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Abstracts: “Spatial thinking” is increasingly popular in housing market studies and spatial dependence across 

properties has been widely investigated in the intra-city housing market. The contribution of this paper is to study the 

spatial dependence and spillover effect of house prices from an interurban perspective, referring to the spatial 

interaction across local housing markets.  The extensive literature study concludes that following behavior, migration 

and equity transfer and spatial arbitrage of capital are the main behavioral reasons for interurban spatial interaction. 

Using a cross-sectional data set in eastern China, our empirical results from both parametric and nonparametric 

approaches provide strong evidence of spatial interaction in the interurban housing market. The parametric results 

suggest that the spatial lag model (SAR) is the best model specification to describe the interurban house price 

process, indicating an endogenous interaction pattern. Ignoring such interaction effect in the house price model will 

produce biased coefficients estimators and misleading interpretation.  In SAR model, Spillover effects of explanatory 

variables caused by spatial interaction are calculated by partial derivative interpretation approach and are 

demonstrated to have the magnitude as much as half of their direct effects. Moreover, the comparison between 

different spatial weighted matrices reveals that the spatial interaction depends not only on distances, but also on the 

economic situation of each jurisdiction. Meanwhile, nonparametric approach draws a flexible relationship between 

spatial dependence and geographical distances. Using spline correlogram, we find monotonically declined spatial 

autocorrelation of house prices and explanatory variables within larger distances, whereas the significant spatial 

autocorrelation of OLS residuals can only be observed at short distance (60 Km).  The spillover effect, being 

obtained from spatial covariance decomposition, is highly significant and declines within the radius of 250 Km.  All 

the nonparametric results imply that though the house price determinants can satisfyingly account for the interurban 

house prices, the importance of spillover effect cannot be neglected within certain distances. That is the neighbor’s 

housing market situation is quite useful in predicting the house price of a particular city. This study provides a good 

insight into explaining why the house prices in some cities always run above the level indicated by fundamentals, 

and highlights the importance of cooperation between local governments in making the housing policy. 

Keywords: Spatial autocorrelation; spillover effect; interurban housing market; spatial econometrics; nonparametric 

estimation; China 
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Spatial Dependence in House Prices: Evidence from China’s Interurban 
Housing Market 

1. Introduction 

“Spatial thinking” is increasingly popular in spatial science and spatial dependence, as one of the 

two typical features of spatial data, has especially been the major focus. From a theoretical 

perspective, spatial dependence reflects a general rule that dominates the behavior of 

geographical objects, namely the First Law of Geography (FLG): “everything is related to 

everything else, but near things are more related than distant things”(Tobler, 1970). Many 

theoretical models that contain the spatial interaction have been advanced, such as the 

Brueckner’s strategic interaction model (Brueckner, 2003). From an empirical view, ignoring the 

spatial dependence in empirical models by using the classic statistics and econometrics produces 

the biased estimates and thereby leads to the misleading and incorrect interpretation of empirical 

results, and that accelerates the development of spatial econometrics. This paper is attempting to 

apply the spatial thinking into investigating the house prices behavior in China’s interurban 

housing market. 

The data generation process (DGP) of house prices which is a typical spatial data is undoubtedly 

affected by spatial dependence. Numbers of studies have found strong evidence of spatial 

dependence across housing properties in an intra-urban housing market. Some studies model the 

spatial autocorrelation structure in house prices by using semivariogram method (Geostatistics) 

and advocate that the combination of the semivariogram and OLS results can significantly 

improve the performance of prediction (Basu and Thibodeau, 1998; Bourassa et al., 2007). Others 

explore the spatial dependence by employing the spatial regression models which introduce a 

spatial lagged dependent variable into the estimated model or directly account for the spatial 

dependence structure in the error term (Can, 1990; Osland, 2010; Yu et al., 2007). Furthermore, 

Gillen et al (2001) revealed the anisotropic features of autocorrelation of house prices, indicating 

that spatial autocorrelation is related to not only the distance between two properties, but also the 

direction. 

Compared with the fruitful achievements in intra-urban housing market, spatial dependence 

across local housing markets, which we refer as interurban housing market, has not been widely 



concerned, though it has been implicitly verified by those studies focusing on regional 

(interurban) housing market convergence or on ripple effect of house prices. Such studies appear 

in the regional (interurban) housing markets of UK, US and Australia (Canarella et al., 2012; 

Holmes and Grimes, 2008; Luo et al., 2007).  However, the data sets they used, usually time 

series data based on few observations, cannot allow them to study the feature of spatial 

dependence which, by definition, is a special case of cross-sectional dependence (Anselin, 2006).  

The main objective of this paper is to measure the strength and radius of spatial dependence 

(spillover effect) in the interurban housing market based on a cross-sectional data set that 

contains enough observations of jurisdictions’ local housing markets. The modern spatial 

econometrics (parametric approach) is employed, especially the partial derivative interpretation 

approach developed by LeSage and Pace (2009) allows us to explain the spatial interaction more 

efficiently and measure the magnitude of spillover effect. Meanwhile, considering the drawback 

of parametric approach that a priori interaction structure is needed before analysis, a more 

flexible nonparametric approach is also utilized to intuitively exhibit the magnitude and radius of 

the spatial dependence with respect to distances. Besides, we briefly summarize the underlying 

behavioral reasons that lead to the spatial dependence across local housing markets. 

The remainder of the paper is organized as follows. Section 2 briefly discusses the behavioral 

reasons for spatial dependence in the interurban housing market. Section 3 introduces the 

parametric and nonparametric models, while section 4 offers different strategies for constructing 

the spatial weights matrix. An introduction to the study area and data set is provided in section 5, 

followed by the empirical results in section 6. Finally, section 7 concludes our findings and draws 

some implications. 

2. Behavioral reasons for spatial dependence 

Spatial dependence across properties is mainly attributed to two reasons (Basu and Thibodeau, 

1998; Can and Megbolugbe, 1997; Gillen et al., 2001). First, properties in close proximity tend to 

be developed at the same time and have similar structural characteristics, such as dwelling size, 

design features and architectural style, and hence these properties are related when determining 

the transaction prices; sometimes households pay the same prices for properties in a particular 

location just for “snob” purpose. Second, properties within same neighborhood share the 



common neighborhood amenities, such as the public service provision and accessibility. These 

two reasons are considered to be adjacent effects (or spatial spillover effects) and neighborhood 

effects, respectively (Can, 1992; Can and Megbolugbe, 1997). 

In contrast, the underlying mechanism that results in the spatial dependence across local housing 

markets is more complicated. In the studies of strategic interaction among governments, 

Brueckner (2003) separated the theoretical models underlying empirical studies into two 

categories: spillover models and resource-flow models. The former one is based on the idea that 

the decision variable iz  in jurisdiction i  is directly affected by the level of decision variables in 

other jurisdictions. The idea behind the latter one is that the decision variable iz  in jurisdiction i  

is affected by a particular “resource” within its border, the distribution of which is affected by the 

decision variables in all jurisdictions, that is jurisdiction i  is indirectly affected. Despite their 

mechanism differences, both two models ultimately lead to the same reaction function that shows 

the interrelationship between jurisdictions. Correspondingly, we may apply the spillover 

framework and resource-flow framework to explore and categorize the underlying behaviors that 

cause the spatial dependence in the interurban housing markets.  

Following behavior. The cities in close proximity tend to have the similar natural, cultural, 

historical and linguistic environment, as well as the common policy restriction. Hence, the 

households in these cities probably follow the same home-consuming behaviors, while the house 

developers are likely to provide house products with similar characteristics in adjacent cities. 

Such following behavior will be capitalized into the house prices and results in the spatial 

dependence. The second type of following behavior is to some extent analogous to the “snob” 

behavior proposed by Can and Megbolugbe (1997) in intra-urban housing market. This behavior 

is consistent with the positive-feedback hypothesis: Recent increase (or decrease) of house prices 

in one local housing market encourages positive (or negative) attitudes which will lead to a 

greater-than-expected effect on its neighbors’ house prices (Pollakowski and Ray, 1997). The 

following behavior seems to be in accordance with the idea of spillover mechanism.       

Migration and equity transfer. Jones and Leishman (2006) have proven the hypothesis that 

household migration across local housing markets creates a spatial arbitrage process in the form 

of equity transfer which leads to the spatial dependence. Migration across cities might be 



triggered by two reasons. First, the migration is accompanied by the evolution of regional 

economic system. In a firstly segmented regional market, the initially booming city will increase 

the rate of real wages. According to Millington (1994), this increase of real wages will drive up 

the local house prices in that market, which in turn leads to migratory inflow of labor and the 

house prices adjust in an upward direction until the benefit from high real wages is offset by the 

higher cost of housing. The inflow movement will probably cause the negative spatial 

dependence. However, a unique form of migration in China, namely “migrant workers”, may 

generate the positive spatial dependence pattern. Migrant workers are usually from the less 

developed cities (both the urban and rural area) and move to nearby developed cities for 

temporary jobs. They leave their family in their home-cities and most of their net income will be 

transferred to the families to pay for a home. In this way, a “trickle-down” effect of house prices 

is formed between local housing markets1. Second, the fact that households take advantage of the 

house price differences among cities to maximize their utilities would drive the migration. The 

house purchasers moving from the city with higher house price level have a greater buying power 

and therefore force up the house prices in other cities, so that the different local housing markets 

are interlinked and the neighbor cities are more related (Meen, 1999). It seems that the physical 

household migration and its associated equity transfer result in the interurban housing market 

dependence by following the “resource-flow” framework. 

 Spatial arbitrage of capital. Although being similar to the arbitrage process of households, the 

spatial arbitrage of capital is mainly from the investment perspective. If the interurban housing 

market is an efficient market, arbitrage would take place over the space until reach a pattern of 

even return. However, The presence of search cost might imply that the arbitrage of capital 

follows a gradient transfer process, the capital being first transmitted to contiguous cities (Meen, 

1999). In this case, local housing markets are linked through capital flow rather than physical 

movement, and the nearby local housing markets are connected more closely. This behavior 

seems also follow the “resource-flow” mechanism and thus spurs the indirect spillover effect.  

3. Modelling the spatial dependence 

                                                           
1 “Trickle-down” effect is a conception in development economics and means the accumulation of wealthy in the rich area can 
trickle down to the poor area. In the intercity housing market, it refers to the house price growth in developed cities can spread to 
the less developed cities. 



3.1 Spatial econometrics – Parametric approach 

An intuitive way to test the spatial dependence of interurban house prices is by Moran’s I test and 

local indicators of spatial association (LISA) (Anselin, 1995). However, this is an informal way 

without controlling for the influence of house price determinants. For developing a formal 

approach, we first consider a linear regression model for house prices (OLS model)  

 NP Xαι β ε= + +  (1)                      

where P  denotes a 1N ×  vector of house prices, Nι  is a 1N ×  vector of ones represented 

constant terms with estimated parameter α , X  is a N K×  matrix of house price determinants, 

β  is a 1K ×  vector of regression coefficients,  and ε  denotes an 1N ×  vector of i.i.d. error terms. 

This model does not allow for spatial interaction since it implicitly assumes that the observations 

are independent of each other. The Moran’s I test for residuals of OLS model can be conducted. 

If the Moran’s I turns out to reject the null hypothesis that there is no spatial dependence, then we 

are convinced to employ the spatial models with spatial interaction effects. 

There are mainly three types of spatial interaction effects (Elhorst, 2010; Manski, 1993). (1) 

Endogenous interaction effects, where the house price of a city behaves in a way that depends on 

the house prices of neighbor cities. (2) Exogenous interaction effects, where the house price of a 

city depends on the house price determinants in neighbor cities. (3) Correlated effects, where the 

spatial dependence of house prices is caused by correlated unobserved environmental 

characteristics.  

Incorporating the endogenous interaction effects into the OLS model forms the spatial lag model 

or spatial autoregressive regression (SAR) 

 NP WP Xρ αι β ε= + + +  (2) 

where W  is an N N×  spatial weight matrix that specifies the spatial proximity between cities, 

WP  denotes the spatially lagged dependent variable (endogenous interaction effect), ρ  is 

defined as spatial autoregressive coefficient. The parameter ρ  describes the intensity of spatial 

dependence of house prices.  If 0ρ = , the spatial lag model reduces to the standard OLS model. 

The SAR model can be rewritten as: 



 1 1 1( ) ( ) ( )NP I W I W X I Wρ αι ρ β ρ ε− − −= − + − + −  (3) 

Because of the spatial multiplier matrix 1( )I Wρ −− ,  the house price in a particular city depends 

on not only its own error term, but also the error terms of neighbor cities. Therefore, the OLS 

estimate of SAR model is no longer consistent. Instead, maximum likelihood (ML) estimation 

can yield consistent and efficient parameter estimates (Anselin, 1988, 2006).   

Unlike the OLS model, the interpretation of coefficients in SAR model becomes complicated and 

requires special approach (Kim et al., 2003) 2 . In SAR model, a change in a house price 

determinant in a particular city not only exerts a “direct impact” on its own house price, but also 

potentially imposes an “indirect impact” on house prices of its neighbor cities. According to 

equation (3), the partial derivatives of P  with respect to the thk  independent variable can be 

obtained: 
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 (4) 

In equation (4), the average of the diagonal elements of matrix ( )kS W  is defined as direct impact, 

while the average of the row sums of non-diagonal elements of matrix  ( )kS W  is considered to be 

the indirect impact. The “indirect effect” means not only the impact of a change in explanatory 

variables in a particular city on the house price of other neighbor cities, but also the impact on 

house price of a particular city from changing the explanatory variables in all other neighbor 

cities. LeSage and Pace (2009) have demonstrated that these two measures yield the same results.   

If the OLS model takes into account the correlated effects, the spatial error model (SEM) is 

formulated  

  and NP X u u Wuαι β λ ε= + + = +  (5) 

                                                           
2 For a full discussion of the interpretation of parameter estimates in spatial model, please refer to LeSage and pace (2009). 



whereλ  is called spatial autocorrelation coefficient. In this model, the correlated effect relates to 

the situation where the omitted house price determinants are spatially autocorrelated, or the 

situation where common shocks, which cover a scope of macroeconomic, technological, 

institutional, political and sociological shocks (Andrews, 2005), follow a spatial pattern. The 

estimates of parameters in SEM model will be unbiased, but not efficient, which can be solved by 

ML estimation. The interpretation of the parameter estimates in this model is the same as the 

explanation of OLS model. 

Spatial Durbin Model (SDM) (LeSage and Pace, 2009) considers both the endogenous interaction 

effects and the exogenous interaction effects 

 NP WP X WXρ αι β θ ε= + + + +  (6) 

where θ , just as β , denotes a vector of parameters. The SDM model is motivated by omitted 

variables. This model can produce unbiased coefficient estimates, even if the omitted or 

unobserved variables are correlated with the explanatory variables and follow the spatial 

autoregressive process. In general, the SDM model produces unbiased estimates, no matter the 

true data-generation process is spatial lag model or spatial error model.  A likelihood ratio (LR) 

test can be conducted to test which model describes the true data-generation process best. The 

hypothesis H0: 0θ = is used to test whether the SDM model can be simplified to SAR model, 

while the hypothesis H0: 0θ ρβ+ = is applied to test whether the SDM model is equal to the 

SEM model.  

The parameter estimates of SDM model are obtained by ML estimation and can be interpreted in 

a similar way as SAR model. The only difference is the matrix of partial derivatives ( )kS W  will 

be 

 

12 1

21 21

1 2

( ) ( ) .

k k N k

k k N k
k

N k N k k

w w
w w

S W I W

w w

β θ θ
θ β θ

ρ

θ θ β

−

⋅ 
 ⋅ = −
 ⋅ ⋅ ⋅ ⋅
 ⋅ 

 (7) 

Besides, there are other model specifications containing at least one interaction effect, such as the 

Manski model that contains all three types of interaction effects (Elhorst, 2010), the SAC model 



including the endogenous interaction effect and correlated effects (Kelejian and Prucha, 1998) 

and the SLX model only incorporating the exogenous interaction effects (Gibbons and Overman, 

2012). However, we mainly focus on the three specifications SAR, SEM and SDM as they have 

been frequently used in applied research. 

3.2 Nonparametric approach 

As McMillen (2010) has pointed out, the spatial models have to impose a structure to the model 

in prior when the true model structure is not known. Alternatively, the nonparametric approaches 

are attractive because they admit the unknown true structure at first. Here, we will examine the 

spatial autocorrelation by a nonparametric function called spline correlogram (Bjørnstad and 

Falck, 2001), and measure the spillover effect by a spatial covariance decomposition approach 

advanced by Conley and Ligon (2002). 

Consider the measurement (like house price) iZ  in city i  and suppose Z  as stationary random 

field. That is, the expectation and covariance function of Z  will be fixed through space. We 

further suppose the random field Z  to be isotropic, implying that the covariance function only 

depends on distance, not direction. The spatial autocovariance of random field Z  between city i  

and j  is: 

 ( ) ( )( )Cov , ,i j i jZ Z Z Z Z Z= − −  (8) 

where 
1

1
n

i
i

Z n Z
=

= ∑ is the sample mean. According to Hall and Patil (1994),  a nonparametric 

estimator of autocovariance at distance d  can be given by:  

  ( ) ( )( )
1

ij ij
i j

i j i j

d d d d
C d K Z Z Z Z K

h h

−
 −   −    

= − −      
      

∑∑ ∑∑  (9) 

where ( )K ⋅  is the kernel function,  ( 0)h >  is the bandwidth (a parameter to adjust the 

smoothness of the fitted value) and ijd  measures the geographic distance between city i  and j . 

Bjørnstad and Falck (2001) used a cubic B-spline as an equivalent kernel smoother because it has 



better performance than many regression kernels in simulating the irregularly spaced data. The 

asymptotic kernel function for the cubic B-spline is given by: 

 ( ) 1 exp sin ,
2 42 2

u u
K u π   

= − − +   
   

 (10) 

where ( )iju d d h= −  in our case. Note that if we substitute the term 

2
1

( )( ) ( )n
i j ii

n Z Z Z Z Z Z
=

⋅ − − −∑  for ( )( )i jZ Z Z Z− −  in equation (9), then we obtain the 

nonparametric estimator of spatial autocorrelation which is defined as spline correlogram.  

The measurement of spillover effect in the housing market is based on a decomposition of house 

prices into predicted values and residuals. Again, let ip  denotes the house price of city i , and 

 ( , )iip f X β=  denotes the prediction value of house price based on a vector of observable house 

price determinants iX  and unknown parameters β . The house price ip  can be written as 

  ,i iip p u= +  (11) 

where iu  represents the residual.  Then the spatial autocovariance of house prices can be 

decomposed into three terms 

 ( )  ( ) ( ) ( )Cov , Cov , Cov , 2Cov , .i j i j ii j jp p p p u u u p= + +  (12) 

 The first and second term on the right hand of equation (12) is the spatial covariance of 

observables and unobservables (residuals), respectively. The third term, 2Cov( , )i ju p , measures 

the relationship between the observable features of city j  and the part of house prices of city i  

that cannot be explained by the observable characteristics in city i . Accordingly, the quantity 

2Cov( , )i ju p  can be regarded as the spatial spillover effect. Note that the definition of spillovers 

here should be regarded as a measure of covariance, not as something causal. 

Before we use equation (9) to estimate the covariance functions in equation (12), we have to first 

solve the unknown parameters β  for the prediction of house prices. Here, we assume a linear 



function i i ip X uβ= + . Since one property of the spillover effect is that the spillover between a 

city and itself should be zero, that is 

 Cov( , ) 0i iu X =  (13) 

As long as observations on iX  satisfy a simple rank condition, Conley and Ligon (2002) suggest 

the sample analog of moment restriction (13) to obtain the estimators β  which will correspond to 

the OLS estimators in this case. 

4. Constructing spatial weights matrix  

In spatial econometrics, the spatial matrix W  is a core element to reflect the spatial interaction 

between spatial units and to represent the economic rationale (Corrado and Fingleton, 2012). 

Hence, modelling the spatial spillovers in the interurban housing market needs to correctly 

specify the spatial matrix at first. The traditional forms of spatial matrix are based on spatial 

contiguity measures, geographical distance and travel time. However, those measures will be less 

useful if the spatial interaction is caused by economic or social activities. Instead, the measure of 

economic distance (Conley and Ligon, 2002) or social distance (Conley and Topa, 2002) is 

advanced and employed. Since one aim of this paper is to choose the best spatial matrix that can 

correctly describe the spatial interaction pattern in the interurban housing market, we will design 

and employ four types of spatial matrices. 

Spatial contiguity measure. This is a measure that can derive the relationships of polygons, and 

it has two forms: Rook and Queen. The former one defines the spatial polygons who share some 

length of common border as neighbors, while the latter one considers the units who share the 

common border or vertex to be neighbors.  For this measure, the construction of spatial weight 

matrix (Rook contiguity) is simple and the spatial weights ijw   of unit i  and j   can be written as: 

 
1,     Unites share common boundary
0,     Otherwise.ijw 

= 


 (14) 

Geographical distance and travel time. These two measures are considered under the belief that 

geographical distance or travel time is highly related to the cost of interaction. The longer 

distance or time the two local housing markets hold, the more interaction cost will be. Besides, 



the travel time measure reflects the influence of transport infrastructure on the interaction pattern. 

When constructing the spatial matrix, we treat all the spatial units as the neighbor of each other, 

but near neighbors have higher weights than distant neighbors.  Here we use a popular Gaussian 

function form: 

 2 2exp( ),ij ijw d b= −  (15) 

where ijd  represents the geographical distance or travel time between object i  and j , and b  

refers to the bandwidth.  

Economic distance. Fingleton and Le Gallo (2008) have pointed out the big cities may be less 

remote than their geographic distance would imply, whereas very small cities are often separated 

from one another. If the house price in a large city is very high, some demand will displace to a 

similar large city (perhaps a remote city) rather than speared to a small neighbor city. In these 

cases, the relative economic distance will be more realistic. Therefore, we construct the economic 

distance matrix by incorporating the economic scales into distance measure. The spatial weights 

can be written as gravity forms: 

 2 2exp( ),ij i j ijw G G d b= × −  (16) 

where iG  refers to the gross domestic products (GDP) of city i .   

5. Study area and data 

This paper uses the data from Jiang-Zhe-Hu area (JZH area) which contains Shanghai 

municipality, Zhejiang and Jiangsu province in eastern China. The JZH area is one of the most 

developed area in China, as well as one of the largest urban agglomerations in the world. 

According to the sixth national population census, about 156.10 million people lived in the JZH 

area as of 2010, of which 101.77 million are in urban area. Specifically, the JZH area is 

comprised by 1 municipality under the central government, 24 prefecture cities and 109 counties 

or county-level cities3. The transportation infrastructure in this area is highly developed, and 

characterized by railways and highways (including motorways, national highways, provincial 

                                                           
3 For a detailed description of Chinese administrative division system, see Gong et al (2014). 



highways and prefectural highways). The longest travel time by car between two separate urban 

areas is about 13 hours. In this study, we define the housing market associated with the urban 

area of each jurisdiction (municipality, prefecture city or county) as local housing market. 

Insert figure 1 about here 

We utilize a cross-sectional dataset containing 134 observations in 2010. The data on house 

prices and house price determinants are mainly extracted from the statistical yearbook. There are 

by far no direct house price indices that can cover all the jurisdictions in our study area. So the 

average house price (HPrice), calculated by dividing total sales of newly-sold residential 

buildings by the total floor spaces, is taken as an alternative measure.  

Gong et al (2014) have developed a theoretical approach to explore the house price determinants 

on aggregate city level. Since the empirical results reveal the highly significant influences of 

income and mortgage and marginal significant effect of population, we only consider the former 

two determinants in this study. The first explanatory variable is the disposable income (Income) 

directly extracted from the statistical yearbook. It is expected that the jurisdictions with higher 

income level tend to be the more expensive house prices. The second variable is related to the 

mortgage which can promote the households’ access for housing market and stimulate the 

housing demand, which consequently drive up the house prices. Though the data of mortgage for 

housing purchase is not available, we believe the loan balance per capita (Loan) to be an 

appropriate alternative measure4. Besides, taking into account the fact that prefecture cities or 

municipality can provide better living infrastructures and public services in terms of amount and 

quality and thereby have more expensive house prices because of the capitalization of such 

amenities, a dummy variable (Rank) indicating the rank of administrative level of jurisdictions is 

chosen as the third explanatory variable. If the jurisdiction is a county or county-level city, then 

the variable Rank will be 0; otherwise, 1. At last, a dummy variable Coastal city is also included 

in the model, as many empirical studies have demonstrated its marked influence on house prices. 

The value of 1 will be designated to Coastal city if the urban area of the jurisdiction shares the 

coastline.  

                                                           
4 Due to the huge difference of development between urban and rural area, the majority of the loans is believed to flow into the 
urban area. Therefore, the loan balance per capita is calculated by dividing the total loan balance of financial institutions by non-
agriculture population.    



To construct the four types of spatial matrices W  mentioned above, the geographical distance, 

travel time and data for GDP are needed. The GDP data is published directly in the statistical 

yearbook, while the two distance measures are calculated by the following procedure. First, the 

coordinates of the city (county) hall are defined as the representative of each jurisdiction. Then 

the geographical distance (straightforward distance) is calculated from the latitude/longitude 

coordinates, and the travel time corresponds to the shortest driving time extracted from Google 

Map5. The descriptive statistics of variables and various distances are reported in table 1. Note 

that the Moran’s I tests provide strong evidence for positive spatial autocorrelation of variables 

HPrice, Income and Loan6.  

6. Results 

We start with testing and measuring the spatial dependence and spillover of interurban house 

prices under a given interaction structure by using the parametric approach, and then turn to 

investigate the flexible feature of such dependence and spillover by using nonparametric 

approach. 

6.1 Results of parametric approach 

The estimation results of different model specifications are reported in table 2 7 . The OLS 

estimation is shown in the second column and serviced as a benchmark. The OLS regression 

model performs quite well as about 71% of the interurban house price differences can be 

explained. However, the Moran’s I test for OLS residuals based on economic distance matrix is 

0.322 and significantly rejects the null hypothesis of no spatial autocorrelation8, indicating a 

strong evidence of spatial interaction in the interurban housing market. And hence, we are 

motivated to employ the spatial models. 

 The classic Lagrange Multiplier tests (LM-tests) and robust LM-tests, rLM ρ  and  rLM λ , are then 

utilized to find out whether spatial lag model (SAR) or spatial error model (SEM) is the better 

choice for describing the data generation process of interurban house prices. As indicated by 
                                                           
5 The travel time in Google Map is calculated according to the real time traffic situation. In order to reduce the bias, the data is 
collected in non-peaking period from 10:00 PM to 3:00 AM.  
6 The Moran’s I tests and inference here are calculated based on spatial contiguity matrix and normality assumption. 
7 All the spatial models and diagnostic tests are operated in the R package ‘spdep’. 
8 The geographical distance is employed to build the economic distance matrix, because it performs better than the matrix based 
on travel time. A bandwidth of 30 kilometers is chosen here on which the AIC of the SAR model is minimum.  



classic LM tests, the OLS model is rejected to be in favour of either the SAR model or the SEM 

model at 1% significant level. Further, the robust LM tests reveal that the SAR model is still in 

fovour whereas the null hypothesis of no spatially autocorrelated error term is no longer rejected. 

As a result, it is believed that the SAR model is the more appropriate specification. In order to 

avoid the biased and inconsistent estimators caused by omitted variables which relate to the 

explanatory variables, the Spatial Durbin Model (SDM) is also estimated and the results are 

reported in the last two columns in table 1. Our model specification turns not to be suffered from 

omitted variables as all the coefficients of spatially lagged independent variables ( WX ) appear 

not to be significant. Further, a formal test is conducted. The likelihood ratio (LR) test, 0 : 0H θ = , 

is performed and the result cannot reject the null hypothesis, indicating that there is no reason to 

reject the SAR model and accept the SDM model. Another LR test, 0 : 0H θ ρβ+ =  , shows that 

the SEM model is rejected to be in support of SDM model. Therefore, both the LM and LR tests 

convince us to choose the SAR model as the best candidate for our model specifications. In 

conclusion, our choice of explanatory variables is surprisingly satisfactory and the spatial 

interaction pattern in the interurban housing market is characterized by an endogenous interaction 

effects.  

The estimation results of OLS model and SAR model are then comprehensively compared. The 

estimated coefficients of independent variables in both models are generally as expected with 

respect to signs and significant at 1% level, except for the significance of Coastal city in SAR 

model at 5% level. Those cities with higher income or mortgage level generally tend to drive up 

their house prices, while the house prices in prefecture cities (municipalities) and coastal cities 

are demonstrated to be more expensive than in counties and inland cities, respectively. The 

spatial autoregressive coefficient ρ  is 0.350 and significantly different from 0 at 1% level, which 

is strong indicative of endogenous interaction. Since the estimated coefficients in the OLS model 

are biased because of the spatial autocorrelation process in error term, a simple comparison 

between OLS model and SAR model indeed reveals obvious differences between estimated 

coefficients of these two models, especially for the variables Income and Loan. 

Insert Table 2 about here 



To precisely compare the differences, we first calculate the “direct effect”, “indirect effect” and 

“total effect” of SAR model using approaches introduced in section 3.1. Note that the direct 

effect in the SAR model is slightly different from the response estimators due to the feedback 

effects, through which the impacts pass through neighbor cities and back to itself. However, the 

magnitudes of feedback effects are quite small. Compared the response estimators of OLS model 

with the direct effects of SAR model, the extent to which the OLS estimators are biased becomes 

clear. The marginal effect of Income in OLS model is highly overestimated by 60.6%, then of 

Loan by 44.3%, of Coastal city by 29.8%, whereas the effect of Rank is underestimated by 36.6%.  

In the SAR model, the house price in a particular city depends not only on its own determinants 

but also on neighbors’ house prices through endogenous interaction, indicating an indirect 

interdependence between the particular city’s house price and neighbors’ house price 

determinants.  This indirect interdependence is defined as ‘spillover effect’ and corresponds to 

the ‘indirect effect’ in the SAR model.  The responsible indirect effects show that a 1% change in 

income and mortgage in a particular city will increase the house prices in other neighbor cities by 

totally 0.19% and 0.08%, respectively. The magnitude of spillover of a prefecture city or 

municipality on neighbor cities’ house prices will be 14.61%, while that of a coastal city is about 

5.34%. Compared indirect effect to direct effect, it can be seen that the strength of the spillover 

effect of each explanatory variable is nearly half of the direct effect.  

Insert Table 3 about here 

As is known to us, the parameter estimates of SAR model, especially for estimating the amount 

of indirect effect, directly depend on the spatial weights matrix. Therefore, the choice of an 

appropriate spatial matrix will be crucial in explaining the spatial process of house prices. For the 

sake of comparison, another three alternative specifications of spatial matrices are also 

considered, namely spatial contiguity matrix, geographical distance matrix and travel time 

matrix9. The widely used approach to determine the best spatial matrix is to compare the log-

likelihood function values. However, we employ the Bayesian posterior model probability 

approach offered by LeSage and Pace (2009) to select the best specified W , as the posterior 

model probabilities can still differ largely even if the estimation results are quite robust to 

                                                           
9 The bandwidths for constructing the geographical matrix and travel time matrix are 40 kilometers and 60 minutes, respectively, 
according to the criteria of minimizing the AIC of SAR model. 



different specifications of spatial matrices (Elhorst, 2010). In this study, the posterior 

probabilities of SAR models based on four different spatial matrices are computed and the one 

with highest probability is selected10. As shown in table 3, the posterior probability of the SAR 

model based on “economic distance matrix” is far larger than the models based on other spatial 

matrices. This finding indicates that the spatial interaction pattern in the interurban housing 

market is complicated, depending not only on the distances between cities, but also on the 

economic features of the cities, such as the city size. An anti-intuitive finding in table 3 is that the 

travel time measure which is designed to represent the influence of transportation infrastructures 

does not perform better than geographical distance. That may be a response to the fact the usage 

of motorways in China is rather costly, but not free. As a result, the cities connected by 

motorways may have a short travel time, but not communicate frequently because of the high 

cost. That is, the travel time may be a biased measure to reflect the true interaction pattern. 

6.2 Results of nonparametric approach 

Given the specification for house price prediction in section 6.1 and the OLS estimates of 

unknown parameters β , we can then use the nonparametric approach in section 3.2 to estimate 

the spatial autocorrelation of each variable and measure the spillover effect11. 

6.2.1 Spatial autocorrelation 

Using the nonparametric technique spline correlogram, the spatial autocorrelation functions of 

dependent variable, independent variables (except for dummy variables) and unobservables 

(residual) are estimated and shown in Figure 2. The solid lines in this figure are estimated spatial 

autocorrelations, while the regions enveloped by dashed lines are 95% confidence region 

simulated by bootstrap algorithm. For all panels of Figure 2, the confidence envelope at distances 

greater than 600 km becomes much wider because the lack of enough observations for inference. 

Therefore, we mainly concern the spatial correlation for cities less than 600 km. In contrast to 

Moran’s I tests which need to base on certain spatial structures, spline correlogram flexibly 

describes the autocorrelation patterns with respect to distances. 

                                                           
10 We used the matlab routine sar_g at the “spatial econometrics” toolbox posted by LeSage to perform the estimation of Bayesian 
posterior model probabilities.  
11 The nonparametric estimation of spatial autocorrelation and spillover effect was operated in R package ‘ncf’, and we only 
utilized the geographical distance in this section. 



Figure 2(A) provides strong evidence of spatial autocorrelation of house prices. The positive 

dependence between cities less than 350 kilometers monotonically decreases with geographical 

distances, which is in accordance with Geographical First Law. For cities that separated more 

than 350 km, there is no significant evidence for their dependence of house prices. However, the 

cities apart farther than 450 km seem to show a negative dependence, indicating that the farther 

the cities are separated, the larger differences of house prices they have. One explanation for the 

negative dependence may be related to the fact that the southern part (Southern Zhejiang 

province) of our study area is generally more developed than the northern part (Northern Jiangsu 

province). However, it is still a bit difficult to imagine a behavior which would generate such 

negative dependence and we will leave this for the future work. 

Insert Figure 2 about here 

The estimated spatial autocorrelation functions of disposable income (Income) and loan balance 

per capita (Loan) are displayed in Figure 2(B) and 2(C), and they exhibit a similar decline pattern 

with house prices. One difference is that the range of positive dependence of Income is about 220 

km and much smaller than that of house price (350 km) and Loan (300 km). The negative 

autocorrelations of these two independent variables are, of course, detected at a moderate 

distance ranges, except that the negative dependence of Income no longer monotonically changes 

with distances, which again differs from other variables.  

We next turn to formally consider the spatial interaction of housing market by estimating the 

spatial autocorrelation of OLS residuals. If the house price determinants that appear in the OLS 

specification can efficiently predictive the house prices, then the spatially uncorrelated residuals 

ought to be observed; otherwise, there is evidence for spatial interaction. Figure 4(D) shows the 

nonparametric estimation of spatial autocorrelation of OLS residuals. There is significant 

evidence of positive dependence at short distances less than 60 km, but we cannot reject the 

hypothesis of independence at other distances. Considering that almost all the cities in our study 

area have at least one neighbor within the radius of 60 km, we are convinced that spatial 

interaction indeed play an important role in determining the interurban house prices. This finding 

is strictly in line with the LM and LR tests in spatial parametric models which indicate an 

endogenous effect in the interurban housing market.  



6.2.2 Spillover effect 

 Having explored the spatial autocorrelation functions of house prices, observables and residuals, 

our focus shifts to decompose the spatial covariance of house prices represented in equation (12) 

and discuss the final component ( )Cov ,i ju p , which we have called spillovers. Figure 3(A) 

draws nonparametric estimation of spatial covariance of each component. And again, we only 

consider the spatial covariance functions at distances less than 600 km. 

Our conclusion for spatial dependence in housing market are enhanced by Figure 3(A), as the 

spatial covariance functions of house price and residuals are the same in form to the spatial 

autocorrelation functions. Further, the importance of observables in predicting the house prices is 

also underpinned by the fact that the spatial covariance for observables declines quite similar to 

the function for house prices and accounts for the greatest part of covariance of house prices at 

distances less than 600 km. Nevertheless, the role of both the covariance in spillovers and 

unobservables in explaining the house price covariance cannot be ignored, especially at short 

distances.  

As mentioned in our earlier discussion and displayed in Figure 3(A), the amount and scope of 

spatial covariance of unobservables are both quite small. So the spillover effect ought to be 

largely responsible for explaining the house price differences at where the observables fail to 

perfectly account for house prices. This is convinced by Figure 3(B) which contains the 

nonparametric estimation of spillovers and 95% confidence envelope. Figure 3(B) demonstrates 

that the spillover effect is not only appreciable in magnitude, but also significant at distances less 

than 250 km. The spatial distribution of cities in our study area can provide us with a deeper 

understanding of the range of spillovers. The distance between central city (Shanghai) and one 

subcentral city (Hangzhou), which is the capital of Zhejiang province, is within this range, while 

another subcentral city Nanjing (capital of Jiangsu province) locates at the marginal of this range 

(270 km). For Zhejiang and Jiangsu province, about 79% and 73% of its cities are apart within 

the radius of 250 km, respectively. It can be concluded that spillover effect is quite important in 

explaining the house prices of interurban housing market, especially for the cities under the same 

provincial government. 



Just as discussed in parametric models, a further question related to spillover effect is that which 

house price determinants are primarily responsible for generating the total spillovers. The answer 

is found by simply decomposing the total spillover function ( )'Cov ,i ju X β  into a sum of 

covariance functions between each determinant and residuals,  ( )1
Cov ,l

k i kjk
u Xβ

=∑ , where kjX  

denotes the thk  determinant (except for dummies). We define the covariance functions 

( ){ }Cov ,i kju X  as the estimated components of the spillovers. Figure 3(C) and 3(D) show the 

estimates of each spillover component created by Income and Loan and their 95% confidence 

envelope, and the results are quite revealing. The spillover functions of both Income and Loan 

have similar declining patterns with the total spillover, as well as almost the same significant 

ranges. All these findings are consistent with our earlier parametric results.  An increase in the 

Income and Loan in a particular city will exert a positive spillover effect in its neighbor cities’ 

house prices within 250 km. 

7 Conclusion and implication 

While the spatial dependence in the intracity housing market has been extensively studied, this 

paper contributes to the understanding of spatial interaction of house prices from an interurban 

perspective. Based on a cross-jurisdictional data set, our empirical results of both parametric and 

nonparametric approach provide convincible evidence of spatial dependence and spillover effect 

in the interurban housing market. 

Through extensive literature study, we conclude that following behavior, migration and equity 

transfer and spatial arbitrage of capital are the most important behavioral reasons for spatial 

interaction (spatial dependence) in the interurban housing market. Due to such spatial interaction, 

the OLS specification cannot perfectly explain the house price differences and will produce 

biased coefficients estimation. In the parametric approach, the Moran’s I test of OLS residuals 

indicates that spatial models will be the better specification. Further, the LM and LR tests suggest 

the spatial lag model (SAR) as the best one, indicating that the house price process follows an 

endogenous interaction pattern. It should be noted that the spatial interaction depends not only on 

distances between jurisdictions, but also on jurisdictions’ economic situation. The results of SAR 

model are interpreted by partial derivative approach. They reveal that the coefficients estimators 



are seriously biased, especially for Income and Loan, of which the coefficients are overestimated 

by 61% and 44% respectively. Spillover effects, referring to the interdependence between one 

jurisdiction’s house prices and its neighbors’ determinants, are proved to be significant in 

explaining the house prices, and their strength reaches nearly half of the direct effects.  

Parametric approach offers quite revealing conclusions based on a certain structure, while the 

nonparametric approach draws a flexible relationship between spatial dependence and distances. 

We find monotonically declined spatial autocorrelation of house prices and explanatory variables 

at moderate distances, such as distances less than 220 km. In contrast, though the OLS residuals 

also exhibit significant autocorrelation, its scope is really small (60 km). Spillover effect is again 

investigated by decomposing the spatial covariance function. The results show that the 

importance of total spillover effect in explaining the house prices should be paid attention to 

within the radius of 250 km. Moreover, the spillover effects created by Income and Loan follow a 

similar decreasing pattern with the total spillover effect. 

Although we chose only few interurban house price determinants in the model specification, the 

model performs quite well when taking the spatial interaction into account and we can draw a 

few useful implications. First, the spatial dependence and spillover effect offers us a deeper 

understanding of the interurban house price behavior. It provides a good insight into accounting 

for why the house prices in some cities run above the level indicated by fundamentals.  So it 

should be much careful to judge if there are ‘bubbles’ in those cities’ housing markets. Second, 

policy makers have to consider the spillover effect and enhance the cooperation with neighbors 

when making policies or regulations to govern the local housing market, especially for countries 

whose policy-making procedure is not centralized. Though we did not fully consider the policy 

variables in our study, the spillover effect of variable Loan indeed reveals that a looser monetary 

environment in one jurisdiction can generate a positive shock to its neighbors’ housing market, 

which may imply the spillovers of other policies. However, a lot of work about the spillover 

effect of policy in the housing market needs to be done in the future. 
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 Table 1. Description of variables and distances 

 Description Min Max Mean S.D. Moran’s I 
HPrice Average house prices (Yuan/m2) 1950.56 23969.18 6057.26 3410.18 0.3643** (6.71) 
Income Disposable income (Yuan per capita) 11783.00 35220.00 22555.37 5724.19 0.3813**(7.02) 
Loan Loan balance per capita (10 million Yuan) 1.25 58.82 16.25 12.84 0.3903**(7.18) 
Rank The administrative level of jurisdictions (0,1) 0.00 1.00 0.19 0.39 / 
Coastal city Cities share coastline (0,1) 0.00 1.00 0.29 0.46 / 
Geographic 
distance 

Straightforward distance (km) 6.96 877.09 303.91 178.98 / 

Travel time Shortest driving time (minutes) 19.00 803.00 275.43 143.12 / 
GDP Gross domestic products (100 million Yuan) 26.70 16971.55 651.83 1618.53 / 

Note: Moran’s I tests are calculated based on spatial contiguity matrix; standard deviations of Moran’s I are computed under 
normality assumption and reported in parentheses; ** indicates significance at 1% level.  



 

Figure 1. Study Area 

 

 



Table 2. Estimation results of different model specifications (Dependent variable= ln( )HPrice ) 

 OLS SAR SEM SDM 
Coefficient Direct Indirect Total X  WX  

Ln (Income) 0.6408** 
(4.270) 

0.3971** 
(2.853) 

0.3990** 
(2.887) 

0.1939** 
(2.624) 

0.5929** 
(2.972) 

0.6390** 
(4.151) 

0.4922** 
(2.969) 

-0.2776 
(-1.178) 

Ln (Loan) 0.2209** 
(5.202) 

0.1474** 
(3.826) 

0.1531** 
(3.830) 

0.0753** 
(3.025) 

0.2284** 
(3.897) 

0.1539** 
(3.594) 

0.1190** 
(2.722) 

0.0627 
(1.030) 

Rank 0.1840** 
(3.140) 

0.2770** 
(5.246) 

0.2902** 
(5.541) 

0.1461** 
(2.902) 

0.4362** 
(4.639) 

0.2112** 
(4.695) 

0.2562** 
(4.584) 

-0.0815 
(-1.052) 

Coastal city 0.1404** 
(2.783) 

0.0999* 
(2.246) 

0.1082* 
(2.513) 

0.0534* 
(2.165) 

0.1616* 
(2.493) 

0.1304* 
(2.342) 

0.1192** 
(2.015) 

-0.0385 
(-0.512) 

Constant 1.5779 
(1.116) 

1.1340 
(0.924) 

   1.7371 
(1.186) 

2.464 
(1.370) 

ρ   0.350** 
(28.464) 

    0.403** 
(18.723) 

λ       0.460** 
(21.478) 

  

R2 0.711        
Log likelihood -6.626 7.606    4.113 9.239 
AIC 25.252 -1.212    5.774 3.523 
Obs. 134 134    134 134 
Moran’s I  
(OLS Residual) 

0.322** 
(5.122) 

       

LM test between SAR and OLS     LR test between SAR and SDM 

LM ρ  31.805**      =0LRθ  3.265 

rLM ρ  10.806**        

LM test between SEM and OLS     LR test between SEM and SDM 
LM λ  21.825**      + =0LRθ ρβ  10.251* 

rLM λ  0.826        

Note: Results reported in this table are based on the economic distance matrix.  t-values are reported in parentheses. ** and * 
indicate significant at 1% and 5% , respectively. For spatial parameters, LR tests are employed. Moran’s I and LM tests are based 
on OLS residuals. LR tests are based on log-likelihood values. 

Table2. Bayesian posterior model probabilities of different matrix specifications 

Matrix Spatial contiguity Geographical distance  Travel time  Economic distance 
Posterior probability 0.0003 0.0624 0.0416 0.8957 
Note: the parameter estimates and inferences of different spatial weights matrices are available upon request. 

 

 

 

 



    

     

Figure 2. Nonparametric spatial autocorrelation functions 

 

 

 

 

 

 

 

 

 

 

 



                  

                   

Figure 3. Spatial covariance decomposition 

 

 


