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Abstract

This paper presents a new framework for modeling the fine microstructure of

knowledge creation dynamics. Our focus is on the creation of working knowledge

used in innovation, for example, the knowledge used by a researcher in the economics

profession. The framework has been developed to address the following questions:

What is the appropriate way to model the operational structure of working knowl-

edge? How are specific new ideas, research papers, and patents created by a research

worker or a group of them, based on the current stock of knowledge? What roles do

dynamics, heterogeneity of ideas, heterogeneity of researchers, and cities or regions

play? Using our framework, first we study how a researcher creates a new liter-

ature, choosing new assumptions, models, implications, and observations in each

step. Then we suggest how to extend the analysis to the N-person case in multiple

cities or regions.
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1 Introduction

All theory depends on assumptions which are not quite true.

That is what makes it theory. The art of successful theorizing

is to make the inevitable simplifying assumptions in such a way

that the final results are not very sensitive. A “crucial”assump-

tion is one on which the assumptions do depend sensitively and it

is important that the crucial assumptions be reasonably realistic.

When the results of a theory seem to flow specifically from a special

crucial assumption, then if the assumption is dubious, the results

are suspect. (Solow, 1956, p. 65)

We wish to study how knowledge is created by researchers in a specific field

of study. Such knowledge creation entails creative use of models and, as in the

quote above, judicious use of assumptions. Although our primary examples

come from the field of economic growth, we believe that our ideas are more

widely applicable. The use of these examples helps to explain how economic

research and models are similar to and different from their analogs in other

research areas, such as the physical and natural sciences.

We are considering a pyramid of knowledge, as in Figure 1. Our primary

focus is on the top level of the pyramid, working knowledge used in innova-

tion. For example, this is the knowledge used by a researcher in the economics

profession in developing new ideas. It relies on many more levels of founda-

tional knowledge. Background knowledge includes, for example, basic math

and arithmetic, that form part of the foundation for working knowledge. Ob-

servational knowledge contains, for example, data and information from the

real world that might be related to a specific field of research. General knowl-

edge includes basic knowledge needed to obtain a high school degree. Social

knowledge includes language and culture.

The questions we seek to address are as follows. What is the appropriate

way to formalize the operational structure of working knowledge space, the

top of the pyramid, in which the dynamic process of innovation occurs? In

this context, how are specific new ideas, research papers, and potential patents

created by a research worker or a group of them, based on the current stock of

knowledge? What roles do dynamics, heterogeneity of ideas, and heterogeneity

of researchers play?

There are vast literatures related to the questions we ask. So we shall be

selective in our literature review, with a focus on the differences between our
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work and the work of others. Broadly speaking, our paper might be seen as

belonging to the general field of artificial intelligence or, more generally, the

cognitive sciences. The triumph of classical artificial intelligence theory, initi-

ated by Alan Turing and John von Neumann, was the invention of a machine

that could reproduce itself. However, our perspective is very focused on how

people, as opposed to machines, develop new ideas over time. In that sense,

our work is also related to the humanities, in particular philosophy and the

art of creation.

In talking about machines and people, as is well known, Turing (1936)

showed the possibility of creating the so-called “universal Turing machine”

that can imitate any computer. Building on Turing, von Neumann created the

fundamental architecture for modern computers that can essentially perform

the role of the universal Turing machine. If we consider the human brain to

be a computer, then modern computers should be able to imitate it. But,

in order to imitate the functioning of a human brain, its entire operation

must be formally programmed in a way that can be read by machines. Yet,

unfortunately, we know little about the formal process of knowledge creation

by people.1

In this paper, with a focus on modern economic research as an example, we

hope to initiate a small step in understanding the formal operational structure

of the knowledge creation process. Research in modern economics is heav-

ily dependent on formal models and mathematical analysis together with the

econometric study of actual economies. Thus, on the one hand, in compar-

ison with those fields in the humanities and the arts, modern economics is

more suited to the formalization of innovation processes. On the other hand,

relative to the literature in the natural sciences, surprisingly the concept of

a “robot scientist” for biological research has been advocated by King et al.

(2004) and Soldatoval et al. (2006). The work of Villaverde and Banga (2014)

on reverse engineering in biology is closest to ours. But that kind of research

model is primarily based on statistical correlations to determine underlying

mechanisms in well-controlled environments. So research in economics fits

between the extremes of the humanities and natural sciences, and thus repre-

sents a happy medium for analysis. Moreover, research in economics is highly

1See von Neumann (1958) for pioneering work on the comparison of the computer and

the brain. The purpose of this paper, however, is not to compare the actual operation of a

computer and that of the brain, but to express formally the process of knowledge creation

by people so that someday a computer / brain can imitate it. See also Kurzweil (2005) for

a stimulating presentation of recent developments in artificial intelligence.
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dependent on context, in terms what is of economic importance at a particular

time and location, as well as the personal characteristics of a researcher such

as her knowledge stock, preferences and value judgements. We will be precise

about this in the sequel. Thus, the concept of a “robot economist”might yet

be premature.

The tools we employ come from many different areas. For instance, as

in many applied areas, we use formal concept analysis, pioneered by Ganter

et al (1998) and Ganter and Wille (1999). We note, however, that this tool

tends to be static in nature, whereas our focus is on the dynamics of knowledge

creation. Yet another aspect of our research is the use of Chu spaces; see, for

example, the innovative work of Barwise and Seligman (1997) and Pratt (1999)

for an explanation. As elaborated in section 3 below, we use four Chu spaces

in sequence in our model. Our work is also closely related to philosophical and

formal logic, specifically lattice theory and Boolean algebras, as elucidated in

Watanabe (1969), Rott (2001) and Dunn and Hardegree (2001). Finally, our

work is related to analytic function and singularity theory.

In order to address our questions, we introduce a dynamic framework for the

fine microstructure of knowledge creation. This approach is a distinguishing

feature of our work. First we identify a consistent knowledge state at a given

time as a fixed point of a creation process. Then reverse engineering leads to

the addition of new components to the knowledge creation process.

Our focus in this paper is only on positive theory. We relegate the impor-

tant consideration of normative theory and the interrelation between normative

and positive theory to future work.

The plan for the remainder of the paper is as follows. In the next section,

we introduce our framework to formalize the operational structure of working

knowledge space. In section 3, we begin our analysis of the model by deriving

self-consistent knowledge states in the form of fixed points for a given person

at a given time. In section 4, we prepare to analyze the dynamics of knowledge

creation, introducing modifications to the static framework. Then in section

5, synthesizing the previous aspects of our framework, we examine the dynamic

process of knowledge creation, allowing the knowledge structure to change in an

endogenous way. In section 6, we discuss conclusions and possible extensions.

For instance, we discuss the inclusion of normative as well as positive features

of knowledge creation, as well as the extension to more than one researcher.
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2 The Framework

2.1 A General Overview

The framework describing the dynamic process of innovation consists of several

pieces. Figure 2 describes the macro picture (not yet with specifics) of our

framework for the analysis of the dynamic process of knowledge creation. The

framework consists of four quadrants in R2 reminiscent of the cobweb diagrams
used in macroeconomics many years ago. We shall describe each quadrant in

turn.

To begin, we consider the northwest quadrant, the one labelled “Theory.”

The horizontal axis A represents the set of all conceivable assumptions. For

a person at any given time, the set of assumptions available to them will

be a subset of A. The vertical axis, given by X , is the set of all possible
models. Each element of X corresponds to a specific subset of A, a collection
of assumptions, that in turn is an element of the power set of A. A Theory

tells us which set of assumptions constitute which model.

Next consider the northeast quadrant, the one labelled “Science.” We have

already described the vertical axis X , so next we shall describe the horizontal
axis Y. This axis represents the conceivable implications, namely the set of all
possible conclusions that might be drawn from the solutions to any particular

model. Science tells us how to obtain the implications of each model.

Moving to the southeast quadrant, the one labelled “Empirics,”we have

already described the horizontal axis Y, so we next describe the vertical axis
Z. This axis represents available observations of the real world, either casual
(as in stylized facts) or formal (as in data analysis). These observations might

confirm or refute an implication. Empirics test the real world validity of the

implications.

Finally, we discuss the southwest quadrant, labelled “Art.” We have al-

ready discussed the axes Z and A. Art allows us to select new assumptions

based on observation. New assumptions are chosen step by step, slowly, as

we modify known models to create new ones.

2.2 Preliminaries

This framework might seem very abstract and not terribly useful, so we shall

now make it much more concrete using a real world example from the field of

economic growth.
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To begin, as stated previously, the elements of A, X , Y, and Z that are

available to a person at a given time will not be the universe of all possibilities.

Time will be discrete and indexed by t = 1, 2, ... Agents will be indexed by i

and j. We shall use Ai(t) to denote the set of assumptions available to person
i at time t. Analogous notation applies for X , Y, and Z.
We shall describe each of the four quadrants in turn, beginning with Theory

space. Please refer to Figure 3, which corresponds to the early period of growth

theory. Assumptions, namely elements of Ai(t), are denoted by a1, a2, a3 ∈
Ai(t). Elements of Xi(t) are denoted by, for example, x1 = {a1, a2}, x2 =

{a1, a3} ∈ Xi(t). Black dots reveal that a particular assumption, say a1, is an
element of a particular model, say x1 = {a1, a2}. Dots with empty interior

mean that a particular assumption, say a2, is not an element of a particular

model, say x2 = {a1, a3}. Formally, these will be represented by 1 for a black

dot and 0 for a dot with empty interior when we construct matrices to represent

our various quadrants. There is an underlying mathematical structure that

we shall describe in detail in the next subsection.

For illustration, we focus on our interpretation of the appearance of Solow

(1956), one of the classics in economic growth.2 To be precise, we shall focus

on the basic model used in that paper, in contrast with the extensions. In or-

der to make the intuition clear as we proceed through our model development,

we shall be quite specific about this example. Under this interpretation, a1
combines, for simplicity of expression, all basic assumptions common to early

growth models, including a production function using both capital and labor,

absence of technical change and exogenous population growth over time.3 As-

sumption a2 means a production function where the two factors, labor and cap-

ital, are used in fixed proportions. Assumption a3 means a production function

where the two factors are substitutable, for instance Cobb-Douglas, is used.

Then the Harrod-Domar (H-D) model x1 is represented by {a1, a2} ∈ XS(t),

where S stands for Solow and t = 1955. Eventually, Solow’s model x2 is

represented by {a1, a3} ∈ XS(1956).

There are two important points to make about the example represented in

Figure 3. First, all models are assumed to share the basic assumptions a1.

Second, we have omitted singleton sets of assumptions {a2} and {a3} from
models, since such models are tautological and hence not very useful to us. In

other words, XS(t) is a strict subset of all possible models.

2It is well-known that a similar paper was independently published by Swan (1956). We

shall later attempt to explain why this occurred. See Dimand and Spencer (2008).
3We elaborate the basic assumptions in detail in section 4.1.
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Next we turn to Science space, as illustrated in Figure 4. The horizontal

axis represents the implications of the various models. Before getting into

specifics, we must discuss precisely how to deal with those models (α) con-

taining incompatible assumptions, and (β) having an incomplete specification

(i.e., the set of assumptions of a model is not suffi cient to define its solutions).

Logically speaking, a model of type (α) or type (β) has no solution, so we put

dots with empty interior in the entire row of Figure 4 associated with that

model.

For example, the model x4 = {a1, a2, a3} represented on the vertical axis
has contradictory assumptions a2 and a3, so it has empty dots in its entire

row. Likewise, the model x3 = {a1} has an incomplete specification, so it has
empty dots in its entire row. The Harrod-Domar model x1 features “growing

total GDP,” “knife-edge path,” and “expanding unemployment” away from

the knife-edge growth path, so we put black dots in the matrix for these en-

tries. Where conclusions do not apply, we put dots with empty interior. We

shall explain how the Solow (1956) model fits into this later, when we discuss

dynamics below.

The next quadrant is Empirics, as depicted in Figure 5. Here, the im-

plications listed on the Yi(t) axis are tested against the observations in the
Zi(t) axis. However, we do not test individual implications with individual

observations. Rather, the set of implications of each model is tested against

observations. The precise operation of this space is explained later in Section

3.

The final quadrant is Art, in the southwest, illustrated in Figure 6. This

quadrant describes which assumptions are consistent with which observation

and how the use of new assumptions arises from empirical observations. How-

ever, for testing the consistency between assumptions and observations, we

need to employ “reverse engineering,” looking back at the entire sequence of

processes in Empirics space, Science space and Theory space in turn. The

functioning of Art space is explained in detail in Section 3.

This completes our overview of the basic model in terms of an example.

Before turning to analysis of the framework, we first describe its relationship

to the mathematics literature.

2.3 The Underlying Mathematics

In preparation for the analysis of the model, we make a few remarks concerning

the mathematical structure implied by our model.
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If, in each quadrant, we replace each black dot by a 1 and each dot with

empty interior with a 0, then each quadrant can be represented by a Chu

space; see Barwise and Seligman (1997), Ganter et al. (1998), and Pratt (1999).

Such spaces are common in the theory of computing, logic, and formal concept

analysis. There have been a few applications to quantum mechanics and game

theory.

In general, specific maps between Chu spaces are called Chu transforms.

As Chu transforms and the general theory of Chu spaces is not yet used in the

present analysis, we simply adopt the basic structure of a Chu space as applied

to our context. It is quite simple, consisting of a matrix of zeros and ones

for each quadrant.4 We shall, however, use the important idea of a formal

concept derived from a Chu space, that we shall introduce shortly.

We note that in general, there is no notion of distance or topology for

elements of any axis.

2.4 Notation

Next we provide formal definitions for the general case. Let us start with the

northwest quadrant, namely Theory space. We represent it generally by a Chu

space T = {A, RT ,X}, suppressing i and t for now for notational simplicity,
where A represents the set of possible assumptions, X represents the set of

possible models, and the binary relation RT on A×X is interpreted as: aRTx

means that assumption a ∈ A is included in the set of assumptions constituting
model x ∈ X . In general, we represent this by a matrix of 0’s and 1’s, where

1 means aRTx and 0 means not aRTx.

Following Ganter andWille (1999), we define a formal concept derived from

this Chu space as follows. A formal concept is a pair (A∗, X∗) with A∗ ⊆ A,
X∗ ⊆ X such that

A∗ = {a ∈ A | aRTx for all x ∈ X∗}
X∗ = {x ∈ X | aRTx for all a ∈ A∗}

4In the course of learning about the elementary theory of Chu spaces and Chu transforms,

the authors came across a number of important questions that do not seem to be addressed

by the literature. First, given two arbitrary Chu spaces, does a Chu transform between

them exist? The answer is apparently negative. Under what conditions do we know that

a Chu transform does exist? Analogous to the theory of manifolds, are the properties of a

Chu space independent of what larger space (e.g. more rows or columns that are all zero)

it is embedded in?
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The notion of a formal concept is very important to our analysis. The

pair (A∗, X∗) represents a notion of duality. In general, A∗ is the set of all

objects in A that have all the attributes given in X∗, whereas X∗ is the set
of all attributes possessed by every object in A∗. Together, a formal concept

(A∗, X∗) represents a unit of knowledge in this Chu space. For our first specific

application in this paper, we interpret objects as assumptions, and attributes

as models that might or might not contain these assumptions. For example,

in Figure 3, A∗ = {a1, a2} and X∗ = {x1, x4} together are a formal concept.
Formal concepts are not necessarily unique. However, the collection of all

formal concepts forms a complete lattice itself (via set inclusion), and we shall

use this important fact shortly. This lattice can be represented graphically by

a Hasse diagram, visualizing cognitive structures in this Chu space.

Define X0 ≡ {All models of type (α) or type (β)} ⊆ X , namely the set of
all models with contradictory assumptions or incomplete assumptions. One

of the main functions of Theory space is to divide X , the set of all models,
into X0 and its complement X̂ = X − X 0. The first set contains models that
are not potentially solvable, whereas the second set contains models that are

potentially solvable, hereafter called viable models, and thus of interest. In

the context of Figure 3, for example, x3, x4 ∈ X0, whereas X̂ = {x1, x2}.
Analogous to Theory space, we can do something similar for the next quad-

rant, Science space. We represent it generally by a Chu space S ={X , RS,Y},
where X represents the set of possible models, Y represents the set of possible
implications, and the binary relation RS on X × Y where xRSy means that

solutions to the model x ∈ X all have the implication y ∈ Y. In general, we
represent this by a matrix of 0’s and 1’s, where 1 means xRSy and 0 means

not xRSy. A formal concept is a pair (X∗, Y ∗) with X∗ ⊆ X , Y ∗ ⊆ Y such
that

X∗ = {x ∈ X | xRSy for all y ∈ Y ∗}
Y ∗ = {y ∈ Y | xRSy for all x ∈ X∗}

Before turning to a discussion of the remaining quadrants, we note a special

feature of Science space. That is, as illustrated in Figure 4, the rows of models

x3, x4 ∈ X0 consist entirely of 0’s, meaning that not x3Rsy and not x4Rsy for

all y ∈ Y. Thus, models in X0 play no important role, and hence we focus on
models in X̂ in the following analysis.
The maps in Empirics space and Art space are very different from the first

two maps.

9



In Empirics space, a map fE takes subsets of Y to subsets of Z. It maps
sets of implications or conclusions to empirical observations that together are

consistent with these conclusions. More precisely, the empirical observation z

is in the image fE(Y ∗) exactly when it is consistent with the set of conclusions

Y ∗. This map is explained more precisely in the next section.

InArt space, a map fA takes subsets of Z to subsets ofA. It maps empirical
observations to assumptions that are implied or necessary conditions arising

when the empirical observations are taken together. This map also is explained

more precisely in the next section.

3 Static Knowledge States

To begin the analysis of our model, the first step is to define a self-consistent

state of knowledge for a given person at a given time. Fortunately for us,

our model yields a formal mathematical structure that corresponds well to

the intuition. Mathematically, a complete manuscript is a fixed point of the

sequence of four maps in the 4 quadrant diagram of Working-K space (Figure

2) given what is assumed to be known by a person at time t. Here we define

the maps and their domains used by a person at time t. In the sections that

follow, we shall allow these maps and domains to change with time. However,

to keep notation simple, we shall often omit the time index except where this

might cause confusion.

Let us explain the overall approach by using Figure 8. (Figure 7 is to be

explained in the next section.) In this figure, the four diagrams in Figure 3

to Figure 6 are put together with some modifications. First, in Theory space

in Figure 8, we put the diagram in Figure 3 after removing all rows associated

with the models in X0. Thus, the vertical axis of Theory space (as well as of
Science space) is now X̂ , representing all models that are potentially solvable.
Second, after removing from Figure 4 all rows associated with the models in

X0, we put Figure 4 in Science space, side by side with Theory space in Figure
8. Third, in Empirics space in Figure 8, we put the diagram in Figure 5

which is now filled with a matrix of black dots and empty dots. This matrix

explains which set of implications (derived from Science space) are consistent

with which set of conclusions. The derivation of this matrix, however, awaits

the general formalization of Empirics space below. Likewise, in Art space in

Figure 8, we put the diagram in Figure 6 which is now filled with a matrix

of black dots and empty dots. This matrix associates each set of empirical
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observations (derived from Empirics space) with a set or sets of assumptions

that are implied as necessary conditions arising when these observations are

taken together. Again, however, the derivation of this matrix is to be explained

in general terms below.

In general, we map the results of each quadrant to the next quadrant

sequentially clockwise, and identify complete manuscripts as fixed points of

the composition of these four maps. In deriving these maps, we fully utilize

formal concept analysis in each quadrant.

We will begin with the northwest quadrant, namely Theory space. We

shall again temporarily suppress i and t for simplicity.

Let T =
{
A, RT , X̂

}
represent Theory space, in which the set of models

is restricted to X̂ , representing all models that are potentially solvable. Let

{(A∗T , X∗T )} be the set of all formal concepts in Theory space, where each pair
(A∗T , X

∗
T ) with A∗T ⊆ A, X∗T ⊆ X̂ is such that

A∗T = {a ∈ A | aRTx for all x ∈ X∗T}
X∗T =

{
x ∈ X̂ | aRTx for all a ∈ A∗T

}
Let LAT = {A∗T} be the collection of all such A∗T , and LXT = {X∗T} the

collection of all suchX∗T . Notice that each L
A
T and L

X
T forms a complete lattice

under standard set-theoretic operations (Ganter and Wille, 1999).5 For each

pair (A∗T , X
∗
T ) ∈ LAT × LXT , A∗T determines uniquely X∗T , which is expressed as

a map, X∗T = fT (A∗T ), so that fT : LAT → LXT .

In the context of Theory space in Figure 8, we have the following three

pairs of formal concepts:6

A∗T1 = {a1, a2} , X∗T1 = {x1} = {HD}
A∗T2 = {a1, a3} , X∗T2 = {x2} = {Solow56}
A∗T3 = {a1} , X∗T3 = {x1, x2} = {HD, Solow56}

(1)

Next, let S =
{
X̂ , RS,Y

}
represent Science space. For each X ⊆ X̂ , define

a pair (X∗S(X), Y ∗S (X)) as follows:

Y ∗S (X) = {y ∈ Y | xRSy for all x ∈ X},
X∗S(X) = {x ∈ X | xRSy for all y ∈ Y ∗S (X)}.

5This means, for example, when A∗T1 , A
∗
T2
∈ LAT , then A∗T1∪A

∗
T2
∈ LAT and A∗T1∩A

∗
T2
∈ LAT .

6Formally speaking, A∗T4 = {a1, a2, a3, a4} and X∗T4 = ∅ also forms a formal concept in
Theory space. Keeping this fact in mind, however, we omit it in the following discussion

for simplicity.
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Then (X∗S(X), Y ∗S (X)) is a formal concept. Define

fS(X) = Y ∗S (X) = {y ∈ Y | xRSy for all x ∈ X}

taking subsets of X̂ to subsets of Y. The map in Science space is analogous

to the map in Theory space.

Let LXS =
{
X∗S(X) | X ∈ X̂

}
and LYS =

{
Y ∗S (X) | X ∈ X̂

}
. Then, each

LXS and L
Y
S forms a complete lattice. Let fS◦fT : LAT → LYS be the composition

map defined by

fS (fT (A∗T )) = Y ∗S (X∗T (A∗T )) for A∗T ∈ LAT ,

which uniquely maps each set of assumptions in LAT to a set of implications in

Y.
In the context of Figure 8, we have that

fS(fT (A∗T1)) = fS({x1}) = {y1, y2, y3} ≡ Y ∗S1

fS(fT (A∗T2)) = fS({x2}) = {y1, y4, y5} ≡ Y ∗S2 (2)

fS(fT (A∗T3)) = fS({x1, x2}) = {y1} ≡ Y ∗S3

Next, Empirics space is represented by a Chu space E ={LYS , RE,Z}, which
maps each set of implications in LYS to a set of observations in Z. That is,

for each Y ∗S ∈ LYS and z ∈ Z, Y ∗SREz means that the empirical observation z

is consistent with the set of implications Y ∗S . Here, however, we need to add

an important note in constructing this Chu space, which is first explained in

the context of Figure 8.

In the structure we have delineated on LYS , we have not exploited the un-

derlying set- and lattice- theoretic structure of the set of conclusions, since we

have treated every subset of implications as a distinct and unrelated element of

LYS . Of course, these subsets can be related by set inclusion, intersection, and

union. Here is an example. On the LYS axis in Figure 8, we have three subsets

of implications: {y1, y2, y3}, {y1, y4, y5} and {y1}. For the first two concepts,
the correspondence between each concept and each individual observation on

the Z axis is rather straightforward, based intuitively on “consistency with ob-
servation.”7 In contrast, {y1} = {y1, y2, y3} ∩ {y1, y4, y5}, meaning that {y1} is
a “superconcept”of {y1, y2, y3} and {y1, y4, y5}. Thus, in the {y1} column, for
each observation, there is a black dot only when both subconcepts {y1, y2, y3}

7For the precise formalization of this statement, see Section 4.3.
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and {y1, y4, y5} support it. Generalizing this example, we assume that RE in

the Empirics space satisfies the following consistency condition:

For all Y ∗1 , Y
∗
2 , Y

∗
3 ∈ LYS and z ∈ Z, when Y ∗3 = Y ∗1 ∩ Y ∗2

Y ∗3 REz if and only if Y ∗1 REz and Y ∗2 R
∗
Ez

Now, let {(Y∗E, Z∗E)} be the set of all formal concepts in the Chu space
E={LYS , RE,Z}, where each pair (Y∗E, Z∗E) with Y∗E ⊆ LYS , Z

∗
E ⊆ Z is such

that

Y∗E =
{
Y ∈ LYS | Y REz for all z ∈ Z∗E

}
Z∗E = {z ∈ Z | Y REz for all Y ∈ Y∗E}

Let LZE = {Z∗E} be the collection of all such Z∗E, which forms a complete lattice.
For each Y ∗S ∈ LYS , define a pair (Y∗E(Y ∗S ), Z∗E(Y ∗S )) as follows:

Z∗E(Y ∗S ) = {z ∈ Z |Y ∗SREz}
Y∗E(Y ∗S ) =

{
Y ∈ LYS | Y REz for all z ∈ Z∗E(Y ∗S )

}
Then (Y∗E(Y ∗S ), Z∗E(Y ∗S )) is a formal concept, and the set of all pairs (Y∗E(Y ∗S ), Z∗E(Y ∗S ))

as Y ∗S varies over L
Y
S gives us all the formal concepts in Empirics space. We

define the map fE : LYS → LZE as follows:

fE(Y ∗S ) = Z∗E(Y ∗S ) = {z ∈ Z | Y ∗SREz}

This defines the map in Empirics space.

In the context of Figure 8, we have that

fE({y1, y2, y3}) = {z1, z2, z3, z4} ≡ Z∗E1

fE({y1, y4, y5}) = {z1, z5, z6, z7} ≡ Z∗E2 (3)

fE({y1}) = {z1} ≡ Z∗E3

So far, we have defined three maps:

The first map, fT : LAT → LXT maps from sets of assumptions to solvable

models.

The second map, fS : LXT → LYS takes a set of models to a set of implications

that they all share.

The third map, fE : LYS → LZE takes each set of implications to their

empirical observations.

Now, we can define the composition map Γ ≡ fE ◦ fS ◦ fT : LAT → LZE as

follows:

Γ(A∗T ) = fE(fS(fT (A∗T ))) for A∗T ∈ LAT .
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When Γ(A∗T ) 6= ∅, the map Γ uniquely identifies the set of observations that

are supported by the set of assumptions A∗T . In contrast, when Γ(A∗T ) = ∅, it
means that no observation is consistent with the set of assumptions A∗T .

In the context of Figure 8, we have that8

Γ({a1, a2}) = {z1, z2, z3, z4} ≡ Z∗E1

Γ({a1, a3}) = {z1, z5, z6, z7} ≡ Z∗E2 (4)

Γ({a1}) = {z1} ≡ Z∗E3

The first equation above states that the set of conclusions {z1, z2, z3, z4}
can be supported together only by the Harrod-Domar model based on as-

sumptions {a1, a2}. Likewise, the second equation says that the set of con-

clusions {z1, z5, z6, z7} can be supported together only by the Solow 56 model
based on assumptions {a1, a3}. In contrast, the last equation means that the
observation z1 can be supported by any solvable model (in this example, the

Harrod-Domar model and the Solow 56 model) that share assumption a1. This

is because the basic set of assumptions includes the assumption of exogenous

population growth over time.

Finally, provided that the range of map Γ is not empty, that is, Γ(LAT ) ≡
∪A∗T∈LAT Γ(A∗T ) 6= ∅, we wish to know which set of observations in LZE can be
supported by which set of assumptions in LAT . This means that we should

conduct “reverse engineering”from LZE to L
A
T , filling up the fourth quadrant.

To do so, let f−1T , f−1S and f−1E be respectively the “inverses” of fT , fS and

fE.9 Composing these inverse maps, let

Γ−1 ≡ f−1T ◦ f−1S ◦ f−1E : LZE → LAT

be the inverse of map Γ. Although Γ is a single-valued function, since each

inverse map, f−1T , f−1S and f−1E , is a multi-valued map, in general, so is Γ−1.

This multi-valued map defines the Chu space A =
{
LZE, RA, L

A
T

}
in the fourth

quadrant, where for Z∗E ∈ LZE and A∗T ∈ LAT ,

Z∗ERAA
∗
T when A

∗
T ∈ Γ−1(Z∗E).

In the context of Figure 8, we have that

Γ−1({z1, z2, z3, z4}) = {a1, a2}
Γ−1({z1, z5, z6, z7}) = {a1, a3} (5)

Γ−1({z1}) = {a1}
8To be precise, we also have that Γ({a1, a2, a3, a4}) = ∅.
9For example, f−1T (X∗T ) =

{
A∗T ∈ LAT | fT (A∗T ) = X∗T

}
.
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which are represented by black dots in the Art space of Figure 8.

Let F be the composition of two maps Γ and Γ−1.

F = Γ−1 ◦ Γ : LAT → P(LAT )

where P(LAT ) denotes the power set of the set LAT . In general, F is a multi-

valued map that takes each element of LAT to subsets of L
A
T . Note that F is, in

general, not an identity map. For example, if Γ(A∗T ) = ∅ for A∗T ∈ LAT , then
F (A∗T ) = ∅.10

Let L̂AT =
{
A∗T ∈ LAT | Γ(A∗T ) 6= ∅

}
be the domain of Γ. For any subset

S ⊆ L̂AT , define F (S) = ∪A∗T∈SF (A∗T ). This extends the domain of F from L̂AT
to P(L̂AT ) and F can be considered to be a map from P(L̂AT ) to P(L̂AT ). The

following always holds:

F (S∗) ⊇ S∗

If, for S∗ ⊆ L̂AT ,

F (S∗) = S∗,

then we call S∗ a fixed point of map F .11 In this context, applying Berge

(1963, Chapter II, Theorem 4), we can conclude as follows:

Theorem 1: Suppose that the domain of the map Γ = fE ◦ fS ◦ fT is not
empty. Then, the fixed points of F = Γ−1 ◦ Γ form a complemented lattice.12

In particular, the set of fixed points is nonempty.

This theorem implies that fixed points of F exist if and only if Γ(LAT ) 6= ∅.
In other words, fixed points of F exist if and only if the matrix of Empirics

space contains at least one black dot, that is, at least one set of observations

is supported by some set of assumptions.

In the context of Figure 8, combining (4) and (5), we can readily see that

the map F has the following three atomic or elementary fixed points:13

S∗1 ≡ {a1, a2} = A∗T1

S∗2 ≡ {a1, a3} = A∗T2 (6)

S∗3 ≡ {a1} = A∗T3

10We define Γ−1(∅) = ∅, and hence F (A∗T ) = ∅ when Γ(A∗T ) = ∅.
11In Berge (1963), such a set S is called a stable subset.
12A lattice is called “complemented”when: S∗ is an element of a lattice implies that its

complement is also an element of the lattice. Notice that since the number of the fixed

points of F is finite, they form a complete lattice.
13To be precise, S∗4 ≡ ∅ is also a fixed point of F .
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By definition, then, the following unions of these atoms of fixed points are also

fixed points:

S∗4 = {A∗T1 , A
∗
T2
}, S∗5 = {A∗T1 , A

∗
T3
}, S∗6 = {A∗T2 , A

∗
T3
}, (7)

and S∗7 = {A∗T1 , A
∗
T2
, A∗T3} = L̂AT

With the addition of S∗8 = ∅, all of these fixed points together form a comple-

mented lattice. Given that the fixed points in (7) are derived from the atoms

in (6), we may focus on the latter.

In the fourth quadrant of Figure 8, the three atomic fixed points are denoted

by black dots. The fixed point S∗1 ≡ {a1, a2} corresponds to the Harrod-Domar
model, and it uniquely supports the set of implications {z1, z2, z3, z4}. Like-

wise, S∗2 ≡ {a1, a3} corresponds to the Solow 56 model, supporting uniquely
the set of implications {z1, z5, z6, z7}. In contrast, the fact that the fixed

point S∗3 ≡ {a1} supports z1 indicates that the observation z1 can be sup-

ported by any solvable model, including the Harrod-Domar model and the

Solow 56 model, in which assumption a1 is used. Recall that a1 represents

the basic set of assumptions including the assumption of growing population.

Why are we interested in fixed points, in particular elementary or atomic

fixed points? It is because a fixed point is internally consistent, and is taken as

far as possible given a person’s knowledge at that time. By internal consistency

we mean that the assumptions, model, implications, and empirical observations

are all consistent with each other. There is no immediate cause for alteration.

We also note that, since the domain of F is LAT , and the set of fixed points

is a complemented lattice, the union of all the elements of all the fixed points

covers A.
As illustrated above, fixed point analysis utilizing formal concepts in the

four quadrants of working knowledge space reveals well the structure of knowl-

edge possessed by a researcher at a given time.

4 Some Preparations for Dynamics

Up to this point we have taken a person’s state of knowledge at time t to be

fixed. That is, the matrices representing the Chu space in each quadrant do

not change. Next, we intend to consider dynamics, allowing the matrices to

change endogenously. Jumping from statics to dynamics, however, is not easy.

As an intermediate step, in this section, we introduce several concepts and tools

that are useful in understanding the dynamic process of knowledge creation.
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In the first subsection, we introduce Boolean algebras in Theory space, and

consider how one can systematically introduce new assumptions sequentially.

In the second subsection, we introduce Boolean algebras in Science space, and

identify potential sets of implications that could be derived from possible new

models. In the third subsection, we introduce utility functions in Empirics

space, and consider how a researcher would choose new specific assumptions

or models. In the last subsection, we consider the interactions between the 4

quadrant working space and supporting knowledge spaces.

4.1 Complementation inA and Boolean algebras in The-
ory space

When a researcher introduces new assumptions and develops new models se-

quentially, one may wonder where these new assumptions might come from.

Our understanding is that new assumptions do not need to come from an

extraterrestrial; actually, they are already hidden behind the existing set of

assumptions. To elaborate this point, recall that in the context of Figure 3 in

Section 2.2, we stated that a1 represents the set of all basic assumptions that

are common to early growth models. To be precise, in the context of Solow

(1956), the following set of assumptions are explicitly stated in Section II of

that paper:

one consumption commodity, constant savings ratio, two factors of pro-

duction: capital and labor, production using constant returns to scale in net

output, absence of technological change, labor force increasing at a constant rel-

ative rate, inelastic supply of labor, effi cient utilization of production factors14,

competitive pricing of factors.

Formally speaking, however, Solow was assuming many more basic assump-

tions that he did not, understandably, bother to mention in Section II. These

implicit basic assumptions include:

each factor is homogenous, absence of technological externality, closed econ-

omy, no space, no transport costs, continuous time, all variables are measured

14In Solow (1956) Section IV, the Harrod-Domar case of fixed factor proportions in pro-

duction is introduced as the first example: Y = F (K,L) = min
(
K
a ,

L
b

)
. In this case, except

when K
L = a

b , the two factors cannot be fully employed. Therefore, when this Harrod-

Domar case is permitted in Section II, full employment of both factors cannot be a part of

the basic assumptions. Thus, we replace it here by the more general assumption of “effi cient

utilization of production factors,”meaning that the maximum rate of output using the given

level of factors is achieved.
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in continuous numbers15

In general, let

a1 = {a11, a12, · · · , a1i, · · · , a1m}

represent the set of all basic assumptions, including both explicit and implicit

ones. Logically speaking, when one sets a1 above, one automatically sets its

negation,

⇁
a1 =

{
⇁
a11,

⇁
a12, · · · ,

⇁
a1i, · · · ,

⇁
a1m

}
where

⇁
a1i = the negation of a1i, i = 1, 2, · · ·m

Here, given an assumption a1i, it is important to distinguish between its

negation
⇁
a1i and its contraries.16 For example, let a1i be the basic assumption:

a1i = absence of technological change

Then, there are many (potentially infinitely many) contraries of a1i that are

incompatible with a1i. For example, contraries of a1i (absence of techno-

logical change) include any form of exogenous technological change such as

neutral technological change, labor-augmenting technological change, capital-

augmenting technological change, any form of embodied technological change,

as well as any form of endogenous technological change. Therefore, the nega-

tion of a1i, the weakest proposition inconsistent with a1i, is the disjunction of

all of its contraries:

⇁
a1i = presence of some form of technological change

= {ac11i , ac21i , · · · , a
ck
1i , · · · }

where each ack1i represents a specific form of technological change. In general,

the negation of proposition a1i contains a large number (possibly an infinite

number) of contraries.

When one sets the basic assumption, a1, its negation
⇁
a1 is to be registered

automatically in the stock of knowledge associated with Theory space.17 We

could introduce any component of
⇁
a1, say

⇁
a1i, as a member of A (the set of

all assumptions conceived explicitly). However, in general,
⇁
a1i contains many

15In other words, there are no indivisibilities.
16This part of our discussion is based on Dunn and Hardegree (2001, p. 89).
17We elaborate on the stock of knowledge associated with each subspace of Figure 2 in

Section 4.4.
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contraries of a1i, and hence
⇁
a1i itself is not specific enough to be a component

of solvable models. Hence, when one introduces into A an alternative to a1i,
a specific component of

⇁
a1i must be chosen.

Actually, what was said above holds not only for a1, but also for any existing

member ai of A.18 That is, for each ai ∈ A, its negation
⇁
a i is also to be

registered as a part of the stock of knowledge associated with Theory space.

Therefore, given the set of all possible assumptions,

A = {a1, a2, · · · , an} ,

its entire negation,
⇁

A =
{
⇁
a1,

⇁
a2, · · · ,

⇁
an

}
,

must be registered as a part of the stock of knowledge associated with Theory

space.

If we set

Au = A∪
⇁

A

then it holds by definition that

A∩
⇁

A = ∅ and
⇁

A ∪A = Au

Thus, A and
⇁

A together form a partition of the universe of conceivable as-

sumptions.

One might then wonder why we do not use Au, instead of A, as the set of
all conceivable assumptions from the start. If we did so, then since Au seems
to represent the universe of all conceivable assumptions, we would not need

to worry about introducing new assumptions or models anymore. Although

this is a legitimate idea, there are a few diffi culties both operationally and

conceptually.

First, as illustrated in the case of a1, in general, each
⇁
a i contains many

(possibly infinitely many) contraries of ai. Therefore,
⇁

A contains quite a

large number (possibly an infinite number) of elements. Thus, practically

speaking, it is not possible to study all possible combinations of the elements

of Au at the same time. Indeed, in practice, finding even one potentially

meaningful new set of assumptions and analyzing the associated model might

involve a great deal of effort for a researcher. Second, in general, given ai ∈
18We are implicitly assuming that a1 represents the set of basic assumptions that are

mutually compatible, whereas each ai (i ≥ 2) consists of a single proposition. However, it

does not need to be so. Some of the ai (i ≥ 2) may also consist of multiple propositions /

assumptions that are mutually compatible. It is a matter of convenience in expression.
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A, specifying concretely the content of its negation ⇁
a i in terms of contraries

requires a thorough knowledge of the current state of literature, whereas the

state of the literature will change with time. For example, suppose that

a1i = perfectly competitive markets for all factors and goods

Then, one can write down automatically that

⇁
a1i = some markets are not perfectly competitive

However, in the 1950’s, specifying even one operational form of a noncom-

petitive market in the context of growth theory was not easy. This became

possible only after suffi cient progress in industrial organization theory and re-

lated fields in the 1960’s and 1970’s. In general, therefore, the content of

Au depends on the researcher’s general knowledge as well as on the state of
literature in related fields, and hence it evolves with time.

When a researcher specifies the set A, she may register
⇁

A as concretely

as possible as a part of the knowledge stock associated with Theory space,

and renew
⇁

A with time. Then, transferring specific members of
⇁

A to A
sequentially, the content of A can be enriched endogenously almost endlessly.
That said, however, it may not be easy to select meaningful combinations

of the elements of A as potentially solvable models. In order to achieve a

systematic transfer of members of
⇁

A to A and to choose meaningful combina-
tions, it is useful to consider the process in terms of Boolean lattices or Boolean

algebras. These constructs are closely related to the formal concept analysis

presented in the previous section.

Recall that a lattice L with join ∨ and meet ∧ is called a Boolean lattice
or Boolean algebra if

(i) L is distributive (i.e., for any a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c))

(ii) L has the top element, 1, and the bottom element, 0.

(iii) Each a ∈ L has a unique complement ã such that a∨ ã = 1 and a∧ ã = 0.

For our purposes, an important characteristic of a Boolean algebra is that any

closed subinterval is also a Boolean algebra. That is, for any a, b ∈ L such

that a ≤ b, the closed interval,

[a, b] = {a ≤ x ≤ b} ,
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also constitutes a Boolean algebra where b now becomes the top element, and

a the bottom element. It is also well-known that for any set with a finite

number of elements, its power set P(A) is a Boolean algebra with join and

meet defined by set-union and set-intersection, respectively.

Now, going back to the early stages of economic growth theory develop-

ment, recall that the combination of the next two assumptions,

a1 = the set of basic assumptions

a2 = fixed factor ratio production technology,

defines the Harrod-Domar model. Here, a1 includes all explicit and implicit

assumptions, explained earlier, that are stated in Section II of Solow (1956).

In contrast, a2 represents a specification or specialization of the assumption

of constant-returns-to-scale production technology included in a1. The two

assumptions a1 and a2 together form a solvable growth model.

Next, let us consider enriching the simple set of possible assumptions, A =

{a1, a2}, by transferring
⇁
a2 from

⇁

A, the stock of knowledge associated with
Theory space, and adding it to A. Strictly speaking, however, the negation

of a2,
⇁
a2 = substitutable production technology

is not specific enough to be a part of a solvable model. In fact, as a contrary

of a2, Solow (1956) considered what is now called the neoclassical production

technology that can be expressed by a suffi ciently smooth concave production

function:19

ac2 = neoclassical production technology

Then, we have new A = {a1, a2, ac2} such that

a1 = the set of basic assumptions

a2 = fixed-factor-ratio production technology

ac2 = neoclassical production technology.

where ac2 is a contrary of a2.

Figure 9(a) depicts the Hasse diagram of the power set, P({a1, a2, ac2}),
known as the cube.
19To be precise, in Solow (1956), many different forms of a substitutable production

technology are considered. But here let us focus on the so called neoclassical production

technology defined, for example, by Burmeister and Dobell (1970). Given the input vector

x = (x1, x2, · · · , xi, · · · , xn), the production function F (x) is assumed to be linearly ho-

mogenous and concave with F (0) = 0, with continuous partial derivatives, and with strictly

convex isoquants.
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Figure 9

We can readily check that this cube represents a Boolean algebra. However,

the entire cube does not form a Boolean algebra for a potentially solvable

model because its top element, {a1, a2, ac2}, contains contradictory assump-
tions, specifically a2 and ac2. In this cube, we can identify two closed intervals

of Boolean algebras, each satisfying the following three conditions:

Condition 1: it contains no pair of incompatible assumptions.

Condition 2: it contains the set of basic assumptions at the bottom.

Condition 3: it represents a maximal closed interval that satisfies

Condition 1 and Condition 2.

When a closed interval or Boolean sub-algebra of P(A) satisfies the three

conditions above, as before we call it a viable model. The necessity of Condition

1 for a viable model is obvious. Condition 2 means that any viable model

should contain the set of basic assumptions for it to be a solvable complete

model. Condition 3 means that there is no larger Boolean sub-algebra in P(A)

that satisfies Conditions 1 and 2. In adopting these three conditions, we are

playing it safe in the sense that if a model contains redundant assumptions,

then they will be identified later in the actual analysis.20

In Figure 9(a), Boolean sub-algebras of two viable models are represented

respectively by a bold line:

Harrod Domar model : {{a1} , {a1, a2}}
Solow 56 model : {{a1} , {a1, ac2}}

In Figure 9, diagram (b) represents formal concept analysis that has been

transferred from Theory space in Figure 8. In comparing the two diagrams (a)

and (b), we can see that each black dot in (a) corresponds to a formal concept

(i.e., an element of LAT ) in diagram (b). This is not surprising, for Boolean

sub-algebras of viable models in (a) represent the Hasse diagram of formal

concepts in (b).21 Mathematically speaking, therefore, the study of Theory

space in terms of Boolean algebras is identical with that in terms of formal

concepts. Diagram (a) provides more information on where viable models are

20This point is elaborated later in Examples 1 and 2.
21Strictly speaking, for LAT to represent a complete lattice of concepts, it should also

include {a1, a2, ac2}. Likewise, if the top element {a1, a2, ac2} were added to the three black
dots in diagram (a), then the four dots together would form a larger Boolean algebra.

However, in both diagrams, {a1, a2, ac2} does not correspond to a viable model.
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situated in the entire Boolean algebra of P(A). However, as we will see next,

very soon the entire graph of P(A) will become too big to handle when the

number of elements of A increases.
In the preceding example, we enriched the set A by transferring a contrary,

ac2, of assumption a2 from
⇁

A to A. Let us consider next the transfer of a

contrary of a component of a1 (= the set of basic assumptions), say a contrary

of a11, to enlarge A. For example, let

a11 = absence of technological change

As noted before, its negation,
⇁
a11, contains many contraries, and hence we

must choose a specific one. Following Solow (1957), as a contrary of a11, let

us introduce

ac11 = the original production function shifts upward at a constant rate

Since a11 and ac11 are incompatible, the original a1 and a
c
11 are incompatible.

To make the set of basic assumptions compatible with ac11, we separate a11
from a1 and define a′1 = a1−a11 to be the new set of basic assumptions. Then,
the new set of all possible assumptions is now

A = {a′1, a11, ac11, a2, ac2}

where

a′1 = a1 − a11 = the new set of basic assumptions

a11 = absence of technological change

ac11 = the original production function shifts upward at a constant rate

a2 = fixed factor ratio production technology

ac2 = neoclassical production technology

In this context, diagram (a) of Figure 10 depicts the Boolean algebra of

the entire power set P(A). Within this entire power set, bold lines delineate

four Boolean sub-algebras that meet the three conditions of viable models:

Harrod-Domar model : {{a′1} , {a′1, a11} , {a′1, a2} , {a′1, a11, a2}}
Solow 56 model : {{a′1} , {a′1, a11} , {a′1, ac2} , {a′1, a11, ac2}}
HD′ model : {{a′1} , {a′1, a2} , {a′1, ac11} , {a′1, ac11, a2}}
Solow 57 model : {{a′1} , {a′1, ac2} , {a′1, ac11} , {a′1, ac11, ac2}}

Figure 10
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In Figure 10, diagram (b) represents the formal concepts in the Chu space of

four viable models. As in Figure 9, each black dot in diagram (a) corresponds

to a formal concept in diagram (b), an element of LAT .
22

Thus far, in deriving viable models from a given set of assumptions, A =

{a1, a2, . . . , an}, we did not pay much attention to the logical relations among
assumptions. To be precise, we first considered the Boolean algebra of P(A)

based purely on the set-theoretic combinations of assumptions. Then, we

selected viable models as Boolean sub-algebras of P(A) that satisfy Conditions

1, 2, and 3. Among the three conditions, only Condition 1 reflects a logical

relation, i.e., incompatibility, among assumptions. In general, however, given

a pair of assumptions, ai and aj (ai 6= aj), when they are logically related, we

can consider the following three possible cases:23

incompatible : ai ∧ aj = ∅
specification : ai ∧ aj = ai or ai ∧ aj = aj (i.e., ai → aj or aj → ai)

partly compatible : ai ∧ aj 6= ∅, ai ∧ aj 6= ai, ai ∧ aj 6= aj

The first case of incompatibility has been incorporated in Condition 1. To

consider the remaining two cases, let us examine two examples below in which

we add a new assumption a4 to the set of assumptions, A = {a1, a2, ac2}, that
has been discussed in the context of Figure 9.

Example 1: A = {a1, a2, ac2, a4} where

a1 = the set of basic assumptions

a2 = fixed-factor-ratio production technology

a3 = ac2 = neoclassical production technology

a4 = ac′2 = Cobb-Douglas production technology

Clearly, a4 is a specification of a3 (i.e., a4 → a3). Figure 11 depicts the Boolean

algebra of the power set P(A), where the Boolean sub-algebras satisfying Con-

ditions 1, 2 and 3 are delineated by bold lines. Among the two sub-algebras,

the one involving a bold, broken line needs special attention. In the present

context, since a4 → a3 (i.e., a3 ∧ a4 = a4), the model defined by {a1, a3, a4}
22Again, formally speaking, LAT should contain A as an element. Likewise, in diagram

(a), when A is added to the elements connected by bold lines as the common top element,
then the entire graph represents a complete lattice. It is not, however, a Boolean algebra

because it is not a closed interval of P(A).
23Here, the conjunction (∧) should be taken in an appropriate set of elements that are

partially ordered.
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is identical to the model {a1, a4}. Therefore, the sub-algebra with the top el-
ement {a1, a3, a4} can be decomposed into two Boolean sub-algebras, defined
by the closed intervals, [{a1}, {a1, a3}] and [{a1}, {a1, a4}], respectively. Thus,
as represented in Figure 11 (b-1), there exists three viable models. Although

x3 is a specification of x2, the two models are different. In fact, x2 represents

the Solow 56 model, whereas x3 corresponds to the model of Swan (1956).

Example 2: A = {a1, a2, ac2, a4} where

a1 = the set of basic assumptions

a2 = fixed-factor-ratio production technology

a3 = ac2 = neoclassical production technology

a4 = ac
′′
2 = CES production technology such that

F (K,L) =
[
αKβ + (1− α)Lβ

]1/β
, 0 < α < 1, 0 < β ≤ 1

whereK represents capital usage and L represents labor usage. In this context,

a4 → a3 when β < 1. However, when β = 1, F (K,L) = αK+(1−α)L, which

does not belong to the neoclassical production technology. Therefore, a3 and

a4 are partly compatible with each other. Figure 11(a) represents the Boolean

algebra of the power set P(A), which seems identical to the one in the context

of Example 1. However, in the present context, a3 ∧ a4 6= a3 and a3 ∧ a4 6= a4.

Therefore, the Boolean sub-algebra with the top element {a1, a3, a4} can be
decomposed into three different closed intervals, [{a1}, {a1, a3}], [{a1}, {a1, a4}]
and [{a1}, {a1, a3, a4}], each one representing a different viable model as shown
in Figure 11(b-2).

In summary of the discussion above, given a set of assumptions A, we may
identify the set of viable models in two steps:

Step 1 : Identify viable models as closed Boolean sub-algebras

of P(A) that satisfy Conditions 1, 2 and 3.

Step 2 : Considering the logical relations of specification or partial

compatibility between each pair of assumptions, decompose

each viable model into a set of independent models.
Finally, in forming new models by adding assumptions sequentially, we

may differentiate “small changes” from “big changes.” A small change in

a model (or a variation) maintains the “core assumptions” in the basic set

of assumptions, and introduces a variation of a “non-core” assumption. In

contrast, a big change in a model replaces some of the “core assumptions”

contained in the basic set of assumptions. In growth theory, for example,

replacing the assumption of constant returns to scale with increasing returns
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to scale will lead to a big change in the model. In terms of Kuhn (1962),

the former may represent “normal science,”whereas the latter may represent

a “paradigm shift.”

4.2 Boolean algebras in Science space

Suppose that we have fixed the set of viable models, X , from Theory space.

Then, the next job is to examine the implications of each model in Science

space. If the set of implications, Y, had been prepared beforehand, this job
would be easier. The question, however, arises: How has the set Y been

prepared, and how complete is the set? To be prepared for all possible

implications from all possible models, the set would need to be quite large.

Furthermore, a new model might yield new implications that are not listed

initially in Y.
In conducting analysis in Science space, we may consider another approach.

Instead of preparing the set Y beforehand, we may create Y more or less from
scratch. That is, given a viable model, say x1 ∈ X , we obtain the solution of
x1, and make a list of its major implications. We do this work for each xi ∈ X
in turn. Then, putting all implications together, we get Y.
The latter approach might sound easier. However, it too is not easy in

practice. That is, without having some a priori list of implications to be

investigated, a researcher would be unable to find the major implications of

each model. Where should the researcher look?

In practice, a researcher would take a middle road, combining the two

approaches. When conducting research, she is working in a specific field in

which some stock of knowledge has been accumulated already. Furthermore,

when working in Science space, she examines the implications of one specific

new model at a time, whereas the major implications of the balance of existing

models are commonly known among researchers in the field. Thus, we can

expect that when a researcher starts examining implications of a new model,

a preliminary set of possible implications, say Y(t − 1), is already available.

Through the actual examination of the implications of that model, then, she

may find new implications that are to be added to Y(t− 1), forming Y(t).

In this process of constructing the set Y ≡ Y(t), it is important to consider

logical relations among the elements of Y. This consideration is also useful for
finding potential sets of implications that would be possessed by new possible

models.

For example, let us go back to an early stage of the evolution of economic
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growth theory, as depicted in Figure 7. Phase 1 is dated 1955. There exists

only one model, x1, the Harrod-Domar model, on which Robert Solow focused.

It was agreed in the literature that important implications of H-D models were:

y1 = growing total GDP

y2 = knife-edge growth path

y3 = expanding unemployment of a factor

Logically speaking, when these three implications of the H-D model are

listed, one can automatically consider their negations:
⇁
y 1 = not growing total GDP
⇁
y 2 = not knife-edge growth path
⇁
y 3 = expanding unemployment of no factor

These negations may be included in Y or recorded in the stock of knowledge
associated with Science space. However, one may not include

⇁
y 1 in Y because

any growth model should imply y1, not
⇁
y 1; Y should be kept simple without

unnecessary clutter. One may include
⇁
y 2 and

⇁
y 3 in Y. However,

⇁
y 2 is too

general, containing all contraries of y2. The same is true for
⇁
y 3. Thus, we

may imagine that Robert Solow selected yc2 and y
c
3 below as specifications of

contraries to y2 and y3, respectively:24

yc2 = converging to balanced-growth path

yc3 = full employment of both factors

We may imagine that Solow selected these specific contraries because he hoped

that his new model had these implications, as we shall explain further in the

next subsection.

We then have the set of implications as follows:

Y = {y1, y2, y3, yc2, yc3}

Since Y consists of five elements, the Boolean algebra of the power set, P(Y),

is isomorphic to that of P(A) in Figure 10 (a). (Please neglect the bold lines

in the diagram.) In this Boolean algebra of P(Y), as before, we select closed

intervals, each satisfying the following three conditions:

Condition 1: it contains no pair of incompatible implications.

Condition 2: it contains y1 (the basic implication) at the bottom.

Condition 3: it represents a maximal closed-interval that satisfies

Condition 1 and Condition 2.

24Notice that constant unemployment of a factor is also a contrary of y3.
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When a closed interval or Boolean sub-algebra of P(Y) satisfies the three

conditions above, we may call it the set of conceivable implications or a viable

implication-set.

In the present context of Y = {y1, y2, y3, yc2, yc3}, y2 and yc2 as well as y3 and
yc3 are mutually incompatible. Furthermore, y3 and y

c
2 are also incompatible.

Therefore, as depicted in Figure 12 (a), we can select three viable implication-

sets from P(Y); they correspond to those delineated by bold lines in Figure 10

(a). The top element {y1, y2, y3} represents the actual implications of Harrod-
Domar model. The top element {y1, yc2, yc3} represents the viable implication-
set of a potential model x◦2 about which we do not yet know. Similarly, the top

element {y1, y2, yc3} represents the viable implication-set of another potential
model x◦3. Figure 12 (b) shows these viable implication-sets in Science space.

The potential models x◦2 and / or x
◦
3 must be examined later through reverse-

engineering.

In the preceding example, by using Figure 12 we extended the original set of

implications, {y1, y2, y3} of the Harrod-Domar model, to {y1, y2, y3, yc2, yc3} by
introducing contraries, yc2 and y

c
3. One can also extend the set of implications

by introducing specifications or a partition of an element, say yi. For example,

in the present context of the Harrod-Domar model, it is natural to consider

the following partition or specifications of the implication y1:

y11 = growing total GDP but not per capita

y12 = growing total and per capita GDP

where y11 ∧ y12 = ∅ and y11 ∨ y12 = y1. In this case, the set of implications

is expanded to Y+ = {y1, y2, y3, yc2, yc3, y11, y12}. In this context, each of the

rows in Figure 12(b) can be extended by adding either y11 or y12. Thus, as

depicted in Figure 13, we obtain 6 rows or potential models: x11, x◦21, and x
◦
31

with y11, and x◦12, x
◦
22, and x

◦
32 with y12. Among the six rows, at present, only

the row x11 corresponds to an actual model, i.e. the Harrod-Domar model.

At present, the remainder of the 5 rows represent those of potential models.

Which potential models can actually be implemented? This must be resolved

through reverse engineering later on. In particular, in order to realize the

potential models with implication y12, i.e. x◦12, x
◦
22, and x◦32, some form of

technological progress must be incorporated as a new assumption.
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4.3 Contexts and Utility Functions in Empirics Space

We first examine how the set of relevant observations Z is constructed. Obvi-
ously, it is context-dependent. What we mean by that is the relevance of an

observation is dependent on the time and location of the researcher. What of

importance is happening in society at that time and place? The environment

plays an important role in the selection of observations, due to their relevance,

and eventually in the selection of models though reverse engineering.

For example, the Empirics space in Figure 7 represents the economic events

of significance for Solow in the 1950’s. The Z axis gives observations that

Solow might have been aware of. In the 1930’s, in addition to z1 (growing total

GDP), observations z2 to z4 (significant unemployment, price instability, sig-

nificant fluctuations) were of most relevance, as the great depression influenced

the thinking of many economists. For instance, Harrod and Domar likely used

the observation of the great depression to motivate their work. From the van-

tage point of the 1950’s, observations z2 to z4 seem antiquated. At that time,

in addition to z1, observations z5 to z7 (stable employment, smooth factor price

changes, smooth growth) were more relevant as descriptions of the economy.

To begin, at time t− 1 = 1955, the Harrod-Domar model was prevalent in

macroeconomics. This is illustrated in Figure 7. In Figure 8, we have altered

the diagram in Empirics and Art space so that the domain of fE is now subsets

of Y, called LYS . Among the empirical predictions of the Harrod-Domar model
is that GDP grows at a constant rate; see Branson (1972) chapter 18, particu-

larly equations (18) and (20). In Figure 7, the Harrod-Domar model {a1, a2}
has a single fixed point corresponding to the black dot {{a1, a2}, {z1, z2, z3, z4}}
in Art space. In other words, the Harrod-Domar model supports the obser-

vation that the economy is growing in terms of total GDP. However, the

Harrod-Domar model can support only this one among four observations that

Robert Solow might have considered to be of importance in 1955. It is thus

natural to assume that he was not satisfied with the state of economic growth

theory in 1955. Hence, let us consider, in general, how to measure the de-

gree of satisfaction or utility level of the state of the literature in question for

research at a given time. In order to explain the utility function in detail,

however, we first must discuss how to determine the relation in the Chu space

RE = {eij}.
Given a set of viable implications Y ∗i ∈ LYS and an observation zj ∈ Z,

how do we determine when the observation zj is consistent with the set of

implications Y ∗i ? To figure this out, we set up a probability model for Empirics
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space. We could set up a Bayesian model if we had information about the

probability associated with the various subsets of implications or elements of

LYS , but we find it easier to use a classical approach to hypothesis testing at

this point. Thus, we assume that for each Y ∗ ∈ LYS , there is a probability

measure πY ∗ defined on the (discrete) algebra generated by the set Z.25 That

is, the probability of an observation given a set of implications is assumed to

be known and exogenous.26 We impose a restriction on πY ∗ in line with the

consistency condition detailed in Section 3:

For all Y ∗1 , Y
∗
2 , Y

∗
3 ∈ LYS and z ∈ Z, when Y ∗3 = Y ∗1 ∩ Y ∗2

πY ∗3 (z) = min
{
πY ∗1 (z), πY ∗2 (z)

}
We set a critical level π, 0 ≤ π ≤ 1, and we define:

eij = 1 when πY ∗i (zj) ≥ π

eij = 0 when πY ∗i (zj) < π

Based on this definition, we set

Y ∗i REzj if and only if eij = 1

Next we introduce two utility functions. The first is a general utility

function that applies to all of our diagrams, whereas the second is a utility

function that applies to a particular state. Both take as the domain Empirics

space. Let Empirics space be the Chu space E = {LYS , RE,Z}, where RE =

{eij}. Then we define the absolute utility function as

U(E, t) =
∑
j

wj(t) ·min{
∑
i

eij, 1} (7a)

where wj(t) =
{
1 for zj∈ZSolow(t)
0 for zj∈Z(t)−ZSolow(t)

(7b)

and the relative utility that applies to a particular state as

u(E, t) =
U(E, t)

#ZSolow(t)
(7c)

Here, Z(t) represents the set of all observations at time t, whereas ZS(t) repre-

sents the subset of Z(t) that is of relevance to Solow at time t. The notation

#ZSolow(t) represents the number of elements of set ZSolow(t). In the absolute

25In fact, since we never use joint probabilities, we could simply construct a separate

algebra for each z ∈ Z, including only it and its complement.
26A Bayesian approach would require a probability measure over LYS ×Z.
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utility function, when
∑

i eij ≥ 1, min {
∑

i eij, 1} = 1, implying that observa-

tion j “has been explained by”or “is consistent with” some model. In this

way, the min-operation is introduced to avoid double-counting in the evalua-

tion of E. The absolute utility U is used to derive marginal utility for moving

from 1955 to 1956, in other words, the dynamics. The relative utility u is

used to calculate the satisfaction level of a researcher for a given state, say the

one represented in Figure 7.27

Likewise, we define two (indirect) utility functions for each viable model

xi ∈ X̂ . Setting X = xi in Section 3, let Y ∗S (xi) = {y ∈ Y | xiRSy} be the set
of implications associated with model xi ∈ X̂ . Then, we define the absolute

utility and the relative utility of each viable model xi ∈ X̂ as follows:

V (xi, t) ≡ V (Y ∗S (xi), t) =
∑
j

wj(t) · eij (7d)

v(xi, t) ≡ v(Y ∗S (xi), t) =
V (xi, t)

#ZSolow(t)
(7e)

Returning to Figure 7, Z(t) = {z1, z2, ..., z7} and

e1j =
{
1 for j=1,2,3,4
0 otherwise

whereas since ZSolow(t) = {z1, z5, z6, z7},

wj(t) =
{
1 for j=1,5,6,7
0 otherwise

and we have a single viable model, x1 = HD, in Figure 7.

Hence, U(E, t) = V (HD, t) = 1 and u(E, t) = v(HD, t) = 1
4
. Given the

latter, Solow must have been dissatisfied with the state of growth theory in

1955. Solow looked at the empirical implications of the Harrod-Domar model

(in the Empirics quadrant), and found them in contradiction with reality at

that time, for example the “growing unemployment or prolonged inflation”

predicted by the Harrod-Domar model. So he wanted to construct a model

that did not have this implication. Using reverse engineering, instead of the

implications of the Harrod-Domar model, namely {y1, y2, y3}, he wanted to
construct a model that led to implications {y1, y4, y5} ={growing total GDP,

27There are many other ways of setting up the probabilities and utility functions. For

example, we could use a Bayesian approach and/or an expected utility function, or we could

use simultaneously multiple observations in Z. The latter approach would require tracking
contraries in observations, for instance. A Bayesian approach would mean that we couldn’t

apply the consistency condition. Here we are trying to keep the structure as simple as

possible.
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full employment, converging to balanced growth path}. To do so, he had

to change at least one of the Harrod-Domar assumptions {a1, a2}. Since a1
represents the usual assumptions of growth theory, the obvious candidate is a2,

namely replacing fixed factor proportions with something else. In the present

context, the only natural replacement for fixed proportions is ac2 = neoclassical

production technology.

Now we move to Figure 8, and time t = 1956. This provides motivation

for Solow to add a3 = ac2 to the assumptions, and generates two new fixed

points, namely {a1, a3} = Solow 56 and {a1}. That {a1} by itself is a fixed
point means that any model incorporating the set of basic assumptions, a1,

can explain growing total GDP. Recall that a1 includes the assumption that

labor force increases at a constant relative rate. Thus, from the viewpoint of

Solow, utility U(E, t) rises from 1 to 4, which is equal to U(Solow 56 model, t),

the utility of the Solow 56 model. Furthermore, the relative utility rises from
1
4
to 1, which again is equal to the relative utility of the Solow 56 model.

4.4 The Art of Reverse Engineering

To implement reverse engineering, we begin by reverse engineering from obser-

vations that we wish to account for back through Empirics space, then back

though Science space, and finally back through Theory space. The composi-

tion of these inverse maps will achieve our goal.

In the implementation of reverse engineering, the utility function plays a

very important role. The idea behind the use of utility functions is as follows.

Although the utility functions are defined directly on Empirics space, what we

search for is a model or a set of models that induces the highest utility score,

or indirect utility, in Science space. Associated with each model in X is a

set of implications in Y, which in turn induce observations in Z. We seek

the model or set of models that induce the highest indirect utility score in

Empirics space. Such a model might not be unique, and it might not induce

all of the observations in Z, just a strict subset.
For example, as we saw in Empirics space in Figure 7, the implications of

the Harrod-Domar model have a low score from Solow’s viewpoint. So Solow

wanted to find a new model with a higher score. Reverse engineering back to

Science space, please refer to Figure 12(b). By logically extrapolating Figure

12 (b), we can assign scores to each viable model in Science space. The model

or models with the highest score are the ones Solow was interested in. In

this case, potential model x◦2 with the set of implications {y1, yc2, yc3} has the
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highest utility U = 4 and u = 1.

Reverse engineering from Science space to Theory space is much harder.

How do we create a set of viable assumptions that generate the implications

we desire? One way to proceed is to begin by listing all of the contraries

of all the assumptions in A. Assuming they are finite, in principle we may

then list all possible combinations of these contraries with the list of original

assumptions. Restrict attention to potentially viable models. Then we solve

all such models, for example using a computer, choosing the one that yields

highest utility. However, the number of such viable models can expand rapidly

with the number of assumptions. Furthermore, this methodology requires a

very precise, concrete specification of assumptions, including functional form

assumptions. Therefore this approach may be ineffi cient and lack generality

in practice. So we investigate an alternative methodology that may alleviate

these diffi culties.

To begin this alternative approach, we seek to determine what is possible

and what is not possible in our framework. It is natural first to inquire

about the limits of what we can do. Although the following theorem is rather

obvious, it is still useful to state it formally:

Impossibility Theorem: Given A(t), suppose that the process of knowledge

creation has reached a static knowledge state, and that the complemented

lattice of fixed points is known. This implies that fT : LAT → LXT , fS : LXT →
LYS , and fE : LYS → LZE are known to the researcher. So the entire set of

implications at this time is fS(fT(LAT )). Let Y+ be an extension of Y to a
larger set of implications.

(i) Given Y ∗ ∈ P(Y+), if Y ∗ contains a pair of contraries, it is not viable

and hence it cannot be explained by a single model or set of assumptions.

(ii) Given Y ∗ ∈ P(Y+), if Y ∗ /∈ fS(fT(LAT )), then Y ∗ cannot be explained

by any viable model based on the current set of assumptions. Thus, the re-

searcher must look for a new set of assumptions and a new model to explain

Y ∗.

For example, in Figure 7, the Harrod-Domar model represents a static

knowledge state that has implications Y = {y1, y2, y3}, whereas LAT = {{a1, a2}}.
Let Y ∗ = {y1, y4, y5} be another subset of the extended set of implications, for
instance those in Figure 8. Since Y ∗ /∈ fS(fT(LAT )), any model based on the

existing set of assumptions {a1, a2} cannot explain Y ∗.
A more concrete example can be found in Figures 8 and 9. The Harrod-

Domar model and the Solow (1956) model exhaust all viable models based on
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assumptions {a1, a2, a3}, where a3 = ac2. Therefore, to obtain any implication

that is not a specification of or not included in the implications {y1, y2, ..., y5},
more assumptions and a new model must be used. For example, the implica-

tion “growing per capita income”requires new assumptions.

Next we search for possibility results. These are not necessarily as general

as the impossibility theorem, but possibility theorems will, at a minimum, give

us a direction for further constructive work. To head in this direction, we must

specialize our framework. This will involve setting up a Euclidean space of

parameters to be used in conjunction with assumptions, and a Euclidean space

of implications. To proceed, we isolate a set of assumptions upon which we

focus. We impose more structure on these assumptions, conditional on the

other assumptions we make for a particular model. Suppose that we have

a parameter space, P , for these isolated assumptions. We assume that P is

contained in the closure of an open subset of a Euclidean space. In parallel,

we suppose that we have a space of implications Rl.
Returning to our context of early growth theory, we begin with an example.

The dynamics of the early models can be expressed by a single equation:

K̇ = sF (K,L)

where s is the exogenous saving ratio. Further assume that labor supply

increases exponentially with time:

L̇

L
= n

where n is the exogenous rate of increase in labor supply. Suppose that F

satisfies constant returns to scale. Then if we define the per capita variable

k = K/L and f(k) = F (K,L)/L = F (k, 1), the dynamics can be rewritten as

follows:

k̇ = sf(k)− nk

Let r represent the rental rate of capital and let ω be the wage. Retaining

the assumption of competitive factor markets and normalizing the price of

output to be 1, wherever the derivative f ′(k) exists,

r = f ′(k)

ω = f(k)− k · f ′(k)

In this context, for the Harrod-Domar model, taking units of K and L

appropriately,

F (K,L) = min {K,L}
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Then the dynamics become

k̇ = smin {k, 1} − nk

To place the Harrod-Domar model in a more general context, let us para-

meterize the production functions available for the early growth models using

the CES function:

F (K,L) =
[
αKβ + (1− α)Lβ

]1/β
, 0 < α < 1, −∞ < β < 1 (8)

In this case, the model is parameterized by the production function, so P =

(0, 1)× (−∞, 1). The Harrod-Domar model corresponds to28

lim
β→−∞

[
αKβ + (1− α)Lβ

]1/β
= min {K,L} (9)

The Cobb-Douglas case, namely the Swan (1956) model, corresponds to

lim
β→0

[
αKβ + (1− α)Lβ

]1/β
= Kα · L1−α (10)

In terms of the per capital variable k ≡ K/L, each equation above can be

rewritten as follows:

f(k) =
[
αkβ + (1− α)

]1/β
, 0 < α < 1,−∞ < β < 1 (11)

lim
β→−∞

[
αkβ + (1− α)

]1/β
= min {k, 1} (12)

lim
β→0

[
αkβ + (1− α)

]1/β
= kα (13)

For later use, we calculate factor prices for the CES specification. For

−∞ < β < 1,

r = f ′(k) = α ·
[
αkβ + (1− α)

](1−β)/β · kβ−1 > 0 (14)

w = f(k)− kf ′(k) = (1− α) ·
{
αkβ + (1− α)

}(1−β)/β · kβ−1 > 0 (15)

and hence
w

r
=

1− α
α
· k1−β, −∞ < β < 1 (16)

In the case of the Harrod-Domar specification (9) or (12), factor prices are

r =
{
1 for k<1
0 for k>1 (when β = −∞) (17)

w =
{
0 for k<1
1 for k>1 (when β = −∞) (18)

28We could parameterize the models in another way, for example using 1
β in place of β.

But in either case, infinity must appear somewhere for the representation of the Harrod-

Domar model, so we choose a convenient representation. For the proof of (9) and (10), see

Varian (1978).
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but the factor prices are undefined for k = 1. This discontinuity of factor

prices derives from the kink in the isoquants.

Solow looked at the state of the literature and wanted to achieve a quali-

tative change in implications, given his absolute and relative utility functions.

Specifically, although the Harrod-Domar model implied expanding unemploy-

ment of one factor, Solow wanted a model that always features full employment

of both factors. In correspondence with this goal, likely a radical change would

be needed to obtain a qualitative change in implications. Thus, movement

away from −∞, essentially by adding a new dimension, β, to the parameter
space, was needed. As it turned out, this additional dimension could accom-

plish the goal. This led to Solow (1956).

Next we discuss singularities, the mathematical interpretation of the pre-

ceding discussion of economics. In preparation for the sequel, it is useful to

recall a standard mathematical definition. A real analytic function h with

domain and range subsets of Euclidean spaces has an essential singularity at

point s in its domain if and only if

lim
s→s

h(s) and lim
s→s

1

h(s)
do not exist.

Consider the Harrod-Domar model, where β = −∞. We consider fS to be a
composition of maps, the first of which is given in equation (8). This first map

is well-behaved at β = −∞. But eventually fS will map from the parameter

space through the production function to equilibrium prices, given for example

by the equilibrium factor price ratio (16). From here, equilibrium implications,

such as price stability or instability, will be derived. Choose parameters so

that equilibrium along the balanced growth path has k 6= 1. Notice that the

standard definition of an essential singularity at infinity for a map fS(b) is an

essential singularity of the map fS(1/b) at b = 0. Substituting this into (16),

we can see immediately that since k1−
1
b has an essential singularity at b = 0
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for any fixed k 6= 1,29 fS(β) has an essential singularity at ±∞.30 Thus, the

Harrod-Domar model, represented by β = −∞, is an essential singularity in
the parameter space.

This is the mathematical essence of what Solow (1956) accomplished: It

moved away from an essential singularity in the parameter space, where even

a small move would yield radically different results.

Helpful Hint 1: To achieve a qualitative change in implications, either

make a qualitative change in assumptions or find a larger parameter space in

which the current assumptions represent an essential singularity, and move

away from it.

In other words, suppose that we have a map from the parameter space of

assumptions to a (Euclidean) space of implications. Then, to achieve a qual-

itative change in implications, we need either a radical change in assumptions

or a move away from an essential singularity in the map.

A second, less radical example is the move from Solow (1956) to Solow

(1957). Here, Solow (1956) had a model with constant per capita GDP growth

on the balanced growth path, but wanted a model with an implication of

growing per capita GDP with all the other implications maintained. So Solow

(1957) introduced a new shift parameter a ≥ 0 into the production function:

eaτ · F (K,L) (19)

29Actually, since we are performing comparative statics, the proper expression here is
w
r = 1−α

α (k∗)1−β , where k∗ is the equilibrium capital-labor ratio. In the CES case, we can

compute k∗ as

k∗(α, β) =
(1− α)

1
β · s

(nβ − α · sβ)
1
β

Hence,

w

r
=

1− α
α
· k∗(α, β)1−β

=
(1− α)

1
β

α
· 1

[(ns )β − α]
1
β−1

To check for an essential singularity at β = ±∞, we substitute β = 1
b and let b → 0 (or

alternatively we can reparameterize the system by b) and look at the limits as we approach

0 from above and below. The limit is the same as the limit of 1α [(ns )
1
b − α]. Therefore, as

long as the exogenous parameters n 6= s, we have an essential singularity at β = ±∞ (or

b = 0). In other words, the limit of 1α [(ns )
1
b −α] is different as b→ 0 from above and below,

and the same is true of its inverse. In fact, we could have simply focused on k∗ itself to see

the essential singularity.
30In fact, the classical example of an essential singularity at zero is exp( 1b ).
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where τ represents time in the model. Choosing a > 0 naturally leads to per

capita GDP growth on the balanced growth path. The implications of the

models are continuous in the parameter a so that Solow (1956) is essentially a

special case of Solow (1957). In other words, a small change in implications

does not require a qualitative change in assumptions.

In order to state the next theorem, we need some preparation. Analogous

to P , letRl (where l is not necessarily the same as the dimension of P ) represent
the implications of a model upon which the researcher is focused. The initial

set of models or assumptions is represented by a set P ′ ⊆ P . For example,

it could be the set of parameters where a = 0 in the last example. The set

of implications could include all implications that feature constant per capita

growth in GDP along the balanced growth path. So instead of the map

fS : LXT → LYS , we consider a special case where fS : P ′ → Rl. Then we wish
to address the following question: When can the Science map fS from sets

of assumptions or models to implications be extended from the current set of

parameters P ′ to all of P? And when is this extension unique? This is one

way to make progress in science. In mathematical terms, it reduces to: When

can the science map can be extended uniquely?31

Theorem 2:32 Where the map from the initial assumptions to implications

is suffi ciently smooth, then for any additional parameters, there is a unique

smooth extension of the map to the larger new parameter space, so the impli-

cations of a new model can be derived as an extension of the implications of

the old models.

For example, this theorem would apply to the move from Solow (1956) to

Solow (1957). There, the new parameter a is added to the parameter space,

and the new implication, growing per capita GDP, follows naturally. This

might seem trivial when the new implication is easy to find. But there are

also cases when the analytic extension is not so easy to compute or obvious.

Then it is useful to know that the new implications will be smoothly related

to the new parameters and be unique.

More generally, as discussed in section 4.2 above, y11 (growing total GDP

but not per capita) and y12 (growing total and per capita GDP) are specifica-

31Notice that if instead of extending P ′ to P , we instead extend it to P (for example

through a change of variables from P to P ), the analytic extension will not be the same

function on both of these domains.
32A formal statement and proof of Theorem 2 can be found in the Appendix.
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tions or a partition of the existing implication y1 (growing total GDP). We

can expect that such specification or a partition of an existing implication can

be achieved by introducing a smooth extension of an existing assumption or

function, without involving a singularity. In contrast, when we move from

one set of viable implications, say Y , to another set of viable implications Y ∗

containing at least one contrary to an implication in Y , then a singularity

is involved. That is how we relate our discrete mathematics of logic to the

smooth mathematics of analytic functions.

Notice that Helpful Hint 1 is essentially the contrapositive of Theorem 2.

We can relate our larger structure back to Kuhn (1962). An example of

“normal science” is the move from Solow (1956) to Solow (1957), where the

mathematics behind the innovation (but not the research itself) is the unique

extension of a function, as given in Theorem 2. Though we know it exists and

is unique, calculation of the extension can still be diffi cult. In contrast, the

move from the Harrod-Domar model to Solow (1956) represents a “paradigm

shift.” The mathematics behind our description of the innovation (but not the

research itself) is the introduction of a new parameter, β, into the parameter

space so that the researcher can exit from a singularity point that cannot be

removed. Once outside this singularity, the implications of models look very

different from those generated using the singular model. Unlike the situations

with no essential singularity, the seeds of the extension are not present in the

map fS before the extension.

A further example of a “paradigm shift” is the move from the framework

of perfect competition to the framework of monopolistic competition with

product differentiation and consumer preference for variety. In this exam-

ple, in place of homogenous consumption goods, composite consumption is

represented by C and its components consisting of differentiated consumption

goods are represented by ci as follows:

C = {cρ1 + cρ2 + ...+ cρn}
1
ρ (20)

where 0 < ρ < 1. The elasticity of substitution between commodities is given

by σ = 1
1−ρ . The case where ρ = 1 is the case of no product differentiation,

namely where the consumption goods are perfectly substitutable, correspond-

ing to homogeneous products. This case reflects perfect competition with

σ = ∞. So moving away from ρ = 1 requires moving away from perfect

competition, suggesting another big “paradigm shift.” To see this in more

detail, in these models there is generally a positive fixed cost of production for

each firm; each firm produces one particular variety of the commodity. At
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ρ = 1, namely under perfect substitutes and perfect competition, no firm can

cover its fixed cost at equilibrium. Thus, the only competitive equilibrium

has no production. The map from ρ to equilibrium as ρ → 1 from below is

discontinuous. It is hard to discuss singularities more formally in this con-

text, since the model with ρ > 1 or σ < 0 involves nonconvexities and product

differentiation.

This analysis should offer a caution to researchers using models that rely

heavily on specific functional forms in conjunction with parameters. Do the

models represent an essential singularity in a larger parameter space? In other

words, are the implications robust?

Beyond the study of extensions of functions, the framework we have devel-

oped has further properties. Chief among these is an “all or (almost) nothing”

property, detailed next:

Theorem 3:33 Where the map from the parameters to implications is suf-

ficiently smooth, consider any dimension of the implication space Rl, fixing
the other coordinates. Then either the same implication holds for all values

of the parameters mapping into the restricted implications set, or the set of

parameters having any particular implication in this set is of measure zero.

A nice example of this is Solow (1957). What Theorem 3 says is that either

per capita GDP is growing at the same rate for all parameters, or no given

level of per capita GDP growth holds for a positive measure of parameters.

5 The Dynamic Process of Knowledge Cre-

ation

In this section, by synthesizing the aspects of our framework that we have

detailed, we examine the dynamic process of knowledge creation for the one

agent case.

To begin, there is a mathematical structure providing underpinnings for our

examples. Notice that we are using a combination of discrete mathematics,

for example Boolean algebras, and very smooth mathematics, namely analytic

functions. This seems essential, as do the connections between these two types

of mathematics. To quote von Neumann (1958, p. 75):

33A formal statement and proof of Theorem 3 can be found in the Appendix.
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Any artificial automaton that has been constructed for human use,

and specifically for the control of complicated processes, normally

possesses a purely logical part and an arithmetical part, i.e., a part

in which arithmetical processes play no role, and one in which they

are of importance. This is due to the fact that it is, with our habits

of thought and of expressing thought, very diffi cult to express any

truly complicated situation without having recourse to formulae

and numbers.

So how do we form the formal connection? In our framework, it is the

singularities in the analytic functions, essential or not, that allow discrete

jumps in Science space between implications, namely between elements of Y.
In an example of the previous section, there is an essential singularity at β =

±∞ for all α ∈ (0, 1). Thus, the entire parameter space P ′ = (0, 1) ×
{−∞} is essentially singular in P = (0, 1) × [−∞,∞]. This is how we find

a discrete move in the lattice LYS from a viable implication set Y to a new

viable implication set Y ∗ containing one of its contraries (as opposed to a

specification) in Y+. If Y ∗ does not contain a contrary of Y , then the move

to the new implications set is smooth, and can be found through the (unique)

analytic extension.

(To Be Continued)

6 Extension

Having explored how work with positive questions and issues is accomplished

in our diagrams, we next turn to the analysis of normative questions and issues.

For this analysis, we refer to Figure 16. We reproduce our diagram for positive

analysis in the upper portion of Figure 16, complete with all of our working

spaces. In the lower part of Figure 16, we place our new working space, the

one corresponding to normative working space. We describe each axis in turn.

First we describe the elements of the axis Ã. For normative analysis,

this will consist of the objectives and constraints that are available to the re-

searcher. Next, the elements of the axis X̃ are the permissible models, each

of which consists of an objective function and the associated set of permissi-

ble constraints. The axis Ỹ contains the possible normative implications of
permissible models. Finally, the axis Z̃ contains as elements the policy impli-
cations of the analysis of the models. For example, Z̃ might contain various
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taxes, such as Pigouvian taxes (in the case of externalities) or Ramsey taxes

(in the case of taxing private goods), or various types of regulation.

The maps in normative theory space and in normative science space are

analogous to the corresponding maps in positive working space.

7 Appendix: Formal Statements and Proofs

of Theorems 2 and 3

To be more precise mathematically, we must introduce some definitions before

stating the main theorem on dynamics. A set D′ is called real analytic if it is

a closed subset of a Euclidean space and each of its points has a neighborhood

U such that U ∩D′ is the set of common zeroes of a finite number of analytic
functions in U .

Theorem 2: Let P ′ be a closed real analytic subset of a connected, open

subset P of a Euclidean space. Let fS : P ′ → Rl be analytic. If there exist
analytic functions g1, ..., gk on P such that P ′ = {p ∈ P | g1(p) = g2(p) =

... = gk(p) = 0}, then there is an analytic extension of fS to P , namely

f̂S : P → Rl. Moreover, if P ′ contains a converging sequence of distinct points
(and consequently their accumulation point), then the analytic extension to P

is unique.

Proof of Theorem 2: Existence of an extension follows from Nardelli and

Tancredi (1996), Proposition 1 and the discussion in the introduction. Unique-

ness follows from the Identity Theorem of complex analysis.

Of course, a special case of the major assumption of the theorem is where

k = 1 and g1(p) is simply the projection of p onto one of its components. In

this case, P ′ is called principal. In contrast with existence and uniqueness of

an analytic extension, actually computing one takes some work.

Theorem 3: Let P be an open and connected subset of a Euclidean space,

and let f̂S : P → R, where f̂S is analytic. Then either f̂S is constant, or the
Lebesgue measure of the set in P that has any given value in R is zero.
Proof of Theorem 3: Follows directly from Rader (1979), Lemma 4.

42



References

[1] Barwise, J. and J. Seligman, 1997. Information Flow. Cambridge: Cam-

bridge University Press.

[2] Berge, C., 1963. Topological Spaces. New York: Macmillan Company.

[3] Branson, W.H., 1972. Macroeconomic Theory and Policy. New York:

Harper and Row.

[4] Burmeister, E. and A.R. Dobell, 1970, Mathematical Theories of Eco-

nomic Growth, London: The Macmillan Company.

[5] Dimand, R.W. and B.J. Spencer, 2008. “Trevor Swan and the Neoclassical

Growth Model.” NBER Working Paper 13950.

[6] Domar, E., 1946. “Capital Expansion, Rate of Growth, and Employment.”

Econometrica 14 (2): 137—147.

[7] Dunn, J.M. and G.M. Hardegree, 2001, Algebraic Methods in Philosophical

Logic, Oxford: Oxford University Press.

[8] Ganter, B. and R. Wille, 1999. Formal Concept Analysis: Mathematical

Foundations. Berlin: Springer.

[9] Ganter, B., G. Stumme, and R.Wille (eds.), 1998. Formal Concept Analy-

sis. Lecture Notes in Artificial Intelligence 3626, Subseries of Lecture

Notes in Computer Science. Berlin: Springer.

[10] Harrod, R.F., 1939. “An Essay in Dynamic Theory.”The Economic Jour-

nal 49 (193): 14—33.

[11] King, R.D., K.E. Whelam, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H.

Muggleton, D.B. Kell and S.G. Oliver, 2004, “Functional genomic hy-

pothesis generation and experimentation by a robot scientist,” Nature

427, 247-252.

[12] Kuhn, T.S., 1962. The Structure of Scientific Revolutions, Chicago: The

University of Chicago Press.

[13] Kurzweil, R., 2005, The Singularity Is Near, New York: PENGUIN

BOOKS.

43



[14] Nardelli, G. and A. Tancredi, 1996. “A Note on the Extension of An-

alytic Functions off Real Analytic Subsets.” Revista Mathemática de la

Universidad Complutense de Madrid 9 (1): 85-97.

[15] Pratt, V., 1999. Chu Spaces. Notes for the School on

Category Theory and Applications, University of Coimbra.

http://chu.stanford.edu/guide.html#coimbra

[16] Rader, T., 1979. “Nice Demand Functions - II.” Journal of Mathematical

Economics 6: 253-262.

[17] Rott, H., 2001. Change, Choice and Inference: A Study of Belief Revision

and Nonmonotonic Reasoning. Oxford Logic Guides 42. Oxford: Oxford

University Press.

[18] Soldatova, L.N., A. Clare, A. Sparkes and R.D. King, 2006, “An ontology

for a robot scientist,”Bioinformatics 22, e464-e471.

[19] Solow, R.M., 1956. “A Contribution to the Theory of Economic Growth.”

Quarterly Journal of Economics 70, 65-94.

[20] Solow, R.M., 1957. “Technical Change and the Aggregate Production

Function.” Review of Economics and Statistics 39, 312-320.

[21] Solow, R.M. and W.S. Vickrey, 1971. “Land Use in a Long Narrow City.”

Journal of Economic Theory 3, 430-447.

[22] Stiglitz, J.E. and H. Uzawa (eds.), 1969. Readings in the Modern Theory

of Economic Growth, Cambridge: The MIT Press.

[23] Swan, T., 1956. “Economic Growth and Capital Accumulation.” Eco-

nomic Record 32, 334-361.

[24] Turing, A.M., 1936, “On Computable Numbers, with an Application to

the Entscheidungsproblem.” Proceedings of the London Mathematical so-

ciety 42: 230-65.

[25] Varian, H.R., 1978, Microeconomic Analysis, New York: W.W. Norton &

Company.

[26] Villaverde, A.F. and J.R. Banga, 2014. “Reverse Engineering and Iden-

tification in Systems Biology: Strategies, Perspectives and Challenges.”

Interface 11: 20130505.http://dx.doi.org/10.1098/rsif.2013.050

44



[27] von Neumann, John, 1958 (the 3rd edition in 2012), The Computer & the

Brain, New Haven: Yale University Press.

[28] Watanabe, S., 1969. Knowing and Guessing: A Qualitative Study of

Inference and Information. New York: John Wiley and Sons.

45



Working ­K

Background ­K Observational ­K

General ­K

Social ­K

Figure 1: The Pyramid of Knowledge

46



ScienceTheory

EmpiricsArt

X:models

Z: observations

Y:
implications

A:
assumptions

Figure 2: Working-K Space

47



{a1, a2, a3}

{a1}

{a1, a3}

{a1, a2}

Solow 56 model

H­D model

a3 a2

substitutable
factors

fixed
factor

proportions

Xi(t)

Ai(t)

Zi(t)

Yi(t)

x4

x3

x2

x1

a1

basic set
of

assumptions

Figure 3: How to Work in Theory Space

48



{a1, a2, a3}

{a1}

{a1, a3}

{a1, a2}

expanding
unemployment

converging to
balanced­growth

path

Xi(t)

Ai(t)

Zi(t)

Yi(t)
full

employment
knife­edge

path

x4

x3

x2

Solow56

x1

H­D

growing
total GDP y4y2

y5y3y1

Figure 4: How to Work in Science Space

Xi(t)

Zi(t)

Yi(t)
full

employment

expanding
unemployment

converging to
balanced­growth

path
Ai(t)

knife­edge
path

growing
total GDP y4y2

y5y3y1

grow ing
total GDP

significant
unemployment

price
instability

significant
fluc tuations

stable
employment

smooth fac tor
price changes

smooth
grow th

z1

z2

z3

z4

z5

z6

z7

Figure 5: How to Work in Empirics Space

49



a3 a2

substitutable
factors

fixed
factor

proportions

Xi(t)

Ai(t)

Zi(t)

Yi(t)

basic set
of

assumpations
a1

grow ing
total GDP

significant
unemployment

price
instability

significant
fluctuations

stable
employment

smooth factor
price changes

smooth
grow th

z1

z2

z3

z4

z5

z6

z7

Figure 6: How to Work in Art Space

50



{a1, a2}
HD

expanding
unemployment

knife­edge
path

growing
total GDP

y1 y2 y3

fixed
factor

proportions

basic set
of

assumptions
a2 a1

{a1, a2}
HD

{y1, y2, y3}

growing
total GDP

significant
unemployment

price
instability

significant
fluctuations

z1

z2

z3

z4

Theory Science

EmpiricsArt Z

YA
A*

T Y*
S

x1

LZ
E

stable
employment

sm ooth factor
price changes

sm ooth
growth

z5

z6

z7

{z1, z2, z3, z4}

X

Figure 7: The Evolution of Growth Theory à la Robert Solow - Phase 1 (1955)

51



{a1, a2}
HD

expanding
unemployment

full
employment

knife­edge
path

{a1, a3}
Solow56

y1 y2 y3 y4 y5

fixed
factor

proportions
neoclassical
production

basic set
of

assumptions
a3 a2 a1

{a1, a3} {a1, a2} {a1} {y1} {y1, y2, y3} {y1, y4, y5}

Theory Science

EmpiricsArt Z

YA

x1

x2

converging  to
balanced­growth

path
growing

total GDP

LA
T LY

S

X

LZ
E

{z
1 }

{z
1 ,z

2 ,z3 ,z
4 }

g rowing
total GDP

sign ificant
unemployment

price
instability

sign ificant
fluctuations

z1

z2

z3

z4

stable
employment

smooth factor
price changes

smooth
growth

z5

z6

z7

{z1 ,z
5 ,z

6 ,z7 }

Figure 8: The Evolution of Growth Theory à la Robert Solow - Phase 2 (1956)

52



{a1, a2}
HD

a2 a1

{a1, a2}
HD

A

x1

x2

LA
T

X

{a1, a2}
Solow 56

c

{a1, a2}
Solow 56

c {a1}

a2
c

={a1, a2, a2}
c

{a2, a2}
c

{a2}
c{a1}

HD
{a1, a2}

{a2}

Solow 56
{a1, a2}

c

(a) Boolean algebras (b) Viable models and formal concepts

Figure 9: Boolean Algebras and Formal Concepts in Theory Space with A =

{a1, a2, ac2}

53



(a) Boolean algebras

={a1, a1 1, a2, a2, a1 1}cc

{a1 1, a2, a2, a1 1}cc

{a2, a2,a1 1}cc{a1 1, a2, a1 1}cc{a1 1, a2, a1 1}c{a1 1,a2, a2}c{a1, a2, a2}c{a1,a1 1, a1 1}c{a1, a1 1,a2}cc{a1,a1 1, a2}c{a1, a1 1,a2}c{a1, a1 1, a2}

{a1,a1 1, a2, a2}c {a1, a1 1, a2, a1 1}cc

{a1,a1 1, a2, a1 1}c {a1,a2, a2, a1 1}cc

HD Solow 56 HD Solow 57

{a1,a1 1} {a1, a2} {a1, a2}c {a1,a1 1}c {a1 1, a2} {a1 1, a2}c {a1 1,a2}c {a1 1, a2}cc {a1 1, a1 1}c {a2,a2}c

{a1} {a1 1} {a2} {a2}c {a1 1}c

LA
T

X

Solow
57

Solow
56

HD

HD

{a1, a1 1,a2}cc

{a1, a1 1,a2}c

{a1, a1 1,a2}c

{a1, a1 1,a2}

{a1}{a1,a1 1}{a1, a2}{a1,a2}c{a1, a1 1}c{a1, a1 1, a2}{a1,a1 1, a2}c{a1, a1 1,a2}c{a1,a1 1, a2}cc

a1a1 1a2a2
ca1 1

c

(b) Viable models and formal concepts

Figure 10: Boolean Algebras and Formal Concepts in Theory Space with A =

{a′1, a11, a2, ac2, ac11}

54



(a) Boolean algebras

={a1, a2, a3, a4}

{a1,a2,a3} {a1,a2,a4} {a1,a3,a4} {a2, a3, a4}

{a1, a2} {a1, a3} {a1,a4} {a2, a3} {a2, a4} {a3, a4}
HD Solow 56

{a1} {a2} {a4}{a3=a2}c

Solow 56

HD

a1a2a3= a2
ca4= a2

c

x4

x1

x2

x3

(b­1) Viable models when a4

         implies a3

(b­2) Viable models when a3 and
a4 are partly compatible

Solow 56

HD

a1a2a3= a2
ca4= a2

c

x1

x2

x3 Sw an

Figure 11: Boolean Algebras and Viable Models in Theory Space with A =

{a1, a2, a3 = ac2, a4}

55



(a) Boolean sub­algebras of viable implication­sets

(b) Viable implication­sets of model x1 and potential models x2 and x3

{y1,y2,y3} {y1,y2,y3}c c{y1,y2,y3}c

{y1,y2} {y1,y3} c{y1,y2} c{y1,y3}

{y1} {y2} {y3} c{y2} c{y3}

HD x3 x2

X

Y

Z

x1

expanding
unemployment

full
employment

converging to
balanc ed­grow th

path
knife­edge

path

y1 y2 y3
cy2

cy3

{a1,a2}
HD

growing
total GDP

x3

x2

Figure 12: Boolean Algebras of Viable-Implication Sets and Potential Models

in Science Space with Y = {y1, y2, y3, yc2, yc3}

56



X

Y

Z

x11

expanding
unemployment

full
employment

converging to
balanced­grow th

path
knife­edge

path
y1 y2 y3

cy2
cy3

{a1,a2}
HD

growing
total GDP

x31

x21

x12

x22

x32

y11 y12

growing
total GDP

not per capita

growing
total and

per capita
GDP

Figure 13: Viable implication-sets and potential models in Science space with

Y = {y1, y2, y3, yc2, yc3, y11, y12}

57


