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Abstract

We combine spatial and monopolistic competition to study market interactions between downtown

retailers and an outlying shopping mall. Consumers shop at either marketplace or at both, and buy

each variety in volume. The market solution stems from the interplay between the market expansion

e�ect generated by consumers seeking more opportunities, and the competition e�ect. Firms' pro�ts

increase (decrease) with the entry of local competitors when the former (latter) dominates. Downtown

retailers swiftly vanish when the mall is large. A predatory but e�cient mall need not be regulated,

whereas the regulator must restrict the size of a mall accommodating downtown retailers.
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1 Introduction

In North Decatur, Georgia (United States), local residents have recently come out against the con-

struction of a Walmart supermarket. Common criticisms were that Walmart's presence eliminates

more jobs than it creates; lowers a community's quality of life by eroding local tax bases; and,

through aggressively low pricing, kills small or family-owned businesses. Such an attitude toward

large discount stores has a long history in the United States and may be encountered both in urban

and rural communities (Courser, 2005). But this is only one facet of the problem. Competition

between small downtown retailers and out-of-town shopping malls has important implications for

the residential structure of cities and the quality of urban life. In particular, constructing large

shopping malls in suburbia has exacerbated the extent of urban sprawl and contributed to the hol-

lowing out of city centers. According to Fogelson (2005), �the decentralization of the department

store is one of the main reasons that the central business district, once the mecca for shoppers,

does less than 5 percent of the retail trade of metropolitan areas everywhere but in New York,

New Orleans, and San Francisco.�

Those issues have been tackled mainly from the urban planning viewpoint, an approach that

typically disregards the competition and welfare aspects. In this paper, we aim to develop a

new framework that combines spatial competition (Hotelling, 1929) and monopolistic competition

(Dixit and Stiglitz, 1977). In our framework, the city has two shopping locations: one is downtown

(shopping street) and is composed of many retailers; the other is set up at the city outskirts

(shopping mall) and is run by a developer.1 Each downtown retailer is too small to a�ect the

market outcome and treats its competitors' strategies as a given. In contrast, the mall developer

is a big player who manipulates the market. Consumers are exogenously dispersed between the

two marketplaces and bear speci�c travel costs to acquire the varieties available in each one.

Though consumers' shopping behavior has several determinants (Teller, 2008), we focus on two

�rst-order forces a�ecting consumer attitudes: love for variety, and travelling costs. The former

expresses consumers' desire to access a broad range of choices; the latter re�ects the economic im-

portance of shopping costs in consumers' budget. For example, American households spend almost

the same amount of their overall travel time to go to work and to go shopping, i.e., 23.6 percent

versus 21.8 percent (Couture et al., 2012). By combining spatial and monopolistic competition, we

are able to disentangle the various e�ects triggered by these two opposing forces. Although price

di�erence is a major determinant of consumer behavior, our initial setting assumes that prices are

the same in the two shopping places. This allows us to capture in a simple way a wide range of

interactions between these places. Furthermore, we show later that our approach displays enough

versatility to account for price di�erences as well as various types of asymmetries between the two

1The reasons why retailers are agglomerated at the city center are not addressed in this paper. However, it is
well known that, when travel costs are not too high, being clustered in a few places allows �rms to bene�t from
agglomeration economies that overshadow the market crowding e�ect (Wolinsky, 1983; Stahl, 1987; Fujita and
Thisse, 2013).
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marketplaces.

One-stop shopping is cheaper and thus more appealing to consumers than two-stop shopping.

However, since consumers love variety, shopping behavior depends not only on the travel costs but

also on the range of goods available in each shopping place. This has an important consequence:

unlike standard models of spatial competition, market areas overlap. The extent of overlapping

hinges on the number of �rms located in each shopping place and the travel costs. Moreover, both

the individual consumption of a variety and the product range consumed also change with the

consumer's shopping behavior. These are important considerations that have been neglected in

the industrial organization literature where every consumer typically buys one unit of a variety.

Our main �ndings may be summarized as follows. First, the market outcome stems from the

interplay between two opposing forces. The �rst, the market expansion e�ect, is generated by

consumers seeking more opportunities. As a result, the entry of competitors generates a network

e�ect that makes a shopping location more attractive.2 The second force amounts to a market

competition e�ect: consumption of a variety obtained from each shop decreases as the size of the

marketplace increases, and as the number of marketplaces visited by the consumer goes up. When

the network e�ect is su�ciently strong, we show that entry in a marketplace is pro�t-increasing.3

Equally important is the fact that consumers are attracted by marketplaces that are close by

because of travel costs. Combining the distance and network e�ects implies that consumers'

shopping behavior is driven by gravitational forces whose intensity increases with the size of a

marketplace and decreases as the distance grows between consumers and the marketplace.

As predicted by the North Decatur anti-Walmart activists, the number of downtown retailers

shrinks as the outlying shopping mall grows. Less expected, perhaps, is that the city commercial

center swiftly vanishes when the size of the out-of-town shopping mall is su�ciently large. This

result highlights the main forces at work in our setting and, therefore, deserves more explanation.

Establishing new stores at the city outskirts diverts consumers from visiting downtown retailers.

This in turn leads to a contraction of the central commercial district through the exit of retailers,

which makes this marketplace even less attractive. The overall e�ect is to further reduce the

number of customers, which cuts down the number of retailers once more. When the relative size

of the downtown shopping area is small enough, this keeps going on until no �rm operates in the

city center.

Second, we con�rm the well-documented fact that the disappearance of downtown retailers is

more likely to arise in small or poor cities. In a large or rich city, the mall developer must build

a large capacity to attract all customers. To be precise, the mall size needed to drive downtown

retailers out of business may be too big for a predatory strategy to be pro�table. In this event, the

developer chooses to accommodate the presence of downtown retailers. This situation may also

2This is reminiscent of Chou and Shy (1990) who analyze endogenous network e�ects without network external-
ities, but the sources of such e�ects are very di�erent.

3Note that Schulz and Stahl (1996) and Chen and Riordan (2008) obtain pro�t-increasing competition in di�erent,
but related, models.
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arise because local governments adopt policies aimed at maintaining the city center's attractiveness

through the supply of various types of urban amenities. On the contrary, large-scale economies in

logistics have allowed outlying shopping malls to become more attractive through lower prices.

Third, the question whether mall developers should be regulated or not is a priori unclear. Yet

speculation on this issue has never been in short supply, and this is one of the main questions

that local decision makers would like to be addressed. Our analysis suggests a quali�ed answer.

Regulation is needed when the mall developer is not e�cient enough to capture the whole market:

the regulator always selects a smaller size for the mall than the size that would emerge under

free competition. In contrast, when the mall developer is very e�cient, the regulator should not

intervene: the market outcome is socially optimal despite the disappearance of downtown retailers.

Tackling the issue from a political economy perspective, we also show that a majority of con-

sumers is opposed to an outlying shopping mall, even when the opening of such a mall is socially

desirable. This might provide a rationale for the widespread hostile attitude of citizen groups and

city councils toward the entry of big-box stores. Combining these results could explain both the

relatively poor performance of the retailing sector in England and other European countries where

tough land use regulation restricts the size of big box stores (Cheshire et al., 2013) and the inertia

observed in reforming existing planning practices in many European countries where pro-small

retailers' lobbies are very active.

Fourth, our baseline model being fairly elementary, we �nd it important to check the robustness

of our results. To this end, we consider four extensions. In the �rst one, downtown retailers and mall

stores are heterogeneous, charge di�erent prices, and o�er di�erent amenities to their customers.

We show how these asymmetries a�ect the behavior and size of the marketplaces. In the second

extension, we stress that a large city is more likely to keep a lively downtown than a small city. In

the third one, we show that urban sprawl raises the competitive advantage of out-of-town malls

at the expense of downtown retailers. In the last extension, we discuss the impact of the mall

location.

Note, �nally, that in the wake of Hotelling (1929) we can reinterpret our model to describe a

population of consumers heterogeneous in their attitude toward the organizational form used to

supply di�erentiated goods - think of bakeries, breweries, or bookstores. The good can be either

produced and sold by a large integrated �rm or provided by many small �rms. Some consumers

may have a marked preference for one organizational form over the other, whereas the others are

more or less indi�erent. Our results can then be used to show how the two organizational forms

interact to shape the structure of the industry.

Related literature. In the literature on consumers' search, it is typically assumed that

visiting a new shop generates the same given cost as any other one (McMillan and Rothschild

1994). Wolinsky (1983) is a noticeable exception in which search costs vary with the location of

shops. Schulz and Stahl (1996) consider a market for di�erentiated products in which imperfectly

informed agents engage in costly search for the best variety-price combination, while Armstrong
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and Vickers (2010) allow for two-stop shopping. Unlike us, these various authors assume that

the volumes and product ranges consumed are independent of �rms' strategies and individual

shopping behavior. Moreover, they do not consider competition between marketplaces of di�erent

size and di�erent organizational structure. Smith and Hay (2005) study competition between two

spatially separate marketplaces but there are three major di�erences between their approach and

ours. First, their consumers are one-stop shoppers. Second, the individual demand for a variety is

perfectly inelastic. Third, their marketplaces have the same organizational structure. Our paper,

because it combines a large number of small businesses and one big developer, also contributes to

the recent literature that focuses on competition between �large� and �small� �rms, namely �rms

that di�er in nature, not just in type (Shimomura and Thisse, 2012).

Finally, our model is related to the literature on vertical relations where a typical question is how

di�erent types of contracts between upstream and downstream �rms a�ect the market structure

and social welfare. We address a similar issue but our approach has features that distinguish it

from the existing literature: the upstream �rm (the mall developer) produces a scarce input (slots

for shops) and chooses both the number of downstream �rms (the mall stores) that will get a slot

and its price. Since the slot price may be interpreted as a �xed cost of downstream �rms, the mall

developer does not a�ect directly these �rms' price and outputs. However, as in Chemla (2003),

it does so indirectly through the number of operating downstream �rms. It thus seems fair to say

that our model ties together di�erent strands of literature.

The paper is organized as follows. The model is described in Section 2, focusing on a shopping

mall. However, we show that most of our analysis still holds for the more technically involved case

of a supermarket such as Walmart. In Section 3, we study how downtown retailers are a�ected

by the size of the shopping mall, and how mall stores are a�ected by the size of the downtown

shopping district. In Section 4, the market outcome is determined as the perfect Nash equilibrium

of a sequential game involving a mall developer, who chooses the number of slots he sells/rents to

stores; mall stores, which buy/rent a slot in the shopping mall; and a large number of retailers,

which locate in the city center. In Section 5, we investigate the welfare implications of regulating

shopping malls and provide a political economy analysis of big retailers' entry. Section 6 studies

extensions of the baseline model, namely, cost and quality asymmetries between downtown retailers

and mall stores; the impact of city size and population density; and the location of the shopping

mall. Section 7 concludes. In particular, we show how our setting can be reinterpreted to describe

consumers having heterogeneous tastes for di�erent shopping environments.

5



2 The Model and Preliminary Results

2.1 Consumers and sellers

Consider a linear city populated with a unit mass of consumers distributed with a uniform density

over [0, 1]. The cases of a variable population size and a non-uniform population density are

discussed in Section 6. Let x ∈ [0, 1] denote a consumer's location and her distance to the SST.

The city has two marketplaces. The �rst one is a shopping street (SST) located in the central

business district at x = 0. The second one is a shopping mall (SM) located at x = 1. The SM is

located at the city limit because such a location allows o�ering the customers various facilities, e.g.

parking, which can hardly be provided at the city center where the price of land is much higher.

In what follows, the SST and the SM are referred to as shopping or marketplaces.

There are two goods, that is, a horizontally di�erentiated good and an outside good. The

di�erentiated good is supplied by a large number (formally, a continuum) of pro�t-maximizing

�rms; each one is free to choose in which marketplace to locate its shop. We use the term retailers

to refer to the �rms located in the SST, while those accommodated by the SM are called stores.

We refer to the SST and SM as the city's shopping centers. Each �rm supplies a single variety and

each variety is supplied by a single �rm. Hence, varieties available in the two shopping places are

di�erentiated. The outside good is supplied by perfectly competitive �rms located at x = 0 and

x = 1; it is chosen as the numeraire.

Consumers. Consumers share the same CES preferences over the di�erentiated good, which

are nested in a quasi-linear utility:4

U ≡ 1

ρ
ln

(
I(SST )

ˆ n

0

qρi di+ I(SM)

ˆ N

0

Qρ
jdj

)
+ A (1)

where n (N) is the mass of varieties supplied in the SST (SM), qi (Qj) the consumption of the ith

variety (jth variety) variety available in the SST (SM), 0 < ρ < 1, and A the consumption of the

numeraire. The unit of the di�erentiated good is chosen for the coe�cient of the logarithm to be

equal to 1/ρ. In (1), I(k) is the indicator function de�ned as follows:

I(k) ≡

1 when the consumer visits k ∈ {SST, SM}

0 otherwise.

Because preferences are symmetric, the utility of consuming a variety available in the SST is the

same as the utility of a variety supplied in the SM. Given (1), it is readily veri�ed that a consumer

buys a strictly positive amount of the di�erentiated good, for otherwise its utility equals −∞. As

a consequence, every consumer visits at least one shopping location. Since consumers have a love

4The partial equilibrium approach used here is more in the spirit of industrial organization. An urban economics
approach would favor a general equilibrium setting in which shopping expenditure equals income. At the expenses
of a more technical analysis, our setting can be modi�ed to account for income e�ects.
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for variety, they have an incentive to visit the two of them. However, travelling to a shopping

place requires is costly. In standard models of spatial competition, travel costs are proportional to

the distance covered and the quantities shipped. This approach is not suitable to study shopping

places because, once a consumer is in the STT or the SM, it does not have to pay additional costs

to visit all the sellers established therein. By implication, there are scope economies in shopping.

They are captured by assuming that consumers bear travel costs independent of the quantities of

goods they purchase, but linear in the distance to the shopping place. In other words, individual

outlays on transportation are lump-sum (Stahl, 1982, 1987). Let τ > 0 be the travel cost per unit

distance. Hence, a consumer residing at x faces the budget constraint:

I(SST )

(ˆ n

0

piqidi+ τx

)
+ I(SM)

(ˆ N

0

PjQjdj + τ(1− x)

)
+ A ≤ Y (2)

where pi (Pj) the price of the ith (jth) variety supplied in the SST (SM). We assume that the

income Y is su�ciently high for the consumption of the numeraire to be positive in equilibrium.

If a consumer visits the SST (SM) only, its inverse demand for a variety i (j) is given by

pi =
e0q

ρ−1
i

A0(q)

(
Pj =

e1Q
ρ−1
j

A1(Q)

)
(3)

whereas its respective inverse demands are given by

pi =
(e0 + e1)qρ−1

i

A(q,Q)
Pj =

(e0 + e1)Qρ−1
j

A(q,Q)
(4)

when it visits both marketplaces.

In these expressions, A0(q), A1(Q) and A(q,Q) are market aggregates given by

A0(q) ≡
ˆ n

0

qρkdk

(
A1(Q) ≡

ˆ N

0

Qρ
l dl

)

A(q,Q) ≡
ˆ n

0

qρkdk +

ˆ N

0

Qρ
l dl

while e0 (e1) is the consumer's expenditure in the SST (SM). It follows from (1) and (2) that e0 = 1

and e1 = 0 if the consumer patronizes the SST only; e0 = 0 and e1 = 1 if it visits the SM only;

and e0 + e1 = 1 if it goes to both places. Thus, regardless of its shopping behavior, the consumer

spends one unit of the numeraire on the di�erentiated good, but the values of e0 and e1 depend

on the consumer's shopping behavior.

The above discussion highlights the di�erences between the Hotelling setting and ours. In

the former, each consumer buys one unit of the good from a single marketplace; in the latter,

each consumer buys a variable quantity of the good from one or two marketplaces, but her total

expenditures are exogenous.
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Sellers. We assume that both retailers and stores share the same marginal production cost

c. Because a seller is negligible to the market, its own price choice has no impact on the market

aggregates A0, A1 and A in (3) and (4). For the same reason, a seller's price choice also has no

impact either on the number of customers visiting the shopping place in which the seller is set up.

Therefore, each seller faces an isoelastic demand, which implies that the pro�t-maximizing prices

are the same across all varieties and given by

p∗ = P ∗ =
c

ρ
. (5)

Consequently, as in Dixit and Stiglitz (1977), pro�t-maximizing prices are una�ected by the

number of competitors and market size. Admittedly, these properties are very restrictive. Our line

of defence involves the following arguments. First, our model can easily be extended to cope with

discount retailing. For example, if stores are more e�cient than retailers, i.e. c1 < c0, varieties are

cheaper in the SM than in the SST but the price ratio p∗/P ∗ > 1 remains independent of n and

N . Everything else being equal, this makes the SM relatively more attractive than the SST. We

return to this issue in Section 6. Second, as argued in the concluding section, most of our results

remain valid for a wider class of preferences that accounts for price competition between sellers.

We have chosen to work with the CES because it allows us to obtain simple closed-form solutions

as well as to disentangle size and distance e�ects from price e�ects.

Third, the out-of-town shopping place is established by a pro�t-maximizing developer who runs

a shopping mall - the developer choosing the number of independent shops that will be included in

the mall and a renting price. Alternatively, the developer could run a supermarket, which means

that the developer selects the number of stores and also the price at which they sell their product.5

Thus, a supermarket may be viewed as a vertically integrated �rm, whereas a shopping mall can be

described by a vertical relationship involving one upstream producer and a myriad of downstream

shop-keepers. If the developer operates a supermarket, the symmetry of preferences implies that

all varieties are sold at the same pro�t-maximizing price P̄ . Therefore, we can redo the same

analysis by replacing P ∗ with P̄ . How the supermarket chooses P̄ is immaterial for our purpose.

Last, in Section 6.1, we show that consumers may have a preference for one type of marketplace

over the other.

Although we assume that retailers act noncooperatively, we recognize that small-business as-

sociations aim to exchange their political in�uence for governmental policies that compensate for

their weakness in the marketplace. In the same vein, coalitions of local merchants and community

leaders work to improve local public spaces, which takes the concrete form of urban amenities and

pedestrian areas. These issues are discussed in the extensions of our baseline model.

5In this case, the pricing rule (5) still holds for the retailers, but not for the stores because the developer
internalizes the cannibalization e�ect generated by the sale of substitutes.
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2.2 Shopping behavior

Consumer shopping behavior is driven by utility maximization. Since both retailers and stores

charge the same price while the degree of product di�erentiation is the same in the two shopping

areas, the number of consumers drawn by a marketplace hinges only upon the mass of varieties

it supplies relatively to the mass of varieties provided by the other shopping place. However, as

will be shown below, the individual utility level varies with the number of varieties supplied in

each shopping place, n and N , as well as with the total number of varieties, n + N . To simplify

notation, we choose the unit of the numeraire for c/ρ to be equal to 1.

Three shopping patterns may arise.

(i) I(SST ) = I(SM) = 1. The consumer shops at both marketplaces. Using (4) and (5), it is

readily veri�ed that such a consumer buys the same quantity of each of the n+N varieties:

q = Q =
1

n+N
. (6)

Plugging (6) into (1), we obtain the indirect utility of a consumer visiting the two shopping

places:

V =
ln (n+N)

σ − 1
− τ + (I − 1) (7)

where σ ≡ 1/(1− ρ) is the elasticity of substitution across varieties. Note that (7) is independent

of the consumer location x because τx+ τ(1− x) = τ .

(ii) I(SST ) = 1 and I(SM) = 0. in this event, the consumer prefers a one-stop shopping at

the SST. It follows from (3) and (5) that its demand for a variety is

q =
1

n
(8)

while its indirect utility level is equal to

V0(x) =
lnn

σ − 1
− τx+ (I − 1) (9)

which decreases with x.

(iii) I(SST ) = 0 and I(SM) = 1. When the consumer prefers shopping at the SM only, its

demand is given by

Q =
1

N
. (10)

Such a consumer enjoys an indirect utility level given by

V1(x) =
lnN

σ − 1
− τ(1− x) + (I − 1) (11)

which increases with x. Although the developer does not provide directly varieties, it faces the
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issue of cannibalization that characterizes multi-product �rms: the larger the number of stores in

the SM, the smaller the quantity sold by each store.

Observe that, regardless of the consumer's shopping behavior, its utility level increases at a

decreasing rate with the number of varieties available in the center(s) it chooses to visit. Figure 1

depicts the utility level reached by consumers according to their location. Consumers located near

the middle of the segment are worse-o� than those located close to the shopping places because they

bear higher travel costs. They partially compensate their locational disadvantage by consuming

the entire range of varieties.

Figure 1. Utilities and shopping behavior

Throughout the paper, we will use the following notation. Let ν ≡ N/n be the relative size of

the SM with respect to the SST and

T ≡ exp[(σ − 1)τ ] > 1.

A high (low) value of T means that travel costs are high (low) or varieties are good (poor)

substitutes. The parameter T thus captures the travel and product di�erentiation e�ects, which

are critical in our approach to shopping behavior. Both marketplaces become more attractive
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when either of these parameters decreases. For a given value of τ , more di�erentiated varieties

make both the SST and SM more attractive, while for a given σ, lowering travel costs makes it

easier to visit both marketplaces.

The solution to V0(x) = V1(x) is given by

x̄ =
1

2

(
1− ln ν

lnT

)
so that more consumers visit the SST than the SM if the size of the former exceeds that of the

latter. This expression shows that, for a given T , the two marketplaces cannot be too dissimilar

in size, for otherwise all consumers would patronize the bigger marketplace only.

Our approach to shopping behavior implies the existence of three groups of consumers.

(i) A consumer located at x visits both the SST and the SM if it has a higher utility when it

patronizes both places rather than a single one:

V ≥ max {V0(x), V1(x)} (12)

which is equivalent to x̄0 ≤ x ≤ x̄1 where

x̄0 = max

{
0, 1− ln(1 + ν)

lnT

}
(13)

x̄1 = min

{
1,

ln (1 + 1/ν)

lnT

}
(14)

the second term in (13) and (14) being the solution to, respectively, V = V0(x) and V = V1(x).

For a positive mass of consumers to be two-stop shoppers, it must be that V > V0(x̄) = V1(x̄).

(ii) A consumer at x prefers shopping at the SST if

V0(x) > max {V, V1(x)}

which is equivalent to 0 ≤ x < min {x̄0, x̄}. This interval is nonempty if and only if the consumer

at x = 0 shops at the SST only, which amounts to

ν < T − 1.

In other words, the size advantage of the SM is not su�ciently large for the consumers located

near the SST to bear the additional travel costs to visit the SM. In this case, the consumer

indi�erent between patronizing the sole SST or both shopping places, is located at x = min {x̄0, x̄}.
(iii) Similarly, a consumer at x patronizes only the SM if

V1(x) > max {V, V0(x)}
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which is equivalent to max {x̄1, x̄} < x ≤ 1. This interval is nonempty if and only if the consumer

at x = 1 shops at the SM only, which amounts to

ν >
1

T − 1
.

For our purpose, the most interesting market con�guration involves the existence of the three

groups of consumers, which requires 0 < x̄0 < x̄ < x̄1 < 1. For two-stop shopping to arise, (12)

must hold at x̄, which is not satis�ed in general when T > 4. We also rule out the case in which

all consumers visit the two marketplaces, i.e. x̄0 = 0 and x̄1 = 1. Using (13) and (14), it is readily

veri�ed that these two equalities never hold simultaneously when T > 2. Therefore, in what follows

we focus on the special, but relevant, case in which 2 < T < 4. We will discuss in the concluding

section what our main results become when T ≤ 2 and T ≥ 4.

One of the main distinctive features of our model then lies in the existence of a contention

area [x̄0, x̄1] formed by the two-stop shoppers (see Figure 1 for an illustration). This area widens

(shrinks) as T decreases (increases) because both marketplaces become more (less) attractive.

Consumers living in the contention area split their expenditure between the SST and the SM

according to the wallet shares 1/(1 + ν) and ν/(1 + ν). When ν rises, the SST (SM) has fewer

(more) customers because both x̄0 and x̄1 move to the left (right), and thus fewer (more) consumers

shop downtown. In addition, consumers located in the contention area spend less (more) in the

SST (SM). Thus, unlike standard models of spatial competition, we have two - instead of one -

marginal consumers and a wallet share e�ect that varies with the relative size of the SST and SM.

For any given n and N , it follows immediately from (5), (6), (8), and (10) that the operating

pro�ts of a retailer are given by

πR(n, N) = (1− ρ)

(
x̄0

n
+
x̄1 − x̄0

n+N

)
(15)

whereas those made by a store are such that

πS(n,N) = (1− ρ)

(
x̄1

N
+
x̄1 − x̄0

n+N

)
. (16)

Therefore, the pro�t functions are symmetric:

πS(n, N) = πR(N, n). (17)

3 Competition between Shopping Centers

In this section, we study how competition between the two shopping places is a�ected by an

exogenous change in the size of one marketplace, here the shopping mall. The equilibrium markup

being constant, for any given n, the operating pro�ts of a store are proportional to its demand.
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Since x̄0 and x̄1 are homogeneous of degree 0 in (n, N), this can be achieved by working with

ν = N/n only. Alternatively, (17) implies that the same analysis can be done in terms of µ ≡
1/ν = n/N to study the impact of a change in the STT size.

Consider a �xed number n of retailers and an SM whose relative size is ν. It is then readily

veri�ed that total expenditures in the SM increase with ν. However, this does not imply that the

quantity sold by each store also rises with ν because more �rms compete within the SM.

A store demand is given by

DS(ν) =
1

n

(
1− x̄1

ν
+
x̄1 − x̄0

1 + ν

)
. (18)

The number n of retailers being exogenous, (18) implies that a store demand depends only

upon the SM's relative size. To see how DS varies with ν, consider a marginal increase dν in the

mass of stores:

n dDS = −
(

1− x̄1

ν2
+
x̄1 − x̄0

(1 + ν)2

)
dν − 1

1 + ν
dx̄0 −

(
1

ν
− 1

1 + ν

)
dx̄1. (19)

The �rst term of this expression stands for the �competition e�ect� within the SM when the

market boundaries x̄0 and x̄1 are unchanged. This term, which stems from the deeper fragmentation

of demand associated with a larger number of local varieties, is always negative. The second and

third terms of (19) represent the �market expansion e�ect� generated by a bigger SM. When

more varieties are o�ered in the SM, some consumers located close to the SST choose to visit

both marketplaces instead of shopping at the SST only (x̄0 decreases), whereas more consumers

established in the vicinity of the SM now choose to visit the sole SM (x̄1 decreases). To be precise,

using (13) and (14), it is easy to see that dx̄0 and dx̄1 are both negative. As a result, the second

and third terms of (19) are always positive.

Which e�ect dominates depends on the relative size of the two shopping areas as well as on

the value of T . This interaction distinguishes our model from the existing literature in which

individual demands are perfectly inelastic (Schulz and Stahl, 1996; Gehrig, 1998; Smith and Hay,

2005). Here increasing the number of �rms in a shopping center a�ects a seller's demand through

the number of customers and their individual consumption.

Three cases may arise according to the value of ν.

1. Consider the case where the SM is small, and thus 0 < x̄0 < x̄1 = 1. The demand faced by

a store is given by

DS(ν) =
1

n

1− x̄0

1 + ν
.

Di�erentiating this expression with respect to ν and using (13), we obtain

n
dDS

dν
=

1− ln(1 + ν)

(1 + ν)2 lnT
> 0

13



because ν < 1/(T − 1) < 1. In this case, the market expansion e�ect dominates the competition

e�ect. This is because the boundary x̄0 is very sensitive to an increase in ν, which makes the market

expansion e�ect stronger, whereas there are only a small number of consumers visiting the SM,

and thus the competition e�ect is weak. Hence, when the SM is small, the market expansion e�ect

is su�ciently strong to shift upwards the demand for the varieties supplied by the incumbents. As

a consequence, these stores earn higher pro�ts when they face more competition within the SM.

In other words, there is pro�t-increasing competition.

2. We now come to the con�guration 0 < x̄0 < x̄1 < 1, which arises when the SM is larger but

not too large. Two subcases may arise. In the �rst one, we have T ≤ 2.39. We show in Appendix 1

that the market expansion e�ect still dominates the competition e�ect for all 1/(T−1) < ν < T−1.

The intuition behind this result is that under a high degree of product di�erentiation and/or low

travel costs, both the boundaries x̄0 and x̄1 are very sensitive to an increase in ν, thus generating

a strong market expansion e�ect.

In the second subcase, T exceeds 2.39. In other words, varieties are less di�erentiated and/or

travel costs are higher. We show in Appendix 1 that there exists a threshold ν̄ ∈ [1/(T − 1), T − 1]

such that the market expansion e�ect keeps dominating the competition e�ect provided that ν < ν̄.

Otherwise, raising the number of stores makes the incumbents worse o�. Indeed, the range of

varieties provided by the SM being larger, the marginal utility of new varieties is lower. We fall

back here on the standard result of pro�t-decreasing competition.

3. It remains to consider the case in which the SM is very large. Since x̄0 = 0 < x̄1 < 1, the

demand faced by a store located in the SM is now given by

DS(ν) =
1

n

(
1− x̄1

ν
+

x̄1

1 + ν

)
. (20)

Again, two subcases may arise according to the value of T . First, when T ≤ 2.06, ν̂ > T − 1

exists such that the market expansion e�ect dominates the competition e�ect for all values of

ν ∈]T − 1, ν̂[. Second, when T > 2.06, the competition e�ects becomes stronger than the market

expansion e�ect for all ν > T − 1 (see Appendix 1).

The next proposition summarizes the above results.

Proposition 1. Assume that n is �xed. Then, if the shopping mall is not too big relatively

to the number of retailers established at the SST, a store's pro�t increases with the number of

competitors. In contrast, the pro�ts earned by a store decrease with N when the shopping mall is

big enough.

In other words, a store's pro�t function πS(n, N) is unimodal in N . In contrast, raising the

number of stores in the SM decreases total expenditure in the SST, thus implying that adding

stores to the SM is always detrimental to the retailers. Therefore, a retailer's pro�t function

πR(n,N) decreases with N . It follows from (17) that πR(n,N) is unimodal in n while πS(n,N)

decreases with n when N is �xed.
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The standard thought experiment of spatial competition theory is to study the impact of better

transportation facilities on the market outcome. Because of symmetry, we restrict ourselves to the

case in which the SST is smaller than the SM (n < N). When n < N/(T − 1), the SST attracts

more customers purchasing the whole array of varieties, while the SM retains the same number of

customers. As a consequence, retailers bene�t from lower travel costs. The pattern changes when

n exceeds N/(T − 1). Owing to the better accessibility from everywhere in the city, both shopping

places gain customers. However, because n < N , those who patronized the SST but now shop

in both places spend more in the SM than in the SST. In contrast, those who used to buy from

the SM only keep spending more in the SM. Appendix 2 shows that, in this event, lower travel

costs make the retailers worse o�. Therefore, unlike standard models of spatial competition with

one-stop shopping, the relationship between retailers' pro�ts and travel costs is non-monotonic.

The above analysis has highlighted the market e�ects at work in the process of competition

between spatially separated shopping places. Working with exogenous numbers of retailers and

stores can be justi�ed on the ground that the sizes of the SST and SM may be determined through

di�erent institutional mechanisms. For example, local policies may restrict retailing by allocating

land to o�ces, housing, and transport facilities, whereas laws or antitrust authorities may impose

limits on the size of shopping malls.

4 The Size of Shopping Centers

In this section, we determine the equilibrium size of the shopping places, which have di�erent

organizational forms. The turnover of small retailers being high, free entry and exit prevails in the

SST. In contrast, the SM is built by a pro�t-maximizing developer who charges a fee to the stores

that settle therein. Thus, the developer internalizes the bene�ts associated with size, whereas

retailers maximize their own pro�ts while neglecting the importance to act on an aggregate level.

Independent pro�t-maximizing stores are free to enter by paying a per slot price to the de-

veloper. Because each store is small (precisely, of measure zero), it is natural to assume that the

developer has the whole bargaining power over the per slot price, and thus chooses φ to maximizes

its pro�ts given by

Π ≡ φN −B(ND) (21)

where B(ND) denotes the developer's cost of building an SM of size ND, while N is the number

of stores choosing to set up in the SM and pay the fee φ. Though admittedly simple, this type

of contract is su�cient for us to show our main results. To be sure, more sophisticated contracts

between the developer and stores, which would allow the developer to act as a supermarket, could

be considered. However, investigating such issues would take us far from the main objective of this

paper.

It is historically well documented that downtown retailers have been active long before the

15



appearance of suburban malls (Cohen, 1996; Fogelson, 2005). Thus, we assume that, prior to the

entry of a developer, the SST hosts ne ≡ (1−ρ)/f retailers, that is, the number of �rms prevailing

under free entry in the absence of a shopping mall. The ensuing market process is then described

by the following three-stage game. The developer, stores and retailers are involved in a strategic

environment involving one �large� player and a continuum of �small� players. The timing of the

game is as follows. In the �rst stage, the developer chooses the size ND of the SM and the per

slot price φ he charges to the stores that set up in the SM. When ND = 0, the developer does

not enter. In the second stage, out of a large number of potential �rms (formally, a continuum),

some decide to buy/rent a slot in the SM when ND > 0, some others choose to stay in the SST,

whereas the remaining �rms are out of business. Last, in the third stage, given the SST and SM

sizes, retailers and stores compete in price.

Several reasons justify this staging. First, the developer necessarily commits to a certain size

when it builds an SM. Second, the actual number of stores in the SM depends on how much they

have to pay for a slot. Third, the developer understands that the decisions ND and φ are closely

linked. For example, building a small capacity and charging a low fee are inconsistent because the

SM cannot accommodate the large number of stores attracted by a low fee. As a result, we �nd it

reasonable to assume that the developer chooses ND and φ simultaneously at the �rst stage. Last,

retailers and stores move together because they display a similar �exibility in their investment and

price decisions. Their payo�s are given respectively by (15) and (16). Since Hotelling (1929), the

sequence between the location and price stages is standard in spatial competition models.

We seek a subgame perfect Nash equilibrium and solve the game by backward induction. We

have seen that the equilibrium prices chosen in the third stage are given by (5). In what follows,

we describe the equilibrium outcome of the �rst and second stages.

4.1 The size of the SST under free entry

Retailers bear an exogenous entry cost f , which may be a �xed production cost or a lump-sum tax

to be paid to the city government to set up in the SST. For any given N , a free-entry equilibrium

n∗(N) arises when the zero-pro�t condition

πR(n,N) = f (22)

holds. Assume that ND is large enough for stores to enter the SM until their operating pro�ts

equal the per slot price φ. Under these circumstances, the number N∗(n) of stores in the SM

satis�es the zero-pro�t condition

πS(n,N) = φ. (23)

In other words, the number of stores is determined as if �rms were to operate under monopolistic

competition while facing the �xed cost φ set by the developer. The functions πR(n,N) and πS(n,N)
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being homogeneous of degree −1, πR(µ, 1) and πS(1, ν) are homogeneous of degree 0. Since the

functions πS(1, ·) and πR(·, 1) are identical, N∗(n) is the mirror image of n∗(N). An equilibrium

of a second-stage subgame is thus an intersection point of the two curves n∗(N) and N∗(n).

Because of the presence of network e�ects, there exist several free-entry equilibria. First, as

shown by Figure 2, there are two equilibria such that n∗(N) is strictly positive. However, the

zero-pro�t condition admits solutions that are unstable to small perturbations: the entry (exit) of

an arbitrarily small mass of retailers may trigger a pro�t hike (drop), hence the entry (exit) of new

(existing) retailers. In such a context, it is conventional to re�ne the set of equilibria by requiring

stability. A free-entry equilibrium is stable if the entry of additional sellers reduces pro�ts below

zero:
∂πR
∂n

(n∗, N) < 0.

How does the equilibrium number of retailers n∗(N) vary with the size of the shopping mall?

Clearly, we have
∂πR
∂N

+
∂πR
∂n

dn∗

dN
= 0.

The �rst term of this expression is negative because total expenditure in the SST always

decreases with N (see Section 3). Therefore, dn∗/dN < 0 (> 0) if and only if n∗(N) is a stable

(unstable) equilibrium. In other words, the equilibrium number of retailers decreases (increases)

with the size of the shopping mall when the free-entry equilibrium is stable (unstable).6

Using (13) and (14), it is readily veri�ed that no consumer patronizes the SST when N is

arbitrarily large. Furthermore, we know that πS(1, ν) is unimodal in ν. Therefore, the set of

free-entry equilibria may be described as follows.

Proposition 2. There is a positive threshold N̄ such that (i) if N < N̄ , there exist two free-

entry equilibria, n∗ > n∗∗, where the former is stable and the latter unstable and (ii) if N ≥ N̄ ,

the SST involves no retailers.

Note that, whenever N > 0, n∗ = 0 is also a stable free-entry equilibrium because the SST

is too small for the operating pro�ts made by a few sellers to cover their entry cost. Thus, for

N < N̄ , there exist three equilibria, two are stable and one is unstable, a con�guration which is

typical of models with network e�ects. The pattern of free-entry equilibria as a function of N is

described in Figure 2.

6The existence of the unstable free entry equilibrium is an artefact stemming from the assumption of a continuum
of retailers. If a retailer were of a very small but positive size ε, the unstable equilibrium would cease to be a Nash
equilibrium of the entry game. In this case, an increase in the mass of active �rms by ε would render pro�ts positive,
and thus non-entrant retailers would �nd it pro�table to enter.
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Figure 2. Free entry equilibria

Two more comments are in order. First, when its size is large (N ≥ N̄), the SM is su�ciently

attractive to hollow out the city center. In other words, the SM is so big that the marginal utility

of the additional varieties that the retailers could supply is lower that the travel costs consumers,

even those located in the vicinity of the city center, must bear to go to the SST. By analogy with

the concept of limit price, we refer to N̄ as the limit size of the shopping mall. As a result, when

N < N̄ , the SM never attracts the whole city population and the SST survives as a marketplace.

In other words, for all consumers to visit the SM, it must be that all downtown retailers are out

of business.

Second, an SM having the limit size triggers the complete and sudden disappearance of the

SST. For N < N̄ , Proposition 2 implies that n∗(N) decreases with N . However, n∗(N) does not

decrease smoothly to 0. Indeed, n∗(N) experiences a downward jump to n∗(N̄) = 0. The intuition

behind this result is as follows. When N = N̄ , the remaining retailers make negative pro�ts, and

thus some of them must exit the market. This in turn makes the SST less attractive to consumers

so that fewer of them visit the SST. This unravelling process keeps going on until no retailers are

in business. For such a process to be sustainable, the relative size of the SST must be su�ciently

small, which explains why it occurs when the SM is su�ciently large.

Since N∗(n) and n∗(N) are mirror images, Proposition 2 can be restated in terms of n and

µ = 1/ν, that is, n̄ > 0 exists such that there is no SM if the size of the SST exceeds n̄. As a

result, for downtown retailers and a shopping mall to coexist within the same city, one shopping

place cannot be much larger than the other.

4.2 Competition between stores and retailers

We now determine the equilibrium outcome (n∗, N∗) of the second-stage subgame generated by

(ND, φ). Because characterizing the equilibria for all subgames is long and tedious, we �nd it

convenient to prove an intermediate result that rules out a priori some pairs (n,N).

Claim 1. At any perfect Nash equilibrium such that ND > 0, there is no idle capacity.

Furthermore, the equilibrium per slot price is equal to πS(n∗, N∗).
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(i) Assume that ND > N∗. Then, by slightly reducing ND, the developer saves on building

costs without reducing his revenue. Indeed, N∗ solves the equation πS(n∗, N) = φ, which is

independent of ND. (ii) If φ < πS(n∗, N∗) and N∗ = ND, the developer could increase his pro�t

by charging a higher fee because stores earn positive pro�ts. If φ > πS(n∗, N∗), stores would make

negative pro�ts.

We have seen that, for any N < N̄ , there exist three free-entry equilibria. We follow the

literature and disregard the unstable outcome. Thus, we end up with two stable equilibria. Are

they equally likely? As said above, downtown retailers were active long before the appearance of

suburban malls. Therefore, it seems natural to expect the SST to shrink from ne until it gets into

the basin of attraction of the second stable equilibrium n∗ = N/ν∗ < ne where the melting of the

SST would stop. In other words, the stable equilibrium n∗ = N/ν∗ is more likely to emerge than

n∗ = 0 as a free-entry equilibrium. Thus, we �nd this equilibrium implausible and exclude it.

Alternatively, we can appeal to the concept of coalition-proof Nash equilibrium to justify this

choice. Because a retailer making zero-pro�ts prefers to be in than out of business, the only

coalition-proof Nash equilibrium is the stable free-entry equilibrium involving n∗ > 0 sellers. In-

deed, the incumbent retailers are not willing to exit the market as long as they make zero pro�ts,

whereas the entry of a positive mass of retailers would result in negative pro�ts. The other two

equilibria are not coalition-proof because a positive mass of retailers such that the size of the SST

is n∗ would choose to enter the SST. Nevertheless, we recognize that a big shock can trigger the

sudden disappearance of the SST in a small city (n jumps down from ne to n∗ = 0).

Based on this argument and Claim 1, we �nd it legitimate to restrict the analysis to equilib-

ria (n∗, N∗) of the second-stage subgame such that (i) N∗ = ND, (ii) πS(n∗, N∗) = φ, (iii) if

N∗ < N̄ , then n∗ > 0. Such equilibria are called plausible. In the next claim, we provide a full

characterization of plausible equilibria.

Claim 2. Assume that ND > 0 and πS(n∗(ND), ND) = φ. Then,
(
n∗(ND), ND

)
is a plau-

sible equilibrium. Furthermore, it is unique. If ND < N̄ , then both shopping places are active.

Otherwise, only the SM is active.

(i) Retailers have no incentives to entry/exit for n∗(ND) is a stable free-entry equilibrium. Fur-

thermore, the capacity of the SM prevents further entry in the SM, while stores have no incentives

to exit since their pro�ts are non-negative. Thus,
(
n∗(ND), ND

)
is a plausible equilibrium. Since

ND is given, uniqueness follows from the fact that n∗(·) is a single-valued mapping. (ii) We know

from Proposition 2 that n∗(ND) > 0 if and only if ND < N̄ .

Among other things, Claim 2 allows describing the emergence of the plausible equilibrium

through an auction undertaken by the developer. A large number of stores compete by bidding to

get a slot from the range supplied by the developer. In this auction, each store understands that

the highest bid it can o�er depends on the number of stores that will get a slot as well as on the

number of retailers that will locate in the SST. This makes the auction much more complex than

in standard models because the individual surplus depends on the decisions made by the other
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players. In other words, to �nd its maximum bid each store must guess what the equilibrium values

of N and n will be. Such settings are typically plagued with the existence of multiple equilibria.

Because the plausible equilibrium is unique, the auction ends up here with a single number of

stores, which is equal to N∗(n∗).

4.3 The size of the shopping mall

It remains to determine the equilibrium size and fee chosen by the developer at the �rst stage

of the game. The value of N stems from the collective decisions made by stores in the second

stage of the game. It then follows from Claim 2 that the developer always chooses ND = N and

φ = πS(n∗(N), N). As a result, his pro�t function (21) may be rewritten as follows:

Π(n∗(N), N) = NπS(n∗(N), N)−B(N). (24)

For N < N̄, the function n∗(N) is de�ned implicitly by the free-entry and stability conditions

in the STT:

πR(n,N) = f
∂πR
∂n
≤ 0

whereas we have n∗(N) = 0 for N ≥ N̄ . Since n∗(N) exhibits a downward jump at N = N̄

where n∗ = 0, the developer's pro�t function has an upward jump at N = N̄ . Indeed, because

stores' pro�ts decrease with the number of SST retailers, we have πS(n∗(N), N̄) < πS(0, N̄), which

would allow the developer to increase the per slot price φ by an increment ∆φ > 0 when N = N̄ .

Furthermore, the developer never chooses a size exceeding N̄ because his pro�ts are equal to

Π = 1− ρ−B(N)

which always decreases with N .

Because the function Π(n∗(N), N) is bounded above on ]0, N̄ [, the developer's maximum pro�t

is given by

Π∗ = max

{
0, sup

N∈]0,N̄ [

Π, (1− ρ)−B(N̄)

}
.

If Π∗ = 0, the developer does not launch an SM and consumers will shop at the SST only.

If Π∗ = sup Π > 0, the developer opens a shopping mall and accommodates retailers located in

the central business district. Finally, if Π∗ = (1− ρ)− B(N̄), the developer chooses to launch an

SM having the limit size N̄ , and thus triggers the exit of all retailers. Hence, a subgame perfect

Nash equilibrium of our three-stage game always exists. When the equilibrium size N∗ of the SM

is smaller than its limit size, we say that the developer accommodates the presence of retailers;

otherwise, the market involves a predatory developer.
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In what follows, we assume that the building cost is given by

B(N) ≡ F +

mN if 0 < N < NE

M(N −NE) +mNE if NE ≤ N .
(25)

where F , m, M , and NE are positive parameters such that m < M and F < (M −m)NE. The

latter inequality implies that (25) displays increasing (decreasing) returns for N smaller (larger)

than NE. It is readily veri�ed that F < (M − m)NE implies that the e�cient size of the SM,

which minimizes the average building cost, is equal to NE. When F > (M −m)NE, the e�cient

size of the SM is arbitrarily large.

The developer's revenue is equal to NπS(n∗(N), N) = πS(µ∗(N), 1). Since πS(µ, 1) decreases

with µ and µ∗(N) decreases with N , the revenue function always increases over [0, N̄ ]. As a result,

the developer always chooses its limit size when NE > N̄ and secures the whole market. If NE ≤ N̄

and M is su�ciently large, the developer chooses his e�cient size and accommodates the presence

of retailers. By changing the value of M , the pro�t-maximizing size of the SM can increase from

0 to the limit size N̄ , whereas the equilibrium size of the SST shrinks from ne to 0. Note also that

the �xed cost F cannot be very large for the developer to enter.

5 Should the Size of the Shopping Mall Be Regulated?

Several countries have passed laws restricting the size or entry of big-boxes stores because the

presence of small businesses would allow consumers to bene�t from a wider array of varieties and

services. It is, therefore, worth studying how the total number of varieties available in the city,

N ≡ N+n∗(N), varies with the size N of the SM. Since the free-entry equilibrium n∗(N) decreases

with N , it is a priori unclear whether N increases or decreases with N . Yet, it turns out to be

possible to characterize the behavior of N in a precise way. The argument goes as follows.

The function πR(n;N) being homogenous of degree −1, the zero-pro�t condition πR(n; N) = f

can be rewritten as follows:

π(µ) ≡ πR(µ, 1) = fN (26)

where µ = n/N . Since πR(n,N) = πR(µ, 1)/N , Proposition 1 implies that the function πR(µ; 1) is

unimodal in µ. Multiplying both sides of (26) by 1 + µ, we obtain:

1 + µ

f
π(µ) = N + n∗(N). (27)

We show in Appendix 3 that this expression is unimodal in µ with a unique maximizer at

µ0 > 0. Hence, N increases (decreases) with N if and only if (27) is decreasing (increasing) at

µ∗(N). Since µ∗(N) decreases with N , N increases with N if and only if N ≤ N0 ≡ π(µ0)/f .
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The following proposition is a summary.

Proposition 3. The total number of varieties available in the city, �rst, increases and, then,

decreases with the size of the SM.

Thus, the mass of varieties reaches its maximum when the city accommodates both an SST

and an SM. In other words, the entry of an SM need not be detrimental to product diversity: the

city involves more varieties as long as the size of the SM is not large enough for N to be smaller

than ne. This suggest that the presence of an SM could well be bene�cial to consumers.

Such an argument is incomplete, however, because it overlooks the fact that consumers must

bear speci�c travel costs to visit the shopping places. Owing to the exit of downtown retailers, the

consumers in [0, x̄0] have access to a narrower array of varieties. The consumers residing in [x̄0, y],

where y ≥ x̄0 is the solution to

(1− ρ) lnne − τy = (1− ρ) lnN − τ(1− y) (28)

now consume the whole range of varieties but they bear a higher travel cost. Only the consumers

located in the interval [y, 1], if any, are better o� when an SM of size N is launched. Therefore,

when N is su�ciently small, it follows from (28) that y is close or equal to 1, and thus the majority

of consumers is worse o� when the SM is launched.

Does this explain why citizen groups and/or local governments often object to the entry of a

big-box in their area? For the majority of consumers to agree with the launching of an SM, it

must be that the consumer located at x = 1/2 is better o� after entry. Therefore, the following

condition must hold:

(1− ρ) lnN(N)− τ ≥ (1− ρ) lnne − τ/2

which amounts to

N(N) ≥
√
Tne. (29)

Figure 3, which depicts the plot of the maximum product range as a function of T , shows

that this inequality never holds. Thus, regardless of the value of N smaller than the limit size, a

majority of consumers vote against the entry of an SM. That a majority of consumers is against

the entry of the SM when N is maximized may come as a surprise since N(N0) exceeds ne. This

is because the additional travel cost the consumer at x = 1/2 must bear to consume the varieties

supplied by the SM is not compensated by the variety increase. Evidently, this result depends on

the intensity of the gravitational force that governs consumers' behavior. For example, a majority

of consumers is still against the entry of a SM even when the SM is more e�cient than the SST,

and thus supplies varieties at lower prices than the SST (see subsection 6.1). The intuition behind

this result is straightforward: if the SM is more e�cient, its entry leads to a stronger decrease in

the SST size, and thus to a drop in the welfare of those consumers who are against setting up a

SM. In contrast, when the travel cost T takes on su�ciently low values, (29) will be satis�ed and
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the launching of an SM at the city outskirts will get the support of a majority of consumers, the

reason being that their shopping behavior critically depends on the quality of the transportation

system.

Figure 3. Maximum product range as a function of T

This political economy argument could explain why in several countries or jurisdictions the size

of shopping malls is regulated by public authorities. Is this decision justi�ed on e�ciency grounds?

To answer this question,we consider a welfare-maximizing regulator who chooses the size N of the

SM that prevents the central business district to become a ghost town. In contrast, the number

of retailers is unregulated and determined by free entry and exit.

Since preferences are quasi-linear, the social welfare function is de�ned as total consumer surplus

plus �rms' pro�ts:

W =

ˆ 1

0

V (x)dx+ n [πR(n,N)− f ] +N [πS(n,N)− φ] + Π(N). (30)

The regulator seeks the SM size that maximizes (30) subject to n = n∗(N) and N < N̄ . The

former constraint is the free-entry condition at the SST. The latter means that the city center

must remain a shopping place whose size is endogenously determined by entry and exit.

Using (7) � (11), (30) can be rewritten as follows (up to a constant):

W =
[
(1− ρ) ln (N + n∗(N)) +

τ

2

(
x̄2

0 + (1− x̄1)2
)]

+ [NπS (n∗(N), N)−B(N)] (31)

where x̄0 and x̄1 are the marginal consumers' locations given by (13) � (14).

It is straightforward to show that the �rst term in (31) decreases with N for all N < N̄ , whereas

the second is given by (24). Since the equilibrium size N∗ maximizes the developer's pro�ts under

n∗(N), we get the following result.
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Proposition 4. Let N∗and N o be the size of the SM at the market equilibrium and social

optimum, respectively. Then, we have N o ≤ N∗. Furthermore, when 0 < N∗ < N̄ , a welfare-

maximizing regulator always chooses N o < N∗.

Therefore, the regulator chooses a size for the SM smaller than the size that would emerge under

unleashed competition. In other words, when the market outcome involves an accommodating

developer, regulating the size of the SM is welfare-enhancing. However, banning the entry of an

SM is generally not optimal.

Should a predatory developer be regulated too? The answer depends on the developer's e�-

ciency. To illustrate, consider the building cost function (25) and set m = 0.1 and NE = 0.3 as

well as σ = 2, τ = 0.564 and f = 0.5. Numerical calculations show that the developer adopts

a predatory behavior if and only if the marginal cost of an additional store M is not too high

(M ≤ 4.71), while it is optimal to regulate the size of the SM when M is not too low (M ≥ 0.357).

Hence, when M is very small, the developer is so e�cient that the planner chooses not to regulate

the SM, which chooses it limit size (N o = N̄). The disappearance of the SST is compensated by

the very large number of stores hosted by the SM. In contrast, when M = 3, the SM is much less

e�cient. This leads the regulator to intervene and to choose the size N o = 0.5, and thus the SST

has a size n∗(N o) ≈ 1.57. In sum, a very e�cient developer must not be regulated. Otherwise, the

regulator increases social welfare by choosing a size for the SM smaller than its equilibrium size.

However, in both cases, a majority of consumers remains hostile to the SM's entry. This provides

a neat illustration of the possible discrepancy between the e�cient and voting outcomes.

In France, the Royer Law imposes restrictions on department stores whose creation has to

be approved by a local board composed of shop-owners, consumer representatives, and locally

elected politicians. Between 1974 and 1998, the local boards approved only about 40 percent of

the applications. Bertrand and Kramarz (2002) have showed that the enforcement of this law has

had a negative impact on job creation. In other words, the entry of a new SM, which may be

desirable in terms of job creation, is opposed by a majority of board members. This seems to be

in accordance with the above results.

6 Heterogeneous Marketplaces and the City

In this section, we discuss the following extensions of the baseline model: (i) the presence of cost

and quality asymmetries between retailers and stores; (ii) a change in market/city size; (iii) a

non-uniform distribution of consumers across the city; (iv) the choice of the SM location by the

developer.
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6.1 Heterogeneous shopping places

We have argued in Section 2 that various types of asymmetries between the two shopping places

may be taken into account in our setting. To illustrate, we consider the following special, but

relevant, case: retailers are less e�cient than stores but supply better quality varieties. In other

words, the retailers share the marginal cost c, whereas stores have the marginal cost C = λc,

where λ < 1. The parameter λ captures the e�ciency heterogeneity between stores and retailers,

which may stem from additional facilities supplied by the developer to his tenants. In the same

vein, being designed, developed and managed as a single unit, a supermarket bene�ts from scope

economies and is often able to buy inputs in bulk at prices lower than retailers.

Consumers' preferences are rewritten as follows:

U ≡ 1

ρ
ln

(
I(SST )α

ˆ n

0

qρi di+ I(SM)

ˆ N

0

Qρ
jdj

)
+ A

where the parameter α captures the quality heterogeneity between the two types of varieties. In

what follows, we focus on the case where α > 1.

Under these circumstances, the prices charged by the retailers and stores are, respectively, given

by

p∗ =
c

ρ
P ∗ =

λc

ρ

and thus the price ratio is equal to λ < 1. Retailers' and stores' pro�t functions are now given by

πR(n,N) = (1− ρ)

(
x̄0

n
+
x̄1 − x̄0

n+ kN

)
(32)

πS(n,N) = k(1− ρ)

(
1− x̄1

kN
+
x̄1 − x̄0

n+ kN

)
(33)

where k ≡ λ−(σ−1)α−σ. Note that k is larger (smaller) than 1 when only e�ciency (quality)

heterogeneity matters. When both kinds of heterogeneity are present, k can be either smaller or

larger than 1, depending on which of the two types of heterogeneity dominates. When k > 1,

everything work as if the number of stores were larger and given by kN instead of N . This in

turn makes the SM more attractive, and thus expenditure in the SM also gets higher and equal to

k > 1. When k < 1, the argument is reversed. Thus, the two types of heterogeneity between the

centers are formally equivalent.

It is easily veri�ed that the marginal consumers are now given by

x̄0 = max

{
0, 1− ln (1 + kN/n)

lnT

}
(34)
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x̄1 = min

{
1,

ln (1 + n/kN)

lnT

}
(35)

where N is again replaced with kN .

The expressions (32)-(35) show that the pro�t functions πR(n,N) and πS(n,N) are the same

as those obtained when k = 1 up to replacing N with kN and multiplying πS by k. Therefore,

the results that hold under k > 1 are qualitatively the same as those obtained in the foregoing

two sections. The main di�erence is that �e�ective� number of stores, kN , exceeds the �actual�

number, N . In particular, selling at a lower price translates into a smaller limit size for the SM,

which is less costly for the developer to implement.

Other heterogeneities such as a higher degree of product di�erentiation in the SST than in the

SM, which supplies more standardized goods, and the presence of urban amenities available at the

city center, can similarly be taken into account as long as the price ratio remains constant.

6.2 City size

Owing to the presence of network e�ects, it is worth studying how an exogenous shock on the

city's population size L a�ects the market outcome. Consumers' preferences are still given by (1),

while retailers' and stores' operating pro�ts are given by Lπl(n, N) with l ∈ {R, S}, the functions
πl being given by (15) � (16).

We may tackle this problem from two di�erent angles. In the �rst one, we study the impact of

a growing city on the size n∗(N ;L) of the SST when N is given and determined through di�erent

institutional mechanisms. Therefore, the analysis of Section 4.1 is applicable.

Free entry in the SST and homogeneity of πR implies

πR

(
n

L
,
N

L

)
= f (36)

which yields

n∗(N ; L) = Ln∗
(
N

L
; 1

)
. (37)

Furthermore, n∗(N ; 1) being decreasing in N , raising L amounts to decreasing N . It then

follows from (37) that, when the SM has a given size N , a population hike triggers the entry of a

more than proportionate number of downtown retailers. The intuition for this a priori unexpected

result is as follows. When there is no SM, the size of the SST is proportional to the population

size: ne(L) = L(1 − ρ)/f . Since N/L decreases with L, things work as if N were decreasing in

Section 4.1. Thus, for any given n, pro�ts of downtown retailers are shifted upward, which invites

additional entry.

In the second one, we study the impact of a growing city on the developers' limit size. It follows
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from (36) that

π(µ) =
Nf

L
. (38)

Since π(µ) is independent of L, the limit size N̄(L) of the SM is given by

N̄(L) =
L

f
π(µ̄)

which means that the limit size of the SM is proportional to the city's population size: N̄(L) =

L N̄(1). In other words, in a bigger city it is harder for the developer to secure the whole market.

These results together support the idea that a larger city is more likely to retain downtown

retailers than a smaller (or poorer) city. To some extent, this explains why large and rich cities, such

as New York, San Francisco, Paris or Milan, have maintained a vibrant downtown, Los Angeles

being a prominent counter-example. The hollowing-out of urban centers characterizes mainly

small and medium size cities, especially those which do not have historical amenities generated by

monuments, buildings, parks, and other urban infrastructure from past eras that are aesthetically

pleasing to people.

6.3 Population density

In monocentric cities, population is concentrated around the central business district (Fujita and

Thisse, 2013). Let g(x) and G(x) be, respectively, the population density and cumulative distri-

bution functions. Observe, �rst, that the marginal consumers x̄0 and x̄1 given by (13) and (14)

are independent of G. Hence, the fraction of people who choose one-stop shopping at the SST

(SM) equals G(x̄0) (1 − G(x̄1)), whereas G(x̄1) − G(x̄0) is the share of consumers who shop in

both marketplaces. Further, the equilibrium price of each variety and the quantities bought by

consumers are also independent of G. Hence, retailers' operating pro�ts are given by

πR(n, N) = (1− ρ)

[
G(x̄0)

n
+
G(x̄1)−G(x̄0)

n+N

]
. (39)

The analysis of Sections 3 and 4 still holds for a large class of distributions G(x). Basically, for

most of our analysis, what we need are the following two conditions: πR(0, N) = πR(∞, N) = 0

for N > 0. To show how this works, consider a negative exponential population density, which is

known to provide a good approximation of city population densities (Anas et al., 1998):

g(x) ≡ αe−αx

1− e−α
G(x) =

1− e−αx

1− e−α
(40)

where α > 0 measures the population skewness towards the SST. When α = 0, the density is

uniform.

Simulations show that (i) for each T there exists a �nite positive threshold value ᾱ(T ), such that
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πR is unimodal in n if and only if α ≤ ᾱ(T ), (ii) πS is unimodal in N ; and (iii) when α ≤ ᾱ(T ), the

developer's revenue increases in N . This has the following implications. First, when the population

is not too much concentrated toward the SST, N̄ exists such that for each N ∈]0, N̄ [ there is a

unique plausible free-entry equilibrium; otherwise, several plausible equilibria may exist. Second,

if α is not too large, neither the market expansion e�ect nor the market crowding e�ect always

dominates the other. Third, under the same condition on α, the market outcome is described by

a perfect Nash equilibrium whose structure is similar to that studied in Section 4. Thus, when the

skewness of the population distribution is not too high, the key results obtained in Sections 3 and

4 remain qualitatively the same.

6.4 The location of the shopping mall

It remains to discuss what our analysis becomes when the SM is built at xSM ∈ [0, 1[. For the

reasons mentioned in Section 5.1, the SST is located at x = 0.

To see how consumers' shopping behavior is a�ected by a change in the SM location, we go

back to the indirect utilities given in Section 2.2. It is straightforward to show that (7), (9) and

(11) become

V0(x, xSM) = (1− ρ) lnn− τx

V1(x, xSM) = (1− ρ) lnN − τ |x− xSM |

V (x, xSM) = (1− ρ) ln (n+N)− τ max{x, xSM}.

The key di�erence with the case where xSM = 1 is that the welfare of consumers patronizing

both shopping places now depends on their locations (see Figure 4 for an illustration). To be

precise, V decreases with the distance x to the SM for those consumers who are located to the

right of xSM . Moreover, V strictly increases when the SM gets closer to the SST. In other words,

the closer SM to the SST, the larger the number of two-stop shoppers.
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Figure 4. Shopping behavior under variable location of SM

It is readily veri�ed that

xSM ≥
ln(1 + 1/ν)

lnT

implies the existence of two marginal consumers located x̂0 and x̂1, which solve, respectively, the

equations V0 = V and V1 = V :

x̂0 = max

{
0, xSM −

ln(1 + ν)

lnT

}
x̂1 = min

{
1,

ln (1 + 1/ν)

lnT

}
which are identical to (13) and (14) when xSM = 1.

As in Section 2.2, a consumer located at x visits the SST only (both shopping places, or the

SM only) if and only if x < x̂0 (x̂0 ≤ x ≤ x̂1, or x > x̂1). Note that x̂1 is independent of the SM

location, while x̂0 moves together with xSM . Thus, if

xSM ≤
ln(1 + ν)

lnT
(41)

then x̂0 = 0, which implies that no consumer chooses to visit only the SST. Furthermore, if

xSM <
ln(1 + 1/ν)

lnT
(42)

then all consumers located to the right of x̂0 are two-stop shoppers. As a consequence, there is a

downward jump in the stores' revenue at xSM = x̂1.
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In sum, if

xSM ≤ min

{
ln(1 + ν)

lnT
,

ln(1 + 1/ν)

lnT

}
then all consumers are two-stop shoppers. Thus, choosing a location closer to the SST leaves

stores' revenues, hence the developer's revenue, unchanged. Since the developer's building cost

function B
(
xSM , N

D
)
is likely to decrease with xSM because the land rent at a location closer to

the city center is much higher (Fujita and Thisse, 2013), choosing a location in the vicinity of the

SST reduces the developer's pro�ts. Thus, the developer is incentivized to choose a location for

the SM distant from the SST. How far are the two shopping places depends on the parameters

of the market. To a certain extent, our analysis highlights why shopping malls or supermarkets

have chosen to set up at the city outskirts once travel costs became su�ciently low through the

widespread use of cars (Fogelson, 2005).

7 Concluding Remarks

We have developed a model of competition between two spatially separated shopping areas having

di�erent organizational forms and showed how the interaction of love for variety and travel costs

a�ects consumers' shopping behavior. The standard competition e�ect is supplemented by a

market expansion e�ect, which stems from the higher attractiveness of a shopping area o�ering

a wider range of products. Our results have been obtained for the case in which 2 < T < 4.

What do they become when this condition is not satis�ed? Simulations suggest that they remain

qualitatively the same for a broader domain of parameter values. However, there is another domain

in which multiple interior stable free-entry equilibria arise for both T < 2 and T > 4. The reason is

that the function π(µ) may become bimodal, which implies that n∗(N) exhibits two discontinuities.

Using the same argument as in Section 4.2, we may conclude that the expected outcome is given

the largest stable free-entry equilibrium, the size of which is smaller than ne. Thus, studying the

domains T < 2 and T > 4 requires longer developments, but does not a�ect the nature of our

main results. Moreover, whether consumers are one-stop or two-stop shoppers still depends on the

relative size of the two shopping places.

Relaxing the assumption of CES preferences implies that consumers' expenditures on the dif-

ferentiated good and sellers' markups are variable and determined by the number of varieties

available in the two marketplaces. Typically, consumers expenditures in a shopping area increases

with the number of varieties supplied therein, while sellers' markups decrease with the number

of local competitors. As a consequence, the analysis of the competition and market expansion

e�ects becomes much more involved. Nevertheless, the speci�c functional forms of πR and πS are

not needed for the main �ndings of Sections 3 and 4 to hold. We need only these functions to

display a few regularities we now summarize. First, πR must be unimodal in n to get the pattern
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of free-entry equilibria described in Proposition 2. Second, πR must be unimodal in n and πS in

N for the market expansion e�ect to overcome (be dominated by) the competition e�ect when

the shopping area is small (large). Last, the behavior of the developer described in subsection 4.3

hinges on the fact that the developer's revenue increases in the SM size.

Finally, our paper extends the law of retail gravitation proposed by Reilly (1931). According

to this law, two cities attract consumers living in an intermediate place in direct proportion of

the populations of the two cities and in inverse proportion to the square of the distances to these

two cities. We show that consumers close to one city need not visit both of them, while those

located in intermediate places split their expenditures between the two cities according to a rule

more general than Reilly's. In addition, by showing how network e�ects generate gravitational

forces, our model o�ers new tools to study the micro-foundations of the gravity equation used in

the trade literature (Anderson and van Wincoop, 2004).
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Appendix

Appendix 1.

(i) Assume that T ≤ 2.39. Using (19), it is readily veri�ed that dDS/dν > 0 for all ν ∈
]1/(T − 1), T − 1[ if and only if

θ(ν) > lnT

where

θ(ν) ≡ ln

(
1 +

1

ν

)
+
ν2(1− ln (1 + ν)) + 1

1 + 2ν
.

The function θ decreases with ν, whereas θ
(

1
T−1

)
> lnT for all 2 < T < 4. Therefore,

dDS/dν > 0 for 0 < x̄0 < x̄0 < 1 if and only if

θ(T − 1) ≥ lnT (A.1)

or, equivalently,

A(T ) ≡ 1 + (T − 1)2(1− lnT )− (2T − 1) ln (T − 1) ≥ 0. (A.2)

The function A decreases with T on ]2, 4[. Since A(2) > 0 and A(4) < 0, the equation A(T ) = 0

has a unique solution in ]2, 4[. Solving numerically this equation shows T = 2.39 so that that (A.2)

holds if and only if T ≤ 2.39.

(ii) Assume now that T > 2.39. Then, there exists a threshold ν̄ ∈ ]1/(T − 1), T − 1[ such that

dD/dν > 0 if and only if ν < ν̄. Indeed, we have just seen that (A.1) does not hold if and only if

T > 2.39. In this case, the equation θ(ν) = lnT has a unique solution ν̄ ∈ ]1/(T − 1), T − 1[ and

(A.2) does not hold if and only if ν exceeds ν̄. Q.E.D.

(iii) When T > 2.06, the competition e�ects becomes stronger than the market expansion e�ect

for all ν > T − 1. Indeed, di�erentiating (20) with respect to ν yields:

n
dDS

dν
= −1− x̄1

ν2
− x̄1

(1 + ν)2
− 1

ν

dx̄1

dν

1

1 + ν
.

This expression is negative if and only if

λ(ν) < lnT (A.3)

where

λ(ν) ≡
(1 + 2ν) ln

(
1 + 1

ν

)
+ 1

(1 + ν)2
.

The function λ decreases with ν for all ν > 1 because the denominator is increasing, whereas
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the numerator is positive and decreasing. As a result, (A.3) holds for all ν ≥ T − 1 if and only if

λ(T − 1) < lnT

or, equivalently,

H(T ) ≡ (T − 1)2 lnT + (2T − 1) ln(T − 1)− 1 > 0.

The function H(T ) is increasing in T , negative at T = 2 and positive at T = 4. Therefore,

H(T ) = 0 has a single solution in ]2, 4[. We �nd numerically that this solution is given by

T0 = 2.06. Hence (A.3) holds for all ν > T − 1 if and only if T > 2.06.

(iv) Assume that T ≤ 2.06. Then, there exists ν̂ > T −1 such that the market expansion e�ect

dominates the competition e�ect if and only if ν < ν̂. Indeed, we have just seen that (A.3) does

not hold for all ν > T − 1 under T ≤ 2.06. As λ(ν) is a decreasing function and λ(∞) = 0, there

exists ν̂ > T − 1 such that (A.3) holds only for ν < ν̂. Q.E.D.

Appendix 2.

(i) n < N/(T − 1). Then,

x̄0 = 0 x̄1 =
ln (1 + n/N)

lnT
.

Hence, using (15), retailers' operating pro�t boils down to

πR =
1− ρ
lnT

ln (1 + n/N)

n+N

which increases when τ decreases.

(ii) N/(T − 1) ≤ n ≤ N . In this case,

x̄0 = 1− ln (1 +N/n)

lnT
x̄1 =

ln (1 + n/N)

lnT
.

Hence,

πR = (1− ρ)

[
1

n
− 1

n+N
+

1

lnT

(1−N/n) ln (1 +N/n)− ln(N/n)

n+N

]
.

When n < N , we have (
1− N

n

)
ln

(
1 +

N

n

)
− ln

N

n
< 0

and thus πR decreases when τ decreases. Q.E.D.

Appendix 3. Since π(µ) is increasing over the interval ]0, 1/(T − 1)[, there is no stable free-

entry equilibrium such that µ < 1/(T − 1). Consider now the interval ]1/(T − 1), T − 1[ and show

that N(µ) is increasing. Up to a positive coe�cient independent of µ, we have
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N(µ) =
lnT + (µ− 1) ln(1 + µ) + lnµ

µ
.

Di�erentiating this expression yields

N′(µ) =
Λ(µ)

µ2

where

Λ(µ) ≡ µ2 + 1

µ+ 1
− lnT + ln(1 + µ)− lnµ.

To show that Λ(µ) is positive over ]1/(T − 1), T − 1[, we di�erentiate Λ(µ) and get

Λ′(µ) ≡ (µ− 1)(µ2 + 3µ+ 1)

µ(µ+ 1)2

so that µ = 1 is a minimizer of Λ(µ). Hence, Λ(µ) > 0 if Λ(1) > 0. Since T < 4, we have

Λ(1) = 1 + ln 2− lnT > 1− ln 2 > 0.

Last, we examine the behavior of N(µ) for µ ≥ T − 1. Up to a positive coe�cient independent

of µ, we have

N(µ) =
(1 + µ) lnT − ln(1 + µ) + lnµ

µ
.

Di�erentiating this expression, we obtain

N′(µ) =
K(µ)

µ2
.

where

K(µ) ≡ 1

1 + µ
− lnT + ln(1 + 1/µ).

Clearly, K(µ) decreases with µ. Furthermore, K(µ), whence N′(µ), is negative under su�-

ciently large values of µ. As a result, N(µ) is unimodal and has a unique maximizer µ0 ≥ T − 1.

Q.E.D.
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