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A Spatial Production Economy Explains

Gross Metropolitan Product

Hiroki Watanabe∗

September 11, 2015

Abstract

It has long been known that the city-size distributions are fat tailed, draw-
ing the interest of urban economists. In contrast, not much is known about the
distribution of GDP at city level (henceforth referred to as gross metropolitan
product, GMP). We build a model of the spatial economy that includes produc-
tion and confirm the following empirical facts about the GMP counterpart of
the city-size distribution. First, both Zipf’s and Gibrat’s law hold for the distri-
bution of GMP as well. In particular the GMP distribution is well-traced by a
lognormal distribution. Second, citywide aggregate production exhibits increas-
ing returns to scale with respect to employment. In particular a 1% increase in
employment leads to a 1.117% (or 1.180% in theory) increase in GMP. Agglom-
eration economies are explained as a result of an endogenous trade-off between
externalities and land consumption of consumers.

Keywords: Zipf’s Law, Gibrat’s Law, GDP by City, Production Economy
JEL classification: D51, E2, R12

1 Introduction

Four out of five people live in cities, and they do so for various reasons, i.e. better
job prospects, decent wage, urban amenities, or family obligations. The resulting
size distribution of cities has kept the rapt attention of urban economists, and we
now have a growing understanding of what it is and how it came about; however,
the story does not end there. No one moves in or out of a city just for the sake
of making its size larger or smaller, nor does the city size itself feed its popula-
tion. The overriding research objective in the literature is the welfare implication
of the city-size distribution, but the empirical distribution of GMP has never been
anaylized to this date. We will take one step forward to show that the GMP distri-
bution follows a fat-tail distribution and provide a theoretical background behind
the relationship between city size and corresponding GMP.

Our major findings are as follows. First, two empirical regularities on the city-
size distribution carry over to GMP. Most of GDP are generated in only a few
cities just as the city-size distribution, the regularity known as Zipf’s law ([Gab99],

∗Department of Economics and Fiance, Lamar University (watanabe.wustl@gmail.com). I thank Akin
Buyukeren and Luiggi Donayre for their input. All remaining errors are mine.
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[Dur07]). In fact only 20% of cities create as much as 78.75% of urban GDP.1 GMP
has a lower Pareto coefficient than city-size counterpart, i.e., its tail end is even
heavier than the city-size distribution. Gibrat’s law also extends to GMP, as urban
economic growth rates are independent of its GMP size. Second, GMP exhibits
increasing returns to employment. That is, New York’s GMP is larger than any
other city’s, even size for size. This is consistent with our first finding that the
GMP distribution has a heavier tail than the city-size distribution. We build a
production economy model and establish that agglomeration economies are due
to the trade-off between externalities and housing consumption. We prove that
the equilibrium city size has to be such that an additional resident will reduce a
housing lot size in the city but make up for it by raising citywide productivity.
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Figure 1. GMP per capita in 2010 (in 2005

USD).

In the existing city-size models,
with the assumption of free mobility,
consumers/workers will update their
locations until they exhaust the loca-
tional arbitrage opportunities. Thus,
regardless of the city size, cities be-
come indifferent to consumers in equi-
librium. This does not imply that
workers are equally productive or
their income will be the same across
the board. In practice, per capita
GMP varies by location (cf. figure 1

and table 1). People enjoy the same
utility level at the end of the day2 but
what induces interurban migration de-
pends on GMP. People relocate to a
city not for the sake of its size alone but
for what its size has to offer, one of which is its GMP. The city-size distribution is the
result of interurban migration. We will reveal the distribution of GMP and decode
the economic forces behind it in this paper.

Figure 2 (in color) is a map of the United States with metropolitan statisti-
cal areas (MSA) colored according to their population density and GMP in 2010.3

Figure 2(a) comes with no surprise. It is well documented that the city-size dis-
tribution is tail heavy. What is newsworthy is figure 2(b)4. GMP shares the same
pattern to city size in terms of distribution. Figure 3 represents the probability
density function (PDF) and rank-size plot of GMP in 2010. New York accounts for
the lion’s share of GDP, followed by Los Angeles, and there are lots of mid-sized
cities that are dwarfed by the high-ranked cities.

Our intended contribution is to provide a systematic understanding of the dis-

1 This relation is known as a 20-80 rule: 20% of agents are accountable for 80% of the results, a typical
sign that something of scale-free nature is at work.

2 Cities are put in equilibrium either by equating wage (e.g., [Dur07]) or utility level (e.g., [Gab99]).
3Population data also include micropolitan statistical area along with MSA. For definition of MSA, see

http://www.census.gov/population/metro/about/.
4Data source: Bureau of Economic Analysis.
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(a) Population Density in 2010 (persons/km2).
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(b) GMP in 2010 (in 2005 USD).

Figure 2.
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(a) PDF of GMP. Dots are size proportionate to GMP.
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(b) PDF of GMP in log scale.

Figure 3. PDF plots of GMP. See table 1 for the explanation of the selected cities above.

tribution of GMP. The conventional range of study on GMP has been limited within
a city. Usual questions are in lines of how to promote the urban growth in Detroit,
or the effect of overproduced liquid natural gas in Pittsburgh. These fact-finding
works and analyses of local economies play a part in the GMP distribution. GMP
distribution is, after all, the accumulation of all these local economic activities com-
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bined. On the other hand, we found a holistic approach to the GMP distribution
missing in the literature: GMP is reported in each city; therefore there will be a
GMP distribution. We would like to get an aerial view from coast to coast and
address GMP from the general equilibrium perspective.

There are two lines of research related to our project: one on the distribution
of city sizes and the other on agglomeration economies. The first line of research
studies the distribution of city sizes but not GMP, while the second one studies
GMP but not the distribution thereof. We will fill in the gaps in this paper.

Overshadowed by the consuming interest in the city-size distribution, research
into the distribution of GMP is nonexistent. Those who quote the citywide pro-
duction function use it as an intermediate step to reach the equilibrium city-size
distribution. As a byproduct, we get the equilibrium production level in each city,
but predicted GMP has never been tested with any empirical data. Their primary
objective is to explain the city-size distribution. We will take the GMP distribution
as a byword rather than a byproduct.

On the other hand, the second line of work homes in on the question of how
much of a boost we get by producing goods and services in a crowd rather than in
a rural setting. The question is imperative because if there is no scale economies
in cities, then there is no convincing reason to reside in a large but crowded city,
barring other centripetal forces such as local public goods or access to a large, di-
versified labor pool [ABL07]. A study on citywide productivity becomes an essential
part of the examination on city size (cf. [Hen74], [KKSS05]). In fact increasing re-
turns to scale is one of the main5 ingredients in the formation of a city (Krugman
[Kru91]). See Moomaw [Moo83] for review of earlier work in this literature. More
recently, Caliendo et al [?] consider how the economy responds to idiosyncratic
changes in regional productivity. The responsiveness of GDP are shown to vary
region to region.

Despite having related research agenda, these two lines of work take differ-
ent approaches to theorizing about their respective target objective. The city-size
distribution models based on general equilibrium typically do not include capital
stock as part of production function ([Dur07], [Eec04] for example);6 whereas most
agglomeration models do. Labor alone serves its purpose to explain the actual city-
size distribution without involvement of capital stock. We sided with the city-size
distribution models for our purposes. It is easy to measure a city size, but measur-
ing citywide capital stock is not as straightforward as a head count. In fact there
are no data on the level of capital stock at city level in the Untied States. Those
studies that quote capital stock use the estimated level based on factors related to
capital such as local public goods, housing and state roads, mixed in with prede-
termined weights ([Seg76]), or estimated retrospectively from the pair of labor and
GDP per capita at city level ([Sve75]). Capital stock is known to be correlated with
city size, which causes a multi-collinearity problem. According to [Seg76], capital
stock’s contribution to GMP is .116 as opposed to labor’s .891. We did not test

5But not necessary. Cf. [BK00].
6There are some exceptions. For example, Rossi-Hansberg and Wright [RHW07] address city-size dis-

tribution with capital stock incorporated into the model. Even then, actual capital stock level is not used
for empirical testing.
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our model on capital stock but it is general enough to incorporate investment if
needed.

The data set we use is more inclusive than any previous studies. There are 366

cities with accompanying GMP figures. The largest sample size used so far to test
GMP is 30 by Mion and Naticchioni [MN05] according to [MGN09].7 For example
cities like Beaumont, TX are too small to be included in the data set in [Seg76]. At
the time of writing 366 is the largest data size for which GMP is reported.

GMP data also mesh with city-size data to provide an added layer of empirical
validation to the existing models on the city-size distribution. The models of city-
size distribution are empirically tested on the basis of city size, and the choice
of city size as a data set to pitch against a model is obvious because they are
built to explain the city-size distribution after all; however, they also need to be
crosschecked with other spatial data, including rent or wage in each city. Otherwise
a model can only explain city-size distribution but nothing else, which undermines
its legitimacy as an urban economic model. GMP is one of those spatial data that
complement city-size data to confirm a model’s relevance to the reality.

The remainder of the paper is organized as follows: section 2 investigates into
the nature of GMP distribution and provides descriptive statistics on GMP along
with city size. In section 3 we introduce the spatial production economy model
to explain the findings in section 2 before we empirically evaluate our model’s
performance in section 4. Section 5 concludes our study.

2 GMP Actualities

We will establish the Zipf’s and Gibrat’s law for GMP and also identify the rela-
tionship between GMP and city size. The US Bureau of Economic Analysis reports
annual GDP by MSA along with the US GDP and estimated employment. Descrip-
tive statistics for the employed data are in table 1.

2.1 Gibrat’s Law for GMP

For starters, we looked into the dynamics: Does a large GMP make a city grow fast?
The answer: no. Gibrat’s law implies that the size of a city does not have any bear-
ing on its growth rate. The city-size distribution is known to follow Gibrat’s law
well ([IO03]). It turns out that GMP does the same. We carried out both paramet-
ric and non-parametric estimations following [Eec04] to examine the relationship
between GMP and GMP growth rate.

7 The aforementioned study [Seg76] has 58 locations but output is limited to the manufacturing sector
rather than GMP as a whole. These studies often quote census for manufacturers alone.
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Data Employment GMP GMP per capita GMP growth

Unit MSA Million 2005 USD 2005 USD Annual rate
Year 2010 2010 2010 2010 over 2005
Coverage (MSA/USA) 84.90% 87.60% 87.60% 87.60%

Largest city #001 New York #001 New York #001 Midland, TX #001 Midland, TX
Largest size 18,919,787 1,147,160 89,350 11.60%

73rd largest city #073 Akron, OH #073 Worcester, MA #073 Waterloo, IA #073 Dallas, TX
Size share of #1-73 71.80% 78.75% 29.40% N/A

City near arithmetic mean #072 North Port, FL #063 Madison, WI #150 Greenville, SC #171 Topeka, KS
Arithmetic mean 707,308 31,763 36,002 .49%

Median city #183 Laredo, TX #183 Bellingham, WA #183 Gainesville, FL #183 Monroe, LA
Median size 251,539 8,414 34,048 .35%

Smallest city #366 Carson City, NV #366 Palm Coast, FL #366 Palm Coast, FL #366 Lake Charles, LA
Smallest size 55,212 1,132 11,793 -5.98%

Standard deviation 1,582,442 86,824 11,257 .0212
Skewness 6.669 7.500 1.409 .9088

City near geometric mean #149 Naples, FL #154 Kalamazoo, MI #178 Mobile, AL N/A
Geometric mean 321,416 11,078 34,460 N/A

Mean of log value 12.68 23.13 10.45 N/A
Standard deviation of log value 1.062 1.216 .2920 N/A
Skewness of log value 1.109 1.103 .2251 N/A

Table 1. Descriptive Statistics. The statistics above the line (shaded in blue) are related to a
linear scale and below the line (shaded in green) are related to a log scale. The mean of log
value is same as the log of geometric mean. The first 73 cities make up for the upper 20% of
the total number of cities.

2.1.1 Non-Parametric Estimation

First we estimate the conditional expectation of GMP growth rate E[1|Y] = m(Y)
with a Nadaraya-Watson kernel estimator [Wat64]

m̂(Y) =
I∑

i=1

1
i Kh(Y − Yi)∑I

j=1 Kh(Y − Y j)
.

Y denotes GMP and 1 denotes its growth rate. Sample size is I = 366 with each city
indexed by a superscript i. Kh(·) is a scaled kernel with a bandwidth h. We gathered
data from 2005 and 2010 to compute growth rates. For non-parametric estimation
we standardize the growth rate to take out the nationwide growth rate.8 GMP
is defined by the geometric mean Y B

√
Y05Y10, assuming exponential growth.

Figure 4 plots the growth rate and its kernel estimation. We tried to estimate m̂(Y)
first (figure 4(a))9. The disperse spread of GMP towards the upper end swings the

8 In particular we take the difference between
log Yi

10−log Yi
05

5 and the sample mean, divided by the
standard deviation to be the normalized growth rate 1i.

9 We had to stretch the bandwidth further than the usual width of 2.727e+10 to cover up the large gap
between New York and Los Angeles. The estimated growth rate is positive for GMP larger than 9e+11 and
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(a) Kernel regression on GMP with bandwidth h =
6.137e + 10.
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(b) Kernel regression on the log of GMP with band-
width h = .3932.

Figure 4.

estimate from side to side and makes it hard to interpret the relationship. We went
for a log of GMP instead and recorded the result in figure 4(b), which now exhibits
a discernible pattern. There seems to be a slight inclination to the left and right
tails, probably because of a smaller number of observations to the both ends than
in the rest of the range. Other than that, our estimate seems to be in support of the
Gibrat’s law for GMP. For analysis of variance, see appendix A.1.

2.1.2 Parametric Estimation

Next, we regress GMP growth rate on GMP.10 Estimates are reported in table 2.
Figure 5(a) seems to indicated that the regression line is pulled upwards partly
because of New York.11 To counteract this sensitivity to large cities, we regressed
GMP on the log of GMP as well (figure 5(b)).

Regressor R2 Figure

Intercept GMP log(GMP)

Coefficient 4.482e-03 6.981e-15 8.077e-04 5(a)
t-statistic 3.84 .54

Coefficient -2.373e-02 1.230e-03 5.044e-03 5(b)
t-statistic -1.13 1.36

Table 2. Ordinary least squared (OLS) estimate of growth rate.

The null is not rejected at the 5% level of confidence on GMP or on the log

above solely because of New York and significantly lower than zero because of Los Angeles around 6e+11

to 9e+11.
10 We did not standardize the GMP growth rate for parametric estimation. The intercept will capture

the nationwide growth rate.
11 The coefficient on GMP may well have been negative had New York’s growth rate been negative. The

estimates’ dependence on New York is not all that welcoming because, while it is large, New York is still
just one observation as much as Beaumont, TX is.
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thereof. Once again the estimates seem to agree with the Gibrat’s law.

2 4 6 8 10

x 10
11

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5 #
2

1
 P

o
rtla

n
d

, O
R

#
2

0
 S

t. L
o

u
is

 
#

1
7

 S
a

n
 J

o
s

e
#

1
3

 D
e

tro
it 

#
5

 H
o

u
s

to
n

#
4

 D
C

#
3

 C
h

ic
a

g
o

#
2

 L
o

s
 A

n
g

e
le

s

#
1

 N
e

w
 Y

o
rk

G
M

P
 G

ro
w

th
 R

a
te

 (
%

)

Geometric Mean GMP (in 2005 USD)
2 4 6 8 10

x 10
11

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5 #
2

1
 P

o
rtla

n
d

, O
R

#
2

0
 S

t. L
o

u
is

 
#

1
7

 S
a

n
 J

o
s

e
#

1
3

 D
e

tro
it 

#
5

 H
o

u
s

to
n

#
4

 D
C

#
3

 C
h

ic
a

g
o

#
2

 L
o

s
 A

n
g

e
le

s

#
1

 N
e

w
 Y

o
rk

G
M

P
 G

ro
w

th
 R

a
te

 (
%

)

Geometric Mean GMP (in 2005 USD)
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(b) OLS over log of GMP.

Figure 5.

2.2 Zipf’s Law for GMP

As we have seen in figure 3, GMP seems to be well traced by a power law. OLS
estimation confirms the power-law behavior of GMP, as documented in table 3

and figure 6. The Pareto exponent is -.9003 on employment12 whereas we have

Regressor R2 Figure

Intercept log(Employment) log(GMP)

Coefficient 16.34 -.9003 .9763 6(a)
t-statistic 174.57 -122.50

Coefficient 23.13 -.7875 .9756 6(b)
t-statistic 152.89 -120.58

Table 3. Rank-size and rank-GMP regression

-.7878 on GMP. This is indicative of the fact that the GMP distribution is even more
skewed than the corresponding city-size distribution. This is to be theoretically
verified with proposition 3.2.

We include OLS just for illustration, with the caveat that it would not work
had we had the extensive data. As pointed out by Gabaix and Ioannides [GI04],
the city-size distribution does not sit well with the assumptions on errors in OLS
estimation. The same criticism applies to the GMP distribution as well. In addition,
due to the limited data range, it is likely that Zipf’s law applies only to the upper
tier and that the untruncated GMP distribution deviates from the Zipf’s law for
small cities (cf. [Eec04]). In this case, a distribution other than a Pareto distribution,
such as a lognormal or double Pareto lognormal ([GZS10]), is an apt choice to

12Employment data are based on population estimates that the Bureau of Economic Analysis uses to
compute per capita GMP.
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Figure 6.

describe the data. Unfortunately, an exhaustive data set is not available for GMP.
In the absence of the lower end of the distribution, the Zipf’s law can be used to
describe the remaining mid to upper end of the distribution. Nevertheless, we will
reconfirm Zipf’s law for GMP both theoretically (in section 3.2.1) and empirically
(in section 3.3) without OLS. The case in point is not whether Zipf’s law describes
the upper end of the distribution in particular but that the GMP distribution has a
fat tail.

2.3 City Size and GMP

Figure 7 shows the relationship between working population and the aggregate
product in a city. There seems to be a log-linear relationship between them with
coefficient slightly but statistically significantly larger than one, indicating increas-
ing returns to scale between city size and GMP. Table 4 reports the results with
figure 7.13 The numbers are not too far off from the findings from the second line
of work mentioned in section 1. For example Shefer [She73] finds that a 1% rise in
input will results in a 1.12% increase in output (note; however, that this is just for
the primary metal industry, whereas our numbers are for GMP).

3 Model

3.1 Spatial Production Economy

We construct an intercity general equilibrium model to seek a comprehensive ex-
planation for all the empirical findings in section 2. In particular we develop a pro-
duction economy with three commodities: composite goods, housing and leisure,14

13Note that
log(Y/L) = γ0 + γ1 log L ⇒ log Y = γ0 + (γ1 + 1) log L

on a per-capita basis. On aggregate level, log Y = β0 + β1 log L so that γ1 = β1 − 1, as can be seen in table 4.
14Alternatively, we can include capital goods but due to lack of data, we limit ourselves to three goods

in this economy.
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Regressand Parameter Value Intercept Employment log(Employment) R2 R̄2 Fig.

GMP Actual Coefficient -6.492e+09 5.409e+04 .9717 .9716 7(a)
t-value -7.75 111.81

log(GMP) Actual Coefficient 8.960 1.117 .9528 .9527 7(b)
t-value 54.02 85.73

t-statistic 4.79 -4.81
log(GMP) Theoretical Coefficient 8.165 1.180 .9498 .9497 7(b)

t-value 47.74 87.79
GMP per capita Actual Coefficient 3.422e+04 2.522e-03 .1257 .1233 7(c)

t-value 56.69 7.23
log(GMP per capita) Actual Coefficient 8.960 .1173 .1821 .1799 7(d)

t-value 54.02 9.00
t-statistic 4.79 -4.81

log(GMP per capita) Theoretical Coefficient 8.165 .1800 .1302 .1278 7(d)
t-value 47.74 13.39

Housing Actual Coefficient -1.736e+09 8489 .9571 .9569 7(e)
t-value -9.88 84.60

log(Housing) Actual Coefficient 4.149 1.305 .8769 .8765 7(f)
t-value 11.98 47.81

t-statistic -4.57 4.59
log(Housing) Theoretical Coefficient 5.732 1.180 .8688 .8684 7(f)

t-value 16.03 41.88

Table 4. R̄2 is an adjusted value of R2. For t-value, the null is coefficient equals zero, whereas
for t-statistic, the null is coefficient equals theoretical value. Section 4.2 explains theoretical
value.

and two types of agents: worker/consumer and landlord.
There are I cities in the economy. Si residents live in city i, totalling S =

∑I
i=1 Si of

urban population nationwide. Each city has a demographic similar to the Alonso
model (cf. Berliant and Fujita [BF92]). See figure 8 for one example representation
of agents involved in this production economy. Each city has a landlady who owns
all the area H in city i. She is retired and lives off her rental income riH, where ri

marks the city’s rental rate (think of her as the first settler in town or a developer).
She is an immobile15 landlady and assumed to consume only composite goods and
leisure out of her one unit of allotted time.16 The remainder of the urban population
are mobile, active and identical workers/consumers who supply labor li

R out of
their one unit of allotted time to produce a basket of goods ci

R that includes all the
goods and services other than housing hi

R and leisure (1 − li
R). Their consumption

bundle xi and endowment ei are given by

xi
R =


ci

R

hi
R

1 − li
R

 , xi
L =


ci

L

hi
L

1 − li
L

 , ei
R =


0

0

1

 , ei
L =


0

H

1

 ,
15 We assume that she cannot change her city of residence so that we can count the rental income toward

GMP where it is collected. Otherwise the rental income may be included in the city where she actually
lives, which may not be the city whose land she owns if she is an absentee landlady. However, we will not
count her toward Si for notational ease. We will return to the role of her location choice in section 4.2.

16 Assume that she lives in the city where she is a landlady but in the special lot designated for her
outside H to keep our analysis tractable. She needs to live in the city where she is a landlady because of
footnote 15.
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(d) OLS GMP per capita (log)
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(f) OLS Housing (log)

Figure 7.

where subscript R denotes a representative working Resident and L denotes the
Landlady.

On the production side, there are many firms in a city who employ one worker
each and produce the identical immobile commodity in a perfectly competitive
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environment. The production plan 2i of a representative firm is given by

2
i =


f (li

F, hi
F ; Si)

−hi
F

−li
F

 ,
where li

F denotes labor demand and hi
F denotes land input used as a production site.

We let the production function f (·) depend on the city size to allow for externalities
within the city such as knowledge spillover effects or congestion to have an impact
on productivity of individual firms in the same city.17

The intracity production economy in city i is identified by

Pi B
{(

Xi
N, ≽N, ei

N

)
N∈{R,L}

, Yi
F

}
,

where Xi
N B R

3
+ is a consumption set of a representative worker or the landlady,

≽N is a complete preorder over consumption set Xi
N, and Yi

F is a production set of
a representative firm given by

Yi
F B

{
2

i = (ci
F, h

i
F, l

i
F) ∈ R3

+ : ci
F ≤ f (li

F, hi
F; Si)

}
.

A feasible allocation in Pi is defined as follows:

Definition 3.1: Feasible Allocation

For given Si ∈ [0,S], an allocation (xi
R, x

i
L, 2

i) ∈ Xi
R × Xi

L × Yi
F in the intracity production

economy Pi is feasible iff
xi

RSi + xi
L = 2

iSi + ei
RSi + ei

L. (1)

To find GMP we need to compute the value of each commodity. Let pi B(
1, ri, wi

)′
be the price on a composite good, lot size and leisure. We take com-

posite goods as a numéraire.18 There are two equivalent ways to define GMP. From
the production point of view, GMP Yi is defined by the total value of all the fi-
nal goods and services produced in the city, Yi = pi ·

(
2i + ei

RSi + ei
L

)
. From the

consumers’ end, GMP is the sum of all the expenditures on goods and services,
Yi = pi ·

(
xi

RSi + xi
L

)
. They come out to the same number due to Walras’ law.

Definition 3.2: GMP
GMP in the intercity production economy Pi of size Si is identified by

Yi B pi ·
(
2

i + ei
RSi + ei

L

)
= pi ·

(
xi

RSi + xi
L

)
. (2)

In application GDP does not count leisure time. We consume leisure for the
price of the opportunity cost (namely, lost wage), but in practice there is no ex-
plicit/accounting trace of market transactions for the consumption of leisure to
track down the leisure portion of GDP. In particular we produce and consume
wi

{(
1 − li

R

)
Si +

(
1 − li

L

)}
worth of leisure, but this part is excluded from recorded

17 Since we bundle all the goods in a single basket, there is no distinction between localization economies
(agglomeration economies within an industry) and urbanization economies (agglomeration economies
across the industries within a city) in our model.

18Note that none of the commodities are tradable beyond the city border in this economy.
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GDP and by extension, from GMP as well. We use the data provided by the US
Bureau of Economic Analysis, and their figures are based on tax reports. We do
not pay tax on leisure consumption. Thus, we shall redefine Yi with only the first
two entries and take out the last entry (leisure)

Yi B

1

ri

 · ci
R

hi
R

 Si +

ci
L

hi
L

 = 1

ri

 ·  f (li
F, hi

F ; Si)

−hi
F

 Si +

0

0

 Si +

 0

H

 (3)

for statistical purposes.
As we understand from our empirical findings in section 2, Yi exhibits in-

creasing returns to scale Si. Then (3) implies that profit less labor compensation
f
(
·; Si

)
− rihi

F needs to be increasing in Si.
To find the equilibrium price vector, first define θi B (θi

R, θ
i
L) as a vector of a

representative resident and landlady’s share of profit (θi
R, θ

i
L ∈ [0, 1] and θi

RSi+θi
L =

1).

Definition 3.3: Intracity Equilibrium

For a given θi and ei, an intracity equilibrium in city i is a feasible allocation
(
xi

R
∗
, xi

L
∗
, 2i∗

)
and price vector pi∗ such that

1. For N = R and L
pi∗ · xi

N
∗ ≤ pi∗ · ei

N + θ
i
Npi∗ · 2i∗Si. (4)

2. For N = R and L

pi∗ · xi
N ≤ pi∗ · ei

N + θ
i
Npi∗ · 2i∗Si ⇒ xi∗ ≽N xi, (5)

for any xi
N ∈ Xi.

3. For any 2i ∈ Yi
F,

pi∗ · 2i∗ ≥ pi∗ · 2i. (6)

To identify the equilibrium city size, let the intercity production economy P B{(
Pi,Si

)I

i=1
, S

}
and define

Definition 3.4: Intercity Equilibrium

For a given ownership matrix
(
θi

)I

i=1
∈ [0, 1]2I and endowment matrix

(
ei
)I

i=1
∈∏

i

(
Xi

R × Xi
L

)
,

an intercity equilibrium in the production economy P is a list of a feasible allocation matrix(
xi

R
∗
, xi

L
∗
, 2i∗

)I

i=1
∈ ∏

i

(
Xi

R × Xi
L × Yi

F

)
, price matrix

(
pi∗

)I

i=1
∈ R3I

+ , and size distribution(
Si
)I

i=1
∈ [0, S]I such that for any i and j with Si > 0 and S j > 0,

1.
(
xi

R
∗
, xi

L
∗
, 2i∗, pi∗

)
is an intracity equilibrium

2.
xi

R
∗ ∼R x j

R

∗
. (7)

3. Urban population adds up to ∑
i

Si = S. (8)
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The second item (7) is due to free mobility of workers. This does not apply to
landladies, who are locked in their place of residence to keep the housing portion
of GMP where it is generated.

The equilibrium city-size distribution is the size component of an equilibrium
in P and the GMP distribution is (3) computed with an equilibrium in P.

3.2 Application
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Figure 8. Commodity flow. Leisure is ex-
cluded in accordance with the practical defi-
nition of GDP adopted by the US Bureau of
Economic Analysis.

To derive the exact distribution of
GMP for empirical testing, consider an
application of the spatial production
model developed in section 3.1 with
production function and labor mar-
ket in the style of Eeckhout [Eec04]
with the explicit presence of landladies
(see figure 8 for a schematic represen-
tation of the agents and commodities
involved in this example). We will find
the analytical solution to the intercity
equilibrium, from which we obtain the
equilibrium GMP distribution.

3.2.1 Intracity Equilibrium

To start off, pick any city i and con-
sider its intracity equilibrium. Firm’s
production plan is specified by

f
(
li
F, hi

F; Si
)
= Aia+

(
Si
)

a−
(
Si
)

li
F, (9)

where Ai is a stochastic citywide productivity parameter, a+(·)(> 0) measures the
positive externality shared among the firms operating within the same city, and
a−(·)(∈ (0, 1)) measures congestion externality. City size is assumed to raise the
productivity of all the firms operating in the city. Positive externality enhances
with size (a′+(·) > 0). Each consumer supplies li

R units of gross labor but congestion
externality adversely affects effective labor. The fraction 1 − a−(Si) of labor will be
spent on commuting rather than on production. The level of reduction in effective
labor aggravates with the size of a city (a′−(·) < 0). Firms do not pay for the time lost
in commuting and workers assume responsibility for the time cost of commuting.
That is, firms will pay (ostensible) wages at the rate of ωi only for the fraction of
li
R when their worker is present at work, i.e., only for a−

(
Si
)

li
R hours out of li

R. On

an hourly basis, (effective) wage is knocked down to wi
(
Si
)
B ωia−

(
Si
)

for each
hour devoted for work, inclusive of commuting time.19 We will discuss the role of
a landlady’s labor supply later. We assume that firms do not require land as input

19 Hence, the opportunity cost of leisure is wi
(
Si

)
rather than ωi.
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in accordance with [Eec04] for simplicity, but land can readily be incorporated into
our production economy in section 3.1 as a factor of production.

Profit (6) turns into

pi · 2i = Aia+
(
Si
)

a−
(
Si
)

li
F − ωia−

(
Si
)

li
F =

[
Bi

(
Si
)
− ωia−

(
Si

t

)]
li
F, (10)

where Bi(Si) B Aia+
(
Si
)

a−
(
Si
)
. Since production function (9) exhibits constant

returns to scale in li
F,

pi · 2i∗ = 0 (11)

in equilibrium (otherwise 2i∗ violates profit maximiation condition (6)). Hence, if
li
F > 0, it must follow that

Bi(Si) = ωia−
(
Si
)

(= wi
(
Si
)
) (12)

in equilibrium.
Note here that aggregate production may exhibit agglomerative economies due

to positive externality a+(·), but internal scale economies are still absent because
individual production function is linear in li

F. For more on a dialectic between
increasing and constant returns to scale, see Rossi-Hansberg and Wright [RHW07].

Next order of business is the consumers. Represent ≽R in Pi by

uR

(
ci

R, h
i
R, l

i
R

)
= α log ci

R + β log hi
R + γ log

(
1 − li

R

)
, (13)

where α, β, γ > 0, and assume α + β + γ = 1 without loss of generality. According
to the feasibility condition (1) household income is given by pi · ei

R+θ
i
Rpi ·2iSi. Since

firms earn zero profit (11), household income simplifies to labor income pi · ei
R =

wi
(
Si
)
· 1 alone, with which to buy composite goods ci

R, housing hi
R and leisure(

1 − li
R

)
at the price of pi =

(
1, ri, wi

)
. Marshallian demand is

xi
R

(
pi,wi

)
=


ci

R

(
pi,wi

)
hi

R

(
pi,wi

)
1 − li

R

(
pi,wi

)
 =


αwi

(
Si
)

βwi
(
Si
)
/ri

γ

 =

αBi

(
Si
)

βBi
(
Si
)
/ri

γ

 (14)

The second equality holds as a result of profit maximization (6) and its consequence
(12). Labor supply li

R of a typical household will be 1 − γ = α + β. Material balance
(1) requires that

(
1 − li

R

)
Si + 1 − li

L = −li
FSi + 1 · Si + 1. Since utility maximization for

the retired landlady (5) results in li
L
∗
= 0 in this economy (see (17) below), li

R
∗
= li

F
∗,

which furthermore implies that the equilibrium production plan will be

2
i∗ =


f
(
li
F, hi

F; Si
)

0

−li
F

 =

(α + β)Bi

(
Si
)

0

−(α + β)

 . (15)

Turning to the landlady, represent ≽L in Pi by

uL

(
ci

L, hi
L, li

L

)
= ci

L1{liL=0}
(
li
L

)
, (16)
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where 1{liL=0}(·) is an indicator function that takes the value of one when li
L = 0

and zero otherwise. Since she is retired, any hour of labor li
L > 0 will instantly

push her utility level down to zero regardless of an increment in her utility level
from an increased consumption of composite goods financed through her labor
income.20 That is, her utility level is nonnegative over the plane li

L = 0 in R3
+ and

zero elsewhere. Once again, since the share of zero profit (11) earns her nothing,
the budget constraint (4) implies that the landlady’s income is pi · ei

L = riH +wi
(
Si
)
.

Her Marshallian demand is

xi
L

(
pi,wi

)
=


ci

L

(
pi,wi

)
hi

L

(
pi,wi

)
1 − li

L

(
pi,wi

)
 =


riH

0

1

 . (17)

Then residential utility maximization (14), profit maximization (15) and land-
lady’s utility maximiation (17) rewrite feasibility condition (1) as

αBi
(
Si

R

)
βBi

(
Si

R

)
/ri

1 − (α + β)

 Si +


riH

0

1

 =

(α + β)Bi

(
Si
)

0

−(α + β)

 Si +


0

0

1

 Si +


0

H

1

 . (18)

from which, along with the first order condition (12), we can find the equilibrium
price vector in city i as

pi∗ =


1

ri

wi

 =


1

βBi
(
Si
)

Si/H

Bi
(
Si
)

 (19)

(see figure 8 to track the commodity flow in equilibrium over Pi). Observe that
the rent ri goes up if 1) city i draws a good technological shock Ai, 2) positive
externality a+

(
Si
)

intensifies, or 3) city i becomes less crowded (a−
(
Si
)
). Likewise

the leisure becomes expensive for the same reasons. Reasons 2) and 3) are triggered
by urban growth, whereas reason 1) is independent of Si.

It is worth pointing out that our economy makes a judicious use of limited la-
bor. The working population is capped at S. The intracity equilibrium and more
noticeably, the intercity equilibrium, allocate more people to a city with a good
production environment and pull back labor from a city of low productivity. Indi-
rect utility is increasing in Bi

(
Si
)

in equilibrium. Migration dynamics are such that

there is an inflow when Bi
(
Si
)

is above the national average and vice versa if it is
below. The economy has an auto-rerouting mechanism built into it if population
allocation ever deviates from the equilibrium, by incentivizing people to move to a
productive city.21

20Alternatively, we could model her as an active worker, which complicates our notations without much
gain in insights.

21 The allocation of labor is still not efficient though, due to externalities.
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With feasibility condition (18) and the equilibrium price (19) we obtain GMP
(2) in equilibrium as follows:

Yi = pi∗ ·
(
xi

R
∗
+ xi

L
∗)

= (α + β)B
(
Si
)

Si + βB
(
Si
)

Si︸                           ︷︷                           ︸
Reported portion of GMP Yi (3)

+B
(
Si
) (
γSi + 1

)

= (1 + β)B
(
Si
)

Si + B
(
Si
)
.

(20)

On the second line in (20) are the value of composite goods, housing and leisure
for each. Only the first two are included in the actual GMP.

Equilibrium GMP (20) leads to the following:

Proposition 3.1: Citywide Scale Economies in Intracity Economy

Consider the equilibrium in an intracity economy Pi. The reported portion of GMP Yi

exhibits increasing returns to scale in size Si iff Bi
(
Si
)

Si exhibits increasing returns to
scale in Si.

Proof. Apparent from (20). �

In reference to section 2.3, observed data seem to suggest that positive external-
ity does outstrip negative externality. However, as we will see in proposition 3.2,
citywide scale economies in intercity equilibrium will be positive without assuming
increasing returns to scale on Bi

(
Si
)

Si.

3.2.2 Intercity Equilibrium

To find the intercity equilibrium in definition 3.4, rewrite indifference principle (7)
in terms of a utility function (13) so that indirect utility u

(
xi

R
∗)
= u

(
x j

R

∗)
for any i

and j with Si, S j > 0. This leads to

Bi
(
Si
) (

Si
) −β
α
= B j

(
S j

) (
S j

) −β
α C K, (21)

where K is a location-invariant constant. According to (20), GMP is Yi = (1 +

β)K
(
Si
) β
α+1
+ K

(
Si
) β
α and the reported portion of GMP will be

Yi = (α + 2β)K
(
Si
) β
α+1

(22)

in the neighborhood of the equilibrium size, which breaks down into composite

goods production/consumption (α+β)K
(
Si
) β
α+1

and housing production/consumption

of βK
(
Si
) β
α+1

. Note that productivity parameter Ai no longer makes an explicit ap-
pearance in (22) but GMP is still positively related to it as a high value of Ai is
reflected in Yi through increased Si. Now we have
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Proposition 3.2: Citywide Scale Economies in Intercity Economy

If an intercity economy P is in equilibrium, the reported portion of GMP Yi exhibits in-
creasing returns to size in the neighborhood of equilibrium size Si.

Proof. Immediate from (22). �

In comparison to proposition 3.1 it is curious that we have to assume Bi
(
Si
)

Si

to be increasing returns to scale only in Pi but not in P. The short answer to this
enigma is that free mobility puts the city size where scale economies are at work.

For illustrative purposes, assume that a+
(
Si
)

a−
(
Si
)

takes the form
(
Si
)δ(Si)

. Then

proposition 3.1 specifically requires δ
(
Si
)
> 0 in Pi but proposition 3.2 does not

because perfect mobility will bring δ
(
Si
)

above zero anyway. Now assume that
P is in equilibrium. Suppose that in some city i, size Si rose by one (call this
new resident Axel). In this case, housing consumption will be reduced in the city
because residents have to make room for Axel’s house out of a fixed supply of H,
and he also exacerbates congestion in the city. However, since P is in equilibrium,
reduction in utility level from curtailed housing consumption needs to be offset by
either ci

R or li
R in compliance with utility equalization (7). Since li

R is independent of
size (i.e., leisure consumption does not and cannot accommodate the change to the
city residents introduced by Axel), compensation must be made through increased
consumption in ci

R alone. Then the question is: Can he produce enough composite
goods to leave everyone in city i on the same indifference curve?

It is the answer to this question that makes P increasing returns to scale in

size in equilibrium. The marginal rate of substitution between ci
R and hi

R is
β

α

ci
R

hi
R

baskets of composite goods for each ft2. Now, Axel carves
∂hi

R

∂Si =
hi

R

Si ft2 from every

resident’s lot in the city. Thus, each city resident needs to have
(
β

α

ci
R

hi
R

)
hi

R

Si =
β

α
ci

R
1
Si

more baskets to keep to the countrywide utility level (or else the current allocation
will not be an equilibrium). Then the addition of Axel into the city needs to raise
the individual production of composite goods as follows:

∂ f
(
· ; Si

)
∂Si =

β

α
f
(
· ; Si

) 1
Si

⇒ δ
(
Si
)

Ai
(
Si
)δ(Si)−1

=
β

α
Ai

(
Si
)δ(Si)−1

⇒ δ
(
Si
)
=
β

α
(> 0).

(23)

22 If not, for example, if δ
(
Si
)
<
β
α , then Axel cannot make up for the lost individ-

ual housing unit by producing more composite goods through enhanced pooled
production externality net of the congestion externality. The knowledge spillover
effect he brings in (less the congestion externality he exerts) is not enough to render

22We took the landlady out of equation because her marginal rate of substitution between composite
goods and housing is zero. Cutbacks in housing lot do not affect her at all due to her preferences (16).
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the dwindled housing consumption tolerable for the current residents. In this case,
city i is better off bumping him out, i.e., it should reduce Si, contradicting the fact
that P is in equilibrium. And vice versa, city i should be larger if δ

(
Si
)
>
β
α . Every-

one welcomes Axel and wants more residents to move in in this case. Thus, free
mobility arbitrages the gap between externality component δ

(
Si
)

and countrywide

constant βα and forces the city to operate in the domain where scale economies are
present (otherwise, there will still be an in- or out-flow of people). Note that utility
equalization (7) only applies to cities with Si > 0. If a city’s aggregate production
function does not exhibit increasing returns to scale anywhere over 0 < Si ≤ S, then
the city will not survive and turns rural in the end. At such a location, δ

(
Si
)
<
β
α

and all the residents will be drained off to other cities until Si becomes zero.23 Thus,
increasing returns to scale at the aggregate level are an eligibility requirement to
be listed under MSA. See appendix A.2 for further discussion on scale economies
in P as opposed to Pi.

Note, however, that the preceding argument makes a reference only to the in-
tercity utility level and it is not a normative assertion of utility maximization with
respect to city size. The equilibrium city size does not necessarily coincide with
the optimal city size where utility level is maximized. Free mobility simply assigns
workers to each city according to exogenously drawn productivity parameter Ai so
as to even out the utility level across the country. For instance, Boston could use
more people to raise its intracity utility level while New York could use less people
to raise its intracity utility level. Nevertheless, the city size distribution may stay
put as long as the utility level is equalized among cities. A worker makes a loca-
tion choice based on her own utility level without reference to her effect on existing
residents’ welfare. A social planner may impose an optimal allocation of workers
to maximize a population-weighted utility level over the country for example, but
he will have to forgo utility equalization (7) to do so, which may not be sustainable
in practice.

It is crucial that we unbundle housing consumption from the composite good. If
we include housing as part of a composite good, per capita consumption level, and
consequently individual production levels will be the same across the cities because
the consumption of leisure is the same everywhere and free mobility guarantees an
equal utility level. Then aggregate production level becomes directly proportional
to the city size. Alternatively, we can unbundle the composite good and create mar-
kets for many commodities. In that case we may have increasing returns to scale in
production but the price of individual commodities tend to negate the variations in
output levels and GMP will be only proportional to the city size. A positive tech-
nological shock enhances the production, which reduces the equilibrium price in
a perfectly competitive market. Thus, the value of the output will exhibit constant
returns to scale, which is not compatible with our findings in section 2.3. We will
have to forgo the assumption of perfectly competitive market in this case.

23 Notice that as the expenditure share of housing β increases, it becomes harder and harder to meet the
condition (23) and more cities will be abandoned and fewer cities will survive. As we will see later, (24)
confirms that a rise in β will skew the distribution.
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3.3 Distribution of GMP

Eeckhout [Eec04] has shown that Si follows the lognormal distribution using the
central limit theorem. The equilibrium size of a city can be written as a sum of
the log of error terms over time. The city size depends on the cumulative effect of
multiplicative nature rather than of additive nature [LSA01], leading to the lognor-
mal distribution (see appendix A.3 for details). In particular log

(
Si
)
∼ N

(
µS, σ2

S

)
.

In conjunction with (22) we obtain the following:

Proposition 3.3: GMP Distribution

The reported portion of GMP follows a lognormal distribution:

log Y ∼ N

( βα + 1
)
µs + log(α + 2β)K,

{(
β

α
+ 1

)
σs

}2 (24)

There is a log-linear relationship between GMP and city size (22) and city size
follows a lognormal distribution. Naturally, GMP also follows a lognormal distri-
bution by extension. The variance of log(Y) is inflated by β

α + 1 due to citywide
scale economies (proposition 3.2). This observation is consistent with our findings
in section 2.2. GMP (in log scale) spreads further than its city-size counterpart in
P.

Eeckhout [Eec04] also establishes the Gibrat’s law
d log Si

t
dt ≈ ϵ (t denotes time.

See appendix A.3). Then from (22),

d log Yi
t

dt
=

(
β

α
+ 1

)
d log Si

t

dt
≈

(
β

α
+ 1

)
ϵi

t,

where ϵi
t is an i.i.d. random variable. Thus GMP also follows the Gibrat’s law. Note

that variation in Yi is inflated by β
α + 1 and this is coherent with our empirical

findings in section 4.1.

4 Empirical Implementation

4.1 Distribution of GMP

We will put proposition 3.3 to an empirical test in this section. First, rewrite the
GMP distribution (24) as log Y ∼ N(µ, σ2). The maximum likelihood estimator of

(24) is µ̂ =
∑

log Yi

N and σ̂2 =
∑

(log Yi−µ̂)
N

2
. We report our estimations in table 5 with

supporting density plots in figure 9. Housing portion of GMP, βK
(
Si
) β
α+1

, is also
available and they are expected to follow the lognormal distribution as well.

The overall fit is not too far off. The maximum discrepancy between the em-
pirical and estimated CDF (Kolomogorov-Smirnov statistic) is .1032. We are more
than certain that the fit would improve if we used an inclusive data set. Due to
truncation to the left of the distribution, the tail end of the distribution does not
extend as far as the theory predicts to the left. At this point we do not have GMP
data for smaller cities. Hopefully GMP on micropolitan statistical areas or census-
designated places will become available someday but we will settle for MSA data
for now.

20



A Spatial Production Economy Explains Gross Metropolitan Product

Employment GMP Housing

Data Size I 366 366 323
Censored (Unreported Cities) 0% 0% 11.75%
Censored (Unreported Value) 0% 0% 13.87%

Estimated Mean µ̂S, µ̂ 12.68 23.13 20.66
Estimated Variance σ̂2

S, σ̂2 1.128 1.478 2.133

Theoretical Variance
{(
β̂
α̂ + 1

)
σ̂S

}2
– 1.571 1.571

Log Likelihood/I .2709 .2370 .1968
Kolomogorov-Smirnov Statistic .1122 .1032 .1031

Table 5.
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(a) CDF of GMP
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(b) PDF of GMP
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(c) PP Plot of GMP
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Figure 9.

As we will see in section 4.2, the ratio between β and α is .1800. Following the
GMP distribution (24), the theoretically expected value of σ2 is (1.180σ̂2

S)2 = 1.571
(cf. theoretical variance in table 5). Our expected variance in GMP computed from
the expected expenditure shares α and β and estimated variance σ2 in employment
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is very close to the actual variance in GMP (we missed the actual value only by
5.86%). This confirms the validity of the form (24) along with the selection of the
utility and production functions in section 3.2. On the other hand, the variance on
housing is lager than the theoretical value by 35.86%. We will explore the cause of
the large gap in housing in section 4.2.

4.2 Scale Economies

According to (22), the ratio between GMP and housing is α + 2β to β. The actual
ratio is $1.162e+13 to $1.603e+12 among the MSA’s, indicating that the expenditure

share β of the housing sector is 13.23%.24 Hence, the expected ratio β̂
α̂ = .1800.

Taking a log of (22),

log Yi = log(α + 2β)K +
(
β

α
+ 1

)
log

(
Si
)
= log(α + 2β)K + 1.180 log

(
Si
)
.

The actual value of the coefficient is 1.117 in table 4 rather than 1.180, meaning that
our model overshoots the coefficient by only 5.64% (or, the economy is off where

it should be by 5.64%). The housing portion of GMP log βK
(
Si
) β
α+1

also shares the
same coefficient in (22). Here the predicted value comes short of the actual value
by 10.59%. The large discrepancy may be because of the censored data,25 or the
landlords’ or developers’ registered addresses, which may be different from the
city where they have their real estate. The fact that imputed rent is excluded and
that houses usually last longer than the duration of a fiscal year exacerbates the
deviation even further.

5 Conclusion and Extensions

We have discovered that the GMP distribution shares the same pattern as the
city-size distribution, and we sought a systematic illustration of how our local
economies are related to their employment and output levels on a national scale.
Proposition 3.2 further revealed that GMP grows more than 1% against a 1% growth
in employment. Large cities make up for an exceeding share of GDP and they do
so more than their city size alone can account for. Consequently, due to agglomera-
tion economies of GMP in employment, the GMP distribution is even more skewed
than the city-size distribution.

We constructed a production economy model that endogenously gives rise to
agglomeration economies in equilibrium. The interplay between externalities and
housing consumption drives the cities to operate at the size where increasing re-
turns to scale are present. Empirical testing verifies our model prediction; however,

24Note that GDP includes real estate sales and excludes imputed rent. Thus, the figure does not neces-
sarily represent the expenditure share in a particular year.

25 Housing output values are not reported for all MSA’s and the missed portion is not negligible. For
example, housing sector in Dallas (rank #4 in employment) is censored out of the data. However, these
censored values are included in the nationwide aggregate.
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the result could be made better off. Due to data truncation, our predicted distribu-
tion does not trace the lower end of the distribution well. Ideally, we would like to
test our prediction with an exhaustive data set, which, for the moment, does not
exist.

Our objective was to explain the GMP distribution in a consistent manner. As
far as we know this is the first attempt to analyze GMP as a distribution. Along
the way, we have left several prospects for future work. We assumed a single-input
production function. Local output may well be affected by capital, educational
attainment, location of the city, access to a rich labor pool, or urban infrastructure,
which, obviously vary from city to city. We also packed the consumption goods
other than housing and leisure into a single basket. In reality a city comes with
various industries. Some of them may exhibit increasing returns to scale and some
may not both within and across the industries. Cross-sectional GMP analysis is
called for to decode the internal workings of local economies that, on aggregate,
exhibits increasing returns to scale and a fat-tail distribution. Lastly, we assumed
that all goods are immobile. Data reported by the Bureau of Economic Analysis are
based on tax filed in each MSA. As such, the scope of GMP matches the range of
production in MSA, but it does not necessarily match the range of consumption in
the city. The openness of a spatial economy may be addressed by adding shipping
firms to the production economy. One way to do so is to assume that a shipping
firm takes composite goods in city i as input and ”produces” the same composite
good in city j as output, in less than a one-to-one ratio to reflect shipping charges
of iceberg form.

A Appendix

A.1 Analysis of Variance

Figure 10 presents the kernel estimate of GMP growth rate. Aside from an increase
in variance in the lower mid range and decrease in the mid range, there does not
seem to be a systematic correlation between GMP and its variance in growth rate.

A.2 Unconditional Scale Economies

To further understand the reasoning behind proposition 3.2, conduct comparative
statics on β

α . Imagine that β goes down (or equivalently, α goes up). In intracity
equilibrium in Pi, Bi

(
Si
)

can take any value. In intercity equilibrium in P, Bi
(
Si
)

is
subject to utility equalization condition (21). As the expenditure share of housing β
decreases, we can pack lots of people in a city (because they do not care about the
lot size much) and produce lots of composite goods (which they do care about).
The story ends here in Pi. In P, it goes further. Increased city size makes the
city appealing because people are willing to swap a large parcel of land for only a
few composite goods to squeeze Axel in when β is small. People view a large city
with small houses more favorably than a small city with large houses. To offset
the rush of people into a large city, the effective wage rate (19) in the city goes
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(a) Kernel Density Estimation
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Figure 10.

down in equilibrium to meet the shared utility level (7). Pi does not factor in the
levelling effect of the wage across the cities as much as P does. Notice that as β
becomes smaller, scale economies also weaken because the residents do not care
about housing, and they become more willing to give up their land in exchange
for even a limited increase in composite goods. Housing market is indispensable
in this sense to observe endogenously induced agglomeration economies in P.

This observation compares to a closed and open monocentric city model (cf. Brueckner
[Bru87]). In a closed monocentric city, size is exogenous but utility level is endoge-
nous just as in Pi. In an open monocentric city, size is endogenous but utility level
has to match the national level as in P. Since the wage rate depends on city size, P
picks the levelling effect of wage but Pi does not, and therefore, we have to throw
in an additional assumption for Pi.

A.3 The City-Size Distribution and Gibrat’s Law

Denote discrete time by subscript t and define Λ
(
Si

t

)
B a+

(
Si

t

)
a−

(
Si

t

) (
Si

t

) −β
α and

suppose Λ(·) is invertible in the neighborhood of equilibrium Si. Then Ai
tΛ

(
Si

t

)
= K

from (21) so that Si
t = Λ

−1(K/Ai
t). With the law of motion Ai

t = (1 + σi
t)A

i
t−1, we have

Si
t = (1 + ϵi

t)S
i
t−1, (25)

where 1 + ϵi
t B 1/Λ−1(1 + σi

t). Then

d log Si
t

dt
≈ ϵi

t,

for a small ϵ, leading to the Gibrat’s law. Computing the city size recursively, (25)
also implies

log Si
t ≈ log Si

0 +

t∑
τ=1

ϵi
t,

which leads to the lognormal city-size distribution as t → ∞ by the central limit
theorem. See [Eec04] for details.
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