and MR3.7 incorporate all three 
knowledge networks and both degree centrality and closeness centrality indicators, while the others 
include only one (inter-personal network) or two (researcher and branch) knowledge networks. 
 
To further explore this outcome, a fourth estimation round is undertaken by which the “winning” 
models of the third round are compared to a model in which only direct network effects are included 
(degree centrality), a model in which only secondary network effects are included (closeness centrality) 
and a model where the degree centrality and closeness centrality are inverses compared to the third-
round models. The fourth round ANOVA analysis is inconclusive for the city cluster set, with the model 
incorporating only direct network effects (MC4.2) also comparing favorably. For the regional cluster 
set the ANOVA yields a clear “winner”, which is model MR4.2, which like MC4.2 only incorporates 
direct network effects. To better understand this estimation outcome, the four “best models” for the city 
and the regional cluster sets respectively are presented in table 3. If among these a “general model” had 
to be chosen it should be MC4.2/MR4.2, which have the best fit for both the city and the regional 
cluster sets. 
 
 

MC3.1^ MC3.5^ MC3.7^ MC4.2^ 

Indicators Coefficients Indicators Coefficients Indicators Coefficients Indicators Coefficients 

intercept 
RES 
IP-DEG 

6.97 
0.127 

-0.529 

intercept 
RES 
IP-DEG 
 
RE-CLS 

8.38 
0.123 

-0.683 
 

-1,958 

intercept 
RES 
IP-DEG 
BR-ICLS 
RE-CLS 

7.21 
0.128 

-0.975 
3,267 
-972 

intercept 
RES 
IP-DEG 
BR-IDEG 
RE-DEG 

9.30 
0.126 

-0.870 
0.596 

-1.430 

MR3.3 MR3.5 MR3.7 MR4.2  ̂

Indicators Coefficients Indicators Coefficients Indicators Coefficients Indicators Coefficients 

intercept 
RES 
 
 
RE-DEG 

9.96 
0.0841 

 
 

-2.31 

intercept 
RES 
IP-CLS 
 
RE-DEG 

15.4 
0.0858 

-681 
 

-2.10 

intercept 
RES 
IP-CLS 
BR-ICLS 
RE-DEG 

16.0 
0.0825 

-881 
278 

-1.84 

intercept 
RES 
IP-DEG 
BR-IDEG 
RE-DEG 

8.29 
0.0607 
0.487 
0.236 
-1.97 

Acronyms: degree centrality (DEG), closeness centrality (CLS), in-degree centrality (IDEG). 
 ^ marks model(s) of best fit. 
Table 3: Selected estimation results 
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Although similar in many ways, the models also differ in terms of the factors included and, in some 
cases, the signs and value of the estimated coefficients. Models MC3.1, MC3.5 and MC3.7 incorporate 
the degree centrality of the inter-personal network and the closeness centrality of the research network. 
But for MR 3.3, MR3.5 and MR3.7 the opposite is true, the closeness centrality of the inter-personal 
network and the degree centrality of the research network are incorporated. Since degree centrality 
accounts for direct (first-order) network effects and closeness centrality for indirect (second-order) 
network effects, this change depending on the network scale is notable. However it should not be over-
interpreted given that simpler models that only include direct network effects (MC4.2 and MR4.2) also 
have a strong fit. 
 
The signs and values of the coefficients are broadly similar across the MC- and MR3-series models in 
table 3. This provides a degree of validation as to the influence of the different network indicators on 
innovation performance. However for MR4.2 the sign of the inter-personal degree centrality (IP-DEG) 
coefficient changes. Focusing on the interpretation of the estimated coefficients, it is clear that branch 
in-degree centrality (BR-IDEG) has a positive effect on cluster innovation performance. Thus the 
hosting of headquarters raises cluster innovation performance, which is not surprising given the 
existing literature. Although the absence of branch out-degree centrality in the model suggests that 
there is no evidence to suggest that the branches themselves also support cluster innovation 
performance. 
 
Furthermore, the presence of negative coefficients for inter-personal network centrality and research 
network centrality indicators may seem surprising because there is significant theoretical evidence to 
support the benefits of relational proximity. However, both factors can perhaps be better understood 
when considering the fact that there is a consistent positive relationship between cluster scale (in terms 
of the number of researchers) and innovation performance, and when viewing the structures of the 
respective networks. It is also important to note that smaller clusters tend to have a higher degree 
centrality relative to their size. The correlation between size (RES) and inter-personal network degree 
centrality per researcher is -0.428 and for research network degree centrality per researcher the 
correlation is -0.368 in the city cluster set. 
 
Starting with the network structure, the inter-personal knowledge network (see figure 3) at the “city 
scale” (50 km radius) has several “main” clusters with greater network centrality, which are surrounded 
by smaller “satellite” clusters with low network centrality, which are typically only connected to the 
main cluster. The smaller satellite clusters may depend on the main clusters for innovation inputs, or 
may be “suppliers” of innovation inputs to the main cluster, and therefore the negative sign of the 
network indicators can be interpreted as a response to small scale, i.e. “in small clusters there are fewer 
researchers, innovation performance is lower, and knowledge networking with other clusters plays a 
more important role”. However on the “regional scale” (100 km radius, see figure 3 again), the satellite 
clusters appear to have been absorbed by the main clusters, and in this case the presence of a strong 
inter-personal knowledge network (see MR4.2) does appear to supports innovation performance, and 
thus supports the relational proximity thesis. 
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Figure 3: Inter-personal knowledge network for city clusters (left) and regional clusters (right) 

 
 
The network structure of the city cluster set has an interesting core-periphery structure with national 
sub-networks, which is also observed in the university weblinks network identified by Barnett et al. 
(2014). In terms of structure, the city cluster set also has commonalities with the global scientific 
collaboration network (Leydesdorff, Wagner, & Adams, 2013), in which there is also a core-periphery 
structure. However the regional cluster set lacks such a core-periphery division, its network is instead 
more distributed with most clusters connected to more than one other clusters. This suggests that the 
regional cluster scale of 100 km fails to capture peripheral clusters and that, provided sufficient data is 
available, a smaller spatial scale adds value to the analysis, also within countries. 
 
Referring once more to the agglomeration effect, it is worthwhile to note that all estimated models have 
logarithmic qualities, which appears to account for an important part of their improvement of fit 
compared to the baseline knowledge production function (without agglomeration and network 
indicators), see figure 4.  
 

   
Figure 4: Model plots of basic model (left), MC4.2 (center) and MR4.2 (right) 
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The logarithmic pattern suggests that, although cluster size raises innovation performance, its effects 
start to diminish as a cluster grows beyond a certain size. The reasons for such an “excess 
agglomeration penalty” are not immediately clear from the dataset, but it is not an uncommon situation 
in urban economics witnessing increasing land prices and wages, as dimensions of  limited accessibility 
and congestion (Richardson, 1995; Tabuchi, 1998; Torre & Wallet, 2014). 
 
Evaluation of hypotheses 
The results described above provide sufficient ground to evaluate the hypotheses formulated in section 
3. Although not all knowledge networks were evaluated (the inter-organizational and branch networks 
were too small), all hypotheses find some degree of support in the results, as summarized in table 4. 
 

Hypothesis Content Evaluation 

H1 
H2a & H2b 
H3a & H3b 

Agglomeration effect 
Degree centrality (first-degree effect) 
Closeness centrality (second-degree effect) 

Accept 
Accept H2a, reject H2b 
Accept H3a with caution for research and 
branch networks, accept H3b 

Table 4: Evaluation of hypotheses 
 
While the agglomeration effect is clearly supported by the results (H1 accepted), the logarithmic 
relationship between innovation inputs and innovation outputs suggests that for very large clusters the 
increasing benefits of agglomeration may not always be out-weighed by rising costs. There is clear 
evidence of direct (first-degree) network effects across all knowledge networks, supporting the concept 
of relational proximity (H2a is accepted, H2b rejected). The results also show some evidence that 
second-degree network effects may play a role, as is the case with closeness centrality in research, 
inter-personal and branch networks in some of the models (H3a accepted with caution), but it is not 
included in all models, and a second-degree network effect-only model has not been accepted based on 
ANOVA (H3b also accepted). In the next section the significance of these findings are further 
discussed. 
 
6 Discussion and conclusion 
The purpose of this paper is to present a quantitative assessment of the influence of global knowledge 
networks on the innovation performance of industry clusters in the photovoltaics sector. This study has 
provided a number of insights which will be highlighted here, including: which factors are and are not 
significant to cluster innovation performance and how this relates to the existing theory. This is 
followed by a discussion of the practical implications of the results for cluster managers, the limitations 
of the study and the conclusion. 
 
The results suggest that the spatial scale of a cluster, the network type and the network structure all 
influence innovation performance in subtly different ways. If clusters are identified on a smaller scale, 
then the agglomeration effect appears to be stronger, and the influence of inter-personal and researcher 
networks tends to be negative. However, on a larger scale the agglomeration effect is weaker and the 
influence of relational proximity (network indicators) is mixed. 
 
The mixed or negative outcomes of network indicators are difficult to understand unless one considers 
the possibility of a power imbalance (or a “benefits imbalance”) between the partners. In the case of the 
inbound branch network, having high network in-degree centrality is clearly beneficial to a cluster. A 
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high in-degree centrality signifies the presence of headquarters within the cluster. The benefits of 
headquarters are many, including having access to knowledge in other clusters through “knowledge 
pipelines” (Bathelt et al., 2004; Castellani et al., 2013; Gertler, 2003). The cluster may also benefit 
from closer interaction with top decision-makers, which can improve innovation performance by better 
allocating resources to the most promising areas of research, an effect that has previously been noted in 
large cities (Sassen, 2002). 
 
Having noted previously the negative correlation between cluster size and network degree centrality 
per researcher, it is likely that participants in a research project from a smaller cluster are frequently 
invited to participate in research, but are not part of the core group of researchers driving an innovation 
process. If they were part of the core group, it would make more sense for them to relocate to the main 
cluster. Therefore, while they contribute to a research project that is mainly taking place in a core 
cluster, the overall benefits, tangible and intangible, of such research, accrue unequally to their home 
cluster. At a larger scale this “small cluster effect” seems to dissipate as smaller clusters are either not 
detected or incorporated into a larger cluster. Hence for the regional cluster set, inter-personal network 
degree centrality contributes positively to cluster innovation performance, as is evident from model 
MR4.2. This positive contribution fits within the broader theoretical framework of relational proximity.  
 
In addition to the above it is noteworthy that the country-level tend not to influence cluster innovation 
performance even though the data set includes clusters in advanced economies such as the United 
States and a major emerging economy, China. The model intercept (which is how the country-level is 
incorporated into the models) are all very close to the mean. For example, in the MR4.2 model, the 
mean is 8.29, with China scoring 8.39 and the United States 8.82. So while China may have fewer 
clusters than the United States, the innovation performance of these clusters is at a similar level. 
Admittedly this conclusion is partly influenced by the data sources, which are international. Poorer 
quality research and researchers from China may simply fail to appear in the data set. Yet the lack of 
variation between countries in the model suggests that cluster factors such as network centrality 
influence a cluster's development more strongly than the national innovation system. 
 
The study provides a number of practical insights for cluster managers. First is the trend of clear 
benefits of having headquarters (i.e. commercial control) located inside clusters. While this does not 
confirm the presence of a “reverse knowledge flow” from branches to headquarters, the benefits of 
hosting a headquarters are clearly shown, while there are no significant benefits of hosting the 
branches. Furthermore, there is close correlation between the network indicators of weighted and non-
weighted knowledge networks. This suggests that successful research collaborations (which result in 
the granting of a patent or scientific publication) tend to occur repeatedly with partners from the same 
cluster. So although there are certainly benefits from having many weak links (Granovetter, 1973), 
clusters tend to sustain only a limited number of deep inter-cluster relationships, with small clusters 
sustaining relationships with just one or two other clusters. 
 
And finally, the results suggest that there is a strong and positive agglomeration effect. This suggests 
that a city or region's economic policy should be somewhat focused, instead of making small 
investments in many different sectors. But there is a limit to the agglomeration effect, beyond around 
500 researchers (in the bibliometric sense, and not necessarily equivalent to “real-life” researchers), the 
agglomeration effect dissipates. Naturally the above is purely from the perspective of innovation 
performance; the economic performance and growth of clusters often does not depend on innovation 
performance alone. 
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Although this study shows that a bibliometric model of industry clusters and knowledge networks is 
feasible, and holds great promise for use in other studies in which bibliometrics is one or the only 
consistent source of data, the study also shows the limitations of this methodology. First of all some 
knowledge networks, such as the inter-organizational and Triple Helix networks, only appear in very 
large clusters and so there is a limitation in the study of smaller clusters. Second, this study has only 
addressed the photovoltaics cluster which were identified at two different geographic scales. Although 
a simple and transparent method for cluster identification, the use of bibliometrics means that only one 
dimension of the sector and one dimension of innovation particularly the close relation to invention 
activity, are measured (Carlino and Kerr, 2014). It is therefore likely that the method is “blind” to 
clusters which may have significance in terms of production or production-related R&D but not in 
terms of more general R&D that is eventually published as patents or peer-reviewed scientific 
publications. Since only photovoltaics was explored, different sectors may display significantly 
different agglomeration and network effects. 
 
In conclusion, this study has shown that the innovation output of the photovoltaics sector has been 
growing rapidly during the past decades and that photovoltaics research is concentrated in less than 50 
clusters that are distributed around the world, and that these clusters are connected through multiple 
non-identical knowledge networks. A quantitative model of innovation performance based on 
bibliometric data (patent grants and scientific publications) suggests that both agglomeration and 
relational proximity affect cluster innovation performance. Relational proximity is found in different 
types of knowledge networks (inter-personal, research, branch), and incorporating multiple knowledge 
networks into the model allows for the development of a more precise model.  
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Appendix 
 

“City cluster” (50 km) innovation indicators  

Cluster Country (ISO-3166) RES ACT PCT CLM 

101-US 
102-US 
116-US 
117-US 
128-US 
131-US 
135-JP 
141-US 
155-KR 
159-US 
160-JP 
165-JP 
168-JP 
169-US 
170-JP 
174-US 
175-US 
182-IL 
187-CN 
193-US 
196-US 
21-DE 

210-TW 
220-SG 
226-AU 
24-NL 
29-GB 
35-DE 
38-NL 
39-DE 
46-DE 
51-FR 
55-DE 
56-DE 
59-US 
60-CH 
64-CH 
70-CA 
72-CA 
73-FR 
98-US 
99-IT 

US 
US 
US 
US 
US 
US 
JP 
US 
KR 
US 
JP 
JP 
JP 
US 
JP 
US 
US 
IL 
CN 
US 
US 
DE 
TW 
SG 
AU 
NL 
GB 
DE 
NL 
DE 
DE 
FR 
DE 
DE 
US 
CH 
CH 
CA 
CA 
FR 
US 
IT 

142 
249 
502 
121 
91 
15 
20 

691 
357 
39 

1,119 
9 

773 
7 

32 
425 
52 
43 
30 
23 
24 
35 

297 
13 
19 
2 
5 

20 
89 
68 
50 
87 
80 
5 

40 
7 

15 
7 
7 

63 
25 
4 

1,108 
2,536 
8,278 
2,396 

500 
79 

108 
5,729 
2,098 

464 
2,939 

621 
2,220 

792 
506 

17,886 
519 
997 

1,221 
291 
195 
453 

1,329 
952 
905 

8 
148 
181 

3,872 
41 

431 
763 
600 
191 

11,030 
54 

25,892 
335 
224 
993 

1,007 
228 

6,779 
5,021 
7,407 
1,170 
1,259 

55 
513 

7,929 
622 

2,820 
29,364 

194 
28,297 

41 
305 

9,708 
677 
81 
28 
97 

521 
325 
466 
17 

473 
53 
31 
15 

882 
413 
108 
907 

1,283 
2 

434 
97 
31 

156 
94 

291 
421 
11 

4,748 
10,016 
22,278 
3,229 
1,893 

626 
197 

33,904 
12,434 
2,978 

22,303 
47 

15,244 
135 

1,149 
11,807 

520 
2,228 
2,002 

943 
459 
870 

8,900 
255 
680 
21 

317 
819 

2,813 
1,627 
1,181 
1,365 
1,141 

125 
515 
130 
524 
97 

231 
1,682 

780 
162 
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“Regional cluster” (100 km) innovation indicators 

Cluster Country (ISO-3166) RES ACT PCT CLM 

14-FR 
15-DE 
16-DE 
17-US 
22-DE 
24-US 
27-CA 
34-IT 
35-US 
38-US 
41-US 
43-US 
47-US 
48-JP 
51-US 
54-KR 
58-US 
60-JP 
62-JP 
63-US 
64-JP 
66-US 
67-US 
7-DE 
70-IL 
74-CN 
78-US 
8-GB 
80-US 
87-TW 
9-DE 
94-SG 
95-AU 

FR 
DE 
DE 
US 
DE 
US 
CA 
IT 
US 
US 
US 
US 
US 
JP 
US 
KR 
US 
JP 
JP 
US 
JP 
US 
US 
DE 
IL 
CN 
US 
GB 
US 
TW 
DE 
SG 
AU 

93 
114 
342 
41 
87 
45 
21 
4 

26 
195 
73 

121 
934 
20 

716 
363 
46 
15 

1,854 
10 
42 

428 
53 
71 
44 
32 
23 
85 
26 

299 
21 
13 
19 

763 
600 

7,943 
11,030 
26,938 

591 
335 
274 

1,007 
1,108 

238 
2,397 

11,396 
108 

5,808 
2,098 
1,225 

621 
5,159 

792 
518 

17,886 
1,107 

599 
1,092 
1,221 

291 
4,138 

195 
1,336 

181 
952 
929 

942 
1,441 
2,720 

438 
382 
854 
230 
11 

421 
6,898 
1,800 
1,170 

14,548 
513 

8,296 
723 

2,903 
207 

57,830 
93 

330 
9,817 

706 
477 
81 
28 
97 

504 
580 
466 
15 
17 

473 

1,480 
2,054 

10,013 
516 

2,574 
948 
627 
162 
783 

8,527 
1,727 
3,229 

36,479 
197 

34,865 
12,561 
3,055 

70 
37,612 

217 
1,210 

11,852 
521 

2,232 
2,284 
2,044 

943 
2,720 

539 
8,938 

831 
255 
680 

Table 5: Cluster innovation indicators 
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“City cluster” (50 km) network indicators*  

Cluster BR-
DEG 

BR-
IDEG 

BR-
ODEG 

BR-
CLS 

BR-
ICLS 

BR-
OCLS 

BR-
BTW 

BR-
EVC 

IP-
DEG 

IP-
CLS 

IP-
BTW 

IP-
EVC 

RE-
DEG 

RE-
CLS 

RE-
BTW 

RE-
EVC 

101-US 
102-US 
116-US 
117-US 
128-US 
131-US 
135-JP 
141-US 
155-KR 
159-US 
160-JP 
165-JP 
168-JP 
169-US 
170-JP 
174-US 
175-US 
182-IL 
187-CN 
193-US 
196-US 
21-DE 

210-TW 
220-SG 
226-AU 
24-NL 
29-GB 
35-DE 
38-NL 
39-DE 
46-DE 
51-FR 
55-DE 
56-DE 
59-US 
60-CH 
64-CH 
70-CA 
72-CA 
73-FR 
98-US 
99-IT 

8 
15 
38 
9 

12 
3 
4 

33 
6 
2 

15 
2 

15 
3 
2 

24 
4 
4 
2 
5 
4 
5 
4 
2 
1 
1 
1 
2 
6 

13 
11 
14 
13 
1 
3 
1 
3 
1 
1 
1 
8 
2 

4 
8 

26 
5 
7 
1 
2 

18 
3 
1 
9 
0 

11 
2 
0 

13 
1 
3 
0 
2 
4 
1 
3 
1 
1 
0 
0 
0 
2 
7 
5 

11 
8 
0 
2 
0 
1 
0 
0 
0 
7 
0 

4 
7 

12 
4 
5 
2 
2 

15 
3 
1 
6 
2 
4 
1 
2 

11 
3 
1 
2 
3 
0 
4 
1 
1 
0 
1 
1 
2 
4 
6 
6 
3 
5 
1 
1 
1 
2 
1 
1 
1 
1 
2 

0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.03% 
0.02% 
0.01% 
0.02% 
0.02% 
0.02% 
0.01% 
0.02% 
0.02% 
0.03% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.03% 
0.02% 
0.03% 
0.02% 
0.02% 
0.03% 

0.11% 
0.11% 
0.12% 
0.11% 
0.11% 
0.10% 
0.10% 
0.11% 
0.10% 
0.11% 
0.11% 
0.01% 
0.11% 
0.11% 
0.01% 
0.11% 
0.10% 
0.11% 
0.01% 
0.10% 
0.12% 
0.10% 
0.10% 
0.10% 
0.01% 
0.01% 
0.01% 
0.01% 
0.11% 
0.11% 
0.11% 
0.11% 
0.11% 
0.01% 
0.11% 
0.01% 
0.01% 
0.01% 
0.01% 
0.01% 
0.11% 
0.01% 

0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.03% 
0.02% 
0.01% 
0.02% 
0.02% 
0.02% 
0.01% 
0.02% 
0.02% 
0.03% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.02% 
0.03% 
0.02% 
0.03% 
0.02% 
0.02% 
0.03% 

87 
389 

1,282 
307 
227 

0 
0 

1,088 
61 
0 

446 
0 

298 
129 

0 
886 
116 
41 
0 

47 
0 
8 

118 
0 
0 
0 
0 
0 

51 
226 
273 
352 
143 

0 
2 
0 

43 
0 
0 
0 

89 
0 

38.0% 
54.3% 
100% 
30.3% 
43.8% 
15.2% 
13.5% 
82.6% 
19.7% 
13.1% 
44.1% 
6.8% 

35.2% 
11.3% 
6.8% 

78.4% 
16.4% 
17.7% 
8.6% 

21.7% 
13.1% 
26.0% 
11.3% 
14.1% 
0.7% 
2.3% 
3.0% 

12.1% 
27.4% 
40.4% 
46.8% 
41.5% 
42.0% 
3.6% 

12.3% 
4.0% 

15.7% 
2.6% 
7.0% 
3.5% 

35.2% 
13.7% 

6 
8 

19 
12 
4 
3 
2 

20 
4 
1 

15 
3 

10 
2 
2 

16 
2 
4 
1 
5 
1 
4 
1 
2 
1 
1 
1 
2 

11 
12 
9 
7 
6 
2 
5 
3 
4 
1 
1 
1 
1 
1 

0.22% 
0.21% 
0.23% 
0.22% 
0.20% 
0.20% 
0.20% 
0.23% 
0.20% 
0.18% 
0.22% 
0.20% 
0.21% 
0.19% 
0.20% 
0.23% 
0.18% 
0.20% 
0.02% 
0.20% 
0.20% 
0.21% 
0.20% 
0.20% 
0.02% 
0.18% 
0.18% 
0.18% 
0.21% 
0.21% 
0.21% 
0.21% 
0.21% 
0.18% 
0.21% 
0.20% 
0.21% 
0.19% 
0.20% 
0.18% 
0.20% 
0.19% 

120 
193 
567 
326 
12 
8 
0 

721 
139 

0 
610 
70 

242 
0 
0 

496 
0 

15 
0 

151 
0 

18 
0 
0 
0 
0 
0 
4 

224 
161 
99 

181 
6 
4 

62 
9 

74 
0 
0 
0 
0 
0 

41.0% 
34.4% 
100% 
67.2% 
21.0% 
20.7% 
12.2% 
86.8% 
12.6% 
3.0% 

57.4% 
12.4% 
39.8% 
11.0% 
12.2% 
74.3% 
3.6% 

24.4% 
0.0% 

25.4% 
12.5% 
27.7% 
10.9% 
20.2% 
0.0% 
6.7% 
5.0% 
6.1% 

53.1% 
59.9% 
43.8% 
36.6% 
40.7% 
4.9% 

42.5% 
20.2% 
27.6% 
8.4% 

10.9% 
4.6% 

10.9% 
9.3% 

3 
1 
8 
3 
1 
1 
1 
6 
4 
1 
8 
1 
6 
2 
2 
7 
1 
1 
4 
2 
1 
1 
2 
1 
2 
1 
1 
4 
2 
2 
1 
4 
1 
2 
3 
2 
4 
2 
1 
1 
1 
2 

0.09% 
0.02% 
0.09% 
0.08% 
0.08% 
0.02% 
0.08% 
0.09% 
0.09% 
0.02% 
0.09% 
0.08% 
0.09% 
0.08% 
0.08% 
0.09% 
0.09% 
0.02% 
0.09% 
0.08% 
0.08% 
0.08% 
0.08% 
0.08% 
0.08% 
0.08% 
0.02% 
0.09% 
0.08% 
0.02% 
0.02% 
0.09% 
0.02% 
0.08% 
0.09% 
0.08% 
0.09% 
0.08% 
0.08% 
0.08% 
0.08% 
0.08% 

69 
0 

440 
32 
0 
0 
0 

356 
81 
0 

524 
0 

315 
33 
58 

257 
0 
0 

151 
2 
0 
0 

23 
0 
0 
0 
0 

182 
58 
1 
0 

225 
0 
0 

171 
0 

487 
18 
0 
0 
0 
0 

15.4% 
0.0% 

76.7% 
16.9% 
18.8% 
0.0% 
6.4% 

59.6% 
43.8% 
0.0% 

58.8% 
14.4% 
59.2% 
19.2% 
15.4% 
69.5% 
24.5% 
0.0% 

64.2% 
8.9% 

18.8% 
0.9% 

18.4% 
10.2% 
1.7% 
7.4% 
0.0% 

49.7% 
3.8% 
0.0% 
0.0% 

30.1% 
0.0% 
1.7% 

30.5% 
1.7% 

50.1% 
24.2% 
5.4% 
7.4% 
6.4% 
1.7% 
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“Regional cluster” (100 km) network indicators* 

Cluster BR-
DEG 

BR-
IDEG 

BR-
ODEG 

BR-
CLS 

BR-
ICLS 

BR-
OCLS 

BR-
BTW 

BR-
EVC 

IP-
DEG 

IP-
CLS 

IP-
BTW 

IP-
EVC 

RE-
DEG 

RE-
CLS 

RE-
BTW 

RE-
EVC 

14-FR 
15-DE 
16-DE 
17-US 
22-DE 
24-US 
27-CA 
34-IT 
35-US 
38-US 
41-US 
43-US 
47-US 
48-JP 
51-US 
54-KR 
58-US 
60-JP 
62-JP 
63-US 
64-JP 
66-US 
67-US 
7-DE 
70-IL 
74-CN 
78-US 
8-GB 
80-US 
87-TW 
9-DE 
94-SG 
95-AU 

11 
11 
18 
3 
4 
3 
2 
2 
9 

13 
7 
9 

42 
2 

30 
5 
2 
2 

15 
3 
2 

22 
4 
8 
4 
3 
3 
4 
4 
5 
3 
2 
3 

6 
5 
9 
2 
0 
2 
0 
0 
7 
8 
3 
6 

26 
1 

17 
2 
1 
0 

10 
2 
1 

11 
1 
4 
3 
1 
1 
0 
3 
4 
0 
1 
1 

5 
6 
9 
1 
4 
1 
2 
2 
2 
5 
4 
3 

16 
1 

13 
3 
1 
2 
5 
1 
1 

11 
3 
4 
1 
2 
2 
4 
1 
1 
3 
1 
2 

0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 
0.10% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 

0.44% 
0.44% 
0.45% 
0.41% 
0.04% 
0.43% 
0.04% 
0.04% 
0.46% 
0.46% 
0.41% 
0.46% 
0.53% 
0.38% 
0.49% 
0.37% 
0.42% 
0.04% 
0.46% 
0.44% 
0.04% 
0.49% 
0.38% 
0.43% 
0.44% 
0.04% 
0.32% 
0.04% 
0.41% 
0.43% 
0.04% 
0.39% 
0.04% 

0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 
0.10% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 
0.09% 
0.09% 
0.10% 
0.09% 
0.10% 

127.4 
22.2 

128.7 
1.7 
0.0 
1.0 
0.0 
0.0 

76.2 
79.8 
18.4 

148.6 
793.4 

0.0 
452.1 

1.4 
0.0 
0.0 

249.5 
94.3 
0.0 

357.2 
56.9 
27.0 
32.0 
7.5 
0.0 
0.0 
0.4 

80.0 
0.0 
0.0 
0.5 

35.3% 
44.3% 
59.0% 
9.7% 

20.8% 
10.3% 
10.2% 
10.2% 
35.8% 
50.8% 
26.9% 
32.2% 
100% 
7.1% 

73.8% 
21.5% 
15.5% 
3.8% 

45.7% 
10.4% 
3.8% 

57.6% 
18.2% 
37.5% 
17.5% 
8.4% 

14.9% 
19.6% 
17.7% 
12.9% 
15.7% 
11.4% 
4.2% 

5 
3 

13 
5 
7 
2 
2 
1 
2 

10 
5 

10 
24 
1 

21 
2 
1 
1 

13 
2 
1 

16 
1 
8 
4 
1 
4 
5 
2 
1 
3 
2 
2 

0.96% 
0.92% 
1.15% 
1.00% 
1.01% 
0.79% 
0.88% 
0.79% 
0.93% 
1.12% 
0.98% 
1.12% 
1.41% 
0.78% 
1.37% 
0.79% 
0.67% 
0.78% 
1.20% 
0.87% 
0.78% 
1.22% 
0.68% 
1.08% 
0.98% 
0.55% 
0.99% 
1.01% 
0.88% 
0.85% 
0.78% 
0.89% 
0.74% 

47.9 
0.0 

66.9 
12.5 
16.8 
0.0 
0.0 
0.0 
0.0 

51.8 
7.5 

32.2 
314.9 

0.0 
294.7 
45.0 
0.0 
0.0 

234.4 
0.0 
0.0 

213.5 
0.0 

104.9 
9.8 
0.0 

45.0 
6.6 
0.0 
0.0 
0.0 
0.0 

45.0 

29.9% 
23.6% 
68.0% 
36.8% 
41.3% 
10.8% 
17.8% 
7.5% 

21.0% 
59.0% 
31.0% 
60.9% 
100% 
7.0% 

89.7% 
7.1% 
2.7% 
7.0% 

63.6% 
16.7% 
7.0% 

68.2% 
3.2% 

45.2% 
29.7% 
0.6% 

28.9% 
33.3% 
17.6% 
9.9% 

17.1% 
17.5% 
5.1% 

3 
1 
6 
3 
5 
1 
1 
2 
1 
3 
1 
3 
8 
1 
6 
5 
1 
1 

10 
2 
1 
6 
2 
2 
1 
5 
2 
6 
1 
2 
4 
1 
2 

0.46% 
0.05% 
0.52% 
0.48% 
0.51% 
0.44% 
0.44% 
0.44% 
0.38% 
0.42% 
0.46% 
0.41% 
0.54% 
0.38% 
0.52% 
0.48% 
0.43% 
0.46% 
0.56% 
0.41% 
0.46% 
0.49% 
0.45% 
0.47% 
0.05% 
0.52% 
0.36% 
0.53% 
0.44% 
0.43% 
0.48% 
0.43% 
0.44% 

41.0 
0.0 

96.6 
49.7 
51.9 
0.0 
0.0 
0.0 
0.0 

42.0 
0.0 

24.9 
228.6 

0.0 
111.6 
77.4 
0.0 
0.0 

280.4 
21.4 
0.0 

84.7 
0.0 
2.9 
0.0 

61.9 
1.5 

126.6 
0.0 
9.2 

60.5 
0.0 
0.0 

36.0% 
0.0% 

60.3% 
37.2% 
68.3% 
14.2% 
14.2% 
17.2% 
5.5% 

12.9% 
20.5% 
9.8% 

69.0% 
4.4% 

52.2% 
34.1% 
12.4% 
20.5% 
100% 
10.6% 
20.5% 
47.7% 
26.0% 
25.6% 
0.0% 

64.7% 
4.2% 

66.6% 
14.2% 
12.7% 
36.1% 
11.1% 
17.2% 

Network centrality acronyms: degree (DEG), in-degree (IDEG), out-degree (ODEG), closeness (CLS), in-closeness (ICLS), 
out-closeness (OCLS), betweenness (BTW), eigenvector (EVC) for branch (BR), inter-personal (IP) and research (RE) 
networks. 
Table 6: Cluster knowledge network indicators 
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“City cluster” set (50 km) 
RES ACT PCT CLM BR-DEG BR-IDEG BR-ODEG BR-CLS BR-ICLS BR-OCLS BR-BTW

RES 1.000 0.238 0.902 0.902 0.686 0.676 0.637 0.075 0.391 0.075 0.676
ACT 0.238 1.000 0.171 0.276 0.343 0.314 0.361 0.084 0.062 0.084 0.396
PCT 0.902 0.171 1.000 0.682 0.501 0.513 0.432 0.052 0.309 0.052 0.469
CLM 0.902 0.276 0.682 1.000 0.818 0.784 0.797 0.082 0.385 0.082 0.828
BR-DEG 0.686 0.343 0.501 0.818 1.000 0.979 0.938 0.096 0.540 0.096 0.968
BR-IDEG 0.676 0.314 0.513 0.784 0.979 1.000 0.849 0.025 0.563 0.025 0.940
BR-ODEG 0.637 0.361 0.432 0.797 0.938 0.849 1.000 0.207 0.447 0.207 0.922
BR-CLS 0.075 0.084 0.052 0.082 0.096 0.025 0.207 1.000 -0.043 1.000 0.100
BR-ICLS 0.391 0.062 0.309 0.385 0.540 0.563 0.447 -0.043 1.000 -0.043 0.434
BR-OCLS 0.075 0.084 0.052 0.082 0.096 0.025 0.207 1.000 -0.043 1.000 0.100
BR-BTW 0.676 0.396 0.469 0.828 0.968 0.940 0.922 0.100 0.434 0.100 1.000
BR-EVC 0.617 0.362 0.452 0.734 0.971 0.938 0.933 0.135 0.609 0.135 0.922
IP-DEG 0.718 0.390 0.565 0.781 0.894 0.839 0.902 0.152 0.512 0.152 0.875
IP-CLS 0.280 0.187 0.224 0.271 0.372 0.355 0.365 0.417 0.440 0.417 0.330
IP-BTW 0.822 0.401 0.644 0.883 0.862 0.812 0.864 0.112 0.424 0.112 0.883
IP-EVC 0.599 0.431 0.452 0.680 0.868 0.827 0.853 0.149 0.559 0.149 0.835
RE-DEG 0.801 0.513 0.697 0.774 0.697 0.692 0.637 0.105 0.197 0.105 0.736
RE-CLS 0.168 0.200 0.137 0.138 -0.006 0.014 -0.041 -0.054 -0.194 -0.054 0.068
RE-BTW 0.730 0.665 0.656 0.694 0.611 0.614 0.545 0.130 0.146 0.130 0.635
RE-EVC 0.632 0.528 0.526 0.639 0.551 0.548 0.502 0.120 0.087 0.120 0.605 
 

BR-EVC IP-DEG IP-CLS IP-BTW IP-EVC RE-DEG RE-CLS RE-BTW RE-EVC
RES 0.617 0.718 0.280 0.822 0.599 0.801 0.168 0.730 0.632
ACT 0.362 0.390 0.187 0.401 0.431 0.513 0.200 0.665 0.528
PCT 0.452 0.565 0.224 0.644 0.452 0.697 0.137 0.656 0.526
CLM 0.734 0.781 0.271 0.883 0.680 0.774 0.138 0.694 0.639
BR-DEG 0.971 0.894 0.372 0.862 0.868 -0.697 0.006 0.611 0.551
BR-IDEG 0.938 0.839 0.355 0.812 0.827 0.692 0.014 0.614 0.548
BR-ODEG 0.933 0.902 0.365 0.864 0.853 -0.637 0.041 0.545 0.502
BR-CLS 0.135 0.152 0.417 0.112 0.149 -0.105 0.054 0.130 0.120
BR-ICLS 0.609 0.512 0.440 0.424 0.559 -0.197 0.194 0.146 0.087
BR-OCLS 0.135 0.152 0.417 0.112 0.149 -0.105 0.054 0.130 0.120
BR-BTW 0.922 0.875 0.330 0.883 0.835 0.736 0.068 0.635 0.605
BR-EVC 1.000 0.878 0.411 0.816 0.869 -0.630 0.079 0.548 0.473
IP-DEG 0.878 1.000 0.436 0.943 0.965 -0.729 0.005 0.639 0.516
IP-CLS 0.411 0.436 1.000 0.372 0.510 -0.142 0.060 0.187 0.023
IP-BTW 0.816 0.943 0.372 1.000 0.871 0.819 0.153 0.728 0.620
IP-EVC 0.869 0.965 0.510 0.871 1.000 -0.654 0.023 0.584 0.437
RE-DEG 0.630 0.729 0.142 0.819 0.654 1.000 0.363 0.903 0.873
RE-CLS -0.079 -0.005 -0.060 0.153 -0.023 0.363 1.000 0.328 0.517
RE-BTW 0.548 0.639 0.187 0.728 0.584 0.903 0.328 1.000 0.833
RE-EVC 0.473 0.516 0.023 0.620 0.437 0.873 0.517 0.833 1.000 
 
“Regional cluster” set (100 km) 
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RES ACT PCT CLM BR-DEG BR-IDEG BR-ODEG BR-CLS BR-ICLS BR-OCLS BR-BTW
RES 1.000 0.281 0.936 0.920 0.647 0.670 0.565 -0.070 0.360 -0.070 0.664
ACT 0.281 1.000 0.188 0.319 0.399 0.328 0.481 0.150 0.023 0.150 0.391
PCT 0.936 0.188 1.000 0.750 0.429 0.465 0.344 -0.038 0.272 -0.038 0.459
CLM 0.920 0.319 0.750 1.000 0.827 0.838 0.753 -0.037 0.396 -0.037 0.834
BR-DEG 0.647 0.399 0.429 0.827 1.000 0.982 0.957 -0.007 0.500 -0.007 0.953
BR-IDEG 0.670 0.328 0.465 0.838 0.982 1.000 0.884 -0.116 0.581 -0.116 0.956
BR-ODEG 0.565 0.481 0.344 0.753 0.957 0.884 1.000 0.160 0.340 0.160 0.881
BR-CLS -0.070 0.150 -0.038 -0.037 0.007 -0.116 0.160 1.000 -0.758 1.000 -0.028
BR-ICLS 0.360 0.023 0.272 0.396 0.500 0.581 0.340 -0.758 1.000 -0.758 0.453
BR-OCLS -0.070 0.150 -0.038 -0.037 0.007 -0.116 0.160 1.000 -0.758 1.000 -0.028
BR-BTW 0.664 0.391 0.459 0.834 0.953 0.956 0.881 -0.028 0.453 -0.028 1.000
BR-EVC 0.617 0.382 0.425 0.770 0.966 0.942 0.933 -0.042 0.563 -0.042 0.866
IP-DEG 0.674 0.527 0.492 0.822 0.936 0.906 0.915 0.030 0.451 0.030 0.888
IP-CLS 0.599 0.469 0.452 0.696 0.808 0.804 0.757 -0.166 0.548 -0.166 0.741
IP-BTW 0.796 0.412 0.630 0.912 0.899 0.882 0.861 0.042 0.407 0.042 0.900
IP-EVC 0.622 0.517 0.466 0.741 0.872 0.854 0.839 -0.045 0.499 -0.045 0.802
RE-DEG 0.792 0.546 0.672 0.785 0.644 0.593 0.676 0.263 0.092 0.263 0.635
RE-CLS 0.318 0.311 0.265 0.330 0.209 0.171 0.253 0.295 -0.214 0.295 0.262
RE-BTW 0.883 0.423 0.787 0.855 0.677 0.661 0.653 0.156 0.178 0.156 0.693
RE-EVC 0.679 0.581 0.605 0.637 0.477 0.412 0.544 0.392 -0.104 0.392 0.469 
 

BR-EVC IP-DEG IP-CLS IP-BTW IP-EVC RE-DEG RE-CLS RE-BTW RE-EVC
RES 0.617 0.674 0.599 0.796 0.622 0.792 0.318 0.883 0.679
ACT 0.382 0.527 0.469 0.412 0.517 0.546 0.311 0.423 0.581
PCT 0.425 0.492 0.452 0.630 0.466 0.672 0.265 0.787 0.605
CLM 0.770 0.822 0.696 0.912 0.741 0.785 0.330 0.855 0.637
BR-DEG 0.966 0.936 0.808 0.899 0.872 0.644 0.209 0.677 0.477
BR-IDEG 0.942 0.906 0.804 0.882 0.854 0.593 0.171 0.661 0.412
BR-ODEG 0.933 0.915 0.757 0.861 0.839 0.676 0.253 0.653 0.544
BR-CLS -0.042 0.030 -0.166 0.042 -0.045 0.263 0.295 0.156 0.392
BR-ICLS 0.563 0.451 0.548 0.407 0.499 0.092 -0.214 0.178 -0.104
BR-OCLS -0.042 0.030 -0.166 0.042 -0.045 0.263 0.295 0.156 0.392
BR-BTW 0.866 0.888 0.741 0.900 0.802 0.635 0.262 0.693 0.469
BR-EVC 1.000 0.917 0.831 0.835 0.891 0.621 0.138 0.643 0.445
IP-DEG 0.917 1.000 0.906 0.918 0.971 0.725 0.297 0.722 0.569
IP-CLS 0.831 0.906 1.000 0.784 0.965 0.563 0.122 0.596 0.397
IP-BTW 0.835 0.918 0.784 1.000 0.831 0.736 0.335 0.763 0.587
IP-EVC 0.891 0.971 0.965 0.831 1.000 0.663 0.215 0.667 0.504
RE-DEG 0.621 0.725 0.563 0.736 0.663 1.000 0.541 0.949 0.919
RE-CLS 0.138 0.297 0.122 0.335 0.215 0.541 1.000 0.474 0.655
RE-BTW 0.643 0.722 0.596 0.763 0.667 0.949 0.474 1.000 0.866
RE-EVC 0.445 0.569 0.397 0.587 0.504 0.919 0.655 0.866 1.000 
Table 7: Pair-wise correlation of innovation indicators and main network indicators 
 
 

Round Model and ANOVA significance levels 

C1 mc1.1 <- lm(log(clm * pct) ~ log(res * act)) 
mc1.2 <- lmer(log(clm * pct) ~ log(res * act) + (1|cou)) 

C2 mc2.1 <- lmer(log(clm * pct) ~ res * log(res * act)  + (1|cou))***  
mc2.21 <- lmer(log(clm * pct) ~ br_deg * log(res * act)  + (1|cou)) 
mc2.22<- lmer(log(clm * pct) ~ br_ideg * log(res * act)  + (1|cou)) 
mc2.23 <- lmer(log(clm * pct) ~ br_odeg * log(res * act)  + (1|cou)) 
mc2.24 <- lmer(log(clm * pct) ~ re_deg * log(res * act)  + (1|cou)) 
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mc2.25 <- lmer(log(clm * pct) ~ ip_deg * log(res * act)  + (1|cou))***  
mc2.31 <- lmer(log(clm * pct) ~ br_cls * log(res * act)  + (1|cou)) 
mc2.32 <- lmer(log(clm * pct) ~ br_icls * log(res * act)  + (1|cou))*** 
mc2.33 <- lmer(log(clm * pct) ~ br_ocls * log(res * act)  + (1|cou)) 
mc2.34 <- lmer(log(clm * pct) ~ re_cls * log(res * act)  + (1|cou))*** 
mc2.35 <- lmer(log(clm * pct) ~ ip_cls * log(res * act)  + (1|cou)) 

C3 mc3.1 <- lmer(log(clm * pct) ~ (res + ip_deg ) * log(res * act)  + (1|cou))*** 
mc3.2 <- lmer(log(clm * pct) ~ (res + br_icls) * log(res * act)  + (1|cou)) 
mc3.3 <- lmer(log(clm * pct) ~ (res + re_cls) * log(res * act)  + (1|cou)) 
mc3.4 <- lmer(log(clm * pct) ~ (res + br_icls + re_cls) * log(res * act)  + (1|cou)) 
mc3.5 <- lmer(log(clm * pct) ~ (res + ip_deg + re_cls) * log(res * act)  + (1|cou))*** 
mc3.6 <- lmer(log(clm * pct) ~ (res + ip_deg + br_icls) * log(res * act)  + (1|cou)) 
mc3.7 <- lmer(log(clm * pct) ~ (res + ip_deg + br_icls + res_cls) * log(res * act)  + (1|cou))*** 
mc3.8 <- lmer(log(clm * pct) ~ (ip_deg + br_icls + re_cls) * log(res * act)  + (1|cou)) 

C4 mc4.1 <- lmer(log(clm * pct) ~ (res + inp_cls + br_icls + res_deg) * log(res * act) + (1|COU)) 
mc4.2 <- lmer(log(clm * pct) ~ (res + inp_deg + br_ideg + res_deg) * log(res * act) + (1|COU))*** 
mc4.3 <- lmer(log(clm * pct) ~ (res + inp_cls + br_icls + res_cls) * log(res * act) + (1|COU)) 

R1 mr1.1 <- lm(log(clm * pct) ~ log(res * act)) 
mr1.2 <- lmer(log(clm * pct) ~ log(res * act) + (1|cou)) 

R2 mr2.1 <- lmer(log(clm * pct) ~ res * log(res * act)  + (1|cou))***  
mr2.21 <- lmer(log(clm * pct) ~ br_deg * log(res * act)  + (1|cou)) 
mr2.22 <- lmer(log(clm * pct) ~ br_ideg * log(res * act)  + (1|cou))*** 
mr2.23 <- lmer(log(clm * pct) ~ br_odeg * log(res * act)  + (1|cou)) 
mr2.24 <- lmer(log(clm * pct) ~ res_deg * log(res * act)  + (1|cou))*** 
mr2.25 <- lmer(log(clm * pct) ~ inp_deg * log(res * act)  + (1|cou)) 
mr2.31 <- lmer(log(clm * pct) ~ br_cls * log(res * act)  + (1|cou)) 
mr2.32 <- lmer(log(clm * pct) ~ br_icls * log(res * act)  + (1|cou))*** 
mr2.33 <- lmer(log(clm * pct) ~ br_ocls * log(res * act)  + (1|cou)) 
mr2.34 <- lmer(log(clm * pct) ~ res_cls * log(res * act)  + (1|cou)) 
mr2.35 <- lmer(log(clm * pct) ~ inp_cls * log(res * act)  + (1|cou))*** 

R3 mr3.1 <- lmer(log(clm * pct) ~ (res + res_deg ) * log(res * act)  + (1|cou))*** 
mr3.2 <- lmer(log(clm * pct) ~ (res + br_icls) * log(res * act)  + (1|cou)) 
mr3.3 <- lmer(log(clm * pct) ~ (res + inp_cls) * log(res * act)  + (1|cou)) 
mr3.4 <- lmer(log(clm * pct) ~ (res + br_icls + inp_cls) * log(res * act)  + (1|cou)) 
mr3.5 <- lmer(log(clm * pct) ~ (res + res_deg + inp_cls) * log(res * act)  + (1|cou))*** 
mr3.6 <- lmer(log(clm * pct) ~ (res + res_deg + br_icls) * log(res * act)  + (1|cou)) 
mr3.7 <- lmer(log(clm * pct) ~ (res + res_deg + br_icls + inp_cls) * log(res * act)  + (1|cou))*** 
mr3.8 <- lmer(log(clm * pct) ~ (res_deg + br_icls + inp_cls) * log(res * act)  + (1|cou)) 

R4 mr4.1 <- lmer(log(clm * pct) ~ (res + inp_deg + br_icls + res_cls) * log(res * act) + (1|COU)) 
mr4.2 <- lmer(log(clm * pct) ~ (res + inp_deg + br_ideg + res_deg) * log(res * act) + (1|COU))*** 
mr4.3 <- lmer(log(clm * pct) ~ (res + inp_cls + br_icls + res_cls) * log(res * act) + (1|COU)) 

Model acronyms: model for city cluster set (mc), model for regional cluster set (mr), linear model (lm), multi-
level linear model (lmer), country (cou). For other acronyms refer to table 2 and table 6. Model notation adapted 
from R code. *** ANOVA χ2 significance level of < 0.1%. 
Table 8: Model estimation rounds 
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