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SPATIAL ECONOMETRIC MODELLING OF MASSIVE DATASETS: THE CON-
TRIBUTION OF DATA MINING

G. Arbia, 1 M. Tabasso 2

Abstract

In this paper we provide a brief overview of some of the most recent empirical research

on spatial econometric models and spatial data mining. Data mining in general is the search

for hidden patterns that may exist in large databases. Spatial data mining is a process to

discover interesting, potentially useful and high utility patterns embedded in large spatial

datasets. The field of spatial data mining has been influenced by many other disciplines:

databases technology, artificial intelligence, machine learning, probabilistic statistics, vi-

sualization, information science, and pattern recognition. This process is more complex

than conventional data mining because of the complexities inherent in spatial data. Spatial

data are multi-sourced, multi-typed, multi-scaled, eterogeneous, and dynamic. The main

difference between data mining and spatial data mining is that in spatial data mining tasks

we use not only non-spatial attributes (as it is usual in data mining in non-spatial data),

but also spatial attributes. We suggest some directions along which spatial econometric

modeling could benefit from the cross-fertilization spatial data mining techniques such as

Classification and Regression Trees (CART). We use the CART algorithm to fit empirical

data and produce a tree with optimal tree size for different specifications of econometric

models. We also examine some diagnostic measures to evaluate the spatial autocorrelation

of the pseudo-residuals obtained from the regression tree analysis and we compare the ac-

curacy and performance of different versions of CART that take into account the effects

of spatial dependence. To address this issue, we start examining a non-spatial regression

tree, then we include the geographical coordinates of data in the covariate set and finally,

we consider one of the most common spatial econometric models: Spatial Lag combined

with two versions of regression trees: non-spatial regression tree and geographical coor-

dinates based regression tree. This allows us to determine the strength and the possible

role of spatial arrangement on the variables in the predictive model and reduce the effect of

spatial autocorrelation on prediction errors. In particular, we test the sensibility of various

regression trees with different spatial weights matrix specifications such that to remove the

spatial autocorrelation on pseudo-residuals and to improve the accuracy of spatial predic-

tive models.
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1 Introduction

In this paper we present the contribution of the spatial data mining on spatial econometric
models of massive datasets. We propose a data mining methodology that explicititly considers
the phenomenon of spatial autocorrelation on prediction errors. This paper is organized as
follows. Section 2 describes the main concepts and challenges of data mining, in particular the
Classification and Regression Trees (CART) as an important data mining methodology for the
analysis of large data sets via binary partinioning procedure. Section 3 introduces the principal
differences of spatial data mining with respect to classical data mining. The focus of Section
4 is the analysis of different versions of CART to compare the performance and evaluate the
spatial autocorrelation of prediction errors of the regression trees (pseudo-residuals). Finally,
Section 5 reports some concluding remarks and future works.

2 Spatial Linear Regression Models and data mining

2.1 Spatial regression

In this section, we present in brief a general framework that allows to incorporate spatial cor-
relation structures into a linear regression model. The focus is how one can to incorporate
spatial effects into a linear regression models by considering the following general specification
(Anselin,1988):

y = ρW1 +Xβ + ε (1)

ε = λW2ε +µ (2)

with µ ∼ N(0,Ω) and the diagonal elements of the error covariance matrix Ω as: Ωii = hi(zα),
hi > 0.

In this specification, β is K× 1 vector of parameters associated with exogenous variable
X (N×K matrix), ρ is the coefficient of the spatially lagged dependent variable, and λ is the
coefficient in a spatial autoregressive structure for the disturbance ε . The disturbance µ is
normally distributed with a general diagonal covariance matrix Ω. The diagonal elements allow
for heteroschedasticity as a function of P+ 1 exogenous variables z, which include a constant
term. The P parameters α are associated with nonconstant terms, such that, for α = 0, it
follows that h = σ2 (the classic homoskedasticity situation). The two N × N matrices W1,W2

are standardized spatial weight matrices, associated with a spatial autoregressive process in the
dependent variable and the disturbance term respectively. In total, the model has 3+ k + p

unknown parameters, in vector form:
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θ = [ρ,β ′,λ ,σ2,α ′]′ (3)

When subvectors of the parameter vector (3) are set to zero, specifically we have the fol-
lowing situations which correspond to four traditional spatial autoregressive models commonly
discussed in the literature (see e.g. Hordijk, 1979; Anselin 1980, 1988; Bivand 1984):

1oCase: ρ = 0, λ = 0, α = 0 (P+2 constraints):

y = Xβ + ε (4)

that is the classical linear regression model.
2oCase: λ = 0, α = 0 (P+1 constraints):

y = ρW1y+Xβ + ε (5)

that is the mixed regressive spatial-autoregressive model: (SAR or Spatial Lag Model) (which
includes the common factor specifications, i.e. with WX, as special case).

3oCase: ρ = 0,α = 0 (P+1 constraints):

y = Xβ +(I−λW2)
−1

µ (6)

that is the linear regression model with a spatial autoregressive disturbance: Spatial Error
Model (SEM).

4oCase: α = 0 (P constraints):

y = ρW1y+Xβ +(I−λW2)
−1

µ (7)

that is the mixed regressive-spatial autoregressive model with a spatial autoregressive distur-
bance.
A variant of the spatial lag model that include spatially lagged independent variables is known
as the Spatial Durbin Model (SDM, LeSage and Pace 2009):

y = ρWy+Xβ +WXλ + ε (8)

where λ is the vector of coefficients for spatially lagged independent variables WX . The use of
this model instead of the spatial lag model in (5) can potentially remove omitted variable bias,
as discussed in detail in LeSage and Pace (2009). An alternative model with respect to SEM is
the spatial moving average (SMA) model (Fingleton 2008):

y = ρWy+Xβ +(I +λW )µ (9)

As can be observed by comparing (6) and (9), the spatial multiplier is not present in the
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SMA model. The SMA model is used to model localized effects. By its specification, spatial
effects will affect only the first-order neighbors as defined by the weights matrix. In particular,
this can been seen by considering the expanded form of (I−λW2)

−1.
A Leontief expression of the last matrix, under the assumption that |λ |< 1 is given by

(I−λW2)
−1 = I +λW +λ

2W 2 + ... (10)

As argued by Anselin (2003), the complete structure of the variance-covariance matrix then
follows as the product of the (10) with its transpose, yielding a sum of terms containing ma-
trix powers and products of W, scaled by powers of λ . Specifically the lowest order term is I,
followed by λW and λW ′, λ 2(W 2 +WW ′+W 2) and so on. For a spatial weights matrix cor-
responding to first-order contiguity, each of the powers involves a higher order of contiguity, in
effect creating band of every larger reach around each location, relating every location to every
other one. Moreover the powers of the autoregressive parameter (with |λ | < 1) ensure that the
covariance decreases with higher orders of contiguity.
Instead, the only diagonal non zero elements in the variance-covariance matrix are those corre-
sponding to nonzero elements in W elements in W (or, equivalently, W’) and W W’.
For W defined as first-order contiguity, such elements consist of location pairs that are first-
and second-order neighbors, but no higher orders of contiguity. Consequently, the range of the
effect of the spatial multiplier is much smaller than for a corresponding SAR model.

Several authors have suggested to combine spatial lag with spatial error dependence. The
most general form is the spatial autoregressive, moving-average (SARMA) processes outlined
by Huang(1984). Formally, a SARMA (p,q) process can be expressed as (Anselin and Bera,
1998)

y = ρ1W1y+ρ2W2y+ ...+ρpWpy+ ε (11)

ε = λ1W1µ +λ2W2µ + ...+λqWqµ + ε (12)

A different specification that combines spatial-autoregressive model with spatial-autoregressive
disturbances is often referred to as a SARAR(p,q) model, see Anselin and Florax (1995). In
modeling the outcome for each unit as dependent on a weighted average of the outcomes of
other units, SARAR models determine outcomes simultaneously. Formally a SARAR (1,1)
process can be expressed in (1). These various specifications are the most important to analyse
global and local externalities in spatial econometric models (see Anselin, 2003).

2.2 Data mining and KDD

Several authors have observed that the term “data mining” has had a varied history (Fayyad,
Piatetsky-Shapiro, and Smyth 1996; Smyth, 2000). It can be considered as a single step in the
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multi-step process of Knowledge Discovery in databases (KDD), where KDD is defined as the
“non-trivial process of identifying valid, novel, potentially useful, and ultimately understand-

able patterns in data” (Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy, 1996). The term
process implies that KDD comprises many steps, which involve data preparation, search for pat-
terns, knowledge evaluation, all repeated in multiple iterations. In alternatively, data mining is
the “process of extracting valid, previously unknown, comprehensible and actionable informa-

tion from large database and using it to make crucial business decisions”(Simoudis, 96). In this
case data mining, not KDD, is viewed as the overall process of extracting high-level knowledge
from low-level data. Some authors underline the difficulty to isolate a core set of fundamental
techniques that clearly distinguish data mining from any single component discipline: in some
way it is a uniquely powerful combination of individual techniques from each discipline associ-
ated with analyzing massive data sets. In particular, it is a multidisciplinary field and it includes:
machine learning, statistics, database technology, high performance computing, data visualiza-

tion, image processing. (Behnke and Dobinson, 2000). According to Weiss and Davison (2010)
data mining can be considered a possible response to many problems like the scalability of
traditional statistical techniques, which often cannot handle data sets with milion or billions of
records and hundreds or thousands of variables; highly unstructured (non-numeric) data: text,
audio, video, images. This data cannot easily be analyzed using traditional statistical tecniques
and the number of data analysts has not matched the exponential growth in the amount of data,
which has caused much of this data to remain unanalyzed in a “data tomb” (Fayyad, 2003). In
data mining the analyst does not need to make specific assumptions about the data nor formulate
a specific hypothesis to test. The data mining process is typically data-driven and inductive
rathen than hypothesis-driven or deductive process used by statisticians.
The data mining tasks can be categorized in predictive tasks and descriptive tasks (Weiss and
Davison, 2010). The predictive tasks allow to predict the value of a variable based on other ex-
isting information, while the descriptive tasks summarize the data in some manner. We briefly
describe the principal predictive and descriptive data mining tasks. Classification and regres-
sion tasks are predictive tasks that involve building a model to predict a target, or dependent
variable, from a set of explanatory or independent variables. Association rule analysis is a de-
scriptive data mining task that involves discovering patterns, or associations, between elements
in a data set. The associations are represented in the form of rules, or implications. The most
common association rule task is market basket analysis. Cluster analysis is a descriptive data
mining task where the goal is to group similar objects in the same cluster and dissimilar objects
in different clusters. Text mining: the unstructured nature of text require special consideration.
Example applications of text mining includes the identification of specific noun phrases such as
people, products and companies, which can then be used in more sophisticated co-occurrence
analysis to find nonobvious relationships among people or organizations. A second application
area that is growing in importance is sentiment analysis, in which blogs, discussion boards, and
reviews are analyzed for opinions about products or brands. Link Analysis: is a form of net-
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work analysis that examines associations between objects. For example, given a graph showing
relationships between objects, link analysis can find particularly important or well-connected
objects and show where networks may be weak (e.g., in which all paths go through one or a
small number of objects).
According to Mitra et al. (2002) the main challenges in the data mining procedure are: massive

data sets and high dimensionality (huge data sets increases the size of the space of patterns);
user interaction and prior knowledge: data mining is inherently an interactive and iterative
process; overfitting and assessing the statistical significance: regularization and resampling
methodologies need to be emphasized for model design; understandability of patterns: rule
structuring, natural language representation, and the visualization of data and knowledge; non-

standard and incomplete data: the data can be missing and/or noisy; mixed media data: learning
from data that is represented by a combination of various data (media, like numeric, symbolic,
images and text); management of changing data and knowledge: rapidly changing data (nonsta-
tionary), in a database that is modified, deleted, augmented, may make previously discovered
patterns invalid (incremental methods for updating the patterns); integration: data mining tools
are often only a part of the entire decision making system.

2.3 CART: classification and regression trees

We briefly recall some general background on Classification and Regression Trees (CART).
Classification and regression tree has been an important data mining methodology for the anal-
ysis of large data sets via binary partitioning procedure (Breiman et al., 1984). It consists
in recursive division of N cases on which a response variable and a set of predictors are ob-
served. Such a partitioning procedure is known as regression tree when the response variable
is continuously valued and as a classification tree when the response variable is categorical. A
classification tree procedure provides not only a classification rule for new cases of unknown
class, but also an analysis of the dependence structure in large data sets. Figure 1 depicts a
simple tree structure with tree layers of nodes.

Figure 1: A simple tree structure (Y. Leung, 2010).
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The root node contains the entire learning sample and the other nodes correspond to sub-
groups of the learning sample. The two subgroups in the left and right offspring nodes are
disjoint, and their union comprises the subgroups for the parent node. A critical step of the
tree-based technique is to determine the split from one parent node to two offspring nodes.
In a tree structured predictor the space X is partitioned by a sequence of binary splits into termi-
nal nodes. In each terminal node t, the predicted response value y(t) is constant. Starting with
a learning sample L , three elements are necessary to determine a tree predictor:

1. a way to select a split at every intermediate node;

2. a rule for determining when a node is terminal;

3. a rule for assign a value y(t) to every terminal node t.

It is therefore necessary first to define a criterion of accuracy of the rule prediction; to this
end it is typically used the Mean squared error R(d) of the predictor d that can be estimated
according to following criterion.

Definition 1 (Breiman et al., 1984) Define the mean squared error R∗(d) of the predictor d as

R∗(d) = E(Y −d(X))2 (13)

where: R∗(d) is the expected squared error using d(X), d(X) is a predictor of Y, X=(x1, .....,xN).
The optimal predictor has a simple form:

Proposition 1 (Breiman et al., 1984) The predictor dB which minimizes R∗(d) is

dB(x) = E(Y |X = x) (14)

dB(x) is the conditional expectation of the response, given that the measurement vector is x.

Given a learning sample L consisting of (x1,y1)..,(xn,yn), ...(xN,yN) to construct a predictor
d(x) and to estimate its MSE R∗(d), if we use as accuracy criterion the resubstitution estimate
for R∗(d) we have:

R(d) =
1
N

N

∑
n=1

(yn−d(xn))
2 (15)

as the optimal predictor y(t) that minimizes R(d).

Proposition 2 (Breiman et al., 1984) The value of y(t) that minimizes R(d) is the average of yn

for all cases (xn,yn) falling into t; that is, the minimizing y(t) is

ȳ(t) =
1

N(t) ∑
xn∈t

yn (16)

where the sum is over all yn such that xn ∈ t and N(t) is the total number of cases in t.

7



So the problem of assigning a value to each node is solved by replacing the values in the node
with their arithmetic mean, which represents the best forecast if you choose to resubstitution
estimate of R(d) as a measure of the accuracy of predictor.
If the optimal ȳ(t) (16) represents the prediction of Y for node t and by using the notation R(T )

instead R(d), where T is a generic regression tree we define

R(t) =
1
N ∑

xn∈t
(yn− ȳ(t))2 (17)

and

R(T ) = ∑
t∈T̃

R(t) (18)

where T̃ is the set of terminal nodes of T.
So that

R(T ) =
1
N ∑

t∈T̃
∑

xn∈t
(yn− ȳ(t))2 (19)

where for every node t, ∑xn∈t(yn− ȳ(t))2 is the within node of squares and it is the total
squared deviations of the yn in t from their average. By summing over t ∈ T̃ one obtains the
total within node sum of squares, and dividing by N one provides the average. Given any set S

of splits of a current terminal node t in T̃ ,

Definition 2 (Breiman et al., 1984) The best split s∗ of t is that split in S which produces the

largest reduction of R(T ). More precisely, for any split s of node t into tL and tR, let

∆R(s, t) = R(t)−R(tL)−R(tR) (20)

Take the best split s to be a split such that

∆R(s∗, t) = max
s∈S

∆R(s, t) (21)

Thus, a regression tree is constructed iteratively dividing the nodes in order to produce the
maximum decrease of R(T). This criterion identifies the breakdown threshold of the space of
explanatory variables that most effectively separates the high response values from the low ones.
Let us defined the tree thus obtained as Tmax. To select the optimal sequence we consider the
cost-complexity pruning:

Definition 3 (Breiman et al., 1984) For any subtree T ≤ Tmax, define its complexity as |T̃ |, the

number of terminal nodes in T. Let α ≥ 0 be a real number called the complexity parameter
and define the cost-complexity measure Rα(T ) as

Rα(T ) = R(T )+α|T̃ | (22)
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For each value of α , find that subtree T (α)� Tmax which minimizes Rα(T ):

Rα(T (α)) = min
T�Tmax

Rα(T ) (23)

The result is a decreasing sequence of trees T1 > T2 > ...> {t1} with T1 � Tmax and a
corresponding increasing sequence of α values 0 = α1 < α2 < ... such that for αk ≤ α < αk+1,
where k = 1, ...,K and Tk is the smallest subtree of Tmax minimizing Rα(T ).
This criterion leads to a cross-validation estimate of the relative error that can be used to judge
the goodness of the partition tree.
To select the right sized tree from the sequence T1 > T2 > ... estimates of R(Tk) are needed.
Let us randomly divided L into V-fold cross validation L1, ...,LV such that each sub sample Lv,
v = 1, ...,V , has the same number of cases (as nearly as possible).
For each v, this produces the trees T (v)(α) which are the minimal error-complexity trees for the
parameter value α . Grow and prune using all of L, getting the sequence {Tk} and {αk}.
The cross-validation estimates are given by

RCV (Tk) =
1
N

V

∑
v=1

∑
(xn,yn)∈LV

(yn−d(v)
k (xn))

2 (24)

and the corresponding relative error estimate

RECV (Tk) = RCV (Tk)/R(ȳ) (25)

R(ȳ) =
1
N ∑

n=1
(yn− ȳ)2 (26)

where d(v)
k (x) is the predictor corresponding to the tree T (v)(α ′k) with (α ′k) =

√
αkαk+1. The

tree selected is TK where K is the maximum k such that

RCV (Tk)≤ RCV (Tk0)+SE (27)

where
RCV (Tk0) = min

k
RCV (Tk) (28)

It is called 1-SE rule.
In conclusion, the tree structured approach presents many advantages: it needs of only a

few elements: the set of questions, a rule for selecting the best split at any node, a criterion
for choosing the right-sized tree; it a powerful and flexible classification tool: it can be applied
to any data structured and the final classification has a simple form which can be compactly
stored and that efficiently classifies new data; it makes powerful use of conditional information
in handling nonhomogeneous relationships; it does automatic stepwise variable selection and
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complexity reduction; it gives not only the predicted classification but also it estimates the
misclassification probability for the object; it is invariant under all monotone transformations
of individual ordered variables; it is extremely robust with respect to outliers and misclassified
point in the sample; it provides easily understood and interpreted information regarding the
predictive structure of the data.

3 Spatial data mining and our contribution

Let us start introducing the following definition:

Definition 4 Spatial data mining and knowledge discovery (SDMKD) is the efficient extraction

of hidden, implicit, interesting, previously unknown, potentially useful, ultimately understand-

able, spatial or non-spatial knowledge (rules, regularities, patterns, constraints) from incom-

plete, noisy, fuzzy, random and practical data in large spatial databases (Deren and Shuliang,

2005).

A spatial pattern expresses a spatial relationship among spatial objects and to extract spatial
patterns from spatial data sets it is important to identify the relevant spatial objects and the
properties of, and relationships between, relevant spatial objects (Malerba, 2007). We observe
three principal differences with respect to classical data mining. First, classical data mining
treats each input as independent of other inputs, whereas spatial patterns often must satisfy the
constraints of continuity and high autocorrelation among nearby features. Second, classical
data mining deals with numbers and categories. In contrast, spatial data is more complex and
includes extended objects such as points, lines, and polygons. Spatial objects have a geometry
which need to be represented. In spatial data bases, object of the same type are organized in lay-
ers, each of which can have its own set of attributes and at most one geometry attribute. Third,
classical data mining works with explicit inputs, whereas spatial predicates (e.g., overlap) and
attributes (e.g., distance, spatial autocorrelation) are often implicit. Spatial objects have a lo-
cational property which implicitly defines spatial relationships between objects: topological,
distance and direction relations.
SDM is a confluence of databases technology, artificial intelligence, machine learning, proba-
bilistic statistics, visualization, information science, pattern recognition and other disciplines.
The specificity of SDM lies in its interaction with space. In effect, a geographical database
constitutes a spatio-temporal continuum in which properties concerning a particular place are
generally linked and explained in terms of the properties of its neighborhood. We can thus
see the great importance of spatial relationships in the analysis process. Temporal aspects for
spatial data are also a central point but are rarely taken into account (Zeitouni, 2000). It is
necessary to develop new methods that consider the huge volume of data (e.g. enconding ge-
ometric location), the time consuming and the complexity of spatial relationships and spatial
data handling. Basic tasks of spatial data mining are: a) spatial classification: finds a set of
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rules which determine the class of the classified object according to its attributes; b) spatial

regression or prediction model: the response attribute depends on the attribute values of ob-
jects spatially-related to the object to be predicted; c) spatial association rules: find (spatially
related) rules from the database. Association rules describe patterns, which are often in the
database. The association rule has the following form: A −→ B(s%; c%), where “s” is the
support of the rule (the probability, that A and B hold together in all the possible cases) and “c”
is the confidence (the conditional probability that B is true under the condition of A); d) spatial

clustering: groups the object from database into clusters in such a way that object in one cluster
are similar and objects from different clusters are dissimilar (partitioning method, hierarchical

method, density based method and grid-based method); e) spatial trend detection: finds trends
in database. A trend is a temporal pattern in some time series data. A spatial trend is defined as
a pattern of change of a non-spatial attribute in the neighborhood of a spatial object.
In our approach we extend the methodology of CART in the framework of spatial econometric
models in large datasets. The contribution of this work is to evaluate the effect of including spa-
tially lagged variables, geographical coordinates or a combination of them in the set of predic-
tors of regression tree, in terms of spatial autocorrelation among pseudo-residuals. To this end
we test several versions of CART and we compare the accuracy and performance of non-spatial
and spatial regression tree to predict the response variable in the context of spatial database. In
particular, we assess the sensibility of various predictive models with different spatial weights
matrix specifications such that to remove the spatial autocorrelation on pseudo-residuals.

The implementation is based on the package “rpart” (Therneau et al., 2012) in R version
2.15.1, to build a decision tree on data with minimum prediction error. Pruning for the over-
fit regression tree used the highest cross-validation error less than one standar error above the
minimum cross-validation error. The minimum “xerror” or cross validation error was added to
the “xstd” (standard devation) creating the one standard error (1-SE) bar. The resulting value
was then to determine the proper number of splits of optimal tree. In addition to this value
was also determined by plotting the cross-validation relative error against the cost-complexity
parameter (cp-value). To evaluate the accuracy of the fit it was determinated the apparent and
X-relative R2, where the first is derived by subtracting the relative error by one and the second
is determined by subtracting one from the cross-validation error.
Finally, we calculate for different versions of CART the pseudo-residuals by function residu-

als.rpart (residuals from a fitted Rpart object).

4 Empirical Analysis

In this section we present several versions of non-spatial and spatial regression trees based on
geographical coordinates and spatially lagged variables. Our approach to spatial prediction is
based on both non-spatial propertiers of CART and on attributes and function describing spatial
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relations and spatial proximity beetween the objects. We compare the performances of different
versions of CART taking into account the effect of spatial dependence. In this empirical part our
contribution is analyzing the pseudo-residuals of regression tree looking at their spatial features

(like, e.g. spatial autocorrelation) to see whether they contain some addition hidden information.
In order to deal this phenomenon, we test the procedure by considering a subset of dataset of
US Southern county homicides used by Anselin (2007). The dataset is composed by 1412
Souther US counties (Washington D.C., Texas, Oklahoma, Arkansas, Louisiana, Mississippi,
Alabama, Tennessee, Kentucky, Georgia, South Carolina, North Carolina, Florida, Virginia,
West Virginia, Maryland and Delaware) and 7 variables (pertaining to 1960) as follow:

Name Description
FIPSNO Code
HR60 Homicide Rate per 100,000
RD60 Resource Deprivation/Affluence Component

(principal component: percent black, log of median family income,

gini index of family income inequality, percent of families female headed

(percent of families single parent for 1960) and

percent of families below poverty (percent of families below 3,000 dollars for 1960)

PS60 Population Structure Component
(principal component: log of population and the log of population density)

UE60 Percent of civilian labor force that is unemployed
DV60 Percent of males 14 and over who are divorced
MA60 Median age

Source: https://geodacenter.asu.edu/sdata

The spatial distribution of the homicide rate is showed in the following map.

Figure 2: Map of homicide rate (HR60)

In particular we test four different versions of regression tree (RT) to predict the response
variable: Homicide Rate (HR60).
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Model Set of predictors

Non-Spatial resource deprivation, population structure,
labour force unemployed, divorced rate,
median age

Geographical Coordinates-based Spatial RT resource deprivation, population structure,
labour force unemployed, divorced rate,
median age, coordx, coordy

W-based Spatial RT resource deprivation,population structure,
labour force unemployed, divorced rate,
median age, spatially-lagged homicide rate

Geographical coordinates and W-based Spatial RT resource deprivation, population structure,
labour force unemployed, divorced rate,
median age, spatially-lagged homicide rate,
coordx, coordy

In the W-based spatial regression tree, to construct spatially lagged response variable, we con-
sider different spatial weights matrices in order to check the “robustness” of pseudo-residuals
spatial autocorrelation for each model. In particular we compute the following spatial weights
matrices (row-standardization):

1. first-order contiguity (rook): the elements of which are wi j = 1 when i and j share com-
mon border;

2. first and second order contiguity (rook1−2): it is a cumulative matrix that includes first
and second order contiguity;

3. queen contiguity (queen): the elements of which are wi j = 1 when i and j share common
borders and common corners;

4. distance based contiguity: dk1, dk2, dk3, dk4, dk5 based on the minimum distance
needed to make sure that all the areas are linked to at least k neighbours {k = 1,2,3,4,5}.

In order to check the influence of these matrices, in Table 1 we present the summary measures
for spatial weigths matrices: number of regions, total number of links and average number of

links:
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Table 1: Summary measures for different spatial weights matrices

Weigths matrix n total links average number of links

rook 1412 7700 5.45
rook1-2 1412 23768 16.83
queen 1412 8096 5.73
dk1 1412 27648 19.58
dk2 1412 78432 55.55
dk3 1412 142394 100.85
dk4 1412 159558 113.00
dk5 1412 165048 116.89

The first version of regression tree is the “non-spatial regression tree” (Figure 3):

Figure 3: The non-spatial regression tree

The following plots show respectively the cross validation results and the “pseudo R-square”
for different splits (Figure4):
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(a) (b)

Figure 4: (a) Cross validation results of Non-spatial Regression Tree (blu line: trend of xerror,
green line: trend of relative error, red line: 1-SE bar) ; (b) Apparent, X-Relative R-Square and
Cross Validation Relative Error graphs of Non-spatial Regression Tree (Apparent R2= 1-relative
error; X relative R2=1- xerror)

The quantile map of pseudo-residuals suggests the possible presence of spatial clusters.

Figure 5: Quantile map of pseudo-residuals of Non-spatial Regression Tree

We also note that in geographical coordinates-based spatial regression tree, the quantile map
of pseudo-residuals shows still a spatial structure of pseudo-residuals.
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Figure 6: Quantile map of pseudo-residuals of geographical coordinates-based Spatial Regres-
sion Tree

We summarize the performance of different versions and the presence of pseudo-residuals
spatial autocorrelation of regression tree. The Table 2 compares the values of permutational
Moran’s I on pseudo-residuals of non spatial regression tree (without geocoords) and regression
tree based on geographical coordinates (with geocoords) using different spatial weights.

Table 2: Permutational Moran’s I on pseudo-residuals of non-spatial regression tree and spatial
regression tree based on geographical coordinates

Permutational Moran’s I

Weights matrix Without geocoords With geocoords
rook 0.1452 0.0989

(0.001) (0.001)
rook1-2 0.134 0.0998

(0.001) (0.001)
queen 0.1357 0.0971

(0.001) (0.001)
dk1 0.1273 0.0897

(0.001) (0.001)
dk2 0.1022 0.0579

(0.001) (0.001)
dk3 0.0838 0.0406

(0.001) (0.001)
dk4 0.0776 0.0366

(0.001) (0.001)
dk5 0.0761 0.0356

(0.001) (0.001)

Notes: number of simulations=999, pseudo-pvalue in brackets, “*” statistically significant at 0.5 level.
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Now, we check and compare the critical threshold distance that allows to remove the spatial
autocorrelation on pseudo-residuals of non-spatial regression tree for different distance that
includes at least k neighbours (k = 1,2,3,4,5) and we show the trend of pseudo-pvalue with
respect to critical distance.

Table 3: Critical threshold distance such that to remove the spatial autocorrelation on pseudo-
residuals of non-spatial regression tree

k Threshold distance Average number of links Permutational Morans’ I

≥ 1 2147.491 1383.572 -0.000471
(0.052)

≥ 2 2167.518 1386.317 -0.000505
(0.057)

≥ 3 2231.966 1394.048 -0.000538
(0.062)

≥ 4 2247.105 1395.623 -0.000536
(0.056)

≥ 5 2151.765 1384.183 -0.000513
(0.084)

Notes: number of simulations=999, pseudo-pvalue in brackets, “*” statistically significant at 0.5 level

Figure 7: The trend of pseudo-pvalue on threshold distance of non-spatial tree(the blue bar
indicates the statistically significant level)

We also note that the inclusion of geographical coordinates in non-spatial version of regres-
sion tree leads to a decrement of Permutational Moran’s I for any spatial matrix and an improve-
ment of accuracy, in particular the Apparent Rsquare increases from 0.180 to 0.385. The Table
4 evaluates the permutational Moran’s I on the pseudo-residuals of non-spatial regression tree
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and spatial regression tree based on the geographical coordinates, when we include in the set of
predictors a specific lag, using different spatial weights.

Table 4: Comparison of Permutational Moran’s I on pseudo-residuals of spatial lag combinated
with geographical coordinates regression tree

Spatial lag Permutational Moran’s I Apparent Rsquare

without geocoords with geocoords without geocoords with geocoords

rook -0.0849 -0.0849 0.275 0.275
(0.001*) (0.001*)

rook1-2 -0.0361 -0.0361 0.447 0.452
(0.001*) (0.001*)

queen -0.0891 -0.0871 0.267 0.287
(0.001*) (0.001*)

dk1 -0.0301 -0.0424 0.391 0.421
(0.001*) (0.001*)

dk2 -0.01 -0.0086 0.426 0.469
(0.032*) (0.066)

dk3 0.0041 0.0054 0.388 0.464
(0.885) (0.922)

dk4 0.0082 0.0076 0.459 0.461
(0.983) (0.964)

dk5 0.0024 0.0021 0.350 0.433
(0.802) (0.788)

Notes: number of simulations=999, pseudo-pvalue in brackets, “*” statistically significant at 0.5 level.

As can be seen in Table 4, in geographical coordinates-based spatial regression tree, the
inclusion of spatially lagged response variable by using spatial weights matrix that includes at
least two neighbours (dk2), allows to remove the presence of pseudo-residuals spatial autocor-
relation. We can also, note that the critical threshold distance such that to remove the spatial
autocorrelation on pseudo-residuals is 167.518 and average numbers of links is 55.546, much
lower than the threshold distance in the case of non-spatial regression tree (Table 3).

Finally, the predictive spatial regression tree selected is the following:
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Figure 8: The minimun distance-based spatial regression tree with geographical coordinates
allows to remove the presence of pseudo-residuals spatial autocorrelation (minimun distance
that all regions are linked at least two neighbours)

5 Final remarks and future works

In this work we integrated some notions of spatial econometrics and spatial data mining, un-
derlining the importance of considering spatial autocorrelation in spatial predicitive tasks. In
particular we analyzed the pseudo-residuals of the Classification and Regression Trees (CART),
in terms of spatial autocorrelation and we showed how “the space” may add significant insights
in a regression tree approach. In the presence of pseudo residuals spatial autocorrelation in a
structured tree, the introduction of spatially lagged variables and geographical coordinates al-
lows to remove this effect among pseudo residuals.
In future works we would test the procedure in different datasets or simulated data.
Finally, we would extend the approach to different mining techniques: Boosting Trees, SVM
(Support Vector Machine), DBSCAN (Density-Based Spatial Clustering of Applications with
Noise), Random Forests.
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