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Abstract

Sugarcane production represents around 10% of the agricultural area and 1% of
GDP in Brazil, and has grown substantially in recent years. The traditional har-
vest method involves burning the field to facilitate access to the canes, resulting in
well-documented negative effects on health. The existing studies do not consider
the effects on health in the surrounding areas. This article presents a new variety
of spatial Diff-in-Diff model to control for the effects of sugarcane production in
neighboring non-producing regions. This method is a contribution to the Spatial
Econometrics literature, as it includes spatial effects on treated and untreated re-
gions, so that the effects on both producing and surrounding non-producing regions
can be properly estimated. The results indicate that the effects on the producing
regions are about three times as large as the situation in that the effects on the
surrounding areas were ignored. Moreover, the effects on the surrounding areas,
typically ignored in other studies, are relevant, amounting to 80% of the effects on
the producing areas.
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1 Introduction

Brazil is a traditional producer of sugar and has been an important player in the in-

ternational market for centuries. In 2013, the country was the largest producer in the

world, producing almost 27% more than the second largest producer, India. Although

this market has somewhat stagnated in recent years, its growth was substantive in recent

decades. Sugar is produced from sugarcane, an input that is also used to produce ethanol

as fuel for automobiles. A governmental incentive program to substitute ethanol for fossil

fuels was established in the late 1970s and reached full steam in the first decade of this

century, as the automobile producers developed techniques to allow cars to run both on

gasoline and/or ethanol. High oil prices powered the fuel substitution and the demand

for ethanol increased dramatically, and production followed. As a result of these two in-

fluences, the production of sugarcane has increased sharply in the last 20 years, with the

ethanol industry representing around 3.5% of Brazilian industrial GDP. The sector as a

whole employs over 6 million people and the planted area doubled in the last 20 years,

occupying 10% of the agricultural area of the country.

The ethanol program has been considered a success in terms of emissions reduction,

by replacing pollutant fossil fuels, but there are many issues related to the possible neg-

ative by-products of sugarcane production. There are doubts about the quality of the

employment in the sugarcane fields, because the activity is hazardous and physically de-

manding. There are also questions on environmental aspects such as soil contamination,

atmospheric pollution generated by the burning of the fields, water consumption, and

dislocation of other crops towards native forests (Noronha et al., 2006). Some studies

have shown that the balance of costs and benefits is positive from the standpoint of the

entire country (BNDES and CGEE, 2008), but not so evidently in the growing regions

that disproportionately bear the negative impacts.

The most studied aspect is related to the labor market, and the negative impacts of

manual harvesting are highlighted (Alves, 2006, 2007; Baccarin et al., 2008). Toneto-Jr

and Liboni (2008) indicated that sugarcane generates more jobs than soybean, and only

slightly less than corn. As it generates more value per hectare and more jobs as well,

cane growing generates more income per area planted than other staple crops. Because

transportation costs on the raw material are high, processing plants (sugar mills and/or

ethanol distilleries) must be located close to the fields, increasing the sector´s indirect

effects on the producing region. Chagas et al. (2011) evaluated the impact of sugarcane

on local Human Development Index using spatial propensity score matching, controlling

for the fact that sugarcane production in one specific region is not random. The results
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suggest that sugarcane growing is not relevant to determine local social conditions.

Sugarcane is harvested by unskilled workers, mostly manually. The traditional harvest

method involves the burning of the cane to facilitate access to the plant, and one issue

relates to the possible negative health effects of this process. Burning the field is intended

to increase workers’ productivity, as it eases access to the plants, saves on time otherwise

spent in the separation of leaves, and reduces work hazards (dry leaves are harmful as there

might be poisonous insects and snakes). It takes place at the beginning of harvest, which

coincides with the dry season in the production areas. Many studies relate sugarcane

burning to the increase in fine particulate matter, coarse particulate matter, and black

carbon concentration, especially during burning hours (Lara et al., 2005), and increases

the air concentration of substances as nitrite, sulfite, oxide of carbon, and others (Allen

et al., 2004). The literature also relates that short and long-term exposition to classical

pollutants (matter, sulfite, nitrite, oxide carbon, etc.) can negatively affect the workers

(Sicard et al., 2010), especially the young, and the elderly (Braga et al., 1999; Roseiro,

2002; Gonçalves et al., 2005).

Sugarcane burning generates a massive quantity of smoke that spreads all over the

region, reaching cities and becoming a potential threat to human health. Pollution from

sugarcane burning may be as harmful as pollution from traffic and manufacturing activities

(Mazzoli-Rocha et al., 2008). Some studies related its impacts on health for specific

municipalities or regions (Arbex et al., 2000, 2004; Cançado et al., 2006; Arbex et al.,

2007; Ribeiro, 2008; Uriarte et al., 2009; Carneseca et al., 2012). These studies focused

on the short-distance effects of burning, considering only the association of burning and

the incidence of respiratory health problems at the local level, but they fail to capture the

consequences of burning events on other places.

This paper presents a spatial difference-in-difference model that is developed and ap-

plied to control for the effect of sugarcane production on both producing (treated) and

non-producing (untreated) regions located in the vicinity. This method of measuring the

effects is more complete than the methods used in previous studies, and provides contri-

butions both to the discussion of the true effects of sugarcane production on health and

to the measurement of spatial effects in general. The article is organized in four sections,

including this introduction. The next section presents the methodology used to identify

the possible impacts of growing sugarcane on the respiratory health conditions in the pro-

ducing regions, and the data utilized. The third section presents the results; the fourth

section checks the robustness; the fifth section contains the final remarks.
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2 Methodology and data

2.1 The model

As usual in spatial studies, we take into account that regions are interrelated. This

generates the possibility of propagation of the effects both on the region where production

takes place (treated region) and on the surrounding areas (untreated region). In the

equations that follow, yit is the variable of interest, hospitalizations due to respiratory

diseases; x is a vector of observable characteristics; wi is a n × 1 vector associating each

region to all the other regions; dit is a n×1 vector of values dit = 1 if the region is treated,

and dit = 0 otherwise. The subscript i refers to region, and the subscript t refers to time

(year). We consider two situations for each region: before (b) and after (a) the treatment.

In the before-treatment situation, we have

ybit,0 = µ(x) + uit

ybit,1 = ybit,0

where, ybit,0 is the dependent variable in the untreated region, before the treatment, and

ybit,1 is the dependent variable in the treated region. In the after-treatment situation, we

can identify two impacts: in the treated region and in the untreated region. The latter

depends on the proximity of the regions. In the after-treatment situation, we have

yait,0 = µ(x) + widitβ + uit

yait,1 = yait,0 + α

The parameter α captures the direct effect of the treatment on the treated region;

β captures the indirect effect of the treatment on all regions, treated and untreated,

conditioned on the neighbor treated, which is captured by widit. Defining Dit as a region-

i specific indicator of treatment in time t, we can write

yit = (1−Dit)yit,0 +Dityit,1 (1)

Using the “before” and “after” definitions, three effects can be computed: ATE (Av-
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erage Treatment Effect), ATET (Average Treatment Effect on the treated), and ATENT

(Average Treatment Effect on the untreated), as follows

ATE = E[yait,1 − ybit,1]− E[yait,0 − ybit,0]

= α

ATET = E[yait,1 − ybit,1]

= α + widitβ

ATENT = E[yait,0 − ybit,0]

= widitβ

In matrix notation, we have

Y = µ(X) + (α + It ⊗Wβ)D + U (2)

where Y is a nt×1 matrix of observations, X is a nt×k matrix of covariates, D is a dummy

variable indicating treated regions, It is a square identity matrix of t× t dimension, W is

a n × n neighborhood weight matrix and U is a vector of errors of nt × 1 dimension. µ,

α and β are parameters to be estimated.

The term It ⊗WDβ indicates the indirect effect of the treatment on both regions,

treated and untreated. This effect is usually ignored in estimations of this type1. However,

this is an average effect, affecting both types of regions. It is possible, however, that the

incidence of the indirect effect could be different among treated and untreated regions.

Consider a situation in which the indirect effect of the treatment in the treated region is

small, because the direct effect is more important. At the same time, the indirect effect

on the untreated region is large, because it is the only effect impacting the region. In this

situation, estimating β as an average to all regions might underestimate the real effect

of the treatment, because β will be estimated as an average of the indirect effects on the

treated and on the untreated regions.

Consider, for clarity, the following decomposition of the W matrix,

1Angelucci and Giorgi (2009); Kaboski and Townsend. (2012); Berniell et al. (2013) are some excep-
tions. However, these studies do not control for different structures of neighborhood.
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It ⊗W = WT,T + WT,NT + WNT,T + WNT,NT

where

WT,T = diag(D)× (It ⊗W)× diag(D)

WT,NT = diag(D)× (It ⊗W)× diag(ι−D)

WNT,T = diag(ι−D)× (It ⊗W)× diag(D), and

WNT,NT = diag(ι−D)× (It ⊗W)× diag(ι−D)

As D is a dummy variable associated to the information on the treatment, and diag(D)

is a nt× 1 matrix with D in the main diagonal and zeros elsewhere, ι represents a vector

of 1’s, and Wij represents the neighborhood effects of the j-region on i-region, i, j = T

(treated) or NT (untreated). Substituting in (2), results in

Y = µ(X) + [α + (WT,T + WT,NT + WNT,T + WNT,NT )β]D + U

Then, it is clear that β represents an average effect, as we mentioned above. A more

realistic model considers different effects for dissimilar W matrices. As, by construction,

WT,NTD and WNT,NTD are 0-vectors, the unrestricted model is

Y = µ(X) + [α + (WT,Tβ1 + WNT,Tβ2)]D + U (3)

The models in (2) and (3) are a special form of the Spatial Diff-in-Diff models (SDID).

It is important to register that they do not contain a traditional spatial interaction

effect, such as in the Spatial Autoregressive Model (SAR) and Spatial Error Model

(SEM)(Anselin, 1988; LeSage and Pace, 2009). However, we can model the control effects,

µ(X), including an auto-regressive spatial term, or the error as a spatial error model, or

both
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µ(X) = ρ(It ⊗W)Y + Xγ′

and/or

E = λ(It ⊗W)U

In the first equation, X is a n× k vector of observable characteristics, W is a spatial

weight matrix of n×n dimension, γ is a 1× k parameter vector to be estimated, and ρ is

the spatial auto-regressive parameter. In the second equation, E is an error vector, not

spatially associated, λ is the spatial error parameter to be estimated. Thus, a complete

version of models 2 and 3 is

Y = [Int−ρ(It⊗W)]−1{Xγ′+[α+(WT,Tβ1 +WNT,Tβ2)]D+[Int−λ(It⊗W)]−1U} (4)

This is an addition to the Spatial Econometrics literature. Previously, Heckert and

Mennis (2012) have estimated a Diff-in-Diff model to study observed changes in property

values in the city of Philadelphia, after the removal of debris coupled with planting grass

and trees in vacant areas, as a means of improving blighted communities. They use a

geographically weighted regression model to estimate the effects on surrounding treated

vacant lots with observed changes around lots that might have been treated but were not.

They concluded that properties surrounding greened vacant lots had a greater increase

in value than properties surrounding non-greened vacant lots. By developing both global

and local versions of the model, they explored the spatial variations in the impacts of the

program. Dubé et al. (2014) proposed a spatial Diff-in-Diff estimator to study the impacts

of a new commuter rail transit system on real-estate values in Montreal, Canada. The

proposed estimator accounts for possible spatial spillovers and they compare the results

with the ones obtained from the usual DID model.

These were steps forward in considering the expected influence on untreated regions as

well. However, the proposed models do not estimate the influence in the way the problem

at hand requires. Applying their technique in our case would be equivalent to considering

that hospitalizations in one region influence hospitalizations in the neighborhood. Instead,

what we need to know is the influence of the production of sugarcane in the treated

region on hospitalizations in both regions, treated and untreated. Therefore, we use an

extension of the SEM model that includes spatial lags of the independent regressors, the
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Spatial Durbin Error Model (SDEM), and consider both restricted (2) and unrestricted

(3) situations.

2.2 Data

A balanced panel of 644 municipalities belonging to the state of Sao Paulo, the largest

producer of sugarcane in the country was chosen as study area. Annual data covered

the period 2002-2013. Information on sugarcane production, planted area, and harvested

area is based on the annual survey on agricultural production developed by IBGE, the

Brazilian statistics office.

As mentioned before, the expansion in the sugarcane growing area has prompted a

series of questions on the possible conflicts between lands used to produce food versus

energy. This does not seem to be a problem at the national level: Brazil has over 800 mil-

lion hectares of landmass, of which over 300 million are suitable for farming and ranching

activities. Of these, about 60 million are used to grow permanent and temporary crops

and some 200 million are used for animal husbandry. Thus, there is plenty of suitable

land to increase production, and this can be even larger if degraded land is recovered and

if productivity in animal production, which is very low in the country, would increase

(Chagas et al., 2008). In São Paulo state, however, the crop represents nearly 50% of the

area suitable for farming. In Fig. 1 we map the evolution of sugarcane production in São

Paulo state, by municipality, during the period 2002-2011 2. It is clear that there was a

steady increase in the production in northwest region of the state, and a sprawl to the

west of the state, a previously pasture area.

[FIGURE 1 HERE]

The production of sugarcane is important to define our treatment variable. We con-

sider as treated any municipality in which the share of the area planted with sugarcane is

above 6,7%, the median of the distribution of the production area. In Table 1 we report

the number of treated areas in each year, showing an increase from 38.4% to 62.4% in the

period.

Our variable of interest is the number of persons hospitalized to be treated for respira-

tory problems (per 1,000 inhabitants). The data is provided by DATASUS3, the statistical

2We select some years in this period, but the evolution is evident.
3http://www2.datasus.gov.br/DATASUS/index.php.
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Table 1: Number of treated region and proportion on total, 2002-2011

Year Number of treated region Prop. Total

2002 230 0,357
2003 236 0,366
2004 242 0,376
2005 260 0,404
2006 291 0,452
2007 324 0,503
2008 348 0,540
2009 366 0,568
2010 387 0,601
2011 387 0,601
2012 385 0,598
2013 408 0,634

Source: IBGE, authors calculations.

agency of the Ministry of Health, and includes hospitalization records for public and pri-

vate hospitals. The information is highly disaggregated in spatial terms, and we use data

at the municipality level. Fig. 2 exhibits the evolution of the number of hospitalizations

of interest in São Paulo state. Over time, the number of cases of hospitalizations due

to respiratory diseases is decreasing. This could be associated to changes in the federal

legislation, which introduced limitations for burning in certain areas and times. This is

especially true in the state of Sao Paulo, in which a state law broadens the limitations

imposed by the federal law. The practice of burning the canes to facilitate harvesting is

expected to end in a few years in the state, both by restrictions coming from the legislation

(both environment and labor market related) and by economic stimuli for the economical

use of the leaves and the straws. Table 2 illustrates the situation.

[FIGURE 2 HERE]

Given that, we have introduced a trend variable to adjust for this empirical evidence

in all models estimated, and the coefficients are negative and significant in all cases. We

have included variables to control for socioeconomic conditions that influence people’s

behavior towards health prevention, such as the proportion of workers in the population,

and urbanization. We have also included the proportion of elderly and young people,

to control for the presence of groups more susceptible to respiratory health problems, as

indicated in literature (Braga et al., 1999; Roseiro, 2002; Gonçalves et al., 2005). Finally,

we consider the proportion of doctors in the population, to control for the presence of

regular assistance. Table 3 reports the descriptive statistics and Table 4 reports the
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Table 2: Hospitalization due respiratory health problem, by region, 2002-2011

Year
Hospitalization due to respiratory problems
Mean Std. Dev Maximum Minimun

2002 11.678 7.216 45.366 0.810
2003 11.337 7.332 41.895 0.272
2004 10.742 6.831 45.326 0.000
2005 9.996 6.291 42.415 0.000
2006 10.632 6.860 54.111 0.262
2007 9.780 6.271 54.756 1.175
2008 8.745 5.690 37.122 0.949
2009 9.798 6.367 39.896 1.291
2010 9.355 6.204 46.392 1.166
2011 9.264 5.967 45.065 0.458
2012 4.956 3.227 22.942 0.681
2013 5.077 3.200 21.889 0.000

Source: IBGE, authors calculations.

correlation matrix.

3 Results

This section presents the results4. We compute and compare five models. The first is a

classical panel data regression with fixed effects, to set a baseline for comparing the results

with spatial controls included. The second includes only spatial lag on treatment variable,

without including spatial lag in other independent variables. In this way, this model is

similar to the literature on peer effects. In the third case we include spatial controls on

the x variables. This is similar to the Spatial Lag of X (SLX) Model case suggested by

Vega and Elhorst (2015) and is our baseline case to perform the model search in spatial

econometrics. The fourth case involves the traditional SAR and SEM methods in spatial

econometrics. The selection was based on the Lagrange Multiplier (LM) tests - LM and

4We based our estimates on Elhorst’s routine for spatial panel data models (Elhorst, 2010b,a). El-
horst uses Maximum Likelihood (ML) because the number of studies considering Instrumental Vari-
ables/Generalized Method of Moments (IV/GMM) estimators of spatial panel data models is still rela-
tively sparse. One exception is Kelejian et al. (2006), who used IV to estimate a spatial lag model with
time-period fixed effects. They point out that the model cannot be combined with a spatial weights
matrix with non-diagonal elements equal to 1/(N-1). In this situation, the spatially lagged dependent is
asymptotically proportional and thus collinear with the time-period fixed effects, as N goes to infinity.
Elhorst (2010a) provides Matlab routines to estimate spatial panel data models, including the bias cor-
rection procedure proposed by Lee and Yu (2010) if the spatial panel data model contain spatial and/or
time-period fixed effects, the direct and indirect effects estimates of the explanatory variables proposed
by LeSage and Pace (2009), and a selection framework to determine which spatial panel data model best
describes the data.
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Table 3: Summary statistics for the variables
Variable Mean Sdt. Dev. Max Min N

Treatment 0.500 0.500 1.000 0.000 7,728
WD 0.507 0.371 1.000 0.000 7,728

W11D 0.399 0.427 1.000 0.000 7,728
W21D 0.108 0.203 1.000 0.000 7,728

Workers 0.202 0.143 2.202 0.036 7,728
Urbanization 0.831 0.146 1.000 0.221 7,728

Olders 0.125 0.030 0.251 0.043 7,728
Children 0.229 0.034 0.366 0.071 7,728
Doctors 0.675 0.847 7.000 0.000 7,728

Wworkers 0.202 0.056 0.456 0.089 7,728
Wurbanizaton 0.832 0.076 0.997 0.472 7,728

Wolders 0.125 0.021 0.198 0.057 7,728
Wchildren 0.229 0.027 0.332 0.164 7,728
Wmedicos 0.682 0.232 1.766 0.170 7,728

Source: Authors calculations.

Table 4: Linear correlation between variable of the model
Variabels Treatment WD W11D W21D Workers Urbanization Olders

Treatment 1.0000
WD 0.7856 1.0000

W11D 0.9342 0.8805 1.0000
W21D -0.5327 -0.0271 -0.4977 1.0000

Workers 0.1475 0.1486 0.1649 -0.0759 1.0000
Urbanization 0.2667 0.2703 0.2998 -0.1375 0.1930 1.0000

Olders 0.0715 0.1970 0.0764 0.1994 -0.0807 -0.1718 1.0000
Children -0.2502 -0.3684 -0.2730 -0.0983 -0.1386 -0.1266 -0.7296
Doctors 0.0117 0.0069 0.0136 -0.0160 0.2104 0.3675 0.0727

Wworkers 0.2644 0.3242 0.3338 -0.1106 0.2840 0.3242 -0.1230
Wurbanizaton 0.3973 0.4567 0.4786 -0.1737 0.2363 0.5389 -0.1499

Wolders 0.2094 0.3071 0.1910 0.1591 -0.0609 -0.1209 0.7088
Wchildren -0.3491 -0.4665 -0.3729 -0.0673 -0.1160 -0.1445 -0.5804
Wmedicos 0.0356 0.0337 0.0948 -0.1383 0.1939 0.2446 -0.2536

Variabels Children Doctors Wworkers Wurbanizaton Wolders Wchildren Wmedicos

Treatment
WD

W11D
W21D

Workers
Urbanization

Olders
Children 1.0000
Doctors -0.2501 1.0000

Wworkers -0.2222 0.1412 1.0000
Wurbanizaton -0.2225 0.1241 0.5695 1.0000

Wolders -0.6651 -0.1044 -0.1608 -0.1875 1.0000
Wchildren 0.8050 0.0014 -0.2773 -0.2622 -0.8269 1.0000
Wmedicos 0.0019 0.0661 0.5626 0.5101 -0.3202 -0.0520 1.0000

Source: Authors calculations.
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LM robust tests (Anselin et al., 1996), following the suggestion by Florax et al. (2003)
5. For all situations the tests indicated the use of SEM model. Finally, we considered

an extension of the SEM model, including spatial lags of the independent regressors, a

SDEM - Spatial Durbin Error Model (LeSage, 2014). Additionally, we consider both

restricted and unrestricted cases, as models (2) and (3), respectively. We consider a k-

nearest neighbors distance matrix, with k varying between 20 and 40, and used the Akaike

Information Criterion(AIC) for pooled models, without spatial effects, to choose the order

that minimizes the AIC criterion. Thus, we chose the matrix that best fits the data.

The models estimated are shown in Table 5. The dependent variable (yit) is the

number of hospitalizations (per 1,000 inhabitants), in region i in time t; wi is a vector

of neighborhood weights; wiNT,T is a vector of weights associating treated to untreated

neighbors; and wiT,T is a vector of weights associating treated to treated neighbors; xit

is a vector of control variables, including the constant; uit is an error term, normally

distributed, centered in zero and with constant variance. As usual in spatial econometrics,

ωi(λ) represents the i-row of matrix (I − λW)−1, a global matrix that associates shocks

in a specific region to all the other regions. Dit is a indicator of treatment, and dt is a

vector of all indicators in t. The parameters α, β’s, γ, δ, and λ are estimated.

Table 5: Models estimated

Case Expression

Classical Panel yit = αDit + xitγ
′ + uit

Restricted

Spatial control yit = αDit + βw′idt + xitγ
′ + uit

SLX model yit = αDit + βw′idt + xitγ
′ + wxitδ

′ + uit
SEM model yit = αDit + βw′idt + xitγ

′ + ωi(λ)uit
SDEM model yit = αDit + βw′idt + xitγ

′ + wxitδ
′ + ωi(λ)uit

Unrestricted

Spatial control yit = αDit + β1wi
′
T,Tdt + β2wi

′
NT,Tdt + xitγ

′ + uit
SLX model yit = αDit + β1wi

′
T,Tdt + β2wi

′
NT,Tdt + xitγ

′ + wxitδ
′ + uit

SEM model yit = αDit + β1wi
′
T,Tdt + β2wi

′
NT,Tdt + xitγ

′ + ωi(λ)uit
SDEM model yit = αDit + β1wi

′
T,Tdt + β2wi

′
NT,Tdt + xitγ

′ + wxitδ
′ + ωi(λ)uit

The results are reported in Table 6. A trend term is introduced in all models, for

the reasons mentioned above, with negative and significant coefficients, as expected. The

5Elhorst provided the routines for the spatial panel data case. These tests have become very popular
in empirical research. However, Elhorst (2014) calls attention to the fact that the power of these tests to
spatial panel data models must still be investigated.
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Classical Panel Model indicates that sugarcane production increases hospitalizations by

only 0.48 cases per thousand, and this conclusion is significant at 1%. However, as we

have mentioned above, this is an incomplete account of the effects. The introduction of

spatial controls increases the influence of sugarcane production on hospitalizations, and

suggests the relevance of introducing spatial controls on untreated regions. The impact of

sugarcane production in the treated region is of 1.92 cases per thousand, and the influence

on neighboring untreated regions is about 45% of the effect on producing areas (0.86/1.92).

These models do not consider the social and demographic conditions in the neighbours,

which might influence hospitalizations, such as urbanization and the share of children and

elderly in the region’s population. In the presence of these controls (SLX model), the

treatment effect increases marginally to 1.97, revealing the importance of the controls, as

compared to the previous models. The unrestricted model shows an impact of 1.11 on

treated regions, and impacts on neighboring untreated regions around 56% of the impact

on treated regions (1.11/1.97).

The spatial effects may take place through other channels than spatial lags in the

independent variable. Therefore, we introduce spatial controls as suggested by the LM and

LM robust test, which have indicated the SEM specification in all cases. In this situation,

the treatment effect diminished, and is now between 0.57 and 1.69. However, the effect

on untreated regions (1.18) increased substantively, to almost 70% of the effect on treated

regions (1.18/1.69). However, the results also suggest the need to include spatial controls

to the independent variables. In the SDEM model, the impact of sugarcane production

ranges from 0.58 (in the restricted model) to 1.66 (in the unrestricted model). When

we introduce controls over neighboring untreated regions, we find the largest estimated

impact, and so is the estimated impact on untreated regions (1.31), which represents 81%

of the effect on treated regions.

Table 7 shows the complete results of the SDEM model (unrestricted case). The signs

of the control variables are as expected: better social conditions reduce the number of

admissions and so does a larger proportion of workers in the population; urbanization

increases the number of hospitalizations, probably reflecting easier access to hospitals and

or that cane burning worsens the pollution in the cities; more elderly people in the region

leads to larger numbers of hospitalizations, but the same does not show for the number of

children or for the number of doctors (not significant). The spatial control for the number

of doctors in the neighborhood is significant and negative, indicating a reduction in the

number of hospitalizations in the neighboring areas. The spatial parameter λ controls for

common shocks to the dependent variable, and is positive and significant.
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4 Robustness checks

To verify the robustness of our results, we have produced three situations to check if

our results stand: the identification power of the model, the application to diseases not

related, in principle, to cane production, and the use of different forms of measuring the

neighborhood effects.

We ran Monte Carlo simulations to investigate the identification power of the unre-

stricted model in Eq. 4. We set β1 = 0, that is, we are simulating only the effects of

sugarcane production in non-producing regions in the neighborhood of producing regions.

To all simulations, we consider the following model

yit = δ + τtµi + xitγ + αdit + β1wi
′
TTdit + β2wi

′
NTdit + uit (5)

uit = λw′iuit + eit

where i = 1, 2, · · ·N = 200 indicates regions6 and t = 1, 2, · · ·T = 100 indicates

time. The simulation consists in varying β2, the effect of the treatment on the untreated

regions, which we have estimated to be around 80% of the effect on treated ones (Table

6). We simulate β2 = 0.1, 0.4, and 0.8, to identify the magnitude at which the effects

begin to appear. We chose δ = 6, similar to the value estimated in the restricted SDEM

model (Table 6); τ = −0.1, similar to the estimated negative trend (Table 7); λ = 0.5,

an average spatial effect. The x-variable is formed by a random vector, with γ = 1.

The treatment indicator was generated from a random uniform variable with values 0

or 1, and the treatment effect over the treated, α, was set to 1. A k-nearest neighbor

matrix of spatial weights, with k =
√
N , was constructed to form the y vectors used

in the simulations. Pseudo-geographical coordinates were generated from random normal

variables. We ran 1,000 draws to form different e-vectors of errors. Therefore, we came up

with 3,000 y-vectors (one for each draw and one for each β). The tests were implemented

with the SDM and SDEM models, with and without fixed effects, with three different

types of W-matrices: Queen-contiguity, k-nearest, and k-nearest weighted by the inverse

Euclidean distance.

The simulation results are displayed in Table 8 . The first column shows the average

of the 1,000 coefficients estimated in each case, for the Pooled and Fixed-Effects models.

Observing the results, it is clear that the SDEM model with fixed effects is the only model

6This choice corresponds to a medium sample data, smaller than our empirical one.
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that produces average values of β similar to the true (simulated) β values, but only with

the contiguity and k-nearest matrices. The significance increases as β increases, such that,

with β = 0.8, the average of the estimated coefficients with the SDEM with fixed effect is

0.81 (0.17 ` 1.45 confidence interval) for the contiguity matrix, and 0.80 (0.20 |` 1.41) for

the k-nearest matrix. Thus, the SDEM model with fixed effects, which is our preferred

model, is capable of identifying the true effect, at least in two forms of neighborhood.

As another form of robustness check, we ran the same models using the incidence of

hospitalizations related to neoplasm pathologies, which are not, in principle, related to

sugarcane production, at least in the short term. Given the possibility that some res-

piratory or skin related neoplasm cases could be associated to cane burning in the long

term, we have excluded these cases from the neoplasm hospitalization set. As the results

presented in Table 9 indicate, we found no relationship whatsoever between sugarcane

production and the incidence of hospitalizations related to this sort of pathologies. This

result suggests that there is no concentration of hospitalizations in the cane producing

areas other than the ones related to the negative externalities generated by cane produc-

tion.

Finally, we considered different forms for the W -matrix. In the first case, we change

the number of neighbors located within a 100-km radius between 0 and 50; in the second

case, we fixed a maximum of k=22 neighbors, and changed the radius between 0 and

100 km. Fig. 3 shows the effects over untreated regions. As the figure shows, the mean

effects are close to the estimated SDEM model. Considering these robustness checks, it

seems that our results are firm, and the proposed method of measuring the effects of cane

production on neighboring regions is adequate.

5 Conclusion

The increasing importance of ethanol as fuel for cars in Brazil has created attention

for many reasons. Being a biofuel that is very environment-friendly, it appeared as a

potential solution for the world’s dependence on fossil fuels in the future. On the other

hand, many negative aspects have been pointed out, such as poor working conditions, soil

contamination, dislocation of land used to produce other products and into forested areas,

and so on. In this article we have investigated one negative externality widely recognized

in the literature, that is, the impacts of the burning of the canes on respiratory diseases.

Although harvest methods are changing in recent years, both by law enforcement and by

new economic incentives for the use of the leaves and bagasse, the practice of burning the
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fields to facilitate access to the sugarcane is still prevalent, and will remain so for a while

in areas with spiky topography.

The existing studies on the impact of sugarcane production on health conditions do

not consider the effects on areas surrounding the plantations. We have developed a new

variety of spatial Diff-in-Diff model to control for the effects of sugarcane production on

neighboring non-producing regions, introducing spatial effects also in the independent

variables, through a SDEM model. This method is a contribution to the Spatial Econo-

metrics literature, as it includes spatial effects on treated and untreated regions in a

comprehensive way, so that the effects on both producing and surrounding non-producing

regions can be properly estimated.

We have introduced control variables related to socioeconomic conditions in the re-

gions, such as the presence of children and elders, the share of population employed,

the number of doctors, and the urbanization rate. The estimated coefficients for these

variables came out as expected. As for the spatial effects, the results indicate that the

impacts on the producing regions are about three times as large as the situation in that

the effects on the surrounding areas were ignored. This indicates that ignoring the effects

on surrounding areas in the calculations underestimates the effects on the producing ar-

eas themselves. Moreover, the effects on the surrounding areas, typically ignored in other

studies, are relevant, representing between 48% and 80% of the effects on the producing

areas. Again, ignoring the neighborhood effects underestimates the impacts on hospital-

izations in the area at large. We have implemented robustness checks that gave us more

confidence on the main results, as they have indicated that the results are not related to

specificities of the regions considered.

These findings are important for the planning of the distribution of health facilities

across regions. It is clear that sugarcane production tends to increase hospitalizations due

to respiratory causes not only in the producing municipalities, but also in the vicinity. In

addition, the quantitative effects are much larger than if the spatial effects were ignored.

Therefore, planning the organization of the health services to cope with this kind of

negative externality must consider larger numbers of hospitalization requests, and should

consider broader areas, involving both producing and non-producing municipalities.
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Figure 1: Sugarcane production in São Paulo state by municipality, 2002, 2005, 2008, and 2011
Source: IBGE, Municipal Agricultural Research.
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Figure 2: Hospitalization due to respiratory problems in São Paulo state by municipality, 2002, 2005, 2008, and 2011
Source: Datasus, Health Ministry.
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Table 6: Results
Constant Treatment WD W11D W12D λ Spatial lag controls

Classical Panel 12.4253∗∗∗ 0.4807∗∗∗ Yes
(2.6622) (0.1645)

Spatial control 12.233∗∗∗ 0.5723∗∗∗ −0.3815 Yes
(2.6685) (0.1869) (0.3692)
10.9963∗∗∗ 1.9253∗∗∗ −1.6587∗∗∗ 0.8559∗∗ Yes
(2.6771) (0.3419) (0.4572) (0.4522)

SLX Model 42.5687∗∗∗ 0.6018∗∗∗ −0.0353 Yes
(8.8151) (0.1858) (0.4122)
37.1583∗∗∗ 1.9698∗∗∗ −1.4532∗∗∗ 1.114∗∗ Yes
(8.8789) (0.3488) (0.5129) (0.4806)

SEM Model 7.8946∗∗∗ 0.5672∗∗∗ 0.156 0.617∗∗∗ Yes
(2.4768) (0.1707) (0.5998) (0.0201)
7.2519∗∗∗ 1.6865∗∗∗ −0.9035 1.1831∗∗ 0.625∗∗∗ Yes

(2.4856) (0.3722) (0.6843) (0.6756) (0.0198)

SDEM Model 6.1705 0.5833∗∗∗ 0.4081 0.612∗∗∗ Yes
(8.2346) (0.1713) (0.6305) (0.0203)
3.1693 1.6644∗∗∗ −0.6908 1.3376∗∗ 0.62∗∗∗ Yes

(8.2997) (0.3741) (0.7169)

Source: Authors calculations.
Notes: *** significant to less than 1%; ** significant to 5 % ; * significant to 10 %; standard errors in parenthesis.
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Table 7: Results to SDEM case
Dependent Variable = intern
R-squared = 0.7560
corr-squared = 0.2469
Within R2 = 0.2469
Between R2 = 0.1290
Overall R2 = 0.0694
σ2 = 9.5646
log-likelihood = -19,475.01
Nobs,Nvar,NFE = 7,728, 14, 658
Num iterations = 16
min and max rho = -0.9900, 0.9900
Variable Coefficient Standard error z-prob
constant 3.1693 8.2997 0.7026
treatment 1.6644 0.3741 0.0000
W11D -0.6908 0.7169 0.3353
W21D 1.3376 0.6929 0.0535
trend -5.8183 2.8223 0.0393
workers -1.5641 0.5822 0.0072
urbanization 7.9258 1.9335 0.0000
olders 15.8238 9.0706 0.0811
children -9.3626 9.0410 0.3004
doctors 0.3982 0.2442 0.1029
Wworkers -5.5533 3.4533 0.1078
Wurbanization 10.0615 10.4611 0.3362
Wolders -30.5229 39.9199 0.4445
Wchildren 6.0643 36.7513 0.8689
Wdoctors -3.8623 1.3826 0.0052
λ 0.6200 0.0200 0.0000
LM test no spatial lag, probability = 1968.3649, 0.0000
robust LM test no spatial lag, probability = 10.2073, 0.0000
LM test no spatial error, probability = 2053.3284, 0.0000
robust LM test no spatial error, probability = 95.1708, 0.0000
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Table 8: Monte Carlo results

Models
β

0.1 0.4 0.8
Coef 95% Conf. Interval Coef 95% Conf. Interval Coef 95% Conf. Interval

Contiguity Matrix
SDM 0.266237 -0.37487 0.907341 0.35049 -0.27308 0.974058 0.758873 0.13599 1.381755
SDEM 0.266237 -0.37487 0.907341 0.510086 -0.11881 1.138984 0.909998 0.280908 1.539089
SDM FE -0.12649 -0.76745 0.514459 0.202011 -0.42691 0.830935 0.612547 -0.01533 1.240427
SDEM FE 0.09147 -0.55567 0.738611 0.410221 -0.22873 1.049174 0.810146 0.171235 1.449057
k-nearest Matrix
SDM 0.214329 -0.38596 0.814613 0.208982 -0.36535 0.783315 0.629112 0.056352 1.201873
SDEM 0.214329 -0.38596 0.814613 0.49984 -0.08419 1.083866 0.899836 0.3158 1.483871
SDM FE -0.33542 -0.91977 0.248944 0.029321 -0.53724 0.595876 0.459115 -0.10613 1.024361
SDEM FE 0.093774 -0.51241 0.699961 0.402756 -0.20094 1.006448 0.802947 0.198858 1.407035
k-nearest Euclidean Matrix
SDM 0.239396 -0.386 0.86479 0.259163 -0.32999 0.848311 0.67273 0.084045 1.261415
SDEM 0.239396 -0.386 0.86479 0.539018 -0.06465 1.142685 0.938838 0.3349 1.542777
SDM FE -0.33558 -0.92037 0.249197 0.02925 -0.53705 0.595551 0.459025 -0.10655 1.024604
SDEM FE -0.33558 -0.92037 0.249197 0.02925 -0.53705 0.595551 0.459025 -0.10655 1.024604
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Table 9: Robustness check - neoplasms adminissions

Constant Treatment WD W11D W12D λ Spatial lag controls

Classical Panel 0.521 −0.0394 No
(0.6235) (0.0355)

Spatial control 0.8346 0.0436 −0.3588∗∗∗ No
(0.6263) (0.0398) (0.0786)
0.7652 0.1941∗∗∗ −0.4951∗∗∗ −0.2151∗∗ No

(0.6267) (0.0723) (0.0957) (0.0974)
SLX Model 1.2554 0.0501 −0.2021∗∗ Yes

(2.5424) (0.0398) (0.1005)
1.1404 0.1141 −0.2683∗∗ −0.1482 Yes

(2.5446) (0.0738) (0.1193) (0.1133)
SEM Model 0.8799 0.0365 −0.3371∗∗∗ 0.344∗∗∗ No

(0.6178) (0.0387) (0.0968) (0.0277)
0.8327 0.145∗∗ −0.4364∗∗∗ −0.2345∗∗ 0.34∗∗∗ No

(0.6183) (0.0782) (0.1151) (0.1162) (0.0278)
SDEM Model 0.3187 0.0453 −0.1741 0.331∗∗∗ Yes

(2.5108) (0.0388) (0.1207) (0.028)
0.2375 0.0966 −0.2262 −0.13 0.33∗∗∗ Yes

(2.5132) (0.079) (0.1393) (0.1344) (0.028)

Source: Authors calculations.
Notes: *** significant to less than 1%; ** significant to 5 % ; * significant to 10 %; standard errors in parenthesis.
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Figure 3: Robustness checks in W matrix
Source: Authors calculation.
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