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IMPACTS OF CLIMATE CHANGE ON DENGUE RISK IN BRAZIL 

 
Paula C. Pereda, Tatiane A. de Menezes and Denisard Alves 

 

 

Abstract 
 

Climate-sensitive health problems kill millions of people every year and 

undermine the physical and psychological well-being of millions more. In 

the case of infectious diseases such dengue fever, climate conditions affect 

the vectors’ survival and reproduction and consequently the transmission of 

the disease. In order to identify the climate impacts on dengue risk in Brazil, 

a comparative case study is used based on the synthetic controls approach. 

The South and Northeast regions of Brazil are compared to the rest of the 

country in order to identify those impacts. The results suggest that the 

increase in temperature and humidity in temperate regions (South of the 

country) will increase the incidence of dengue in the region. On the other 

hand, the increase in rainfall in the tropical areas (Northeast) could diminish 

the disease’s prevalence as standing water accumulations might be washed 

away. Therefore, due to the expected climatic changes in the future, the 

dengue fever distribution in the country might change, with the disease 

migrating to the south. The public policy’s role in minimizing these effects 

in the country is mainly focused on integrated actions. 
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1. Introduction 

The observation of historical annual temperature values (and anomalies) from 1860 to 2006 

supports the idea of climate evolution during the last 150 years (UK MET Office, 2012). 

Figure 1 indicates a rising trend in average temperature during the period. From 2000 to 

2005, the average temperature was 0.48 ºC above the long-term average; and 2005 was the 

second warmest year of the whole sample. 

Figure 1 - Temperature deviation from long-term average in degrees Celsius (oC), 1860 to 2006. 

 
Source: (UK MET Office, 2012). HadCRUT3 Temperature anomaly (o C) 

 

Trends from 1900 to 2005 have also been observed in precipitation (IPCC, 2007). In 

South America, an increase in rainfall is observed for the eastern areas of the region. There 

is also evidence of an increase in extreme event frequency, such as droughts, floods, heat 

and cold waves, hurricanes and other storms (IPCC, 2001). Thus, the current climate 

change discussion is no longer about the existence of the phenomenon, but rather the 

magnitude of its longer term impacts and efficient adaptation measures.  

According to the World Health Organization (WHO), climate-sensitive health 

problems kill millions of people every year and undermine the physical and psychological 

health of millions more (WHO, 2012). In the particular case of vector-borne diseases, 

climate conditions assure the vectors’ survival and reproduction and, consequently, the 

transmission of the diseases (Kelly-Hope and Thomson, 2008). Increases in heat, 

precipitation, and changes in humidity can allow insects to move from regions where 

infectious diseases thrive into new places.  

The vector-borne disease analyzed by this paper is dengue fever. In Latin America, 

it is the most harmful infectious disease and it is considered an emerging mosquito-borne 

disease that is a major public health concern in Brazil. Dengue is transmitted to humans by 
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female Aedes aegypti mosquitoes, with high transmission rates throughout the day and 

night in urban areas. The cycle, reproduction and survival of mosquitoes are highly 

dependent on weather conditions – humid and warm environments – and the accumulation 

of water is necessary for the reproduction and spread of the mosquito population.  

In Brazil, dengue has high annual incidence. According to the Ministry of Health’s 

Information System for Disease Notification (MS/SINAN)1, there were 5.3 million dengue 

fever notifications in Brazil between 2002 and 2013 (until September of 2013), regionally 

distributed as shown in Figure 2.  

Figure 2 - Annual dengue Incidence, by region, 2001 to 2013[1]. 

 

Source: Notifications of Dengue, Brazilian Ministry of Health’s Information System for Disease 

Notification (MS/SINAN) 

[1] 2013 data from January to September.  

In 2010, for example, a spate of dengue fever outbreaks occurred and almost one 

million cases of the disease were notified in the country. Due to the importance of the 

disease in Brazil, the goal of this study is to identify the climate relevance to dengue in the 

country in order to measure the impact of climate change on dengue risk, and to discuss the 

potential role of public policy in minimizing those effects in the country. The government 

influence in terms of public policy is mainly determined by the surveillance expenditures 

and sanitation measures (both urban infrastructure problems controlled by local 

governments, with federal and state support), by the type of housing, educational measures, 

                                                   
1 SINAN is a national system for notification and investigation of diseases, in existence since 2001.  
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and by assuring the health assistance of the people affected by such diseases (availability of 

hospital beds, health expenditures).  

In order to identify the climate impacts on dengue risk, a comparative case study is 

used, based on the comparison of cities that experienced specific climate conditions that 

increased the risk of dengue with cities whose climate conditions stayed the same (Section 

2). The counterfactual is based on the synthetic controls approach, which generates control 

groups as a combination of units not exposed to the intervention (Abadie and Gardeazabal, 

2003; extended by Abadie et al., 2010). Thus, the synthetic control is a weighted average of 

the available control units, which sum to one. As Brazil is a geographically large country 

subject to many climate patterns, there are many possibilities to obtain good control groups 

by using this methodology (Sections 4 and 5). Once the effect is identified, climate change 

simulations can be done in order to predict the expected effects of the changes in climate 

on the dengue fever spread in the country (Section 6).  

 

2. Basic Model 

Cavallo et al. (2010) analyzed the effect of natural disasters – such as floods, hurricanes 

and earthquakes – on countries’ GDP in the short and long run. Following Abadie and 

Gardeazabal (2003) and Abadie et al. (2010), the authors performed a comparative analysis 

of countries from the construction of an appropriate counterfactual – a group of synthetic 

controls.  

In this paper we apply a similar strategy to that of Cavallo et al. (2010) by trying to 

measure the consequences of global warming, an exogenous variable, on dengue incidence. 

Actually, the exogenous climate characteristics permit us to build a synthetic control using 

the cities where a strong impact of global warming cannot be observed.   

According to Abadie and Gardeazabal (2003), Abadie et al. (2010) and Cavallo et 

al. (2010), a quasi-experimental design of this type is preferable to conventional methods 

for some reasons, such as the ability to explore the variability of the municipal rate of 

dengue fever using a time series model. However, this ignores the fact that the magnitude 

of mosquito proliferation can be different between regions. An alternative would be to 

control for the unobservable characteristics of city fixed effects, but this would lead to 
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extrapolations, since this model requires constant effects over time. Finally, the use of a 

difference-in-difference model would be inappropriate due to use of macro data as 

variables in the model.  

One of the main determinants of dengue incidence is environmental features 

(Barcellos et al., 2009), dominated by the importance of climate on the incidence of 

dengue, as outlined previously. The relevant climate conditions for the dengue vectors’ 

survival and reproduction are: average temperature not too low or high, sufficient humidity 

to regulate the temperature of mosquitoes, and a reasonable amount of precipitation for the 

deposition of eggs. Regarding the amount of rainfall, it is believed that large amounts of 

rain may have a reverse effect, since this can wash away standing water accumulations, 

reducing the number of surviving larvae.  

The method to identify the climate impact on the health problem proposed is based 

on the comparison of areas affected and not affected by the climatic events considered to 

aggravate risk. When it comes to dengue, the Brazilian region so far not affected by 

dengue, as identified by Pereda (2012), is the South of the country. Hence, this area can be 

a target area in terms of the identification of climate impact on dengue. 

Thus, the identification strategy will be to estimate the increase in dengue risk due 

to a warmer than average summer in those regions (or an extreme event observed in the 

mapped area). Cities that showed a deviation from the abovementioned climate conditions 

will be analyzed as the treatment group/city. As the cities cannot be observed in the 

situation of treated and non-treated simultaneously, the first step in assessing the impact of 

the climate event on the health problem is the construction of a counterfactual for evolution 

of this phenomenon. There is only one figure available very year with respect to the climate 

variable, dengue incidence and infrastructure and socioeconomic information.  

Under such conditions, we employ the strategy of building a synthetic control 

variable according to the proposal of Abadie and Gardeazabal (2003), and extended by 

Abadie et al. (2010), to estimate the impact of climate on dengue fever incidence. A brief 

summary of this strategy starts with the recognition of the data structure necessary for the 

method. In this sense, consider the existence of a panel data set with observations for a 

range of cities Ic + 1 for a period of T years, in which Ic corresponds to the number of 

untreated cities considered. Assume also that the climate event is observed in year  

<T, only in the city which is focus of evaluation. Suppose that  and , 
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respectively, denote the value of the focus variable of the evaluation (dengue incidence 

risk) in city i with and without the climate event. The aim is to obtain estimates for: 

,   for t >                                                                            (1) 

In which , since these are observed values. 

Therefore, the aim is to estimate the values of  from other Ic cities. In this sense, 

Abadie et al (2010) assume that such values are generated from a model of the type:  

                                                                                           (2) 

In which j indexes the Ic cities that did not undergo the climate event,  is a 

unknown factor, common to the cities,  is a vector of observed variables not affected by 

the event and  is its parameter vector,  is a specific effect vector of the city j and  its 

unknown parameter vector, and  represents the unobserved random error.   

This strategy aims to find a vector w*, among the weight vector W (Ic x 1), 

, in which and , such that: 

, for , and                                                  (3) 

In other words, a vector is obtained that weights the dependent variables of the 

cities that did not experience the climate event in the period before the event and the 

observed independent variables of these cities in a way to obtain the dependent variable 

value of the treated city i in each period and the observed independent variables of this city. 

This vector represents a weighting structure of cities and corresponds to the untreated 

synthetic control city i, which observed the climate event. 

Abadie et al. (2010) show that, under standard conditions, the expected value of 

, i.e, of the difference between the variable of interest from city I, that 

underwent the climate event for the period without this occurrence, and the weighted sum 

(using vector W*) values of the cities without the climate event, is zero. Thus,  

is an unbiased estimator of . Estimates of the climate impact in city i in the periods after 

the climate event can be obtained by the following difference: 

 , for t >                                                                                   (4) 
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In general, the conditions in (3) do not tend to be fully applied. Thus, the synthetic 

control represented by the weighting vector w* is chosen so that these conditions are 

approximately assumed. 

An interesting and useful aspect of this strategy is the fact that, unlike traditional 

applications of the difference-in-difference approach (where no specific control for the 

influence of units/cities varies in time), the model of equation (2), from the parameter , 

allows unobserved specific effects to vary in time. This stems from the fact that the 

conditions for a synthetic control satisfy the conditions in (3) only if the prevailing 

conditions  e   are approximately true (Abadie et al., 2010). 

The calculation of the synthetic control (using the weighting vector W*) involves 

the minimization of the distance measure between the values of the city variables, impacted 

by climate,  (variable vector), and the same set of variables for cities that did not undergo 

the event in the same period weighted by W ( , vector of weighted variables): 

, where V is a positive semi-definite symmetric matrix 

affecting the Mean Squared Error Estimator (MSEE). We follow Abadie et al. (2003), 

choosing V so that the variable’s MSEE (health risk variable) is minimized in the period 

before the event. 

Finally, inferences can be made using results of placebos, which correspond to the 

evidence found from the application of the method over the cities considered as controls. 

The idea is to get results of false events/interventions for each of the considered cities in 

the same year of the event, generating a set of trajectories for the cities in relation to their 

alleged synthetic controls, which serve as comparison to the trajectory initially obtained for 

the city of interest. 

Besides greater control for the influence of unobserved variables, the strategy of 

using synthetic control has other advantages over the non-experimental methods. Among 

these, it is possible to highlight the possibility of still drawing inferences when only one 

treated value is observed. In addition to that, the method only uses information about the 

period before the event, so the choice of control is not related to any direct results. Finally, 

there is transparency in the control choice, since the method involves consideration of the 

similarities of variables from the period before the event. 



 
 

8 

3. Data Sources and Description 

This study uses annual municipal-level panel data for the period 2001-2010. The following 

table presents the description of data and sources used to gather the information: 

Table 1 - General variables and sources 

Variable(s) Source Description 

Observed climate 

data 

Brazilian Meteorology 
Institute (INMET) 

Average temperature, average relative humidity 

and accumulated rainfall (in millimeters) per 
month by weather station from INMET. All 
data were transformed to municipalities by 

season [1,2]. 

Climate change 

projections 

Department for Weather 

Forecasting and Climate 
Studies (CPTEC/INPE) 

Predictions of average temperature, relative 
humidity and rainfall are performed using three 

models run by INPE and the IPCC scenarios of 
emissions from 2040 to 2069 [3].  

Dengue fever 

notifications  

Database of the National 
Public Health System 

(DATASUS) 

Contains all notified cases of dengue in the year 
by municipality of residence reported and 

stratified by age or income.  

Socioeconomic 

data  

National Household Survey 
(PNAD) 

Overall population characteristics: education, 

labor, income and housing, among other 
socioeconomic data (migration, fertility, health, 
food security, and other topics).  

[1] Brazil’s network of weather stations covers much of the coast. To transform the data from the weather stations into 
municipal data, we used the kriging method of spatial interpolation (Haas, 1990), which allows the interpolation of data 

with flexibility to specify the covariance between the outputs.  
[2] The local political unit in Brazil is the municipality, which as similar to a county, except there is a single mayor and 

municipal council. There are no unincorporated areas in Brazil.  
[3] CPTEC/INPE uses regional models, which downscale the global models (HadRM3P Model; Eta/CPTEC Model; and 

RegCM3 Model). Correlation anomalies among the models are calculated in order to detect consistent signals for the 
predictions. The output of the models is an average of the combined results from three forecasting model. This is called 

the “multi-model ensemble technique” (UK MET Office, 2012).  

In order to have the most wide-ranging dataset for the socioeconomic variables 

evolution, the data needed to be aggregated into the 27 capital cities of the Brazilian states, 

to enable using the sample from the yearly National Household Survey, which provides the 

most complete data about the country. The climate among these cities differs significantly. 

Table 2 shows that the temperatures in Brazil are typically very high, especially in the 

northern region. On the other hand, the south of Brazil has lower temperatures (and 

occasional frosts and brief snowfalls during the winter). The North region’s cities are 

rainier, reaching approximately 3,000 mm of precipitation per year. The rainy season also 

lasts longer in this region, contrasting with the climate of the neighboring region, the 

Northeast, which has the highest temperatures and driest seasons in the country. The Table 

3 shows the mean of the socioeconomic variables for the period 2001-2010, by Brazilian 

capital.  
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Table 2 - Climate description, seasonal long-term average (1980-2009), by capital city of Brazilian states[1]. 

Capital cities
Altitude     

(in meters)

Average 

Temperature 

DJF

Average 

Temperature 

MAM

Average 

Temperature 

JJA

Average 

Temperature

SON

Average 

Rel. 

Humidity 

DJF

Average 

Rel. 

Humidity 

MAM

Average 

Rel. 

Humidity 

JJA

Average 

Rel. 

Humidity 

SON

Avg. 

Monthly 

Precipitaion 

DJF

Avg. 

Monthly 

Precipitaion 

MAM

Avg. 

Monthly 

Precipitaion 

JJA

Avg. 

Monthly 

Precipitaion 

SON

Porto Velho 85           25.53 24.91 23.97 25.66 87.92 86.22 75.02 78.14 262.34 229.05 85.43 147.55

Rio Branco 153         25.47 24.89 23.51 25.55 89.91 87.65 76.10 79.89 276.60 195.86 45.59 145.58

Manaus 92           26.32 26.32 26.78 27.48 86.84 86.32 75.21 76.77 264.25 276.56 86.62 107.58

Boa Vista 85           27.72 27.82 27.31 28.88 85.57 85.52 76.93 76.00 88.79 203.56 274.41 84.07

Belém 10           26.23 26.21 26.40 26.95 84.95 86.51 78.21 76.94 203.09 252.86 100.99 58.75

Macapá 16           26.60 26.56 27.05 28.29 83.98 86.20 77.34 72.92 255.45 312.08 161.69 41.77

Palmas 230         25.61 25.77 25.15 26.73 82.28 80.28 62.70 70.32 269.57 180.87 7.95 136.85

São Luís 24           26.65 26.34 26.42 27.30 80.75 84.92 78.23 73.74 207.39 378.66 113.81 13.41

Teresina 72           26.67 26.19 26.28 28.13 76.27 81.35 67.73 61.34 186.11 231.33 17.22 21.96

Fortaleza 21           26.95 26.54 26.28 27.41 75.13 80.22 72.24 68.43 127.54 312.25 85.20 10.86

Natal 30           26.81 26.43 25.09 26.50 74.29 79.30 75.93 71.80 81.93 208.88 235.38 23.92

João Pessoa 47           26.92 26.33 24.85 26.35 72.97 77.57 78.11 71.51 82.90 219.92 262.34 34.40

Recife 4            26.64 26.07 24.32 25.76 73.67 79.37 80.50 73.30 98.99 229.16 291.68 44.52

Maceió 16           25.71 25.14 23.16 24.74 73.31 77.45 77.15 71.27 71.87 193.34 240.59 50.50

Aracaju 4            26.19 25.70 23.73 25.29 74.88 77.58 75.84 72.46 62.55 148.50 143.44 49.24

Salvador 8            25.92 25.21 23.02 24.80 76.61 79.82 77.11 74.06 94.57 206.55 172.77 80.65

Belo Horizonte 858         23.20 21.68 18.65 21.96 75.65 74.45 68.21 68.47 274.28 90.71 10.06 125.94

Vitória 3            25.48 23.94 20.90 23.15 75.65 77.12 74.23 73.65 149.47 108.42 52.13 121.89

Rio de Janeiro 2            24.35 22.30 18.66 21.42 76.93 78.52 75.53 74.51 176.69 134.24 78.50 139.69

São Paulo 760         22.65 20.29 16.67 19.65 77.03 77.41 73.18 74.14 240.05 119.26 42.58 121.47

Curitiba 934         21.21 18.06 14.00 17.28 81.09 83.14 80.33 80.31 172.03 114.94 72.32 147.55

Florianópolis 3            23.46 20.77 15.73 19.59 78.84 79.58 78.56 77.04 188.66 137.57 61.64 164.06

Porto Alegre 3            23.58 19.91 14.35 18.98 74.48 77.58 77.28 73.47 121.72 106.59 119.75 146.98

Campo Grande 532         24.23 22.19 19.01 22.47 80.45 79.73 72.10 73.36 210.62 121.91 50.00 136.75

Cuiabá 176         25.87 24.93 22.77 25.88 82.94 82.17 72.41 74.38 221.14 112.11 16.86 113.66

Goiânia 749         24.08 23.73 22.09 24.77 75.90 70.59 53.68 62.77 251.98 136.95 8.08 131.00

Brasília 1,171      21.86 21.17 19.48 22.10 77.69 73.71 55.60 64.55 226.16 122.72 10.80 125.38

N
o

rt
h

N
o

rh
te

a
st

S
o

u
th

e
a

st
S

o
u

th
M

id
w

e
st

 
[1] Temperatures are measured in degrees Celsius, precipitation in millimeters, and humidity in percentage.  Label of the periods:  

DJF: December, January and February (summer);                          MAM: March, April and May (fall); 

JJA: June, July and August (winter);                                               SON: September, October and November (spring); 
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Table 3 - Descriptive variables from SINAN and PNAD, mean from 2001 to 2010, by the capital city of Brazilian states. Number of rooms in each household 

Capital cities

 Dengue 

cases per 

100.000 

habitants

Population 

of the city

% women 

in the city

Average 

Age, in 

years

% white and 

yellow 

people in the 

population

Years of 

schooling

Monthly 

real 

income, 

main job

Monthly 

per 

capita 

real 

income

% people 

working 

with 

agriculture

% people 

working at 

industry

% people 

working at 

service 

sector

% housesold 

with piped 

water in at 

least 1 room

% 

household 

which own 

bathroom

Number of 

rooms in 

the 

household

% roof 

material: tile 

or concrete 

slab

% households 

connected to 

the sewage 

system

Porto Velho 323.47     373,973     51.18     27.32    31.62         6.17     954       638      2.09        9.05        19.58      86.65         97.41       5.63        99.16        11.21           

Rio Branco 1,937.11   294,369     51.75     26.67    28.27         5.72     885       656      4.81        6.86        18.89      71.48         93.36       5.13        93.09        50.61           

Manaus 244.61     1,629,011  51.40     26.37    27.71         6.11     781       495      0.97        11.66      19.31      87.02         96.26       5.02        94.16        21.45           

Boa Vista 990.84     243,423     50.28     24.85    24.00         5.65     737       503      3.28        7.14        17.89      91.47         97.16       4.92        99.46        17.65           

Belém 152.01     1,385,389  52.64     29.59    28.45         6.50     718       528      1.45        7.69        23.00      91.20         96.78       5.25        98.27        39.96           

Macapá 545.90     343,934     50.02     25.53    24.37         5.97     794       494      1.80        6.69        17.15      89.03         97.74       5.14        98.06        5.78            

Palmas 950.13     188,026     51.79     25.73    34.28         6.88     981       760      2.56        8.81        20.32      96.99         98.10       5.80        99.15        42.50           

São Luís 124.58     961,183     52.99     27.98    28.89         6.77     774       531      1.39        7.74        20.91      86.99         91.41       5.75        97.59        51.73           

Teresina 312.04     777,789     54.56     29.68    25.34         6.25     669       566      2.79        8.13        24.20      92.11         93.82       6.49        98.99        14.71           

Fortaleza 464.72     2,364,697  53.44     29.48    37.93         6.27     715       534      1.11        10.13      21.88      95.29         98.17       6.07        99.66        57.79           

Natal 905.98     771,770     52.42     30.23    42.11         6.36     768       623      1.47        8.36        23.38      97.08         98.82       6.14        99.71        23.91           

João Pessoa 120.34     663,121     52.65     29.88    42.77         6.10     807       656      1.26        7.86        21.01      97.99         98.97       6.39        99.75        49.12           

Recife 364.93     1,503,350  53.90     31.44    40.26         6.58     863       629      0.94        6.14        21.27      95.16         97.80       6.07        98.27        51.34           

Maceió 521.22     890,085     53.42     28.78    39.73         5.43     762       524      1.13        6.54        19.62      95.61         98.00       5.82        98.22        28.35           

Aracaju 287.26     509,013     52.85     29.82    30.99         6.68     845       672      1.37        7.43        21.80      97.89         99.16       6.72        99.05        80.70           

Salvador 176.09     2,709,711  53.12     30.01    18.83         6.75     768       598      1.03        8.16        24.69      97.58         98.29       5.67        98.49        87.44           

Belo Horizonte 395.93     2,365,030  53.13     32.74    48.82         7.44     1,148    935      1.18        10.04      22.91      99.62         99.69       6.83        99.44        97.45           

Vitória 720.91     311,772     52.81     33.86    49.26         8.38     1,390    1,178    0.87        8.55        21.54      99.28         99.26       7.09        99.22        94.16           

Rio de Janeiro 544.30     6,085,273  53.91     36.03    61.43         7.63     1,241    976      0.84        7.19        22.50      99.38         99.61       5.77        99.37        93.28           

São Paulo 19.96       10,900,000 52.81     32.48    65.69         7.17     1,289    909      0.85        10.60      22.48      99.12         99.40       5.67        99.03        89.30           

Curitiba 3.28         1,743,811  52.31     32.36    82.00         7.67     1,253    1,027    1.35        11.49      23.78      99.48         99.46       6.87        98.65        91.33           

Florianópolis 3.37         390,083     51.77     33.49    88.15         8.24     1,375    1,149    0.84        6.89        21.19      99.30         99.70       6.93        96.66        59.05           

Porto Alegre 2.20         1,413,321  54.08     34.57    80.80         7.95     1,363    1,152    1.07        7.47        22.42      98.61         98.56       6.20        97.20        88.26           

Campo Grande 1,323.64   734,060     51.59     30.66    52.53         6.57     997       767      2.46        9.25        24.77      98.20         99.69       6.26        97.41        24.34           

Cuiabá 429.41     527,589     51.90     30.13    37.27         7.11     1,078    792      2.13        7.71        22.86      93.26         97.03       6.14        96.38        60.93           

Goiânia 1,159.33   1,208,387  52.95     31.04    51.98         7.16     1,052    838      1.47        11.07      25.33      98.45         99.35       6.40        99.33        78.14           

Brasília 102.16     2,362,212  52.81     28.73    43.54         7.11     1,566    1,139    1.05        5.50        20.71      98.35         99.48       6.40        98.99        84.50            
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Table 3 shows some important differences among the Brazilian cities selected for 

the study. Cities of the South region show less dengue incidence than the cities of other 

regions, but have better average socioeconomic indicators, such as household income and 

infrastructure. The next section discusses some of these differences in order to select the 

cities of the treatment and control groups. 

 

4. Empirical Strategy  

Brazil’s large dimension allows us to observe the effect of climate increase in cities with 

climates ranging from tropical (North) to temperate (South). The Brazilian states with the 

warmest capital cities among those in tropical areas are Maranhão, Piauí, Ceará, Rio 

Grande do Norte and Tocantins (respective capitals are Sao Luis, Teresina, Fortaleza, Natal 

and Palmas)2. Among the temperate cities, Curitiba, capital of Paraná, has the highest 

relative temperature.  

Besides the prevailing weather, the prevalence of dengue varies in Brazil between 

cities and time. Figure 3 shows the dengue prevalence rates for three groups of cities: the 

tropical capitals, the temperate city Curitiba and the entire country. 

Figure 3 - Dengue prevalence rates for tree groups of cities: tropical, Curitiba and Brazil 

 

                                                   
2 See Appendix A for details about the capital cities of the Brazilian states. 
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Figure 3 indicates the varied distribution of dengue among Brazilian cities. The 

temperate city Curitiba is too cold and dry to permit the mosquitoes to survive in large 

numbers. This city has natural protection against dengue, reflected in an average of just 4 

cases in 100,000 inhabitants for 2001 to 2010. On the other hand, the tropical cities are 

warm and humid, perfect for mosquito reproduction. In this region, dengue prevalence 

averages 546 cases per 100,000 inhabitants. Figure 3 also indicates that for the three 

groups, dengue prevalence fell until 2004 when it increased again until 2008. In that year, 

the three groups had different movements. In tropical cities, the disease prevalence 

decreased, in Curitiba it increased and in Brazil as a whole there was virtually no change.   

The year 2008 was marked by heavy rainfall in most Brazilian cities. Figures 4, 5, 6 

and 7 present the cities’ precipitation pattern change. Figure 4 and 5 show that the rainfall 

grew sharply in all three capitals of the temperate South: Curitiba, Florianópolis and Porto 

Alegre. However, as can be seen by comparing Figure 5 and 6, the rainfall pattern changes 

only affected the average relative humidity in Curitiba. In the two other capitals in the 

South, Florianópolis and Porto Alegre, the average humidity did not change in 2008.  

As discussed above, dengue is a disease whose vector is a mosquito that proliferates 

more easily in humid environments. One of the hypotheses tested in this paper is whether 

the stronger precipitation followed by an elevation in the levels of humidity had the effect 

of increasing the prevalence of dengue in Curitiba. 

Figure 4 - Rainfall in Curitiba before and after 2008. 
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Figure 5 - Rainfall in others South capitals before and after 2008 

 

 

 

Figure 6 -  Humidity in Curitiba before and after 2008 
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Figure 7 - Humidity in Florianopolis and Porto Alegre before and after 2008 

 

 

Unlike the southern cities, which occupy temperate areas of the country, 

northeastern capitals have tropical weather. Despite the moderating factor of their location 

on the coast, their weather is still hot and humid, providing an ideal environment for Aedes 

Aegypti proliferation. It is no coincidence that the Brazilian cities with highest prevalence 

of dengue are mostly in this region (Figure 2). In 2008, the heavy rains that affected most 

of the country were more intense in warmer tropical capitals (Figure 8), respectively São 

Luis, Teresina, Fortaleza and Natal and Palmas. Figure 8 below describes the break in the 

average precipitation pattern of these cities. In 2008, the mean and the variance of the 

rainfall in these capitals increased in relation to the previous period. However, this 

phenomenon was not observed so sharply in the other Brazilian northeastern capitals 

(Figure 9): João Pessoa, Recife, Maceió, Aracaju and Salvador3.  

 

 

 

                                                   
3 See Table A.1 in Appendix A for details of the Brazilian states and their capital cities. 
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Figure 8 - Rainfall in the hottest Brazilian capitals: Tocantins, São Luis, Teresina, Natal and Fortaleza 

 

 

 

Figure 9 - Rainfall in the others Brazilian Northeast capitals: João Pessoa, Recife, Maceio, Aracaju and 
Salvador 
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The second hypothesis tested here is whether this increase in precipitation in areas 

where the conditions for mosquito survival were already ideal could have reduced the 

vector population and hence the disease prevalence in the respective cities.   

To summarize, observing the average climate evolution in Brazil for the period 

2001-2010, the rainfall in the warmest cities was above the historical average since 2007. 

Our hypothesis is that such high precipitation might have washed away standing water 

accumulations, reducing the number of larvae and therefore reducing the mosquito 

population and lowering the dengue prevalence in these tropical cities. On the other hand, 

in temperate cities, the higher humidity increased survival of mosquitoes, raising the risk of 

dengue in those regions.  

Based on these hypotheses, recall that the synthetic group for each city is 

constructed as a weighted average of potential control states, with weights chosen so that 

the resulting synthetic cities best reproduce the values of a set of predictors of dengue 

before the temperature change. Because the synthetic group is meant to reproduce the 

dengue incidence that would have been observed for each city in the absence of 

temperature increase, we discarded from the sample the six cities mentioned above.  

There is an emerging consensus on how to tackle a potential increase of dengue in 

new areas. Developing accurate models and surveillance to predict or detect disease 

outbreaks is central to this. Such systems will require both climate and disease data if they 

are to be rigorous enough to be reliable. 

Using the techniques described at Section 3, a synthetic model was designed such 

that it mirrors the values of the predictors of dengue in Brazil’s warmest and coldest cities 

before the temperature increase. The effect of increases in temperature on dengue is the 

difference in dengue case levels between each city and the corresponding synthetic 

versions in the years after the temperature increase. Placebo studies confirmed that the 

estimated effects for each city are unusually large relative to the distribution of the estimate 

obtained when the same analysis is applied to all cities in the sample. 

 

5. Results  

As explained above, from the convex combination of capital in the donor pool with greatest 

resemblance in terms of dengue prevalence predictors, we constructed the synthetic 



 
 

17 

controls for six capitals: Palmas, São Luis, Teresina, Fortaleza, Natal and Curitiba. 

Tables 4a and 4b below highlight an important feature of synthetic control 

estimators. As describe in Abadie et al. (2010), similar to matching estimators, the 

synthetic control method forces the researcher to demonstrate the affinity between the cities 

exposed to the intervention of interest and the cities in the donor pool. As suggested by 

King and Zheng (2006), the synthetic control method safeguards against estimation of 

counterfactuals that fall far outside the convex hull of the data. The resulting value of the 

diagonal element described in section 3 associated to each logarithm of the per capita 

income variable is very high in all capitals, which indicates that, given the other variables 

in Tables 4a and 4b, log per capita income has substantial power in predicting the dengue 

rates in those cities before the change in rainfall pattern.  

Table 4a - Dengue prevalence predictor means 

  Palmas São Luiz Teresina 

  Treated Synthetic  Treated Synthetic  Treated Synthetic  

Ln(income) 6.580 6.534 6.571 6.626 6.285 6.246 

Rel. humid. 68.271 70.956 80.997 75.383   

Temperature 26.972 24.569 27.052 26.654 27.517 26.905 

Dengue (2001) 951.805 936.292     

Dengue (2002)     612.494 535.972 

Dengue (2003)   55.054 251.083   

Dengue (2004)   13.145 70.224   

Dengue (2005) 898.518 423.245 284.934 185.272   

Dengue (2006)   130.349 168.047   

Dengue (2007) 2714.681 2395.027 385.320 437.862 638.386 556.295 

 

Table 4b - Dengue prevalence predictor means 

  Natal Fortaleza Curitiba 

  Treated Synthetic  Treated Synthetic  Treated Synthetic  

Ln(income) 6.245 6.280 6.388 6.349 6.753999 6.86581 

Rel. humid. 77.029 74.345 78.125 75.356   

Temperature 26.826 26.127 26.508 26.847   

Dengue (2001) 608.543 724.681 2563.777 1355.918 18.53241 20.79042 

Dengue (2002)   103.934 139.359   

Dengue (2003) 496.770 440.112     

Dengue (2004) 647.591 349.669     

Dengue (2005)     777.103 854.148 4.54352 3.720524 

 



 
 

18 

The climate variables temperature and humidity are the most important variables to 

fit the synthetic control. Despite the greater power of those variables to adjust the synthetic 

control, this is not the case of the models for all cities. Some cities, even though they have 

similar climates, have living standards that are too discordant to fit the model. For this 

reason, we chose not to include the humidity variable in the models for Teresina and 

Curitiba.  

Table 5 displays the weights of each control city in the synthetic capital. The 

weights reported in Table 5 indicate that the dengue prevalence trend in the period before 

the rainfall pattern break is best reproduced for different cities. The number of synthetic 

controls depends on the capital that is analyzed.  

Table 5 - Weights in the synthetic capitals 

  Palmas São Luis Teresina Natal Fortaleza Curitiba 

Porto Velho 0 0 0 0 0 0 

Rio Branco 0.052 0 0 0 0 0 

Manaus 0 0 0 0 0 0 

Boa Vista 0.202 0.096 0.243 0.362 0.578 0 

Belém 0 0 0.612 0 0 0 

Macapá 0 0 0 0 0 0 

João Pessoa 0 0.818 0 0 0 0 

Recife 0 0 0.076 0 0 0 

Maceió 0 0 0 0.459 0 0 

Aracaju 0 0 0 0 0 0 

Salvador 0 0 0 0 0 0 

Belo Horizonte 0 0 0 0 0 0 

Vitória 0 0 0 0 0 0 

Rio de Janeiro 0 0 0 0 0.31 0 

São Paulo 0 0 0 0 0 0 

Florianópolis 0 0 0 0 0 0.705 

Porto Alegre 0 0 0 0 0 0.295 

Mato Grosso do Sul 0.389 0 0.068 0 0.112 0 

Mato Grosso 0 0 0 0 0 0 

Goias 0.357 0.086 0 0.179 0 0 

Brasília 0 0 0 0 0 0 

 

Figures 10 to 15 displays dengue prevalence rate for the cities and their respective 

synthetic counterparts during the period 2001-2010, namely Palmas, São Luis, Teresina, 

Fortaleza, Natal and Curitiba. Our estimates of the effect of rainfall pattern break on 

dengue rates are the difference between dengue rates in each capital and in their synthetic 
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version after the break. Immediately after the rainfall pattern break, the two lines begin to 

diverge noticeably for all cities. While dengue prevalence in the synthetic capitals 

continued on a moderate downward trend, the real tropical capitals experienced a sharp 

decline, while there was an increase in the temperate city of Curitiba. According to Abadie, 

Diamond and Hainmueller (2010), the discrepancy between the two lines suggests a 

reduction (increase) caused by the rainfall break on dengue prevalence in tropical cities 

(Curitiba).  

Our results suggest that for the entire 2008-2009, period dengue cases per 100,000 

inhabitants declined by an average of almost 576 cases. The biggest reduction happened in 

Natal, with 1,119 cases per 100,000 inhabitants, and the smallest reduction was in Teresina 

with just 48 cases per 100,000 inhabitants. 

In order to assess the robustness of our results, we included additional predictors 

such as: log per capita wage income, average years of education, average number of rooms 

in homes, percentage of households with sewage disposal, percentage with piped water and 

number of bedrooms in homes. The results stayed virtually unaffected regardless of which 

and how many predictor variables we included. The lists of predictors used for robustness 

checks included are described in Table 4. 

Figure 10 - Trends in dengue cases: Palmas vs. synthetic Palmas 
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Figure 11 - Trends in dengue cases: São Luis vs. synthetic São Luis. 

 

 

Figure 12 - Trends in Dengue Cases: Teresina vs. Synthetic Teresina 
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Figure 13 - Trends in dengue cases: Fortaleza vs. synthetic Fortaleza 

 

 

 

Figure 14 - Trends in dengue cases: Natal vs. synthetic Natal 
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Figure 15 - Trends in dengue cases: Curitiba vs. synthetic Curitiba 

 

 

Based on the climate impacts identified by this methodology, it is possible to 

calculate the climate change effects based on the rainfall increase expectations for the 

future.  

 

6. Discussion  

Dengue is transmitted to humans by the Aedes aegypti mosquitos, and this vector’s 

prevalence is highly correlated with climate conditions. Very hot and dry environments as 

well as cold and dry ones do not allow the mosquitoes to survive, so the disease does not 

typically occur in these areas. The disease’s high dependence on climate raises the question 

about the importance of global warming on the prevalence of dengue. Brazil is a country 

with continental size. Thus, global warming manifests itself in different ways among 

different cities.  

As noted in Figures 4 to 9, in 2008, rainfall was in general more intense throughout 

the country, with some regions being more affected than others. Concurrently, as suggested 

by Figure 3, the prevalence of dengue varied unevenly: it declined in warmer regions, 
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where the rains were more intense, and increased in cooler regions, where the higher 

rainfall resulted in an increase in moisture. 

Like Cavallo et al. (2010), who analyzed the causal effect of exogenous phenomena 

(natural disasters) on countries’ GDP, our aim here is to analyze the impact of global 

warming on dengue prevalence. For this purpose, we built synthetic controls for cit ies 

where there was a significant variation in the prevalence of dengue fever after the high 

precipitation observed in 2008 (Figures 4 to 10). The other Brazilian state capitals, where 

the prevalence of dengue fever was not correlated with changes in rainfall pattern (Figure 

3), were used to build these synthetic controls. 

The differences between the observed rate of dengue and the estimated rate in the 

corresponding synthetic city are described in Figures 9 to 14, after the breaks in the rainfall 

pattern in 2008 in these cities. The results suggest that global warming affected the 

disease’s prevalence. However, such impacts were not homogeneous among the tropical 

cities. For those located on the coast – São Luis, Fortaleza and Natal – the increase of 

rainfall reduced the rates of dengue by respectively 95%, 90% and 87%. In 2008, there 

were 127 cases of dengue registered in the city of São Luis for each 100,000 inhabitants. In 

the following year, this figure fell to only 6 cases per 100,000 inhabitants. In Fortaleza and 

Natal, the numbers of dengue cases per 100,000 inhabitants in 2008 were 1,184 and 1,290, 

respectively, while in 2009 these rates fell to 166 and 172 cases respectively. 

For the two cities with tropical climate located in the interior of Brazil,  Palmas and 

Teresina, the impact of higher rainfall was considerably smaller. In Palmas, the rate of 

dengue declined from 1,293 per 100,000 people in 2008 to 714 in 2009, a 45% drop, while 

in Teresina, the cases of dengue fell from 172 in 2008 to 124 in 2009, a decrease of only 

28%. 

Finally, Curitiba, a city located in southern Brazil, the increase of rainfall caused an 

increase in humidity, generating more dengue cases compared to its synthetic placebo 

(Figure 14). The temperate climate in the south of the country provides natural protection 

against dengue. Nevertheless, global warming has clearly increased the humidity in 

Curitiba, as can be identified in Figure 6. This phenomenon enables the existence of the 

climatic conditions, which are necessary for mosquito proliferation and, therefore, 

increased cases of the disease. In 2008, the number of dengue cases in the city was 2.3 per 

100,000 inhabitants, while in 2009 this number rose to 4.6 and in 2010 grew further to 7.7, 

for a total increase in dengue of 70% between 2008 and 2010. 
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The results discussed clearly indicate the importance of climate in the prevalence of 

dengue. In the northern cities of the country, there was a reduction in the incidence of the 

disease, mainly after the period of higher rainfall. However, subsequently the rates reverted 

to the previous levels of incidence. This result suggests that although higher than normal 

rainfall may have eliminated the mosquito larvae for a short period, there was a subsequent 

reduction in the rainfall level leading to the return of the disease. 

In the colder cities, located to the South of the country, the result is the opposite. 

The higher humidity caused by a warmer climate in cities of southern Brazil created 

conditions for the proliferation of mosquitoes, thus weakening these cities’ natural shield 

against the disease.  

In terms of public policy, these results must be seen as a warning call to 

policymakers about the moment to implement strategies to combat the disease. It is 

important to keep in mind that when high rainfall is expected, such phenomena will have a 

direct impact on policy aims. 

 

7.1 Climate change 

We also tried to demonstrate the importance of global warming on the prevalence of 

dengue in Brazil, mainly in the southern region where higher rainfall leads to an increase in 

humidity, creating the necessary conditions for the proliferation of the mosquito and 

consequent increase in the number cases. The next stage of this work is to create scenarios 

that will allow us to see the number of expected cases of disease for the country due to 

climate change. To do so, this section is divided into two parts: initially the coefficients that 

identify the impact of climate on the prevalence of dengue are estimated using regression 

analysis, and then scenarios are fitted with different climate conditions over which the 

previously estimated parameters are applied, projecting the number of cases in the country. 

The forecast of dengue incidence is developed in two stages. The first consists of 

estimating the effect of climate parameters – temperature, rainfall and humidity – on the 

number of dengue cases per 100,000 inhabitants. The coefficients used in the prediction 

were derived from the estimation by OLS of the model described below4: 

                                                   
4 The OLS estimator with dummies for state and year corresponding to the fixed effect estimator (Cameron 

and Trivedi, 2005). 
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                                                                                                                                          (5) 

Here the dependent variable is the logarithm of dengue prevalence rate per 100,000 

inhabitants, which varies by year (t) and capital city (k). The explanatory variables are the 

interactions between the logarithm of the three meteorological parameters, which vary by 

season (j), year (t) and capital city (k). The socioeconomics characteristics (m) are per 

capita income, per capita wage, years of education, number of bathrooms, quality of the 

roof, access to sewage system, access to running water, and dummies (j) for each season of 

the year. The database used in this step was the same as described in section 4.  

The climate information was calculated based on meteorological data provided by 

the Center for Earth System Science (CCST)5. The dataset provided by CCST contains 

monthly meteorological parameters: level of rainfall, temperature and average humidity for 

Brazilian municipalities between 2010 to 2100. The information was compiled considering 

the average scenario (Midi). 

For each of the four seasons the dengue increase was calculated comparing the 

difference between current average climate and future climate (2041-2070), average 

scenario. Based on this information, we projected the growth rate of dengue for 

municipalities, as can be seen in Figures 5 to 8.  

The results for the summer are in Map 1. These results suggest that warmer, more 

humid and rainier summers might decrease the disease in the cities to the Northeast located 

on the coast and increase the disease in the cities of the South, as predicted by the model 

results presented in section 6. In autumn, since the weather is milder and the extremes are 

closer, global warming does not cause much variance in the distribution of dengue among 

municipalities. The winter scenario is very close to that of the fall, which is expected since 

the probability of mosquito breeding rises in this season. As in the summer, high 

temperatures in the spring change the spatial distribution of dengue in the country, causing 

it to grow in the cities of the South region and decline in most cities located in the Midwest 

and the northeast coast. 

                                                   
5 Available at http://dadosclima.ccst.inpe.br/. 
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As already discussed, hot and rainy summers and springs kill the mosquito larvae in 

cities located further north. On the other hand, in the southern region such temperatures 

increase the humidity, which facilitates the proliferation of mosquitoes.  

 

 

 

 

 

 

 

 
 

 

 

Map 1 - Dengue growth rate for next 70 

years in summer 

 

Map 2 - Dengue growth rate for next 70 

years in autumn 

 

Map 3 - Dengue growth rate for next 70 

years in winter 

 

Map 4 - Dengue growth rate for next 70 

years in spring 
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The maps suggest a migration of dengue to the south of the country and a reduction 

of the epidemic in historically warmer areas. This phenomenon is observed in all seasons, 

becoming more present in the spring and fall. 

 

7.2 Final Remarks 

This paper aims to contribute to the measurement of climate impacts on health. Thus, 

dengue fever, the most relevant infectious disease in Brazil, is analyzed. We tested, and not 

rejected, the hypothesis that climate conditions affect the transmission of dengue fever in 

the country by using a synthetic control methodology.  

In this way, this paper contributes by linking two relevant agendas: finding ways to 

manage the climate-related risks of today and improving the understanding of the future 

risks. The calculations performed suggested that as long-term temperatures increase, the 

southern and central southern states will become much more vulnerable to dengue, in 

accordance with the findings of Pereda (2012).  

Thus, it is relevant to discuss potential adaptation instruments. Pereda (2012) found 

that expenditures for epidemiological surveillance are ineffective due to the delay in 

spending the funds. The current local system of monitoring dengue in Brazil is based on the 

observation of dengue cases in January and February, with occasional interventions by 

spraying insecticides to kill mosquitoes and their larvae where an increase in the number of 

cases is detected. This procedure, besides being more expensive, is not effective in 

reducing dengue locally. Moreover, those expenditures are also made at the municipal 

level, not controlling infected mosquitoes that cross municipal borders. Therefore, the 

author suggests that integrated actions are needed to control the dengue fever spread during 

epidemics.  

When it comes to this article’s contributions, the use of a synthetic control do 

identify the climate influence on dengue can be highlighted as the main contribution to the 

literature and to the study of dengue fever. Future research regarding dengue fever analysis 

could perform studies in loco, which could better identify inequality in sanitation 

infrastructure provision inside cities.  
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Appendix 

 

Figure A.1 – Brazilian states and capital cities 

 

Source: http://www.brazilmycountry.com/brazil-map/map-of-brazil-states/. 

 

 


