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1 Introduction

Spatial interaction models represent a class of models that are used for modeling origin-destination

flow data. The interest in such models is motivated by the need to understand and explain the

flows of tangible entities such as persons or commodities or intangible ones such as capital, in-

formation or knowledge between regions. These models attempt to explain interaction between

origin and destination regions using (i) origin-specific attributes characterizing the ability of the

origins to generate flows, (ii) destination-specific characteristics representing the attractiveness

of destinations, and (iii) variables that characterize the way spatial separation of origins from

destinations constrains or impedes the interaction. They implicitly assume that using spatial

separation variables such as distance between origin and destination regions will eradicate the

spatial dependence among the sample of spatial flows.

However, research dating back to the 1970s noted that spatial dependence or autocorrelation

might be intermingled in spatial interaction model specifications. The idea was first put forth

in a theoretical context by Curry (1972), with some subsequent debate in Curry, Griffith and

Sheppard (1975). Griffith and Jones (1980) documented the presence of spatial dependence in

conventional spatial interaction models. Despite this, most practitioners assume independence

among observations and few have used spatial lags of the dependent variable or disturbances

in spatial interaction models. Exceptions are Bolduc, Laferriere and Santarossa (1992), and

Fischer and Griffith (2008) who rely on spatial lags of the disturbances, and LeSage and Pace
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(2008) who use spatial lags of the dependent variable.

The focus of this chapter is on the log-normal version of the model. In this context, we

consider spatial econometric specifications that can be used to accommodate two types of de-

pendence scenarios, one involving endogenous interaction and the other exogenous interaction.

These model specifications replace the conventional assumption of independence between origin-

destination-flows with formal approaches that allow for two different types of spatial dependence

in flow magnitudes.

Endogenous interaction reflects situations where there is reaction to feedback regarding flow

magnitudes from regions neighboring origin and destination regions. This type of interaction

can be modeled using specifications proposed by LeSage and Pace (2008) who use spatial lags

of the dependent variable to quantify the magnitude and extent of feedback effects, hence the

term endogenous interaction. For example, commuters might react to congestion in regions near

the origin or destination of their commute to work by adjusting future location decisions. This

would of course produce changes in observed flows over time that need to be considered in light

of the steady state equilibria that would characterize future period flows across the commuting

network. Another example would be for the case of international trade flows, where a tariff or

other impediment to flows might evoke a long-run response that changes the structure of flows

across the network of trading countries. Since we typically model flows using a cross-section of

observed flow magnitudes that have occurred during some type period (say the past 5 years)

to estimate our model parameters that describe responsiveness of flows to characteristics of

the regions and distance between regions, time is not explicit in these cross-sectional models.

However, interpretation of the model estimates can take place with respect to comparative statics

reflecting changes from one equilibrium steady state to another.

Exogenous interaction represents a situation where spillover arise from nearby (or perhaps

even distant) regions, and these need to be taken into account when modeling observed variation

in flows across the network of regions. In contrast to endogenous interaction, these contextual

effects do not generate reaction to the spillovers, leading to a model specification that can be

interpreted without considering changes in the long-run equilibrium state of the system of flows.

Spillovers arising from spatial dependence on the context in which commuters operate impact

observed variation in flows between regions and we can quantify these types of impacts without
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reference to long-run equilibrium impacts on flows across the network. As in the case of social

networks (where the term contextual effects has its origins), contextual effects are modeled using

spatial lags of the explanatory variables that represent characteristics of neighboring (or more

generally connected) regions, but not spatial lags of the dependent variable, hence the term

exogenous interaction.

2 The log-normal (independent) spatial interaction model

Spatial interaction models essentially assert a multiplicative relationship between observed flows

(reflecting the magnitude of interaction) and characteristics of origin and destination regions, as

well as measures of separation between the regions (typically distance). As is typical of statistical

model relationships, observations on the dependent variable (observed flows between origin and

destination dyads, labeled i and j) are assumed independent of observed flows between other

dyads, say k and l (see, for example Sen and Smith 1995, and Fischer and Wang 2011). Such a

relationship is shown in (1).

Y (i, j) = CX(i)X(j)S(i, j), i, j = 1, . . . , n (1)

where Y (i, j) denotes flows from region i to region j, and C is a constant of proportionality. X(i)

and X(j) represent origin-specific and destination specific characteristics, with S(i, j) reflecting

resistance or deterrence to flows between the origin and destination, typically modeled using

some form of deterrence function reflecting spatial separation between locations i and j. At

relatively large scales of geographical inquiry this might be the great circle distance between

regions, measured in terms of the distance between their respective centroids. In other cases, it

might be transportation or travel time, cost of transportation, perceived travel time or any other

sensible measure such as political distance, language or cultural distance measured in terms of

nominal or categorical attributes.

The exact functional form of the three terms X(i), X(j) and S(i, j) on the right hand side

of (1) are subject to varying degrees of conjecture. There is wide agreement that the origin and

destination factors are best given by power functions X(i)βo and X(j)βd where X(i) represents
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some appropriate variable measuring the propulsiveness of origins and X(j) attractiveness of

destinations in a specific spatial interaction context. The term gravity model is sometimes

used in place of spatial interaction because the relationship posits that the magnitude of flows

(reflecting interaction) between dyads i and j is directly proportional to size of the regions, when

X is a measure of size and the coefficients βo, βd take values of unity. In a statistical modeling

context, these coefficients are parameters to be estimated.

The deterrence function S(i, j) also has a gravity interpretation such that interaction is

inversely proportional to distance between dyads i and j. A number of alternative more flexible

specifications have been proposed in the literature (see Fischer and Wang 2011), one being the

power function:

S(i, j) = [G(i, j)]γ (2)

for an scalar (generalized) distance measure, G(i, j), and negative parameter γ (reflecting the

inverse relationship), with γ treated as a parameter to be estimated. The deterrence function

reflects the way in which spatial separation or distance constrains or impedes movement across

space. In general, we will refer to this as distance between an origin i and destination j, using

G(i, j).

LeSage and Pace (2008) use a matrix/vector representation of the log-transformed expression

in (1) yielding the log-normal spatial interaction model, shown in (3)

y = αιn2 +Xoβo +Xdβd + gγ + ε (3)

which more closely resembles a conventional regression relationship. In (3), y is an n2×1 vector

of (logged) flows constructed by stacking columns of the observed n × n flow matrix Y , where

we assume destination-centric organization throughout this chapter. This means that the i, jth

element of the flow matrix represents a flow from region i to j. Similarly, applying the log

transformation to the n× n matrix of distances G between the n destination and origin regions

and stacking the columns results in an n2 × 1 vector g of (logged) distances, with associated
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coefficient γ. The term ε represents an n2×1 vector of constant variance, independent identically

distributed normal disturbances. LeSage and Pace (2008) show that

Xo = ιn ⊗X (4)

Xd = X ⊗ ιn (5)

for the case of a destination-centric organization, where X is an n×R matrix of characteristics

for the n regions, ⊗ denotes the Kronecker product and ιn is an n× 1 vector of ones. We note

that this represents a general case where the same set of R explanatory variables is used for both

origins and destinations. Thomas-Agnan and LeSage (2014) point out this may be preferred to

a specification where different (subsets of the R) explanatory variables are used for origin and

destinations, since exclusion of important explanatory variables may result in omitted variable

bias. The scalar parameter γ reflects the effect of the vector of logged (generalized) distances

g on flows which is — given the power function specification in (2) — thought to be negative.

The parameter α denotes the intercept term.

The Kronecker product repeats the same values of the n regions in a strategic way to create

a matrix of characteristics associated with each origin (destination) region, hence the use of

the notation Xo = ιn ⊗X,Xd = X ⊗ ιn to represent these explanatory variables. Recognizing

this has important implications for how we interpret estimates of the parameter vectors βo, βd

from these models. The literature has interpreted βo as reflecting a typical regression partial

derivative ∂y/∂Xo, showing how changes in origin region characteristics impact flows (on average

across the sample of n2 dyads as is typical of regression estimates). Of course, this suggests we

can change characteristics of origin regions while holding those of destination regions constant,

since partial derivatives reflect a ceteris paribus change in Xo. It should be clear that a change

in the rth characteristic of a single region i, Xr
i will produce changes in both Xo, Xd, since by

definition ∆Xr
o = ιn ⊗ (Xr +∆Xr

i ), and ∆Xr
d = (Xr +∆Xr

i )⊗ ιn.

Intuitively, changes to the rth characteristic of a single region i will impact both inflows

and outflows to all other regions engaged or connected with region i as either an origin or

destination. For example, a (ceteris paribus) increase in employment in region i would lead
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to inflows of commuters to this region (when viewed as a destination) from (potentially) all

other (origin) regions and a decrease in outflows of commuters (when viewed as an origin) to

(potentially) all other (destination) regions. We will have more to say about this later.

There are some limitations to treating the spatial interaction relationship as a regression re-

lationship between the vector of n2 × 1 logged flows and log-transformed explanatory variables.

Regression relationships require the assumption of constant variance independent normally dis-

tributed disturbances in order to rely on conventional t−statistics for statistical inference regard-

ing significance of the explanatory variables. Normal disturbances imply normally distributed

flows, which is often not the case. Some flows reflect counts of migrants moving between regions,

and many flow matrices contain a large proportion of dyads reflecting zero flows. These raise

issues regarding the appropriate method for estimating regression-based specifications of spatial

interaction model relationships, but do not have an impact on issues we will discuss pertaining

to endogenous versus exogenous interaction specifications, or interpretation of estimates from

these relationships.

3 Exogenous versus endogenous spatial interaction specifica-

tions

We set forth spatial regression-based specifications for exogenous and endogenous spatial inter-

action models, with a focus on interpretative considerations pertaining to estimates from these

two types of models.

3.1 An endogenous spatial interaction specification

As noted, this type of specification allows for flows from regions neighboring the origin region i or

destination region j as well as flows between regions neighboring the origin and neighboring the

destination, to exert an impact on the magnitude of observed flows between dyad (i, j). LeSage

and Pace (2008) label dependence of flows on regions neighboring the origin i as origin-based

dependence, that on flows neighboring the destination j as destination-based dependence, and

that arising from flows between regions neighboring the origin and neighboring the destination

as origin-destination based dependence.
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The basic notion is that larger observed flows from an origin to a destination region are

accompanied by (i) larger flows from regions nearby the origin to the destination region (origin-

based dependence); (ii) larger flows from the origin region to regions neighboring the destination

region (destination-based dependence), and (iii) larger flows from neighbors to the origin to

regions that are neighbors of the destination (origin-to-destination-based dependence). This is

accomplished using the specification in (6).

Ay = αιn2 +Xoβo +Xdβd + gγ + ε (6)

A = (In2 − ρoWo)(In2 − ρdWd) (7)

= (In2 − ρoWo − ρdWd + ρoρdWdWo) (8)

y = ρoWoy + ρdWdy + ρwWwy + αιn2 +Xoβo +Xdβd + gγ + ε (9)

Some things to note regarding this specification. The matrix productWw = WdWo = W⊗W ,

and there is no need to impose the implied restriction that ρw = −ρoρd during estimation of

the model. The resulting model statement in (9) captures origin-based dependence with the

spatial lag term Woy, destination-based dependence with Wdy, and origin-destination-based

dependence using Wwy. The associated parameters ρo, ρd, ρw reflect the relative strength of

these three different dependencies.

This specification posits a simultaneous or endogenous response relationship between the

variation in the dependent variable reflecting flows between all dyads (y) and flows between

other regions (specifically Woy,Wdy,Wwy) within the observed network of interregional and

intraregional flows.1 This has implications for how we interpret the coefficient estimates from

this type of specification, with details set forth in LeSage and Thomas-Agnan (2014). It also has

implications for how we must estimate the parameters βo, βd, γ, ρo, ρd, ρw, with details provided

in LeSage and Pace (2008, 2009 Chapter 8). We will discuss interpretation issues in a later

section. This discussion takes the parameter estimates as given, and presumes these reflect valid

estimates produced using appropriate methods (either maximum likelihood or Bayesian Markov

Chain Monte Carlo procedures).

1Intraregional flows are recorded on the main diagonal of the flow matrix.
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A theoretical motivation for endogenous interaction

A criticism that might be leveled at the endogenous interaction specification in (9) is that this

appears to arise from mere matrix algebra manipulations, rather than economic theory. We

present a theoretical motivation taken from LeSage and Thomas-Agnan (2014) based on the

notion that location decisions of commuters are influenced by behavior of other commuters in

previous periods.

They argue that commuting residents might be influenced by nearby flows (congestion) re-

sulting from past location decisions of other residents in neighboring regions. It might also be

the case that firms are influenced by congestion arising from location decisions of nearby firms

in the past.

They formally express this type of dyadic O-D flow dependence of yt at time t on past flows

yt−1 as:

yt = Myt−1 + Zδ + εt (10)

M = (ρdWd + ρoWo + ρwWw)

Z =
(

Xd Xo g
)

δ =
(

βd βo γ
)′

εt ∼ N(0, σ2In)

where underlying characteristics of the regions X remain relatively fixed over time, allowing us

to write Z without a time subscript. Since the characteristics of regions in flow models often

represent size of regions, this assumption seems (approximately) valid.

Expression (10) indicates that (commuting-to-work) flows between O-D dyads at time t de-

pend on past period flows observed by residents and firms in regions neighboring their origin

(Woyt−1) and destination regions (Wdyt−1), as well as flows between regions neighboring the

origin to regions neighboring the destination (Wwyt−1). This is close to the endogenous inter-

action specification from (9), but relies on a time lag or past period flows, not current period as

we have in our cross-sectional model.
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LeSage and Thomas-Agnan (2014) show that we can interpret the endogenous spatial interac-

tion model as the outcome or expectation of a long-run equilibrium or steady state relationship,

which is shown in (11).

limq→∞E(yt) = (In2 −M)−1Zδ (11)

= (In2 − ρdWd − ρoWo − ρwWw)
−1Zδ

Of course, this is the expectation for the data generating process of the spatial autoregressive

interaction model given in (9).

From a theoretical perspective, changes in transportation infrastructure (improvements in

the road network) that connects commuters between regions would be expected to result in

endogenous interaction of the type captured by this model specification. We would expect to see

diffusion of changes in commuting flows taking place over space, that impact flows in neighboring

regions with faster commuting times, regions that neighbor these regions, and so on. These global

spillover impacts are what characterize endogenous interaction, and they presumably lead to a

new long-run steady state equilibrium in residents’ choices regarding routes used and firms’

choices about location.

In general shared resources are often thought to be the basis for global spillover impacts and

the associated diffusion of these impacts to neighbors, neighbors to neighbors, and so on. The

highway network that passes through many regions would represent one type of resource shared

by many regions. Changes taking place on one segment of the highway would have (potentially)

far reaching global spillover impacts.

3.2 An exogenous spatial interaction specification

There are other modeling situations where endogenous interaction is not a likely phenomenon,

but spatial spillover impacts such as congestion in neighboring regions is of interest when mod-

eling variation in flows across the network of regions. Theoretical aspects of the modeling

circumstance would provide one approach to distinguishing which type of specification is most

appropriate for any given application.
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Exogenous interaction specifications are characterized by spatial lags of the exogenous vari-

ables Xo, Xd, leading to a model

y = αιn2 +Xoβo +Xdβd + gγ +WoXoθo +WdXdθd + ε (12)

It should be clear that no endogenous relationship between flows (y) and flows from neighbor-

ing regions exists in this specification. Instead, we have a situation where changes in character-

istics of regions neighboring the origin (WoXo) and regions neighboring the destination (WdXd)

help explain variation in flows across dyads.

A change in characteristics of neighboring regions, for example, an increase in the number of

retired persons (non-commuters) locating in regions that neighbor commuting residents located

at origin i (WoXo) might influence the magnitude of flows between dyads (i, j). Similarly, retirees

locating in regions that neighbor commuters’ destination regions j (WdXd) might influence the

magnitude of flows between dyads (i, j).

A distinction between this specification and the endogenous specification is that the focus

here is on the local spillover impacts on flows arising from changes in characteristics of regions

neighboring the origin or destination region. There is no implication that flows respond to feed-

back impacts associated with the increased number of retirees locating in regions neighboring

the origin or destination, just spatial spillover impacts on the pattern of flows between origin

and destination dyads due to changes in the characteristics of (say immediately) neighboring

regions. Global spillovers imply diffusion over space, whereas local spillovers do not imply diffu-

sion over space that impacts neighbors, neighbors to neighbors, and so on. Reduced congestion

arising from retired persons (non-commuters) locating in a specific region would likely impact

commuters from neighboring regions, but the impact would not extend to more distant neigh-

boring regions. The number of non-commuters located in any one region do not reflect a shared

resource, and would be expected to have only local spillover impacts.

Another consideration useful in distinguishing between these two types of specifications would

be permanent and predictable events versus temporary or unpredictable events. For example,

unpredictable events such as traffic delays due to construction or accidents in neighboring regions
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would not be expected to produce endogenous interaction effects because of the unpredictability

of such events. It should be noted that congestion effects arising from unpredictable events such

as these may create local spillover congestion that spans many regions, so we should not think of

local spillovers as impacting only nearby/neighboring regions. We still label these local spillover

effects because they are not associated with endogenous interaction or feedback effects whereby

commuters adjust their travel routes. However, consistently higher accident rates in a group of

regions might allow commuters to predict traffic delays resulting in endogenous reactions such

that commuters change their routes to avoid such regions. Observed adjustments in travel routes

by many commuters with widely varying origins and destinations would of course appear as a

global spillover effect having impacts on regions neighboring the construction or accident zone,

neighbors to these regions, neighbors to the neighbors of these regions, and so on. This of course

would be reflected in the new long-run steady state equilibrium commuting flows.

4 Interpreting estimates from spatial interaction specifications

In section 4.1 we consider how changes in the characteristics of regions impact flows in the case

of the conventional (non-spatial) interaction model from (3). This discussion draws heavily on

ideas set forth by LeSage and Thomas-Agnan (2014). They point out that changes in the rth

characteristic of region i, ∆Xr
i , will produce changes in flows into region i from (potentially)

(n− 1) other regions, as well as flows out of region i to (potentially) (n− 1) other regions. This

can be seen by noting that the matrices Xd = ιn ⊗ X and Xo = X ⊗ ιn repeat Xr
i n times.

Unlike the situation in conventional regression models where a change ∆Xr
i leads to changes in

only observation i of the dependent variable, yi, we cannot change single elements of Xr
d , X

r
o ,

nor should we interpret the coefficient estimate β̂o, β̂d as reflecting the impact of this change

(averaged over all observations) on a single element of the dependent variable vector y.

The fact that changes in characteristics of a single region give rise to numerous responses in

the flow matrix rather than changes in a single observation (dyad) of the dependent variable (as

in traditional regression) creates a challenge for drawing inferences about the partial derivative

impacts of changing regional characteristics on flows. To address this challenge, section 4.2

proposes scalar summary measures for the impact of changing regional characteristics on flows,
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that collapse the many changes in flows to a single number. These scalars average over the many

changes that arise in the flow matrix from changing characteristics of the regions, as is typical

of the way in which we interpret regression models.

In section 4.2 we describe how LeSage and Thomas-Agnan (2014) extend the scalar summary

approach to the case of an endogenous spatial interaction specification from (9). In this model

specification, changes in the characteristics of a single region i can impact flows into and out of

region i to its 2(n− 1) dyad (i, j) partners (as described above), but also flows into and out of

regions that neighbor the origin i and destination j regions that are not part of the dyad (i, j).

This arises from the spatial dependence part of the spatial autoregressive interaction model.

An implication is that we should not interpret the coefficient estimates βd, βo as if they were

regression estimates that reflect partial derivative changes in the dependent variable associated

with changes in the explanatory variables.

Section 4.3 adopts the scalar summary approach to the case of the exogenous spatial in-

teraction specification introduced here, which reflects new ideas not previously considered in

the literature. However, we show that interpretation of estimates from these models reflects a

special case of the scalar summary approach set forth by LeSage and Thomas-Agnan (2014).

4.1 Interpreting estimates from non-spatial interaction specifications

Before proceeding to interpretation of the model estimates, we adopt an approach suggested by

LeSage and Pace (2009, p. 223) that introduces a separate model for within region (intraregional)

flows, which tend to have large values relative to between region flows. This is done by creating

an intercept for flows associated with the main diagonal of the flow matrix (intraregional flows)

that we label α̃, as well as a set of explanatory variables for these flows that we label Xı. The

explanatory variables Xd, Xo are adjusted to have zero values for main diagonal elements of the

flow matrix and the new variables matrix Xı has associated coefficients that we label βı. This

set of explanatory variables will capture variation in intraregional flows. An adjusted version of

(3) is shown in (13) reflecting these modifications to the model, where vec is the operator that

converts a matrix to a vector by stacking its columns.
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y = αι̃n2 + α̃vec(In) + X̃oβo + X̃dβd +Xıβı + gγ + ε (13)

We use ι̃n2 = ιn2 − vec(In), X̃o = Xo − Xı, X̃d = Xd − Xı to reflect the adjustment made to

the original intercept and explanatory variables matrices by setting these elements to zero. The

matrix Xı contains non-zero values only for dyads where the origin equals the destination (i.e.,

intraregional flows).

We also consider the simplest possible spatial configuration of the regions, which positions

these in a straight line, with a single neighbor to the left and right.2 For simplicity, we work with

a single vector of explanatory variables in the following to avoid having to designate working

with a specific explanatory variable. A scalar change in the characteristics of the 3rd region

(∆X3) will produce an n× n matrix of changes in flows (∆Y ), shown in (14).

∆Y/∆X3 =



0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

βd βd βı βd βd βd βd βd

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0

0.0 0.0 βo 0.0 0.0 0.0 0.0 0.0



(14)

The role of the independence assumption is clear in (14), where we see from column 3 that

the change of outflows from region 3 to all other regions equals βo, and similarly, row 3 exhibits

changes in inflows to region 3, taking the value of the coefficient βd. The diagonal (3,3) element

reflects a response equal to βı, which reflects the change in intraregional flows arising from the

change in X3. We have only 2(n − 1) non-zero changes in flows by virtue of the independence

assumption. All changes involving flows in- and out-of regions other than those in the dyads

involving region 3 are zero.

2The west most region at the beginning of the line of regions has a single neighbor to the right, and the east
most region at the end of the line has a single neighbor to the left.
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This result suggest that for the conventional gravity model, interpreting βo as the partial

derivative impact on flows arising from changes in origin-specific characteristics (Xo) is not too

bad, since the only exception is the coefficient βı in the (3,3) element. The partial derivative

for changes in the ith observation (i ̸= 3) would of course look similar to the matrix in (14), so

averaging over changes to all observations would produce an approximately correct result when

interpreting βo, βd as if they were simply regression coefficients. However, we will see that this

reasoning does not apply to the spatial variants of the interaction model specification, a point

made by Thomas-Agnan and LeSage (2014).

The approach taken by LeSage and Thomas-Agnan (2014) to producing scalar summary

measures of the impacts arising from changes in characteristics of the regions involves averaging

over the cumulative flow impacts associated with changes in all regions, i= 1, . . . , n. Scalar

summaries are consistent with how coefficient estimates for the parameters in a conventional

regression model are interpreted, and cumulating the impacts makes intuitive sense in our flow

setting.

They calculate scalar summaries by expressing the partial derivatives as shown in (15), where

the n×n matrices of changes in (logged) flows arising from changing the rth explanatory variable

Xr
i are stored in the n× n matrices Yi.

3
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In (15), Jdi is an n×n matrix of zeros with the ith row equal to ι′nβd, and Joi is an n×n matrix

of zeros with the ith column equal to ιnβo. The matrix Jıi is an n×n matrix of zeros with a one

in the i, i row and column position. We could express J̃di = Jdi − Jıi, and also J̃oi = Joi − Jıi

We have n sets of n × n outcomes, (one for each change in Xr
i , i = 1, . . . , n) resulting in an

n2 × n matrix of partial derivatives reflecting the total effect on flows from changing the rth

3Our expressions differ slightly from those of LeSage and Thomas-Agnan (2014) because of our modification
of the model specification to incorporate Xı variables to model intraregional variation in flows.
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characteristic of all n regions, hence the label TE.

The TE consists of origin effects OE =
(
J̃o1β

r
o , . . . , J̃onβ

r
o

)′
, destination effects DE =(

J̃d1β
r
d, . . . , J̃dnβ

r
d

)′
, and intraregional effects IE = (Jı1β

r
ı , . . . , Jınβ

r
ı )

′.

The total effects on flows can be cumulated and then averaged to produce a scalar summary

measure of the total impact of changes in the typical region’s rth characteristic. This takes

the form: te = (1/n2)ι′n2 · TE · ιn, where we follow LeSage and Thomas-Agnan (2014) and

use lower case te to represent the scalar summary measure of the n2 × n matrix TE. This

scalar summary is consistent with the way that regression coefficient estimates are interpreted

as averaging over changes in all observations of an explanatory variable. We can also produce

scalar summary estimates of the origin effects (oe = (1/n2)ι′n2 · OE · ιn), destination effects

(de = (1/n2)ι′n2 ·DE · ιn), and intraregional effects (ie = (1/n2)ι′n2 · IE · ιn).

To illustrate use of these formulas, we provide a numerical illustration based on values of

βo = −0.5, βd = 1, βı = 0.5 in Table 4. The scalar summaries sum to the scalar summary total

effect. In addition to the scalar summary effects estimates, we present the parameters βo, βd

whose estimates are typically interpreted as origin and destination effects, and whose sum is

considered the total effect arising from a change in the rth explanatory variable.

Scalar Summary Correct Conventional interpretation

Origin effects -0.4375 βo = −0.5
Destination effects 0.8750 βd = 1.0
Intraregional effects 0.0625
Total effects 0.5000 βo + βd = 0.5

Table 1: Scalar summary measures of effects for the non-spatial model from a change in the
(single) rth characteristic Xr averaged over all regions.

As Thomas-Agnan and LeSage (2014) point out, the results differ slightly from the conven-

tional interpretation of non-spatial gravity models where the coefficient βo is interpreted as a

partial derivative reflecting the impact of changes in origin characteristics and βd that associ-

ated with changing destination characteristics. Although the conventional approach that uses

the coefficient sum βo+βd as a measure of the total effect on flows arising from changes in origin

and destination characteristics would produce a correct inference, the appropriate decomposition

into origin, destination and intraregional effects has been wrong in the historical literature.
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4.2 Interpreting estimates from exogenous interaction specifications

The exogenous interaction specification extended to include an intraregional specific intercept

and set of explanatory variables is shown in (16), where we have added origin and destination

specific spatial lags of the (adjusted) explanatory variables matrices.

y = αι̃n2 + α̃vec(In) + X̃oβo + X̃dβd +Xıβı +WoX̃oθo +WdX̃dθd + gγ + ε (16)

Changes in the rth explanatory variable now result in two additional terms in the partial

derivatives expressions shown in (17). The new terms associated with the spatial lags of the

explanatory variables reflect (local) spatial spillovers arising from neighbors to the origin and

neighbors to the destination regions.
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A similar approach to decomposing the total effects can be used along with conversion of these

to scalar summary estimates. In this case we have: te = oe + de + ie + noe + nde, where the new

terms: noe and nde are labeled network origin effects and network destination effects. These are

calculated using: (noe = (1/n2)ι′n2 ·NOE · ιn), destination effects (nde = (1/n2)ι′n2 ·NDE · ιn),

where: NOE =
(
J̃o1θ

r
o, . . . , J̃onθ

r
o

)′
, destination effects NDE =

(
J̃d1θ

r
d, . . . , J̃dnθ

r
d

)′
.

Intuitively, these new scalar summary measures of the origin- and destination-specific spatial

spillover effects reflect the impact of changes in characteristics of regions neighboring the origin

and destination on flows between the typical dyad. We extend our previous example, using

θo = −0.25, θd = 0.5 to illustrate the difference between using βo, βd, θo, θd as if these were

partial derivatives.

In contrast to the non-spatial case, the total effects calculated here by summing up coefficients

βo+βd+θo+θd = 0.75 are not equal to the true total effects. We also see discrepancies between
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Scalar Summary Correct Conventional interpretation

Origin effects -0.4375 βo = −0.5
Destination effects 0.8750 βd = 1.0
Intraregional effects 0.0625
Network origin effects -0.2188 θo = −0.25
Network destination effects 0.4375 θd = 0.5
Total effects 0.7188 βo + βd + θo + θd = 0.75

Table 2: Scalar summary measures of effects for the exogenous spatial interaction model from a
change in the (single) rth characteristic Xr averaged over all regions.

the true origin, destination, network origin and network destination effects (based on actual

partial derivatives) and those from simply interpreting the coefficient estimates as if they were

partial derivatives.

4.3 Interpreting estimates from endogenous interaction specifications

The endogenous interaction specification extended to include an intraregional specific intercept

and set of explanatory variables is shown in (18), where we have added origin and destination spe-

cific spatial lags of the dependent variable to capture origin, destination and origin-destination

dependence of the type proposed by LeSage and Pace (2008).

y = ρoWoy + ρdWdy + ρwWwy + αι̃n2 + α̃vec(In) + X̃oβo + X̃dβd +Xıβı + gγ + ε (18)

Working with the expression for the data generating process of this model, LeSage and

Thomas-Agnan (2014) show that the partial derivatives ∂y/∂Xr′ , take the form shown in (19).
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These represent an extension of the partial derivatives from the non-spatial model, where the

n2 × n2 matrix inverse: A−1 = (In2 − ρoWo − ρdWd − ρwWw)
−1, pre-multiplies the non-spatial

effects. A similar decomposition of the total effects can be applied to produce origin effects

(OE), destination effects (DE), intraregional effects (IE) and network effects (NE). The network

effects reflect spatial spillovers from: neighbors to the origin, neighbors to the destination and

neighbors to the origin to neighbors of the destination.

As an illustration of the nature of these partial derivatives, consider the example shown in

(20), where we consider a change to the single observation X3, based on the same numerical

values set forth in the previous section for βo = −0.5, βd = 1.0, βi = 0.5, while setting ρo =

0.5, ρd = 0.4 and ρw = −ρoρd = −0.2.4.

∆Y/∆X3 =



0.052 −0.086 −0.777 −0.069 0.121 0.171 0.185 0.187

0.337 0.199 −0.492 0.216 0.406 0.457 0.470 0.473

2.048 1.910 1.219 1.927 2.117 2.168 2.181 2.184

0.318 0.180 −0.511 0.197 0.387 0.438 0.451 0.454

−0.043 −0.181 −0.872 −0.164 0.026 0.077 0.090 0.093

−0.118 −0.256 −0.947 −0.239 −0.050 0.001 0.015 0.017

−0.134 −0.272 −0.963 −0.255 −0.065 −0.014 −0.001 0.002

−0.136 −0.275 −0.965 −0.257 −0.068 −0.017 −0.004 −0.001



(20)

As LeSage and Thomas-Agnan (2014) point out, the spatial autoregressive specification re-

sults in the presence of network spillover effects, shown by the non-zero elements in rows and

4This example is identical to that from Thomas-Agnan and LeSage (2014)
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columns other than 3. This means that a change in say the attractiveness of region 3 impacts

flows throughout the network. This arises because the spatial autoregressive model specifica-

tion allows for global spillovers which can be viewed as diffusion throughout the network of the

increased attractiveness of region 3.

Of course, the largest network spillover impacts still tend to reside in the 3rd row and

column, since the change in attractiveness of region 3 has the largest impact on flows involving

region 3 in the O-D dyads. The magnitude of impact decreases as we move further from the

(3,3) element, with the non-linear nature of this decay of influence determined by a number of

factors. Specifically, the matrix W plays a role, as well as the spatial dependence parameters

ρo, ρd, ρw. For this simple example, where regions are configured to lie in a line, moving to row

and column elements further from the (3,3) position should reflect more distant neighbors. An

implication of the increase in paths through which the flows must pass to reach the (8,8) and

(1,1) dyads in the network is that smaller network effects arise in the flow matrix for these dyads.

One point is that we follow LeSage and Thomas-Agnan (2014) who calculate only a single

scalar summary measure of the network effects, rather than attempt to make distinctions between

origin- and destination-specific network effects. Because of the non-linearity and diffusion of

effects evident in the matrix shown in (20), it seems prudent to focus on a single measure

of spatial spillovers falling on all regions in the network. This is of course in contrast to the

exogenous spatial interaction specification where it is a simple matter to produce a decomposition

that separates network origin and network destination effects.

We extend our previous example, using the same values: βo = −0.5, βd = 1, βı = 0.5, ρo =

0.5, ρd = 0.4, ρw = −0.2 to produce correct partial derivatives. These are contrasted with the

typical interpretation of βo, βd as if these were partial derivatives in Table 3.

Scalar Summary Correct Conventional interpretation

Origin effects -0.1817 βo = −0.5
Destination effects 0.3725 βd = 1.0
Intraregional effects 0.0267
Network effects -0.1450
Total effects 0.0725 βo + βd = 0.5

Table 3: Scalar summary measures of effects for the endogenous spatial interaction model from
a change in the (single) rth characteristic Xr averaged over all regions.
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For the case of an endogenous spatial interaction specification, we see little relationship

between the coefficients βo, βd and the true origin and destination effects. This is similar to

the case of conventional spatial regression models where practitioners have historically mis-

interpreted these coefficient estimates as if they represented partial derivatives (see LeSage and

Pace 2008). For an application involving commuting flows between regions in Toulouse France

see LeSage and Thomas-Agnan (2014), who provide an interpretative discussion of the various

effects estimates and inferences associated with the endogenous spatial interaction model. In the

next section we provide an illustration of estimates and inferences for the case of the exogenous

spatial interaction model that we have proposed here.

5 An applied illustration involving movement of teachers be-

tween school districts

We use flows of teachers between 67 county-level school district in Florida over the period 1995

to 2004. The flows were constructed by tracing the location of 102,327 teachers in the system

during 1995. We ignore teachers that left the system and those that entered during this time

period. The impact of this is an issue to be addressed in future work.

One way to motivate dependence is to view the county-level school districts as representing

a network system. Changes by a single school district that affect working conditions, salary or

employment requirements of teachers will have an impact on the own-district as well as other

nearby districts that can be viewed as nodes in the statewide network. The movement of teachers

may be to and from other schools within the own-county or district or they may be between

districts.5

In the empirical trade literature, Poisson pseudo-maximum likelihood estimation methods

(PPML) have become popular as a way of dealing with several econometric issues that arise when

modeling origin-destination flows [e.g., Silva and Tenreyro 2006, 2010, 2011 and Gourieroux,

Monfort and Trognon 1984]. We rely on our exogenous spatial interaction specification that

allows for spatial dependence between flows from nearby regions/school districts.

One econometric issue that arises when modeling inter-district flows of teachers is that these

5Florida has county-level districts so that districts and counties coincide in our analysis.
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reflect ‘count data’, or observations taking discrete values or zero magnitudes in the case where

no flows between dyads reflecting districts i and j occur. This suggests a Poisson spatial in-

teraction model is most appropriate. There are several econometric advantages to this model

specification along with Poisson pseudo-maximum likelihood (PPML) estimation procedures

over log-normal specifications that either delete zero flows or modify the dependent variable

using ln(y+1) to accommodate the log transformation of the multiplicative gravity model. One

is that the coefficients on logged explanatory variables (X) in the (exponential) relationship

involving non-logged flow magnitudes as the dependent variable (y) can be interpreted as the

elasticity of the conditional expectation of yi with respect to Xi. Since Jensen’s inequality im-

plies that E(lny) ̸= lnE(y), heteroscedasticity in log-linear regression gravity models can lead

to inconsistent elasticity estimates, which is not a problem with PPML estimates.6

In addition to dealing with heteroscedasticity, the Poisson gravity model along with PPML

estimation procedures does not require taking logs of the flows, so avoid the problem of (logs)

in the presence of zero flows. With regard to the zero problem, our sample of flows between 67

counties/school districts contains 1,266 non-zero flow magnitudes out of a possible 67 × 67 =

4, 489 flows between the 67 districts. This reflects 28.2 percent non-zeros and 71.8 percent zeros.

Although the prevalence of zero values has an adverse impact on the PPML estimates, Silva

and Tenreyro (2011) point out that the PPML model works better than alternative approaches

even in the face of a large proportion of zero flow values.

This allows us to make a point that interpretative considerations discussed are based on

coefficient estimates for the parameters βo, βd, θo, θd which should be produced using a valid

estimation approach. Our derivations hold true for any valid estimates of these parameters.

Characteristics used are shown in Table 4, where values for these variables are for the year

1999 in an attempt to avoid a simultaneity problem. Use of the (log) number of teachers (in

the origin and destination districts) as explanatory variables captures the basic notion behind

gravity models where the magnitude of district interaction (in our case teacher movement) is

directly proportional to the product of district size measures (in our case the (log) of the number

of teachers in origin and destination school districts. 7 Direct proportionality would result in

6Silva and Tenreyro (2006) note there is strong evidence that disturbances from log-linear gravity models are
heteroscedastic.

7In the case of interregional commodity flows, the measure of regional size is typically gross regional product or
regional income. The model predicts more interaction in the form of commodity flows between regions of similar
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Table 4: District-level variables used in the model

Variable name Description

y Within and between district teacher flows 1995-2003
Teachers log (count of teachers in each district in 1995)
Salary log (average teacher salary)
Poverty Percentage of students receiving free lunches
Distance Log (distance between origin and destination district centroids)

an elasticity coefficient for these two variables equal to one.

In addition to the origin and destination size variables, two other explanatory variables

were used, one reflecting a teacher characteristic Salary, and the other a student characteristic,

Poverty. The decision to use only two other explanatory variables was for the sake of simplicity

in our illustrative example.

The traditional gravity model posits that flows are inversely proportional to distance, so we

would expect a coefficient of minus one on the logged distance variable. Use of the conventional

log transformation of the number of teachers, salary, percentage of students in poverty and

distance variables allows us to interpret these estimates as elasticities. We adopt the approach

that introduces a separate model for within district flows of teachers, which tend to have large

values relative to between district flows.

As argued in the previous section, the coefficients in Table 5 should not be interpreted as

if they represent the true effects associated with changes in the explanatory variables of the

model. Table 6 shows the effects estimates that represent actual partial derivatives showing

how flows respond (in elasticity terms on average over the sample) to changes in the number

of teachers, salary of teachers and poverty status of students in origin and destination districts,

the own-district and neighboring districts.

We can use the estimates in Table 5 to make the point that a non-spatial interaction specifica-

tion would suffer from omitted variables bias due to its exclusion of the spatial lagsWoXo,Wd, Xd

variables, since all but one of these variables (Wo teachers o) are significantly different from

zero at the 99% level.

(economic) size than regions dissimilar in size. For the case of migration flows, population would be a logical
measure of regional size, and in other contexts such as ours involving teacher flows between school districts, use
of the number of teachers in each district seems a reasonable measure of district size.
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Table 5: Coefficient estimates from the PPML model

Variable Coefficient t-statistic(p-level)

Constant -1.2738 -0.429 (0.6678)
ιı 0.1476 0.231 (0.8170)
Teachers d 0.6508 41.880 (0.0000)
Salary d 0.0596 0.267 (0.7895)
Poverty d -0.5153 -7.576 (0.0000)
Teachers o 0.7397 48.581 (0.0000)
Salary o -0.2552 -1.154 (0.2482)
Poverty o 0.6659 8.648 (0.0000)
Teachers ı 0.9994 185.511 (0.0000)
Salary ı 0.4653 7.432 (0.0000)
Poverty ı -0.1638 -7.025 (0.0000)

Wd teachers d 0.0568 2.584 (0.0098)
Wd salary d -0.2056 -6.598 (0.0000)
Wd poverty d 0.3304 3.618 (0.0003)

Wo teachers o -0.0341 -1.550 (0.1210)
Wo salary o -0.3711 -12.236 (0.0000)
Wo poverty o -0.2656 -2.928 (0.0034)
Distance -0.6220 -26.177 (0.0000)

Table 6: Effects estimates from the exogenous spatial interaction model

Variable Coefficient t-statistic(p-level)

Origin effects
Teachers 0.7286 48.1762 (0.0000)
Salary -0.2529 -1.1592 (0.2464)
Poverty 0.6572 8.6807 (0.0000)
Destination effects
Teachers 0.6410 42.8701 (0.0000)
Salary 0.0617 0.2789 (0.7803)
Poverty -0.5106 -7.2483 (0.0000)
Intradistrict effects
Teachers 0.0149 188.6622 (0.0000)
Salary 0.0069 7.3095 (0.0000)
Poverty -0.0024 -7.4486 (0.0000)
Network origin effects
Teachers -0.0326 -1.4976 (0.1074)
Salary 0.3659 12.1361 (0.0000)
Poverty -0.2590 -2.8766 (0.0040)
Network destination effects
Teachers 0.0562 2.6508 (0.0073)
Salary -0.2036 -6.6438 (0.0000)
Poverty 0.3275 3.7598 (0.0002)
Total effects
Teachers 1.4081 36.8098 (0.0000)
Salary 0.6611 2.4396 (0.0147)
Poverty 0.2126 1.3473 (0.1779)
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From the table we see that larger origin and destination districts (measured by the number of

teachers in these districts) leads to an increase in flows. Given that the effects estimates reflect

elasticity responses of flows, they point to flows as having a slightly less than proportional

relationship with size.

The intradistrict effects of size are positive and small, but statistically significant, suggesting

more intradistrict flows for larger districts, which makes intuitive sense. Spatial spillovers from

larger districts neighboring the origin district (network origin effects in the table) are nega-

tive, but not significant (using the 0.10 level), while larger districts neighboring the destination

district are positive and significant. This suggests a competition effect associated with larger

neighboring districts, that produces more inflows to destination regions from these larger neigh-

boring districts. The response of teacher flows to district size overall (the total effect) is such

that a 10 percent increase in the size of the typical district would produce 14 percent more flows

across the entire network. This includes a small (0.15 percent) significant increase in within dis-

trict flows, a 0.562 percent increase of inflows to destination districts districts from neighbors,

as well as a 7.28 percent increase in outflows from origins and a 6.41 percent increase of inflows

to destinations.

Teacher salaries (logged) exhibit insignificant origin and destination effects, suggesting these

do not impact teacher decisions to move from one school district to another. Higher salaries

have a small but significant effect on within district movement of teachers. This is not surprising

given that higher salaries are positively correlated with years of experience. The seniority

system gives teachers with more years of service preference in filling vacant jobs in other schools

within the same district. The origin spillover effects of teacher salary are positive, suggesting

a competitive effect where higher salaries in neighboring districts increase outflows from origin

districts. Destination spillover effects of salary are negative, suggesting a competitive effect of

districts with higher salaries that neighbor the destination decreasing inflows. Given that these

effects estimates are elasticities, we can say that the positive impact of origin spillover effects

are more important than the negative impact of destination spillover effects.

For the poverty variable, an increase in the (logged) proportion of students in poverty would

increase outflows from the origin district, and decrease inflows to a destination district, which

makes intuitive sense. The effect of poverty on within district teacher flows is small and nega-
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tive, but significant. The effect of more poverty in districts neighboring the origin is negative

and significant, meaning that inflows from neighboring districts would be smaller in this case.

This suggests a teacher retention effect for districts surrounded by those with more students

in poverty. The effect of more poverty in districts neighboring the destination is positive and

significant, suggesting more inflows to destination districts having neighbors with more students

in poverty. This suggests that teachers are more likely to move to a neighboring district from

surrounding districts with more students in poverty, a competition effect. The retention and

competition effects of poverty in neighboring school districts are reasonably large in magnitude,

taking values nearly half the magnitude of origin and destination effects for the poverty vari-

able. It is interesting that the total effect of students in poverty is not significantly different

from zero. This suggests that the retention and competition effects are offsetting. One way to

view this would be that teachers are needed to fill posts in all schools including those with high

proportions of students in poverty.

6 Conclusion

We reiterate the point made by LeSage and Thomas-Agnan (2014) and Thomas-Agnan and

LeSage (2014) that the structure of explanatory variables used in non-spatial and spatial inter-

action models is such that we cannot interpret coefficients associated with origin explanatory

variables (that we label Xo here) and coefficients from destination explanatory variables (that

we label Xd here) as reflecting typical regression partial derivatives ∂y/∂Xo and ∂y/∂Xd, show-

ing how changes in origin (destination) region characteristics impact flows (on average across

the sample of n2 dyads as is typical of regression estimates). This is because we cannot change

characteristics of origin (destination) regions while holding those of destination (origin) regions

constant, which is typical of how partial derivatives are viewed. It should be clear that a change

in the rth characteristic of a single region i, Xr
i , will produce changes in both Xo, Xd, since by

definition ∆Xr
o = ιn ⊗ (Xr +∆Xr

i ), and ∆Xr
d = (Xr +∆Xr

i )⊗ ιn.

We provide a discussion of exogenous and endogenous spatial interaction model specifications

that are each suited to differing applied situations. The argument advanced is that an exogenous

specification is most appropriate when characteristics of neighboring regions exert an influence
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on variation in flows between dyads, but do not produce feedback effects producing changes

in the long-run steady state equilibrium of the network of flows. Examples include situations

involving temporary or unpredictable events that do not evoke endogenous interaction because

of the unpredictability of changes taking place in neighboring regions. In contrast, endogenous

interaction specifications are more appropriate for situations where predictable or permanent

changes take place in the network structure such that economic agents react to these changes

by changing decisions regarding routes of movement for people, commodities, etc.

In addition to setting forth expressions for the true partial derivatives of non-spatial and

endogenous spatial interaction models and associated scalar summary measures from LeSage

and Thomas-Agnan (2014), we propose new scalar summary measures for the exogenous spatial

interaction specification introduced here. An illustration applies the exogenous spatial interac-

tion model to a flow matrix of teacher movements between 67 school districts in the state of

Florida.
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