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SUMMARY ― Traffic congestion contributes to longer travel times and increased 

travel time variability. We account for the dynamic nature of travellers’ choices, by 

deriving a closed-form solution for the costs of travel time variability. The resulting 

travel delay cost function is linear in the mean travel delay. Then, we use a 

semiparametric estimation approach to analyse observed and unobserved 

heterogeneity in the value of travel time and reliability. Using data from a stated 

choice experiment, we show that there is substantial heterogeneity in the 

willingness to pay for fast and reliable travel. About 5-25 percent of the 

heterogeneity in the value of time and reliability is attributable to observed 

characteristics of individuals, implying that unobserved heterogeneity is much 

more important than heterogeneity related to observable characteristics. It is 

furthermore shown that schedule delay costs are on average 24 percent of the total 

costs of travel delays.  
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I. Introduction 

More than 50 percent of the world population is concentrated in cities and this number is 

steadily increasing. Apart from the positive agglomeration economies, cities also imply 

negative externalities such as traffic congestion, air pollution, noise and accidents. This 

paper studies the costs of traffic congestion. Traffic congestion contributes to longer 

commuting trips and increased variability of travel times.1 There is a vast literature on the 

valuations of reductions in travel time and improvements in reliability, but the literature 

still faces some substantial challenges (see Wardman et al., 1998; Bates et al., 2001; Lam 

and Small, 2001; Mackie et al., 2001; Small, 2012).  

One of the foremost challenges is to model the dynamics of travellers’ choice, because 

travellers cope with travel time variability by departing earlier or later from home (Gaver, 

1968; Knight, 1974; Noland and Small, 1995; Fosgerau and Karlström, 2010). More 

precisely, they trade-off their expected costs of being earlier than their preferred arrival 

time (schedule delay early) against their expected costs of being later than their preferred 

arrival time (schedule delay late). Any model ignoring these dynamics will likely 

overestimate the costs of travel time variability, because anticipating behaviour of 

travellers is not accounted for. Although the dynamics of travellers’ choice are considered 

to be important, these are often ignored in transport models used for policy evaluation. 

Noland and Small (1995), Fosgerau and Karlström (2010) and Fosgerau and Engelson 

(2011) therefore developed reduced form cost functions that can be incorporated in static 

congestion models. Instead of employing a fully dynamic equilibrium model, the costs of 

travel time variability are then related to the standard deviation or variance of travel times.  

A second challenge is to correctly deal with preference heterogeneity. Preference 

heterogeneity is of key importance when evaluating the effect of transport economic 

policies for several reasons. Previous research has showed that the distributional effects of 

congestion pricing policies strongly depend on the heterogeneity in individuals’ 

preferences. (Arnott et al. 1988; Arnott et al. 1994; Lindsey, 2004; Van den Berg and 

Verhoef, 2011). Further, heterogeneity is important when evaluating the benefits of private 

provision of highways, because profits depend on the marginal willingness to pays for 

reductions in travel time and travel time variability of travelers. (Mills, 1981; Winston and 

Yan, 2011; Tan and Yang, 2012). Heterogeneity is also important when one studies the 

effect of congestion pricing in the presence of alternative privately or publicly operated 

transport modes (Huang, 2000; Van den Berg and Verhoef, 2013).  In all cases, using mean 

                                                           
1 See for example Carrion and Levinson (2012) and Li et al. (2010) for recent overviews of the 
literature on travel time unreliability. 
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willingness to pay values may lead to biased welfare estimates and incorrect policy 

recommendations. 

The contribution of this paper is twofold. First, we derive an easy-to apply reduced-form 

cost function for travel under unreliable conditions, assuming that travel times are log-

normally distributed and the mean and standard deviation of travel delay are linearly 

related. These assumptions are in line with our data, as well with previous research by Pu 

(2010) and Peer et al. (2012). Estimated values of schedule delay early and late can 

therefore directly be translated into the costs of travel time variability. More specifically, 

our resulting reduced-form cost function turns out to be linear in the mean travel delay. 

Since mean delays are generally available in transport statistics we consider this as a very 

useful result. Our expression for the costs of travel time variability accounts for the 

dynamic nature of travellers’ decision, but remains easy to apply in static congestion 

models (see for example Winston and Yan, 2011). 

Second, we propose an econometric framework to analyse heterogeneity conditional on 

observed individual characteristics, as well as unobserved heterogeneity, using panel data 

from a stated choice experiment.2 More specifically, we estimate a semiparametric discrete 

choice model, where the estimates of value of time and value of schedule delay depend on 

observed and unobserved individual characteristics. We obtain semiparametric 

distributions of preferences, by employing local-likelihood estimation methods introduced 

by Tibshirani and Hastie (1987), Fan et al. (1995) and Fan et al. (1998), and by assuming 

that individuals who are similar in terms of socio-economic characteristics will have more 

similar preference parameters. To analyse how the estimated parameters relate to 

demographic characteristics, we will regress the estimated preference parameters on 

individual characteristics.3  

Our econometric approach estimates a semiparametric panel latent class model and has 

several features. First, our method does not make any assumptions on the shape of the 

distribution of preferences that is estimated. Second, our econometric procedure allows for 

unobserved and observed heterogeneity. Third, because we use kernel smoothing 

                                                           
2 Choice experiments are often used to estimate preference parameters (Brownstone and Train, 
1998). There may be several reasons to prefer stated preference over revealed preference, for 
example because of collinearity between the variables of interest. In transport economics, the cost 
and time component of a trip are highly correlated. We refer to Hensher (2010) for a recent 
discussion on the validity of stated preference willingness to pay estimates. 
3 ‘Local’ techniques are often applied in the hedonic price literature, where parameters are estimated 
conditional on the geographic location (also known as geographically weighted regression) (McMillen 
and Redfearn, 2010). A similar approach is used in the literature on hedonic pricing (Bajari and Kahn, 
2005; Bajari and Benkard, 2005). 
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techniques, we avoid the well-known curse of multidimensionality. Nevertheless, we allow 

for all interactions between individual characteristics and preferences (Horowitz and Savin, 

2001; Bontemps et al., 2008; McMillen and Redfearn, 2010). One may argue that many 

studies have interacted preferences with individual characteristics. However, the latter 

approach typically does not allow for all interactions between individual characteristics and 

is computationally intensive for datasets with a large number of individual characteristics. 

Fourth, our estimation method takes into account the repeated nature of the choices and 

therefore correctly deals with potential bias due to the correlation of errors of individuals’ 

choices. It results in a unique semiparametric distribution of preferences for each unique 

combination of individual characteristics in our dataset. 

The data to estimate commuters’ value of travel time and value of arriving at the 

preferred arrival time at work is obtained from a stated choice experiment held among 

participants of a real-world rewarding experiment to combat congestion. We estimate the 

willingness to pay values (WTP) for reductions in travel time ( ), schedule delay early ( ) 

and late ( ). It is shown that there is substantial heterogeneity in  ,   and  . We also link 

heterogeneity to observable individual characteristics, by regressing the estimated 

parameters on individual characteristics. We find that individuals with high incomes have a 

higher value of times and schedule delay costs. Women have 25 percent higher values of 

schedule delay and presence of young children in the household increases the   with 33 

percent, as young children usually impose strong scheduling constraints. Our estimated 

total delay costs are about 25 percent of the total trip costs (excluding vehicle and fuel 

costs) and scheduling costs are 24 percent of the total delay costs. 

The paper continues as follows. In Section II we specify the utility function and derive an 

easy-to-use expression for the costs of travel time variability. Section III introduces the 

econometric set-up. Section IV discusses the design and set-up of the stated choice 

experiment, followed by the empirical results in Section V. Section VI concludes.  

 

II. Utility specification and the costs of travel time variability 

A. Utility specification 

We developed a stated choice experiment to collect data about the preferences of morning-

commuters participating in a peak-avoidance project. Travellers receive a reward if they 

travel outside the morning peak. They trade-off earlier or later arrivals and shorter travel 

times with the monetary reward. We assume that the deterministic part of the utility (    ) 

of individual   facing choice   and choosing alternative  , is explained by three types of 

variables: expected reward     , expected travel time       and expected schedule delay 
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     . Schedule delay is defined as the deviation of an arrival time from the preferred 

arrival time     . Vickrey (1969) and Small (1982) introduced this scheduling model, where 

arrivals different from      result in a disutility. Their model was extended to a model with 

stochastic travel times by Noland and Small (1995), where each departure time from home 

can have multiple outcomes for the arrival time at work. The expected utility of individual   

that makes choice   by choosing alternative   is defined as follows:  

(1)      
 

  
                              

Equation (1) shows that utility is an additive function of the deterministic part and the 

random component     . The   ’s are individual-specific and are only the same for 

respondents with the same characteristics and    is the scale of the utility which is 

normalised to one for identification purposes. In order to capture travel time variability, 

each departure time from home (  ) has   possible outcomes of the travel time resulting in 

  corresponding arrival times. The schedule delay of mass point       is given by the 

following equations: 

(2)                                 
 

(3)                                 

where the ~ indicates observed values,       is the travel time,        is the schedule delay 

early, and        is schedule delay late. These equations define the scheduling model 

introduced by Vickrey (1969) and Small (1982). Schedule delay disutility is a piecewise 

linear function of arrival time. So, besides the disutility of travel time, there is additional 

disutility of not arriving at     , where the marginal disutility of being early and late are 

valued differently by travellers. When scheduling preferences are nonlinear, these linear 

functions may serve as an approximation. In our choice experiment, every departure time 

has two possible outcomes for the travel time (   ). Both arrival times have a 

corresponding probability      and        respectively. Following Noland and Small 

(1995), the model variables are the averaged values over these two mass points and are 

calculated as: 

(4)                                 
 

(5)                                    
 

(6)                                 
 

(7)                                 
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The deterministic part of the utility is then given by the sum of the expected reward, 

expected travel time and expected schedule delay variables, multiplied by the individuals’ 

preference parameters: 

(8)        
        

          
        

       

We are interested in the ratio’s of the parameters   . These are defined as follows: 

(9)     
  
  

  
   

 

(10)     
  
 

  
   

 

(11)     
  
 

  
   

where    denotes the value of time,    is the value of schedule delay early and    the value of 

schedule delay late. 

 

B. Congestion and scheduling costs 

In this subsection we derive the costs of travel time variability assuming a parametric 

distribution of travel delays. Fosgerau and Karlström (2010) derive the optimal expected 

costs assuming a general standardised travel delay distribution. A major advantage of 

assuming a parametric distribution is that we are able to express the costs of travel time 

variability in a convenient closed-form function.  

Let      be the cumulative density function and       the probability density function of 

travel delays  . Define the mean travel time of individual   by    and define    as the 

headstart, which is defined by         . Individuals’ willingness to pay values are defined 

by equations (9), (10) and (11). Let                , where       are the expected total 

costs of a trip (only related to travel time and scheduling, while ignoring fuel and vehicle 

costs). Furthermore,     denotes the free-flow travel costs, where         and    denotes 

the individual-specific free-flow travel time which depends on individuals’ work and 

residential locations. Following Noland and Small (1995), the expected delay costs       are 

given by the sum of congestion time costs and the costs of expected schedule delay early 

and late: 

(12)                  

where         are the time costs of mean travel time delay. The expected scheduling costs 

      are given by: 
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(13)                                   
      

 

  

  

 

  

Let’s formulate the first assumption regarding travellers’ behaviour: 

ASSUMPTION A. We assume that people optimise their headstart    using the travel time 

distribution     , where   
  denotes the optimal headstart. 

This assumption may seem restrictive, because travellers are assumed to have a perfect 

perception of the travel time distribution. However, it is shown that if travellers tend to 

overestimate both the probabilities of short and long travel time, this will result in an 

optimal headstart close to   
  (Koster and Verhoef, 2012). For analytical convenience we 

therefore assume that travellers maximize their expected utility. In line with Fosgerau and 

Kärlstrom (2010), it is shown in Appendix A that delay costs        are given by: 

(14)     
                              

 

  
     

 

where     is the inverse cumulative density function. The last integral captures the size of 

the tail of the travel delay distribution to the right of the               percentile (Small, 

2013). The disadvantage of equation (14) is that one needs simulation to approximate the 

integral. However, if we make an additional assumption we may avoid the need for 

simulation and arrive at a closed-form expression for     
  . 

ASSUMPTION B. We assume that travel delays follow a log-normal distribution with 

shape parameter    and scale parameter   . 

This seems to be a very plausible candidate distribution for travel times as will be shown in 

Section IV.B and also by Pu (2010). We then may formulate the following proposition: 

PROPOSITION 1: Under Assumptions A and B there is a closed-form solution for the 

expected delay costs that is a function of   ,   ,   ,    and    and is given by: 

 (15)     
                               

  
     

    

Proof. See for the proof, Appendix A.   

       is the cumulative standard normal distribution and          is the inverse of this 

distribution. Furthermore,          
    is the mean travel delay in hours. If     , there is 

no variation in travel times and (15) reduces to     . So, given observations on    and 

estimates for   ,   ,    and   , we can approximate the total delay costs per trip and the 

scheduling costs   . 
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The standard deviation of travel delays is often unknown, but measurements of    are 

available (see Section IV.B). In line with Peer et al. (2012), we show that there is a strong 

empirical relation between the standard deviation of travel delays and the mean travel 

delay. So, it seems reasonable to make the following assumption. 

ASSUMPTION C. We assume that the mean and the standard deviation of delay are 

linearly related, implying that the coefficient of variation         is a constant. 

This leads to the second proposition: 

PROPOSITION 2. Under Assumption A, B and C,    is independent of the mean travel delay. 

The delay costs are linear in the mean travel delay with     
                    , 

and                                                   .  

Proof. In Appendix B we show that if the mean and the standard deviation are linearly 

related,     is given by: 

(16)               

This means that    is independent of mean delay and therefore (15) is linear in the mean 

delay. The parameter   is the marginal increase in the standard deviation of travel times if 

the mean delay increases with one hour and will be estimated in Section IV.B. By 

substituting (16) in (15) we obtain a convenient closed-form expression for     
   that 

depends linearly on the mean travel delay.    

This result is easily applicable in static transport models. These models usually have a 

cost function which is linear in the mean delay (    ). We arrive at a cost function of 

                   which implies that a simple increase of the value of travel time of 

           will be sufficient to incorporate the costs of travel time variability in these 

models.  

In our empirical application, we are interested in the relative importance of delay costs 

in the total costs of a trip. The share of the time costs due to delay is given by: 

(17)      
   

    
  

    
  
  

Furthermore we estimate the share of the costs of travel time variability in the total delay 

costs of a trip as: 

(18)      
   

    
       
    

  
 
          

  
  

The above equations have the advantage that they are independent of the marginal utility of 

income   
 . Equation (18) is also independent of the mean travel delay   . 
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III. Econometric setup 

A. Local estimation 

Given observations on free flow travel time   , mean travel delays    and an estimate of   , 

we still need to estimate the preference parameters. We consider the following econometric 

model: 

(19)                       

where   is a dichotomous dependent variable,   is a matrix of explanatory variables,   is a 

matrix of observed individual characteristics, and   is a matrix of parameters that is 

unknown. Many widely used parametric models have this form, including linear regression, 

Probit, Logit and Tobit models (Horowitz and Härdle, 1996). Often, it is assumed that        

is known and that        is   .  

In this paper we estimate        and        using flexible estimation techniques. The most 

popular application for estimating        is the Mixed Logit model that allows for 

unobserved heterogeneity in preferences, often given an assumption on the multivariate 

distribution of preferences   (see, among others, Revelt and Train, 1998; Brownstone and 

Train, 1998; McFadden and Train, 2000; Small et al., 2005; Harding and Hausman, 2007). 

Other methods have been used to estimate        nonparametrically, such as local 

polynomial methods (Fosgerau, 2007), a Box-Cox type Logit model (De Lapparent et al., 

2002) or smoothing cubic splines (Fukuda and Yai, 2010), to name just a few. We will 

estimate        semiparametrically using Panel Latent Class estimation but let the shape of 

       depend semiparametrically on the characteristics  . Furthermore, we estimate        

as a semiparametric function of  . We will combine Panel Latent Class estimation with so-

called Local Logit estimation. 

Tibshirani and Hastie (1987) and Fan et al. (1998) introduced Local Likelihood 

estimation. The term ‘local’ implies that each local point (e.g. individual, observation) is 

treated as a reference point. Conditional on the local point, a vector of weights is 

determined, reflecting the (multidimensional) distance between the local point and the 

other points in the dataset. We let the kernel weight depend on individual characteristics  , 

implying that more similar people in observable characteristics have more similar 

preferences. Likewise, individuals with exactly the same characteristics have the same 

weights in the likelihood function and therefore the estimated semiparametric distribution 

of preferences is the same. The bandwidths    determine the degree of smoothing. Since we 

will only include categorical variables we have      . For strong smoothing (a high 

bandwidth), the weights are uniform and the model reduces to the (standard) Panel Latent 

Class model. For weak smoothing (a low bandwidth), the model becomes a saturated model 
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resulting in a separate estimation of a Panel Latent Class models with   classes for each 

unique combination of individual characteristics.  

This is an appealing feature of the estimation setup is that both the the Local Logit model 

         , the Binary Logit (       ) and the Panel Latent Class model 

(         are special cases of our model. The (restrictive) Binary Logit model results in 

equal preferences for all individuals, the Local Logit Model estimates unique preferences 

for each unique combination of individual characteristics, but ignores unobserved 

heterogeneity. The Panel Latent Class model estimates equal preference distributions for all 

individuals, and hence ignores heterogeneity related to observable characteristics. The 

Local Panel Latent Class model estimates a unique preference distribution for each unique 

combination of individual characteristics and therefore allows for both observed and 

unobserved heterogeneity. 

More formally, we have a balanced panel with   individuals making   choices each. The 

probability that individual   chooses alternative    for choice   is defined as the Logit 

probability    
               

    . The probability for a sequence of choices of individual   

is then given by the weighted sum of the sequences of choices of each class and is given by: 

(20)   
                    

           

 

   

 

   

 

where     indicates the     vector of preference parameters of individual   for latent class 

     , where   is the number of preference parameters to be estimated,     is the class 

probability of class   and     is a     vector of explanatory variables. Furthermore,    is 

the     matrix with preference parameters and    is the     vector of corresponding 

class probabilities. These class probabilities determine the shape of the distribution of 

preferences. Finally,    is the     matrix with explanatory variables. We do not allow for 

unobserved heterogeneity in all parameters   , because that would lead to unstable and 

unrealistic estimates. More specifically, we do not allow for unobserved heterogeneity in 

the reward parameter, implying that    
    

 . Because the parameters of interest (  ,    

and   ) are ratios, we do not see this as a major problem. 

To include observed preference heterogeneity, we estimate how individual 

characteristics   affect the preference parameters    and the class probabilities   . We 

condition on   individual characteristics and   is a     matrix with characteristics.  The 

preference parameters    and the class probabilities    depend in a nonlinear way on  . 

This means that all interactions of the different variables in   are modelled implicitly. The 
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vector of preference parameters of reference individual          can then be estimated by 

maximising the local likelihood: 

(21)                   
     

               
           

 

   

  

This shows that the local log-likelihood is calculated by taking the log of the probability of 

the chosen sequence, multiplied by a     vector of kernel weights          which will be 

defined later. The log of the probability of the chosen sequence depends on the independent 

variables and the preference parameters, and the local likelihood needs to be maximised in 

order to get a local estimate for the preference parameters    and the class probabilities   . 

The kernel weights depend on the socio-economic ‘distance’ of an individual compared to 

the other individuals, which is governed by the     vector of bandwidths  . Estimation of 

a Panel Local Latent Class model for these variables implies the estimation of a Panel Latent 

Class model for each unique combination of individual characteristics.  

 

B. Kernel functions 

The individual-specific weights are based on the multi-dimensional ‘distance’ between 

individuals in their characteristics. This distance between individuals in terms of their 

characteristics is calculated using a kernel function. When the difference in individual 

characteristics between individual    and another individual becomes smaller, the other 

individual has a higher kernel weight in the local regression of    (and vice versa).  

We include   variables in the kernel function. Variable         has a corresponding 

kernel function       and bandwidth    (we discuss issues with respect to bandwidth 

selection in the next subsection). We employ a mixed kernel function consisting of ordered 

categorical variables, as well as dichotomous variables. A general specification of the  

kernel weights is given by: 

(22)                         

 

   

  

In this equation   is the     matrix with observed characteristics and         is the 

distance of individual    to all other individuals for the     vector   . The kernel weight 

         is a distance metric that decreases in the ‘distance’ between individual    and the other 

individuals. For a fixed number of individuals   and number of choices  , and given a vector 

of bandwidths  , adding individual characteristics to the kernel leads to a lower kernel 

weight           
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In our analysis we only use categorical individual characteristics. Racine and Li (2004) 

show that for these variables one needs a kernel function that has the possibility to be an 

indicator function and that has the possibility to become a constant. We use ordered 

categorical and dichotomous individual characteristics. Following Racine and Li (2004) and 

Hall et al. (2007), the kernel function is: 

(23)                 
                               

  
                         

   

In equation (23), the bandwidth    has to be between zero and one.4  One can verify that if 

   equals one,         is a constant, implying that the variable   has no effect on the 

estimated preference parameters.  

 

C. Selection of the bandwidths and the number of latent classes 

The first assumption we make is that             , so the bandwidth is equal for 

all variables included in the weight matrix. A univariate bandwidth simplifies the analysis 

and results in substantial savings in computation time.5 

For low values of   and high values of  , estimates for  ,  , and   will deteriorate quickly 

and become unrealistic, due to the curse of multidimensionality. When   increases, more 

observations in the ‘neighbourhood’ are taken into account in the local estimation of   . 

Larger bandwidths may create a larger bias when the underlying function is nonlinear (Fan 

and Gijbels, 1996). A lower bandwidth leads to a better model fit and therefore to a higher 

value of the likelihood function, but increases the variance of the estimator.  

There are several statistical criteria to determine the optimal bandwidth    and latent 

classes   . These criteria are usually based on the trade-off between fit and the number of 

parameters. We tried cross-validation methods, but they tend to under smooth the 

semiparametric functions to be estimated, leading to unrealistic values for the average 

willingness to pays   ,    and   . In Appendix D, we show that when        these mean 

values become unrealistically large. Similarly, if    , the results become instable. To 

jointly determine    and   , we therefore define a number of economic criteria that have to 

be met for   ,    and   . These are listed in Table 1.  
 

                                                           
4 It is also possible to include continuous individual characteristics by using a Gaussian or 
exponential weighting function. The weights are then a product of the different characteristics with 
different kernel functions (Racine and Li, 2004). 
5 This is because the computation time increases exponentially in Q. We refer to Yang and Tschernig 
(2002) for a discussion on multivariate bandwidths. The analysis of multivariate bandwidth 
optimisation and possible shortcuts to reduce computation times are beyond the scope of this paper.  
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TABLE 1: ECONOMIC CRITERIA FOR BANDWIDTH AND LATENT CLASSES SELECTION 

Criterion Implication 

Value of time should be higher than value schedule delay early                     
Mean willingness to pay values should be positive            ,            ,             
Mean willingness to pay values should be not far away from 
the results from Binary Logit (BL) model. We set        . 

                  ,                   , 
                   

 

First, it is economically infeasible to have willingness to pay values that are lower than 

zero, so we impose that at least the average willingness to pay values should be larger than 

zero. Second, a general finding in the literature is that the mean value of time is larger than 

the mean value of schedule delay early. Otherwise, the average traveller would prefer 

longer trips over arriving too early. This will also be an outcome of the Binary Logit model. 

We therefore impose that      . Third, we impose that   ,    and   , should be not too far 

from the original estimates of the Binary Logit estimates. We assume that the difference 

between the WTP values for the Binary Logit model and the mean WTP values obtained by 

the semiparametric models will not be larger than 25 percent. Given these economic 

criteria, we will choose    and    in such a way that the log-likelihood function is 

maximised. 

We are fully aware that these economic criteria are to some extent arbitrary. We 

therefore have investigated the results for a wide range of combinations of    and     in 

Appendix D. In general, our conclusions are hardly influenced by relaxing or changing these 

criteria. 

 

D. Unobserved versus observed heterogeneity 

Given the local latent class models, we have different WTP parameters for each individual-

class combination. To distinguish between unobserved and observed heterogeneity, we 

regress the estimated parameters on an individual constant. For example, for the value of 

time: 

(24)              

where    is a parameter to be estimated and     denotes the error term. We define 

               
 

              
 

   , where   denotes the share of variation that is 

attributable to observed heterogeneity. In the (extreme) case where     and    , all 

variation is attributable to observable characteristics      . In the (extreme) case where 

    and    , all variation is related to unobserved heterogeneity      . 

To learn about how preference heterogeneity is related to individual characteristics, we 

regress estimated parameters on individual characteristics. For example, we may expect 

that the value of time is generally higher for people that have higher incomes. Hence: 
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(25)               

where    are individual characteristics such as income, age and gender, and   is a vector of 

parameters to be estimated. To facilitate interpretation, we assume that the individual 

characteristics are linearly related to the estimated parameters.  

 

IV. Experimental setup and data 

A. Set-up and experiment 

We developed a stated choice experiment to collect data about the preferences of morning-

commuters participating in a peak-avoidance project. In order to reduce congestion these 

commuters are rewarded if they do not travel between cameras A and B during the 

morning peak (6:30-9:30). These cameras are placed on a congested highway. 

Respondents were asked to choose between two departure times. To account for travel 

time variability, each departure time has two possible travel times with a corresponding 

probability, arrival time at work and reward. The preferred arrival time of the traveller is 

given as a reminder. It is based on previous questions in the questionnaire and is defined as 

the time that a traveller would like to arrive at work if there is no possibility to receive a 

reward, and there is no travel time delay. The lay-out has been pre-tested in a focus-group 

and internet pre-tests were carried out to ensure that respondents understand the 

questions well. Several considerations regarding the screen lay-out where made. First, we 

made explicit what can be important for travellers: departure time, probabilities, travel 

times, arrival times and rewards. Second, we used a ‘vertical’ setup for the presentation of 

unreliability to emphasise that a departure time results in two possible travel times, arrival 

times and rewards. Third, travel times of the separate parts of the trip are given. This is to  

show the respondents why they (do not) receive the reward and how the travel time is built 
 

 

FIGURE 1 ― EXAMPLE OF A CHOICE QUESTION 
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up from the different components. Fourth, we use bold values for the variables that are 

(potentially) important and need to be compared by respondents. 

The attribute values for travel times are pivoted around the average travel time of the 

respondent to enhance realism (see Hensher, 2010). Arrivals at Camera A are spread over 

the whole peak hour to have sufficient variation in arrival times. Several other constraints 

are put on the design attributes to enhance realism. These are described in detail in 

Knockaert et al. (2011). The efficiency of the experimental design has been pre-tested using 

extensive simulation such that the design is able to recover a broad range of parameters.   

We excluded respondents who stated that they answered randomly and for whom no 

observed characteristics were available.  For each individual we have information on gross 

monthly income, level of education, gender, age, household composition (single, children, 

etc.) and their residential and working location. The summary statistics of these individual 

characteristics are presented in Table C1 in Appendix C. Compared to the Dutch average, we 

have a large share of high incomes and highly educated travellers. In our sample, about 84 

percent has a bachelor degree or higher. We also have a relatively high share of males in 

our sample (76 percent), whereas single persons are underrepresented (17 percent).  To 

calculate the delays for each individual, we use door-to-door GPS measurements of Peer et 

al. (2011).  

 

B. Testing assumptions 

It is shown in Section III.B that the delay costs, and in particular scheduling costs, are a 

function of mean delay. More specifically, it will be assumed that the travel delays are log-

normally distributed. Previous empirical evidence of a lognormal distribution of highway 

travel times is given by Pu (2010). To calculate the delays for each individual, we use GPS 

measurements of Peer et al. (2011). These measurements have the advantage that they 

concern door-to-door trips. We have 6,231 observations on trips for 397 individuals. In 

Figure 2 it is shown that the travel delays seem to be approximately log-normally 

distributed for our population. 

It may be that over the whole population travel delays are not log-normally distributed, 

while at the individual level they are, for example because people are not located randomly 

over space. As we are interested in the distribution of the mean delay per individual, we also 

perform a skewness-kurtosis test for each individual for which we have at least eight 

observations on commuting trips. It appears that for about 70 percent of the individuals, we 

cannot reject log-normality of travel delays. However, because of the relatively low number 

of observations per individual the latter result is somewhat suggestive. 
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FIGURE 2 ― DISTRIBUTION OF TRAVEL DELAYS 
 

 

 

FIGURE 3 ― MEAN TRAVEL DELAYS AND TRAVEL DELAY VARIABILITY 
 

We also assume that the standard deviation in travel delays    is linearly related to the 

mean travel delay   , so        resulting in delay costs that are linear in the mean travel 

delay. We estimate the mean travel delay and the standard deviation of travel delays for 

each individual for which we have at least eight observations. Figure 3 shows that there is a 

clear positive and linear relationship between the mean travel delay and the travel delay 

variability, suggesting that our assumption is reasonable. We find that         .  
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V. Estimation results 

A. Baseline results 

In this section we discuss the estimation results. We present the marginal effects, so the 

average value of time   , the value of schedule delay early    and the value of schedule delay 

late    and also the parameters that relate to the costs per trip (  ,   ,   ,  

   and   ). In what follows, we exclude the lower and upper one percent of the estimated 

values, to avoid the possibility that our results are driven by outliers.6 Table 2 presents the 

results. 

 
 

TABLE 2 ― THE ESTIMATED AVERAGE WILLINGNESS TO PAY VALUES AND DELAY COSTS 

 (1) (2) (3) (4) 

 Logit Latent Class Local Logit Local Latent Class 

Panel 1: Marginal effects 
Value of time    35.050 28.373 42.365 31.484 
  (―) (0.856) (0.444) (0.582) 

Value schedule delay early      23.217 22.152 26.543 23.650 
  (―) (0.682) (0.341) (0.620) 

Value schedule delay late      17.162 18.534 19.339 17.037 
  (―) (1.178) (0.351) (0.855) 

Panel 2: Costs per trip 

Free-flow travel costs     20.037 15.848 24.196 18.129 

  (0.420) (0.933) (0.637) (0.753) 

Delay time costs     4.533 3.566 5.660 4.076 

  (0.599) (1.057) (0.832) (0.881) 

Scheduling costs     1.199 0.98 1.384 1.041 
  (0.599) (1.34) (0.74) (1.124) 

Share total delay costs ÷      0.229 0.256 0.228 0.251 
      total trip costs  (0.511) (0.577) (0.511) (0.575) 

Share scheduling costs ÷       0.209 0.242 0.206 0.238 
      total delay costs  (―) (1.066) (0.142) (0.879) 

   
 

  
Latent classes      1 6 1 3 
Bandwidth      1.0 1.0 0.4 0.4 
          -2,719 -2,422 -2,638 -2,321 

Note: We exclude the lower and upper one percent for all reported values. This does not affect the 
mean estimates. The coefficient of variation (e.g.       ) is between parentheses. The share of delay 

costs in the total trip costs is calculated as                            . The share of expected 

scheduling costs with respect to total delay costs is calculated as                  .  

                                                           
6 The results are very similar if we include the lower and upper one percent, although the coefficient 
of variation is somewhat higher. 
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We first estimate a standard Binary Logit specification, without heterogeneity (so the 

coefficient of variation is equal to zero for   ,   ,    and   ). It is shown that the value of time is 

€ 35 per hour. The value of schedule delay late and early are respectively € 23 and € 17 per 

hour. These WTP-values are higher than found in the literature (see for example: 

Brownstone and Small, 2005; Li et al., 2010). There may be two reasons for this. First, on 

average we have a high share of high-income travellers in our sample and since these have 

a lower marginal utility of income they are less sensitive to rewards than average 

commuters. Second, it is very likely that travellers are less sensitive to rewarding incentives 

than to the payment of a congestion toll. This difference in valuation of gains and losses is a 

common finding in prospect theory studies. The pattern       is the same for all models 

and is remarkable, since usually       is found in the literature (Lam and Small, 2001; 

Brownstone and Small, 2005; Li et al., 2010). However, we have a relative high share of 

individuals with an early preferred arrival time in our dataset, because we only analyse the 

preferences of individuals participating in the rewarding experiment, so this result is not 

too surprising. Another observation is that the average value of time is higher than the 

value of schedule delay late. An explanation may be that this is due to a selection effect of 

participants who have lower values of schedule delay. However, our estimated value of 

schedule delay early is about 65-75 percent of the estimated value of time, which is slightly 

higher than earlier previous in the literature (Li et al. 2011). If there is a sample selection 

bias, one would also expect a low value of schedule delay early.  

It is shown that the average delay time costs are about € 4.50 per trip and the 

scheduling costs are about € 1.20 per trip. The overall share of delay costs (time and 

scheduling) in the total trip costs (including free-flow travel time) is about 23 percent. 

Scheduling costs are not so important: only 21 percent of the delay costs is attributable to 

scheduling costs, in line with Fosgerau and Karlström (2010). For the Binary Logit model, 

the variation in   ,   ,    and    is entirely determined by the differences in mean delay. 

In Specification (2) we estimate a Latent Class model with six latent classes. In Figure 

D1, it is shown that for a higher number of latent classes, the results become unstable. Also, 

the Bayesian Information Criterion is minimised for six latent classes. Not allowing for 

unobserved heterogeneity seems to lead to an upward bias for the value of time. For 

example,    is about € 7 lower in the Latent Class specification. The average values of 

schedule delay early and late are very similar. Allowing for unobserved heterogeneity also 

implies that the share of scheduling costs in the total delay costs  , is about 5 percentage 

points higher. 



- 19 - 
 

Specification (3) only allows for heterogeneity related to observable individual 

characteristics. In Figure D2, Appendix D, we show that WTP values become negative and 

very large when      .7 We therefore set the bandwidth      . It is shown that the 

average WTP values are similar to Specification (2), except for the value of time:    is about 

€ 15 higher. The Likelihood score suggests that Specification (3) is inferior to Specification 

(2), as the likelihood is higher for the latter Specification. In other words, unobserved 

heterogeneity seems to be more important than observed heterogeneity.  

A preferred specification would allow for both observed and unobserved heterogeneity. 

In Specification (4) we therefore estimate a Local Latent Class model, which allows for both 

types of heterogeneity. The bandwidth and number of latent classes are determined by 

maximising the likelihood, given the economic bandwidth selection criteria (see Table 1).8 

We did some robustness checks with respect to the economic criteria (for example, we 

adjust   and impose that      ), but this hardly impacts the chosen bandwidth and number 

of latent classes. It is shown that the average willingness to pay values are very similar to 

Specification (1). The coefficients of variation are in between Specification (2) and (3). 

Nevertheless, the model fit is better than in Specification (2), suggesting that Specification 

(2) may have picked up some random variation. 

 

B. Investigating heterogeneity 

Although the average estimates are interesting, we are particularly interested in the 

heterogeneity in the estimated parameters. Table E1 in Appendix E shows the correlations 

between the estimated parameters for Specifications (3) and (4). For Specification (3) there 

is a strong positive correlation between     ,      and     . This suggests that observable 

characteristics have a similar impact on the willingness to pay values. For example, 

individuals with high incomes are likely to have a higher value of time, as well as a higher 

value of schedule delay early. If we, however, allow for unobserved heterogeneity the 

correlation becomes essentially zero or even negative, suggesting that unobserved 

heterogeneity dominates observed heterogeneity. It is also shown that the share of 

scheduling costs in the total delay costs (    ) is negatively correlated with the value of 

schedule delay early and late in Specification (3), but positively correlated in Specification 

  

 

                                                           
7 Also if we exclude outliers for lower bandwidths the results become unrealistic and unstable. 
8 In Appendix D, Figures D3-D6, we analyse the likelihood and value of time for different 
combinations of   and  . It is shown that the results become unrealistic when   is low and   is large.  
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FIGURE 4 ― ESTIMATED DISTRIBUTION FOR THE VALUE OF TIME 

 
FIGURE 5 ― ESTIMATED DISTRIBUTION FOR THE VALUE OF SCHEDULE DELAY EARLY 

 

 
FIGURE 6 ― ESTIMATED DISTRIBUTION FOR THE VALUE OF SCHEDULE DELAY LATE 
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(4). In Specification (3) a higher      or     implies a relatively higher     (positive correlation), 

leading to a lower    . In Specification (4) there is hardly correlation between      ,      and 

    , so a higher       or      implies a higher      (see equation (18)). 

Figures 4-6 present the estimated nonparametric distributions for the values of time, 

schedule delay early and late for Specifications (3) and (4).9 It is shown that these 

distributions seem not to follow any conventional distribution and do not have similar 

shapes for the different WTP-values. For example, the distribution of      is more or less 

unimodal, while the distributions for      and      are bimodal. Figure 1 shows that there are 

some extreme values for the value of time (> € 100) in Specification (3). One may argue that 

these values may explain the high average value of time in Table 1. However, if we exclude 

value of times higher than € 90, the average value of time is almost identical (        ). 

For Specification (4), about 90 percent of the observations have a value of time that is lower 

than € 50 per hour, which seems reasonable. Similarly, about 90 percent of the 

observations have a value of schedule delay early and late that is lower than € 40. 

Figure 6 presents the relationship between the Local Logit and Local Latent Class 

specification. As expected, there is a positive correlation (      ) between the value of 

time obtained in Specification (3) and Specification (4), but due to the importance of 

unobserved heterogeneity, this relationship is certainly not one-to-one. 

 

 

FIGURE 6 ― VALUE OF TIME FOR SPECIFICATIONS (3) AND (4) 

  

                                                           
9 Distributions for other estimated parameters are presented in Appendix E. 
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C. Explaining heterogeneity 

Based on these results, it seems that unobserved heterogeneity is the most important 

source of variation in the estimated parameters. To test this, we determine the portion of 

heterogeneity that is attributable to observable characteristics by a regression of the 

estimated parameters on individual fixed effects. Further, we regress the estimated 

parameters on individual characteristics to explain heterogeneity. Tables 3 and 4 present 

the second stage results based on the Local Latent Class specification.10 

 

TABLE 3 ― ANALYSING HETEROGENEITY, WEIGHTED REGRESSIONS 

(Dependent variables:     ,      and     ) 

 (5) (6) (7) 

                

Panel 1: Observed vs. unobserved heterogeneity 
Observed heterogeneity,   0.233 0.094 0.065 
Number of individuals 487 487 487 

Panel 2: Analysing observed heterogeneity 
Income €2500-€3500 1.143 (1.114)  3.340 (0.939) *** 3.796 (0.650) *** 
Income €3500-€5000 10.204 (1.172) *** 5.517 (0.963) *** 4.307 (0.698) *** 
Income >€5000 8.930 (1.330) *** 4.742 (1.036) *** 6.565 (0.760) *** 
Education – vocational 5.701 (0.995) *** 1.730 (0.787) ** -0.862 (0.715)  
Education – bachelor degree 8.320 (0.850) *** 2.552 (0.642) *** -0.470 (0.692)  
Female 1.868 (0.716) *** 1.281 (0.424) *** 2.330 (0.366) *** 
Single -2.770 (0.687) *** -3.559 (0.453) *** -1.749 (0.464) *** 
No children -2.649 (0.656) *** 1.329 (0.341) *** -2.458 (0.385) *** 
Young children 8.025 (0.911) *** 5.246 (0.466) *** 1.389 (0.353) *** 
Children at primary school -3.390 (0.771) *** -1.947 (0.419) *** -3.825 (0.346) *** 
Age 25-50 1.335 (0.724) * -0.399 (0.582)  -2.506 (0.576) *** 
Age>50 -3.631 (0.865) *** 0.324 (0.617)  -0.169 (0.621)  
Constant 17.527 (1.466) *** 16.529 (1.042) *** 16.071 (0.941) *** 
      0.635 0.587 0.466 
Number of individuals 487 487 487 

Note: The reference category is a married (or living together) male person younger than 
25 that has children that are all older than 12 years and a monthly income higher than 
€2500 and an educational degree lower than vocational.      is the share of observed 
heterogeneity that is explained by a linear relationship of individual characteristics  . The 
standard errors are clustered at the individual level and are between parentheses. 
 *** Significant at the 1 percent level 
 **  Significant at the 5 percent level 
 * Significant at the 10 percent level 

 

                                                           
10 We also have estimated seemingly unrelated regressions (SUR), because errors     are likely to be 
correlated across regressions. It is well-known that SUR only improves efficiency and not the 
consistency of the estimated coefficient. As it is not possible to cluster standard errors in SUR, we 
prefer the results from standard Ordinary Least Squares. 
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About 23 percent of heterogeneity is related to observed characteristics for the value of 

time. This is even lower for the value of schedule delay early and late (respectively 9.4 and 

6.5 percent).  This strongly suggests that unobserved heterogeneity is more important than 

observed heterogeneity. One may argue that we do not have information on all relevant 

individual characteristics, so that this is an underestimate. However, we have data on at 

least the most important observable demographic characteristics of individuals (income, 

education, etc.). Including less important variables is therefore unlikely to lead to very 

different conclusions. In contrast, we think that this is more likely to have an overestimate 

of the importance of observed heterogeneity, as we are not able to allow for unobserved 

heterogeneity in the reward parameter   
 . We also perform a regression of the estimated 

willingness to pay values on individual characteristics, enabling us to investigate how 

individual characteristics relate to the WTP-values.11 For highly educated people the value 

of time is more than € 8 higher compared to low educated people. The effect of education 

on the value of time is much stronger than on the value schedule delay early and the income 

effect is strong: switching from an income lower than € 2,500, to the highest income class 

increases the value of time with € 10, which is about 36 percent higher. Also, the increase of 

value schedule delay early and late is substantial and about € 5 (24 percent). Education has 

a positive effect on WTP-values even if we control for income effects. For higher educated 

people the value of time is more than € 8 higher compared to less educated people. This 

implies that high-income and highly-educated households have a willingness to pay that is 

about 10 percent higher than the average.  The effect of education on the value of time is 

much stronger than on the value schedule delay early and late, confirming that highly 

educated people tend to have more flexible job starting times (Arnott et al., 1990; Golden, 

2001). Females have higher WTP-values than males (about € 1.50). This is a common 

finding in the literature, which could reflect that females are more often responsible for the 

children in the household, and therefore have more scheduling constraints (Kwan, 1999; 

Lam and Small, 2001; Brownstone and Small, 2005; Schwanen, 2008).12 Travellers that are 

single have lower WTP-values, especially for the value of schedule delay early and late. 

Previous research already showed that time budgets decrease because of the presence of 

children in the household (Becker, 1985; Browning, 1992). Indeed, having young children 

                                                           
11 We also estimated similar models where we take the logarithm of the WTP-values, but the results 
are qualitatively similar. 
12 If we repeat the analysis for Specification (3), it may be shown that almost all effects are much 
stronger. Hence, ignoring unobserved heterogeneity leads to an overestimate of the impact of 
individual characteristics on the willingness to pay values. 
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increases the value of time, value of schedule delay early and late with respectively € 8.03, 

€ 5.25 and € 1.39. The effect is stronger for the value of schedule delay early, reflecting that 

commuters with young children face more scheduling cost in the early morning. The results 

for people with children at primary school is surprising, as we would expect a positive 

coefficient, given the fact that scheduling constraints are more stringent because of the 

fixed starting times of schools (Schwanen and Ettema, 2009). It may be due to the fact that 

people start working full-time again when their children go to secondary school, implying 

stronger scheduling constraints.  

We find that the average willingness to pay values are higher compared to the previous 

literature. It has been argued that this is partly due to the overrepresentation of highly 

educated and high income households. Using the estimates of Table 3 we may weigh the 

average value of time, schedule delay early and schedule delay late based on demographic 

characteristics of the Dutch population (See Table C1). In Table E2, Appendix E the results 

are presented. It is shown that the value of time is about 35 percent lower (€ 22.68). 

Because the effects of income and education in particular are less strong for the value of 

schedule delay early and late, the population-weighted average values are similar to the 

sample estimates. 

Table 4 analyses parameters related to the costs of the trip, given our assumptions in 

Section II. It is first shown that the share of heterogeneity explained by observable features 

is generally higher. As     ,     ,      and      are functions of the mean travel delay    (which is 

only different across individuals and not across latent classes), this is not too surprising. 

For      and      we again find a statistically significant income and education effect. For 

example, switching from an income lower than € 2,500 to the highest income class 

increases the delay costs per trip with € 1.323 and increases the scheduling costs per trip 

with € 0.149. 

For the regression of      on individual characteristics, we find that the impact of 

individual characteristics is limited and is mainly explained by differences in the mean 

travel delay. Nevertheless, females tend to experience a higher share of total delay costs. 

There is also some evidence that high incomes have relatively lower delay costs, likely 

because income has a relatively stronger effect on      than on      and     , so that the free-

flow travel costs become relatively more important. The regression of      on individual 

characteristics shows that singles have relatively lower scheduling costs. A plausible 

explanation is that there are no other people in the household that impose scheduling 

constraints on them. Also highly educated people experience relatively lower scheduling 

 costs, again, because of flexible work-start hours. Older people experience relatively higher  
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 TABLE 4 ― ANALYSING HETEROGENEITY, WEIGHTED REGRESSIONS BASED ON SPECIFICATION (4) 

(Dependent variables:     ,     ,      and     ) 

 (5) (6) (7) (8) 

                     

Panel 1: Observed vs. unobserved heterogeneity 
Observed heterogeneity,   0.622 0.307 0.757 0.049 
Number of individuals 397 397 397 397 

Panel 2: Analysing observed heterogeneity 
Income €2500-€3500 0.080 (0.467)  0.167 (0.108)  -0.019 (0.030)  0.047 (0.012) *** 
Income €3500-€5000 1.217 (0.583) ** 0.270 (0.123) ** -0.054 (0.032) * 0.005 (0.012)  
Income >€5000 1.323 (0.595) ** 0.311 (0.130) ** -0.056 (0.032) * 0.013 (0.013)  
Education – vocational 0.988 (0.481) ** -0.006 (0.127)  0.020 (0.036)  -0.042 (0.011) *** 
Education – bachelor degree 1.852 (0.402) *** 0.222 (0.107) ** 0.036 (0.031)  -0.044 (0.010) *** 
Female 0.887 (0.351) ** 0.150 (0.081) * 0.052 (0.016) *** 0.013 (0.004) *** 
Single -0.338 (0.519)  -0.025 (0.110)  -0.039 (0.023) * -0.046 (0.007) *** 
No children -0.511 (0.342)  0.061 (0.086)  -0.015 (0.017)  0.010 (0.004) ** 
Young children 1.554 (0.455) *** 0.371 (0.105) *** 0.001 (0.018)  -0.027 (0.004) *** 
Children at primary school -0.722 (0.381) * -0.150 (0.092)  -0.003 (0.018)  0.033 (0.005) *** 
Age 25-50 -0.585 (0.430)  -0.324 (0.110) *** -0.027 (0.021)  0.017 (0.007) ** 
Age>50 -1.392 (0.470) *** -0.319 (0.127) ** -0.011 (0.025)  0.036 (0.008) *** 
Constant 2.224 (0.601) *** 0.840 (0.162) *** 0.275 (0.039) *** 0.236 (0.015) *** 
      0.198 0.140 0.058 0.516 
Number of observations 397 397 397 397 

Note: See Table 3. 
 

scheduling costs, possibly because older people have more job responsibilities and 

therefore have tighter schedules. 

 
 

VI. Conclusions 

In this paper we first derive an easy to apply closed-form solution for the costs of travel 

time variability assuming that travellers choose their departure time optimally and travel 

times follow a log-normal distribution, leading to an easy-to-implement cost function that is 

only a function of the mean delay. We also allow for preference heterogeneity using 

semiparametric estimation techniques, which is of key importance when evaluating the 

benefits of infrastructure investments.  

We use data from a stated choice experiment held among participants of a real-world 

rewarding experiment to combat traffic congestion. A semiparametric estimation approach 

is used to analyse observed and unobserved heterogeneity in the value of travel time, 

schedule delay early and late. We also estimate the delay costs and the scheduling costs. It 

is shown that there is substantial heterogeneity in the willingness to pay for travel time. For 
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example, high-income and highly-educated households have a willingness to pay that is 

about 10 percent higher. 5-25 percent of the heterogeneity in the value of time is 

attributable to observed characteristics of individuals, implying that unobserved 

heterogeneity is much more important than heterogeneity related to observable 

characteristics.  It is furthermore shown that delay costs are important. About 25 percent of 

the trip costs (ignoring fuel costs and vehicle costs) is attributable to delay costs. A large 

share of these delay costs is attributable to additional travel time, as scheduling costs are in 

our data only 24 percent of the total costs of travel delays.  
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Appendix A.     Deriving the expected delay and scheduling costs 

The first part of this Appendix shows the derivation of equation (14). The second part 

focuses on the derivation of equation (15).  

Derivation of equation (14). Following Noland and Small (1995), the expected delay costs 

      are given by the sum of the costs of travel time and the costs of expected schedule 

delay early and late: 

(A1)                  

where         are the costs of delay travel time. The expected scheduling costs       are 

given by: 

                                        
      

 

  

  

 

  

This leads to: 

 
                                

  

 

   

                            
  

 

   



- 30 - 
 

Using integration by parts this reduces to: 

                                      
  

 

 

Assumption A implies that travellers optimise their headstart   . The first order condition is 

given by: 

(A2) 
      

   
                   

Solving (A2) for    gives the optimal headstart: 

(A3)   
      

  
     

   

where     is the inverse of the cumulative density function. An increase in    will lead to a 

lower optimal headstart whereas an increase in    will increase the optimal headstart. 

Substituting the optimal headstart in the expected cost function yields: 

 

    
                  

                
  
 

 

  

               
            

      
             

  
 

 

   

Using     
              this reduces to: 

 

    
                                

  
 

 

 

                                     
 

  
 

 

Using integration by substitution we find: 

(A4)     
                               

 

  
     

 

which is equal to equation (14). This expression was earlier derived by Fosgerau and 

Kärlstrom (2010), but then for a standardised distribution of travel times.  

Proof for Proposition 1. Now we have to proof that equation (A4) simplifies to equation 

(15) if we are willing to assume that travel delays follow a log-normal distribution with 

shape parameter    and scale parameter    (Assumption B). Let’s  define        
 

  
    

 
  

 

 
 as the error function and         

 

  
    

 
  

 

 
 as the complementary error 

function.   follows a log-normal distribution with      
 

 
     

       

    
  and          

   . 

The optimal expected costs are then given by: 
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where           is the inverse of the complementary error function. This reduces to: 

     
                                      

   
     

    

where        is the cumulative standard normal distribution. Next we use               

              to obtain:   

     
                                     

     
     

    

Finally we use                     , to obtain: 

(A5)     
                                  

  
     

    

which is equal to equation (15).   

Given estimates on   ,   ,    and    and observations on      we can calculate     
  . 

 

Appendix B.     Deriving    using the mean delay    

For a given mean travel time the standard deviation can be approximated by: 

(B1)        

The inverse coefficient of variation is given by: 

(B2) 
  
  
   

If travel times follow a log-normal distribution this should be equal to: 

(B3) 
  
  
     

 
   

Solving (B2) and (B3) for    gives: 

(B4)              

This means that    can be calibrated if   is known. The coefficient   depends on the 

information the travellers have. We use          (See Section IV.B). A sensitivity analysis 

for different values of   is given in Appendix F. 
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Appendix C.         Descriptive statistics 

TABLE C1 ― DESCRIPTIVES OF THE INDIVIDUAL CHARACTERISTICS 

 Sample, Mean Population, Mean 

Income <€2500 0.066 0.380 

Income €2500-€3500 0.340 0.366 

Income €3500-€5000 0.401 0.121 

Income >€5000 0.193 0.134 

Education – Primary or Secondary 0.043 0.353 

Education – Vocational 0.117 0.324 

Education – Bachelor Degree or higher 0.840 0.323 

Female 0.237 0.505 

Single 0.165 0.364 

No Children 0.430 0.657 

Young Children(<5 years) 0.212 0.110 

Children at Primary School 0.263 0.079 

Children at Secondary School (>12 years) 0.095 0.154 

Age<25 0.014 0.111 

Age 25-50 0.761 0.441 

Age>50 0.224 0.449 

Number of Individuals 487 13,039,488 

Note: The population data is from 2010 and for people older than 18 years 
obtained from Statistics Netherlands. Mean delay for the population is obtained 
from KIM (2009). 

 

Appendix D.         Bandwidth selection  

 
FIGURE D1 ― THE CHOICE OF   FOR SPECIFICATION (2) 
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FIGURE D2 ― THE CHOICE OF   FOR SPECIFICATION (3) 

 

 
FIGURE D3 ― LIKELIHOOD GIVEN   AND   FOR SPECIFICATION (4) 
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FIGURE D4 ― THE VALUE OF TIME GIVEN   AND   FOR SPECIFICATION (4) 

 
FIGURE D5 ― THE VALUE OF SCHEDULE DELAY EARLY GIVEN   AND   FOR SPECIFICATION (4) 
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FIGURE D6 ― THE VALUE OF SCHEDULE DELAY LATE GIVEN   AND   FOR SPECIFICATION (4) 

 
Appendix E.         Other results  

TABLE E1 ― CORRELATION BETWEEN ESTIMATED PARAMETERS 

                                         

 (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) 

     1.000 1.000               

      0.964 0.065 1.000 1.000             
      0.864 -0.463 0.941 0.313 1.000 1.000           

      0.667 0.750 0.613 0.033 0.517 -0.349 1.000 1.000         

      0.631 0.582 0.610 0.017 0.527 -0.287 0.524 0.501 1.000 1.000       

      0.536 -0.308 0.560 0.397 0.536 0.675 0.445 -0.197 0.969 0.132 1.000 1.000     

      0.080 -0.255 0.126 0.127 0.121 0.334 -0.276 -0.429 0.560 0.293 0.632 0.623 1.000 1.000   
      -0.580 -0.672 -0.370 0.358 -0.138 0.840 -0.468 -0.504 -0.386 -0.431 -0.199 0.597 0.041 0.382 1.000 1.000 

 
TABLE E2 ― THE POPULATION-WEIGHTED WILLINGNESS TO PAY AND DELAY COSTS 

 (1) (2) 

 Sample Population 

Value of time    35.050 22.678 
Value schedule delay early      23.217 21.054 
Value schedule delay late      17.162 16.023 
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FIGURE E1 ― ESTIMATED DISTRIBUTION FOR DELAY TIME COSTS PER TRIP 

 

 
FIGURE E2 ― ESTIMATED DISTRIBUTION FOR THE SCHEDULING COSTS PER TRIP 

 

 
FIGURE E3 ― ESTIMATED DISTRIBUTION FOR SHARE OF DELAY COSTS IN TOTAL TRAVEL COSTS 
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FIGURE E4 ― ESTIMATED DISTRIBUTION FOR THE SHARE OF SCHEDULING COSTS IN TOTAL DELAY COSTS 

 
 
 
 

Appendix F.         Sensitivity analysis of the calibration of    
TABLE F1 ― SCHEDULING COSTS FOR DIFFERENT VALUES OF    AND    

 (F1) (F2) (F3) 

 Local Latent Class Local Latent Class Local Latent Class 

                         

Panel 1: Costs per trip 

Free-flow travel costs     18.129 18.129 18.129 

  (0.753) (0.753) (0.753) 

Delay time costs     4.076 4.076 4.076 

  (0.881) (0.881) (0.881) 

Scheduling costs     1.041 0.844 1.197 
  (1.124) (1.113) (0.135) 

Share total delay costs ÷      0.251 0.242 0.257 
      total trip costs  (0.575) (0.570) (0.579) 

Share scheduling costs ÷       0.238 0.210 0.257 
      total delay costs  (0.879) (0.920) (0.853) 

     
Marginal increase in the   due to an  
increase in   

   0.752 0.564 0.940 

Note: See Table 2. Specification (F1) is identical to Specification (4). 
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