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Abstract  

Japan is faced with ―the Fukushima‘ problem,‖ in which a single nuclear accident has led to drastic 

electrical power shortages. Owing to the strong backlash of public opinion, almost all of Japan‘s 54 nuclear plants 

suspended operations. An intensive search has started for alternative forms of energy, ranging from fossil fuels to 

new energy, such as solar, wind, geothermal, small-scale hydroelectric and biomass energy. There is no clear-cut 

direction for energy policy, as each option involves costs and CO2 consequences and Japan has even withdrawn 

from the Kyoto protocol. A policy that balances energy and the environment is difficult to achieve in the short 

term; therefore, there is an urgent need for a comprehensive efficiency analysis of new energy in Japan. 

A popular tool for judging the efficiency of a Decision Making Unit (DMU) is Data Envelopment 

Analysis (DEA). The development of multiple efficiency improvement solutions based on DEA has progressed 

in recent years. An example is the Distance Friction Minimisation (DFM) method, based on a generalised 

distance function, which serves to improve a DMU‘s performance by tracing the most appropriate movement 

towards the efficiency frontier.  To produce a more realistic improvement plan for low efficiency DMUs, we 

proposed a Target-Oriented (TO) DFM model that allows reference points that remain below the efficiency 

frontier. TO-DFM model specifies a Target-Efficiency Score (TES) for inefficient DMUs. This model is able to 

compute an improvement projection that an input reduction value and an output increase value in order to achieve 

a TES, even though in reality these values may have an infeasible case, for example Net-Working Rate may be 

required more than 100% in improvement projection, but it exceed a physical limit. 

This paper aims to present a newly developed adjusted DEA model, emerging from a blend of the TO-

DFM and the Improvement Restriction (IR) approach, for generating an appropriate efficiency-improving 

projection model. The IR approach specifies a restriction input/output items based on absence or presence of the 

DMU‘s improvement limit. This approach can compute an input reduction value and an output increase value in 

order to achieve a TES that maintains an improvement restriction. The above-mentioned Improvement 

Restriction TO-DFM model will be applied to an efficiency analysis and will produce a realistic efficiency-

improvement projection for new energies in Japan.  
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1. Introduction 

Japan is faced with ―the Fukushima‘ problem,‖ in which a single nuclear accident has led to drastic electrical 

power shortages. Owing to the strong backlash of public opinion, almost all of Japan‘s 54 nuclear plants 

suspended operations. Japan have permission to increase thermal power generation based on coal, oil and LNG 

(liquefied natural gas) in order to compensate for the shortfall following the accident as Figure 1. An intensive 

search for alternative forms of energy—ranging from fossil fuels to new energy, such as solar, wind, geothermal, 

small-scale hydroelectric and biomass energy—has started. There is no clear-cut direction for energy policy, as 

each option involves costs and CO2 consequences and Japan has even withdrawn from the Kyoto protocol. A 

policy that balances energy and the environment is difficult to achieve in the short term; therefore, there is an 

urgent need for a comprehensive efficiency and performance analysis of new energy in Japan. 

 

Figure 1 A comparison of electronic power supply between before and after the accident in JAPAN 

A standard tool by which to judge efficiency is Data Envelopment Analysis (DEA), proposed by Charnes, 

Cooper and Rhodes (1978) (CCR hereafter, see appendix A1).  This has become an established assessment 

method in industrial organization. Seiford (2005) mentions some 2800 published articles on DEA. This large 

number of studies shows that comparative efficiency analysis has become an important research issue.  

DEA was developed to analyse the relative efficiency of a decision-making unit (DMU), by constructing a 

piecewise linear production frontier and projecting the performance of each DMU onto that frontier. A DMU that 

is located on the frontier is efficient, whereas a DMU that is not on the frontier is inefficient. An inefficient DMU 

can become efficient by reducing its inputs, or by increasing its outputs. In the standard DEA approach, this is 

achieved by a uniform reduction in all inputs (or a uniform increase in all outputs). However, in principle, there are 

an infinite number of possible improvements that could be implemented in order to reach the efficient frontier and 

hence, there are many solutions should a DMU plan to enhance its efficiency.  
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In the last few decades, the existence of many possible efficiency improvement solutions has prompted a rich 

literature on the methodological integration of Multiple Objective Linear Programming (MOLP) and the DEA 

models. The first contribution was by Golany (1988) who proposed an interactive MOLP procedure, which 

aimed at generating a set of efficient points for a DMU. This model allows a decision maker to select the preferred 

set of output levels, given the input levels. Next, Thanassoulis and Dyson (1992) developed adjusted models, 

which can be used to estimate alternative input and output levels, in order to render relatively inefficient DMUs 

more efficient. These models are able to incorporate preferences for a potential improvement of individual input 

and output levels. The resulting target levels reflect the user‘s relative preference over alternative paths to 

efficiency. Joro et al. (1998) demonstrated the analytical similarity between a DEA model and a Reference Point 

Model in a MOLP formulation from a mathematical viewpoint. In addition, the Reference Point Model provides 

suggestions, which make it possible to search freely on the efficient frontier for good solutions, or for the most-

preferred solution (MPS) based on the decision-maker‘s preference structure. Furthermore, Halme et al. (1999) 

developed a Value Efficiency Analysis (VEA), which included the decision-maker‘s preference information in a 

DEA model. The foundation of VEA originates from the Reference Point Model in a MOLP context. Here the 

decision maker identifies the MPS, such that each DMU could be evaluated by means of the assumed value 

function based on the MPS approach. A further development of this approach was made by Korhonen and 

Siljamäki (2002) who dealt with several practical aspects related to the use of a VEA. In addition, Korhonen et al. 

(2003) developed a multiple objective approach, which allows for changes within the time frame. Lins et al. 

(2004) proposed two multi-objective approaches that determine the basis for the incorporation of a posteriori 

preference information. The first of these models is called Multiple Objective Ratio Optimisation (MORO), 

which optimises the ratios between the observed and the target inputs (or outputs) of a DMU. The second model 

is called Multiple Objective Target Optimisation (MOTO), which directly optimises the target values. Washio et 

al. (2012) suggested four types of improvements for making inefficient DMUs efficient in the CCR, by 

introducing a decision-maker‘s policy model with the minimal change of input and output values. Finally, Yang et 

al. (2013) utilise DEA and Nash bargaining game (NBG) theory to improve inefficient banks, in order to: (i) make 

an inefficient bank Pareto-optimal for multiple perspectives, which could avoid being discontent with some 

particular perspectives; and (ii) change its attributes and provide various improvement schemes for decision 

makers. Finally, Suzuki et al. (2010) proposed a Distance Friction Minimisation (DFM) model that is based on a 

generalised distance function and serves to improve the performance of a DMU by identifying the most 

appropriate movement towards the efficiency frontier surface. The DFM model is able to calculate either an 

optimal input reduction value or an output increase value in order to reach an efficiency score of 1.000, even 

though in reality this might be hard to achieve for low-efficiency DMUs.  
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To produce a more realistic improvement plan, we need a method that allows reference points that remain 

below the efficiency frontier. A Target-Oriented (TO) DFM model which proposed Suzuki et al. (2013) specifies a 

Target-Efficiency Score (TES) for inefficient DMUs. This model is able to compute an input reduction value and 

an output increase value in order to achieve a TES. The TO-DFM result is able to present a more realistic 

efficiency-improvement plan than those of the original DEA model and the original DFM model for DMUs with 

an efficiency score below 1 in the initial situation. Even though, in reality these values may have an infeasible case, 

for example Net-Working Rate may be required more than 100% in improvement projection, but it exceed a 

physical limit. 

This paper aims to present a newly developed adjusted DEA model, emerging from a blend of the TO-DFM 

and the Improvement Restriction (IR) approach, for generating an appropriate efficiency-improving projection 

model. The IR approach specifies a restriction input/output items based on absence or presence of DMU‘s 

improvement limit. This approach can compute an input reduction value and an output increase value in order to 

achieve a TES that maintains an improvement restriction.  

This study evaluates the efficiency of new energy in Japan based on DEA, and the above-mentioned 

Improvement Restriction TO-DFM model based on the Super-efficiency model (Andersen and Petersen (1993), 

see Appendix A2) is applied to produce a realistic efficiency-improvement projection. The focus will be on the 

three input cost criteria (cost of power generation, energy payback time, and CO2 emissions) and output 

performance criteria (net-working rate). Based on the results of the performance analysis and the efficiency-

improvement projection of new energies in Japan, this study will offer a quantitative contribution to energy-

environment policy in Japan. 

  The paper is organised as follows. Section 2 introduces DFM methodology and Section 3 introduces a TO 

model in the framework of a DFM model. Section 4 proposes the new model, which is an IR model in the 

framework of a TO-DFM model. Section 5 then presents an application of the methodology to an efficiency 

analysis and an efficiency-improvement projection of the new energy in Japan. Finally, Section 6 draws some 

conclusions. 

 

2. The Distance Friction Minimisation (DFM) Approach 

An efficiency improvement solution in the original DEA model (abbreviated hereafter as the CCR-input 

model, see Appendix A1) requires that the input values are reduced radially by a uniform ratio  (  =OD‘/OD 

in Figure A1).  

The (v
*
, u

*
) values obtained as an optimal solution for formula (A.1) result in a set of optimal weights for 

DMUo. Hence, (v
*
, u

*
) is the set of most favourable weights for DMUo , in the sense of maximising the ratio scale. 

vm
*
 is the optimal weight for the input item m and its magnitude expresses how much in relative terms the item is 
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contributing to efficiency. Similarly, us
*
 does the same for the output item s. These values show not only which 

items contribute to the performance of DMUo but also the extent to which they do so. In other words, it is possible 

to express the distance frictions (or alternatively, the potential increases) in improvement projections. 

We use the optimal weights us
*
 and vm

*
 from (A.1) and then describe the efficiency improvement projection 

model. A visual presentation of this approach (DFM projection) is given in Figures 2 and 3. 

 

Figure 2 Illustration of the DFM approach (Input- vi
*
xi space) 

 

Figure 3 Illustration of the DFM approach (Output - ur
*
yr space) 

In this approach, a generalised distance indicator is employed to assist a DMU to improve its efficiency by a 

movement towards the efficiency frontier surface. Of course, the direction of efficiency improvement depends on 

the input/output data characteristics of the DMU. It is now appropriate to define the projection functions for the 
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minimisation of distance by using a Euclidean distance in weighted space. As mentioned, a suitable form of 

multidimensional projection functions that serves to improve efficiency is given by a Multiple Objective 

Quadratic Programming (MOQP) model, which aims to minimise the aggregated input reductions, as well as the 

aggregated output increases. Thus, the DFM approach can generate a new contribution to efficiency enhancement 

problems in decision analysis by employing a weighted Euclidean projection function and at the same time, it 

might address both input reduction and output increase. Here, we only briefly describe the various steps. 

First, the distance function Fr
x
 and Fr

y
 is specified by means of (2.1) and (2.2), which are defined by the 

Euclidean distance shown in Figures 2 and 3. Next, the following MOQP is solved by using x

mod (a reduction of 

distance for xio) and y

sod (an increase of distance for yso) as variables: 

         min    
m

x

mommom

x dvxvFr
2

       (2.1) 

 min    
s

y

sossos

y duyuFr
2

     (2.2) 

                     s.t.     












1

2

m

x

momom dxv        (2.3) 

 












1

2

s

y

sosos dyu         (2.4) 

0 x

momo dx         (2.5) 

0x

mod          (2.6) 

0y

sod ,         (2.7) 

where mox  is the amount of input item m for any arbitrary inefficient DMUo and soy is the amount of output item 

s for any arbitrary inefficient DMUo. The constraint functions (2.3) and (2.4) refer to the target values of input 

reduction and output augmentation. The fairness in the distribution of contributions from the input and output side 

to achieve efficiency is established as follows. The total efficiency gap to be covered by inputs and outputs is (1-

θ*). The input and the output side contribute according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) 

and 1/(1+θ*) in the improvement contribution. Clearly, the contributions from both sides equal (1-θ*)[θ*/(1+θ*)] 

and (1-θ*)[1/(1+θ*)].  

Hence, we find for the input reduction target and the output augmentation targets:  

Input reduction target:    
  




















1

2

1

1
11

m

x

momom dxv .   (2.8) 
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Output augmentation target:    
  























1

2

1
1

s

y

sosos dyu .  (2.9) 

An illustration of the above situation is presented in Figure 4. 

 

Figure 4 DFM model with an illustration of a balanced contribution of inputs and outputs to close the 

efficiency gap 

It is now possible to determine each optimal distance x

mod  and y

sod  by using the MOQP model (2.1)-(2.7). 

The distance minimisation solution for an inefficient DMUo can be expressed by means of formulas (2.10) and 

(2.11): 

  x

momomo dxx ;         (2.10) 

  y

sososo dyy .        (2.11) 

  By means of the DFM model, it is possible to present a new efficiency-improvement solution based on the 

standard CCR projection. This means an increase in new options for efficiency-improvement solutions in DEA. 

The main advantage of the DFM model is that it yields an outcome on the efficient frontier that is as close as 

possible to the DMU‘s input and output profile (see Figure 5).  

 

Figure 5  Degree of improvement of the DFM and the CCR projection in weighted input space 
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3. A Target Oriented-DFM model 

The above-mentioned DFM model is able to calculate an optimal input reduction value and an output increase 

value in order to reach an efficiency score of 1.000, even though in reality this might be hard to achieve for low-

efficiency DMUs. Therefore we consider a method that allows reference points that remain below the efficiency 

frontier.  On the other hand, DMUs that are close to (or exactly on) the efficient frontier might search for a 

reference point for a further improvement of their efficiency.  

Target Oriented (TO) approach in the framework of the DFM model based on the Super-efficiency model 

(Andersen and Petersen (1993), see Appendix A2), which is based on the CCR-I model. The TO approach 

comprises the following steps:  

Step1. Target Efficiency Score (TES) for DMUo (hereafter TES0) is set arbitrarily by the decision or policy 

maker. Improving projections are categorised in 3 types depending on the score of the TES as follows: 

       θ*<TES0 <1.000; Non-Attainment DFM projection (it does not reach the efficiency frontier). This 

makes sense for DMUs that are -far- below the efficiency frontier. 

 TES0 = 1.000; Normal DFM projection (it just reaches the efficiency frontier).  

 TES0 >1.000; Super-Efficient DFM projection (it is beyond the efficiency frontier). This makes sense 

  for DMUs that are already on the efficiency frontier 

Step2. Solve 

 
 

 
 
























1

1
11

1
1

0

0

0

MP

MP

TES  

      Then, we get MPo, which is a Magnification Parameter of TES0 . 

Step3. Solve the TO-DFM model using formulas (3.1)–(3.8); then an optimal input reduction value and output 

increase value to reach a TES0 can be calculated.  

min      
m

x

mommom

x dvxvFr
2

       (3.1) 

min      
s

y

sossos

y duyuFr
2

                                   (3.2) 

      s.t.    

 

 












m

x

momom

s

y

sosos

dxv

dyu

TES0
      (3.3) 

    
 









1

1
11 0MPdxv

m

x

momom   (3.4) 
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   
 












1
10MPdyu

s

y

sosos           (3.5) 

0 x

momo dx        (3.6) 

0x

mod         (3.7) 

0y

sod ,        (3.8) 

An illustration of the TO-DFM model is given in Figure 6. 

From Figure 6, we notice that a type of TES0 = 1.000 is just equal to the normal DFM model using formulas 

(2.1)–(2.7). We also notice that the Non-Attainment DFM projection (θ*<TES0 <1) does not reach the efficiency 

frontier; thus, this is one of the improvement goal projections to reach a TES0 lower than 1.000. 

Additionally, a Super-Efficient DFM projection (TES0>1.000) offers an above 1.000 improvement plan, which 

is relevant in particular for DMUs that are already close to the efficiency frontier. 

Figure 6 shows that the direction of the target setting is determined by the DFM model, whereas the degree to 

which the efficiency score is improved depends on the TES parameter set by the decision maker. The usual 

situation where DMUs try to improve their position incrementally will be that the TES0 parameter will be lower 

than 1. 

 

Figure 6 Illustration of the Target Oriented-DFM model for DMU F (Input space) 

 

4. A proposal of Improvement Restriction approach based on TO-DFM model 
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value in order to reach a TES, in reality these values may have an infeasible case, for example Net-Working Rate 

may be required more than 100% in improvement projection, but it exceed a physical limit. 

Therefore, in this paper newly proposed Improvement Restriction approach based on TO-EFM model. The IR 

approach specifies a restriction input/output items based on absence or presence of DMU‘s improvement limit. 

This approach can compute an input reduction value and an output increase value in order to achieve a TES that 

maintains an improvement restriction. The Improvement Restriction approach comprises the following steps:  

Step1. Target Efficiency Score (TES) for DMUo-IR (Improvement Restriction) (hereafter TES0-IR) is set arbitrarily by the 

decision or policy maker.  

Step2.  Input and Output items resolve to unrestricted (UR) and restricted (R) items as following.  

Input: 

   








 
Rm

x

limitmo

x

deficiencymomom

URm

x

momom ddxvdxv  

Output: 

   








 
Rs

y

limitso

y

deficiencysosos

URs

y

sosos ddyudyu

 

where UR is unrestricted items, R is restricted items, 
x

deficiencymod  is improvement deficiency value for restrict 

input item m for any arbitrary inefficient DMUo-IR, x

limitmod  is improvement limit value for restrict input item m 

for any arbitrary inefficient DMUo-IR, 
y

deficiencysod   is improvement deficiency value for restrict output item s for 

any arbitrary inefficient DMUo-IR, y

imitlsod   is improvement limit value for restrict output item s for any arbitrary 

inefficient DMUo-IR. 

Step3. Solve  
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      Then, we get MPo-IR, which is a Magnification Parameter of TES0 -IR. 

Step4. Solve the IR-TO-DFM model using formulas (4.1)–(4.10); then an optimal input reduction value and 

output increase value maintaining an improvement restriction to reach a TES0-IR can be calculated.  
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0 x

momo dx                          (4.6) 
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y
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5. An application of Improvement Restriction TO-DFM model for efficiency evaluation and 

improvement of new energy in Japan  

 

5.1 Database and analytical framework 

  We use the following inputs and outputs data for a set of 8 type new energy in Japan.  

Figure 7 presents the inputs and outputs considered in this analysis of new energy efficiency. 
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Figure 7 Inputs and Outputs of new energy efficiency 

 

We consider 3 Inputs (I): 

(I1) Cost (including construction, fuel and operating cost) (Yen/kWh) 

(I2) Energy Payback Time (Year) 

(I3) CO2 emission (Kg-CO2/kWh) 

and 1 Output is incorporated: 

 (O2) Net-Working Rate (%) 

Datasets (I1) were obtained from the ―Report of commission for cost verification, energy and environment 

conference, Japan Cabinet Secretariat‖ and ―Japan Geothermal Developers‘ Council‖. Datasets (I2) were 

obtained from the Report of ―Mizuho Information & Research Institute‖ and ―The National Institute of Advanced 

Industrial Science and Technology (AIST) in JAPAN‖. Datasets (I3) were obtained from the Report of ―Central 

research institute of electric power industry (CRIEPI) in JAPAN‖ and ―AIST in JAPAN‖. Datasets (O1) were 

obtained from the ―Report of commission for cost verification, energy and environment conference, Japan 

Cabinet Secretariat‖ and ―BTS JAPAN website (http://bts.jpn.com/)‖ 

The DMUs and these datasets used in analysis are listed in Table 1. 

Table 1 A listing of DMUs and datasets 

No. DMU 
(Input) 

 Cost 

(Input)  

Energy payback time 

(Input) 

 CO2 emission 

(Output) 

 Net-working rate 

1 Household Solar (HS) 18.70 2.20 38.00 12.00 

2 Mega Solar (MS) 22.10 2.58 55.20 12.00 

3 Geothermal (GT) 14.80 0.97 15.00 80.00 

4 Woody Biomass (WB) 24.80 3.60 44.00 80.00 

5 Biogas (BG) 26.29 3.40 54.97 90.00 

6 Small Hydroelectric (SH) 20.55 0.60 5.50 60.00 

7 Wind on the Land (WL) 13.05 0.68 29.00 20.00 

8 Wind on the Ocean (WO) 15.95 0.68 29.00 30.00 

In our application, we first applied the Super-Efficiency CCR-I model (see Appendix A1 and A2), while then 

the results were used to determine the CCR-I, DFM, TO-DFM, and IR-TO-DFM projections.  

8 type new energy 

CO2 emission Cost Energy Payback Time 

Net-Working Rate 

http://bts.jpn.com/
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5.2 Efficiency evaluation based on the Super-Efficiency CCR-I model 

  An efficiency evaluation result for 8 type new energy based on the Super-Efficiency CCR-I model is 

presented in Figure 8. From Figure 8, it can be seen that Small Hydroelectric (2.045) and geothermal (1.742) are 

super-efficient DMUs. On the other hands, we noticed that mega solar (0.100), household solar (0.119), wind on 

the land (0.342), and wind on the ocean (0.490) are low efficiency than biogas (0.633) and woody biomass 

(0.597). In generally, Solar and wind energies are expected for leading new energy in Japan, nevertheless Net-

Working Rate of these energies are lower level as Table 1, then efficiency scores of solar and wind are evaluated a 

low efficiency. From these facts, it is considered that output fluctuation and its stabilization of new energy are 

important factor for new energy policy in Japan. Given the above findings, it is necessary to make an effort in 

efficiency improvement of the new energy. 

 

Figure 8 Efficiency scores based on the Super-Efficiency CCR-I model 

 

5.3 Efficiency improvement projection based on the CCR, DFM and TO-DFM models 

  The results of efficiency improvement projection based on the CCR, DFM and TO-DFM models for 

inefficient DMUs are presented in Table 2. 

It appears that, as expected, the empirical ratios of change in the DFM projection are smaller than in the CCR 

projection. In Table 2, this particularly applies to Wind on the ocean, which is apparently a non-slack type (i.e., s-

** and s+** are zero) energy. Apart from the practicality of such a solution, the models clearly show that a 

different – and perhaps more efficient – solution than the standard CCR projection is available for reaching the 

efficiency frontier. For instance, the CCR projection shows that Wind on the ocean should reduce its Cost by 

51.0%, its energy payback time by 51.0%, and its energy CO2 emission by 85.4%, in order to become efficient. 

On the other hand, the DFM results show that a reduction in energy payback time of 45.1%, together with an 
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increase in the net-working rate of 34.2% is required to become efficient.  

   In the case of the TO-DFM model, Target Efficiency Score (TES) for each inefficient DMU are set an 

efficiency score of proximate upper-level DMU. For example, Woody Biomass score was 0.597.  To achieve Bio 

Gus score (0.633) using the TO-DFM model, a reduction in cost of 3.0 % and an increase in Net working rate of 

3.0% are required. It thus appears that the TO-DFM result is able to present a realistic efficiency-improvement 

plan, compared with the CCR and DFM approach for the DMUs with an efficiency score below 1 in the initial 

situation. 

Table 2 Efficiency-improvement projection results of the CCR, DFM and TO-DFM models 

 

 

5.4 Efficiency improvement projection of the Target Oriented-DFM model 

  In this subsection, we will use the Bio-Gas as example and present an efficiency improvement projection 

result based on the TO-DFM model. Efficiency score of Bio-Gas is 0.633 (see figure 8). We consider steps to 

improve efficiency towards 0.7, 0.8, 0.9 and 1.0. The resulting input reduction percentage and the output increase 

percentage based on the TO-DFM model are presented in Figure 9.  

DMU Score

 I/O Data Difference % Difference % Difference %

Household Solar (HS) 0.181 0.381 (WL level)

(I)cost 18.7 -16.5 -88.1% -14.7 -78.8% -9.1 -48.4%

(I)energy payback time 2.2 -2.1 -93.4% -1.9 -88.2% 0.0 0.0%

(I)CO2 emission 0.0 -35.8 -94.1% -34.0 -89.4% 0.0 0.0%

(O)net-working rate 12.0 0.0 0.0% 9.5 78.8% 5.8 48.4%

Mega Solar (MS) 0.127 0.181 (HS level)

(I)cost 22.1 -19.9 -90.0% -18.1 -81.7% -1.8 -8.3%

(I)energy payback time 2.6 -2.4 -94.4% -2.3 -89.8% 0.0 0.0%

(I)CO2 emission 0.0 -53.0 -95.9% -51.1 -92.6% 0.0 0.0%

(O)net-working rate 12.0 0.0 0.0% 9.8 81.7% 1.0 8.3%

Woody Biomass(WB) 0.597 0.633 (BG level)

(I)cost 24.8 -10.0 -40.3% -6.3 -25.3% -0.7 -3.0%

(I)energy payback time 3.6 -2.6 -73.1% -2.4 -66.3% 0.0 0.0%

(I)CO2 emission 0.0 -29.0 -65.9% -25.2 -57.3% 0.0 0.0%

(O)net-working rate 80.0 0.0 0.0% 20.2 25.3% 2.4 3.0%

BioGas(BG) 0.633 0.800 (arbitrarily level)

(I)cost 26.3 -9.6 -36.7% -5.9 -22.4% -3.1 -11.6%

(I)energy payback time 3.4 -2.3 -67.9% -2.1 -60.7% 0.0 0.0%

(I)CO2 emission 0.0 -38.1 -69.3% -34.3 -62.4% 0.0 0.0%

(O)net-working rate 90.0 0.0 0.0% 20.2 22.4% 10.5 11.6%

Wind on the Land (WL) 0.381 0.490 (WO level)

(I)cost 13.1 -8.5923237 -65.84% 0.000 0.0% 0.000 0.0%

(I)energy payback time 0.7 -0.4477226 -65.84% -0.420 -61.8% -0.153 -22.5%

(I)CO2 emission 0.0 -25.71102 -88.66% 0.000 0.0% 0.000 0.0%

(O)net-working rate 20.0 0 0.00% 9.815 49.1% 3.569 17.8%

Wind on the Ocean (WO) 0.490 0.597 (WB level)

(I)cost 16.0 -8.1 -51.0% 0.0 0.0% 0.0 0.0%

(I)energy payback time 0.7 -0.3 -51.0% -0.3 -45.1% -0.1 -12.9%

(I)CO2 emission 0.0 -24.8 -85.4% 0.0 0.0% 0.0 0.0%

(O)net-working rate 30.0 0.0 0.0% 10.3 34.2% 2.9 9.8%

1.000 1.000

1.000 1.000

TO-DFM model

Score(θ**)

1.000 1.000

1.000 1.000

1.000 1.000

CCR model DFM model

Score(θ**) Score(θ**)

1.000 1.000
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Figure 9 Efficiency improvement projection results (%) based on TO-DFM (Bio-Gas) 

 
Figure 10 Efficiency improvement projection results (actual number) based on TO-DFM (Bio-Gas) 

 

These results show that if it implements an efficiency improvement plan with a TES amounting to 0.7, a 

reduction in cost of 5.0% and an increase in Net-working rate of 5.0% are required.  Furthermore, for a plan to 

achieve a TES of 1.000, a reduction in cost of 22.4%, in Energy payback time of 60.7%, in CO 2 emission of 

62.4% and an increase in Net-working rate of 22.4% would be required.  

Projection results on actual number based on the TO-DFM model are presented in Figure 10. 

   From figure 10, it appear that value of Net -working rate exceed 100(%) in the case of TES=0.8 to 1.0. It is 

clearly an infeasible solution. 
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5.5 Efficiency improvement projection of the Improvement Restriction TO-DFM model 

  In this subsection, we will use the Bio-Gas as example and present an efficiency improvement projection 

result based on the Improvement Restriction TO-DFM model.  As we confirmed that the infeasible case in 

subsection 5.4, that Net -working rate exceed 100(%) in the case of TES=0.8 to 1.0, then we set out Net -working 

rate as restricted output item. This study assumed that improvement limitation of Net -working rate set out 95(%).  

Efficiency score of Bio-Gas is 0.633 (see figure 8). We consider steps to improve efficiency towards 0.7, 0.8, 

0.9 and 1.0. The projection result of input reduction percentage and the output increase percentage, also each 

actual number, based on the IR-TO-DFM model are presented in Figure 11 and 12.  

 

 

Figure 11 Efficiency improvement projection results (%) based on the IR-TO-DFM (Bio-Gas) 

 

Figure 12 Efficiency improvement projection results (actual number) based on IR-TO-DFM (Bio-Gas) 
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From Figure 11 and 12, it can be confirmed that an efficiency improvement plan with a TES amounting from 

0.8 to 1.0, an increase percentage in Net-working rate of 5.6%, and its actual number of 95(%) are fixed.  From 

this fact, it appears that IR-TO-DFM model can produce more realistic efficiency improvement projection than 

DFM and TO-DFM model. 

  

6. Conclusion 

In this paper, we have presented a new methodology, the IR-TO-DFM model. Its feasibility was tested for the 

new energy in Japan, and the new model was adopted in realistic circumstances. 

The results appear to offer a meaningful contribution to decision making and planning for an efficiency 

improvement in the Energy-Environment sector in Japan. These findings are mapped out in a detailed way in the 

present study. This model has the potential to become a policy instrument that could offer great benefits for 

combined environmental-energy decision making and planning.  
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Appendix 

A1. Outline of DEA and Efficiency Improvement Projection 

     The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj 

),,1( Jj   to be evaluated in any trial o (where o ranges over 1, 2 …, J) may be represented as the following 

fractional programming (FPo) problem: 

 (FPo)     
uv,

max   





m

mom

s

sos

xv

yu

  

s.t.      1




m
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s

sjs

xv
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 ),,1( Jj      (A.1) 

  0mv , 0su , 

where:   represents an objective variable function (efficiency score); xmj is the volume of input m (m = 1,…, M) 

for DMUj(j = 1,…,J); ysj is the output s (s = 1,…,S) of DMU j; and vm and us are the weights given to input m and 

output s, respectively. Model (A.1) is often called an input-oriented CCR model, while its reciprocal (i.e., an 

interchange of the numerator and denominator in the objective function (A.1) with a specification as a 

minimisation problem under an appropriate adjustment of the constraints) is usually known as an output-oriented 

CCR model. Model (A.1) is obviously a fractional programming model, which may be solved stepwise by first 

assigning an arbitrary value to the denominator in (A.1) and then maximising the numerator. 
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The improvement projection  ˆ ˆ,o ox y  can now be defined in (A.2) and (A.3) as: 

         ˆ
o ox x s    ;         (A.2) 

                ˆ
o oy y s  .         (A.3) 

These equations indicate that the efficiency of (xo, yo) for DMUo can be improved if the input values are 

reduced radially by the ratio   and the input excesses s  are eliminated (see Figure A1).  

The original DEA models presented in the literature have focused on a uniform input reduction or on a uniform 

output increase in the efficiency-improvement projections, as shown in Figure A1 (  =OC‘/OC).  

 

 

Figure A1 Illustration of original DEA projection in input space 

 

 

 A2. Super-efficiency model 

In a standard DEA model,  all efficient DMUs get the score 1, so that there is no way to differentiate between 

them. This has led to focused research to discriminate between efficient DMUs, in order to arrive at a ranking, or 

even a numerical rating of these efficient DMUs, without affecting the results for the non-efficiency. In particular, 

Andersen and Petersen (1993) developed a radial Super-Efficiency model, while later on Tone (2002, 2003) 

designed a slacks-based measure (SBM) of super-efficiency in DEA. In general, a Super-Efficiency model aims 

to identify the relative importance of each individual efficient DMU, by designing and measuring a score for its 

‗degree of influence‘, if this efficient DMU is omitted from the efficiency frontier (or production possibility set). If 

this elimination really matters (i.e., if the distance from this DMU to the remaining efficiency frontier is large) and 

thus, the firm concerned has a high degree of influence and outperforms the other DMUs, it gets a high score (and 

is thus super-efficient). Therefore, for each individual DMU a new distance result is obtained, which leads to a 

new ranking, or even a rating of all the original efficient DMUs. 

Anderson and Petersen (1993) have developed the Super-Efficiency model based on a radial projection 

(including a CCR model) to arrive at a ranking of all efficient DMUs. The efficiency scores from a super-

Input 1 (x1) 

Input 2 (x2) 
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C‘ 
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efficiency model are thus obtained by eliminating the data on the DMUo to be evaluated from the solution set. For 

the input model, this can then result in values, which may be regarded, according to the DMUo, as a state of super-

efficiency. These values are then used to rank the DMUs and consequently, efficient DMUs may then obtain an 

efficiency score above 1.000.  

The super-efficiency model based on a CCR-I model can now be written as follows: 

 

           
 SS ,,,

min
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where e is a unit vector (1,...,1), representing a utility factor for all elements.  

 


