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Abstract 

 

Spatial econometrics has recently been appraised in a theme issue of the Journal of Regional 

Science. Partridge et al. (2012) provide an overview of the three contributing papers, the most 

critical being Gibbons and Overman (2012). Although some of the critiques raised are valid, 

they are issues that can be overcome by improving applied spatial econometric work. There 

has been excessive use of so-called global spillover models and too much emphasis on 

statistical testing procedures. Theory or the specific context of the empirical application 

should be the main guide for specifying a model. Especially the so-called SLX model merits 

more attention, as it produces local spillovers that are different for each explanatory variable 

in the equation and it allows for the parameterization of the spatial weights matrix W. The 

latter is a key contribution since a major concern of spatial econometric modeling, as is 

thoroughly discussed in Corrado and Fingleton (2012), is the a priori specification of W. This 

paper highlights these issues with an empirical application and recently proposed approaches 

for selecting a model specification, which are useful and promising steps forward for applied 

work involving spatial econometrics. 
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1. Introduction 

 

Spatial spillovers are a main interest in regional science. In contrast to standard econometric 

models which restrict spillovers to be zero, a valuable aspect of spatial econometric models is 

that the magnitude and significance of spatial spillovers can be empirically assessed. This is 

why spatial econometric methods are extensively used in regional science research and have 

also seen increasing use in other social science fields. Recently, the Journal of Regional 

Science has published a much-discussed theme issue appraising spatial econometrics. 

Partridge et al. (2012) provide an overview of the three contributing papers. McMillen’s 

(2012) critique mainly focuses on the limitations of the spatial lag model (SAR) and the 

spatial error model (SEM), and is partly based on previous work (McMillen, 2003, 2010).
1
 

Elhorst (2010) confirms that up to 2007 spatial econometricians were mainly interested in the 

SAR and SEM models, and points out that the seminal book by Anselin (1988) and the testing 

procedure for these models based on robust Lagrange Multiplier tests developed by Anselin et 

al. (1996) may be considered as the main pillar behind this way of thinking.  

In the last couple of years, however, there has been a growing interest in models 

containing more than just one spatial interaction effect. In particular, this pertains to the so-

called SAC model that includes both a spatially lagged dependent variable and a spatially 

autocorrelated error term (based on Kelejian and Prucha, 1998 and related work) and the 

spatial Durbin model (SDM) that includes both a spatially lagged dependent variable and 

spatially lagged explanatory variables (based on LeSage and Pace, 2009). Especially the latter 

model is highly criticized in the contributing paper by Gibbons and Overman (2012) because 

of identification problems.
2
 At most, they claim that the parameters of the SDM are only 

weakly identified in theory if the spatial weights matrix W is not idempotent, which still 

depends on the assumption that W is specified correctly. They conclude that it is therefore 

preferable to estimate the SLX model containing exogenous interaction effects rather than 

directly estimating the SAR or SDM models.
3
 Corrado and Fingleton (2012) are more 

positive, but nevertheless strongly argue for the use of more substantive theory in empirical 

spatial econometric modeling, especially regarding W. 

In view of these critical notes it is clear that the modeling strategy to find the spatial 

econometric model that best describes the data needs revision. Instead of testing the OLS 

                                                 
1
In this paper, we use the acronyms most commonly used in the spatial econometrics literature to refer to the 

model specifications (see e.g., LeSage and Pace, 2009).  
2
This is related to Manski’s (1993) reflection problem, that endogenous and exogenous interaction effects 

cannot be distinguished from each other. 
3
 The label SLX (spatial lag of X) model is given by LeSage and Pace (2009). 
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model against the SAR and SEM models for an exogenously specified W, we propose to take 

the SLX model as point of departure using a W that is parameterized. Next, we propose to 

rely on theory or the specific context of the empirical application rather than statistical testing 

as the main guide to select either a so-called global or local spillover model. To explain this 

modeling strategy, we provide a concise overview in Section 2 of the spillover effects that 

result from linear spatial econometric models with all different combinations of interaction 

effects. In addition, we explain the distinction between local and global spillover models.  

Until recently, empirical studies used the coefficient estimates of a spatial 

econometric model to test the hypothesis as to whether or not spatial spillover effects exist. 

However, LeSage and Pace (2009) point out that a partial derivative interpretation of the 

impact from changes to the variables represents a more valid basis for testing this hypothesis. 

By considering these partial derivatives, we are able to show that some models are more 

flexible in modeling spatial spillover effects than others, and that the SLX model is the 

simplest one of those. Importantly, Gibbons and Overman (2012) do not discuss the issue of 

spatial spillover effects, while it is one of the reasons why we should follow them and take 

the SLX model as point of departure. Another reason, also not discussed in their paper, is that 

the elements of W can be parameterized. This is a significant contribution since an often 

criticized aspect of spatial econometric modeling is the a priori specification of W, which is a 

topic extensively discussed in Corrado and Fingleton (2012). This part is worked out in 

Section 3. 

Using the well-known Baltagi and Li (2004) US state cigarette demand data set, 

Section 4 first illustrates the spatial spillovers resulting from the different model 

specifications when adopting an exogenously specified W and next the spatial spillovers that 

follow when adopting the revised modeling strategy with a parameterized W. This empirical 

application demonstrates that not parameterizing W has the effect that the researcher draws 

wrong conclusions. Section 5 concludes the paper with a summary of the main results. 

 

2. Spatial econometric models and corresponding direct and spillover effects  

 

Figure 1 summarizes different spatial econometric models that have been considered in the 

literature. It extends the figure presented in Elhorst (2010) to include the SLX model for 

reasons to be explained below. The simplest model considered in Figure 1 is the familiar 

linear regression model which takes the form  
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 � � �ι� � �� � 	 (1) 

 

where � represents an 
 � 1 vector consisting of one observation on the dependent variable 

for every unit in the sample 
�	 � 	1, … ,
�, ι� is an 
 � 1 vector of ones associated with the 

constant term parameter α, X denotes an 
 � � matrix of explanatory variables, with the 

associated parameters β contained in a � � 1 vector, and 	 � 
	�, … , 	��� is a vector of 

independently and identically distributed disturbance terms with zero mean and variance σ
2
.
 4

  

Since model (1) is commonly estimated by ordinary least squares (OLS), it is often referred 

to as the OLS model.  

 

Insert Figure 1 

 

Starting with the OLS model, the spatial econometrics literature has developed models 

that treat three different types of interaction effects among units: (1) endogenous interaction 

effects among the dependent variable, (2) exogenous interaction effects among the 

explanatory variables, and (3) interaction effects among the error terms.
5
  

Unfortunately, there is large gap in the level of interest in these interaction effects 

between econometric theoreticians and practitioners. Theoreticians are mainly interested in 

models containing endogenous interaction effects and/or interaction effects among the error 

terms, such as the SAR, SEM, and SAC models, because of all the econometric problems 

accompanying the estimation of these models. The reason they do not focus on spatial 

econometric models with exogenous interaction effects is because the estimation of this 

model does not pose any econometric problems; standard estimation techniques suffice under 

these circumstances.
6
 Consequently, the SLX model is not part of the toolbox of researchers 

interested in the econometric theory of spatial models. By contrast, practitioners often take 

the SLX model as point of departure due to their main focus on spillovers. They tend to 

present their work at conferences organized by the Regional Science Association at different 

continents, whereas theoreticians visit econometric and spatial econometric conferences, as a 

result of which there is insufficient interaction. In this respect, the extension of Figure 1 with 

the SLX model can be seen as a first attempt to bridge this gap. 

 The model in Figure 1 that includes all possible interaction effects takes the form  

                                                 
4
The superscript T indicates the transpose of a vector or matrix.    

5
For a detailed description with examples of these different types of interaction effects refer to Elhorst (2013).   

6
 By replacing the argument X by � � ��	��� of routines that have been developed to estimate SAR, SEM, and 

SAC models, one can also estimate the SDM, SDEM and GNS models. 
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 � � ��� � �ι� � �� ���� � �,							� � ��� � 	 (2) 

 

We will refer to model (2) as the general nesting spatial (GNS) model
7
 since it includes all 

types of interaction effects. The spatial weights matrix � is a positive 
 �
 matrix that 

describes the structure of dependence between units in the sample. The variable �� denotes 

the endogenous interaction effects among the dependent variables, �� the exogenous 

interaction effects among the explanatory variables, and �� the interaction effects among the 

disturbance terms of the different observations. The scalar parameters ρ and λ measure the 

strength of dependence between units, while θ, like β, is a � � 1 vector of response 

parameters. The other variables and parameters are defined as in model (1). 

Since the GNS model incorporates all interaction effects, models that contain less 

interaction effects can be obtained by imposing restrictions on one or more of the parameters 

(shown next to the arrows in Figure 1). Both frequently used, but also largely neglected 

models are included. In particular, the SLX model and the SDEM are generally overlooked.  

Various methods can be applied to estimate spatial econometric models such as 

maximum likelihood (ML), instrumental variables or generalized method of moments 

(IV/GMM), and Bayesian methods. There is a large literature on how the coefficients of each 

of the interaction effects can be estimated.
8
 Considerably less attention has been paid to the 

interpretation of these coefficients. Many empirical studies use the point estimates of the 

interaction effects to test the hypothesis as to whether or not spillovers exist. Only recently, 

thanks to the work of LeSage and Pace (2009), researchers started to realize that this may 

lead to erroneous conclusions, and that a partial derivative interpretation of the impact from 

changes to the variables of different model specifications represents a more valid basis for 

testing this hypothesis.  

 

Spillover effects 

The spillover effects corresponding to the different model specifications are reported in Table 

1. By construction, the OLS model does not allow for spillovers since it makes the implicit 

assumption that outcomes for different units are independent of each other, which is 

restrictive especially when dealing with spatial data. Even though the SEM takes into account 

                                                 
7
LeSage and Pace (2009) neither name nor assign an equation number to model (2), which reflects the fact that 

this model is typically not used in applied research.  
8
For example, LeSage and Pace (2009) provide details on the ML and Bayesian methods and Kelejian and 

Prucha (1998, 1999, 2010) and Kelejian et al. (2004) on IV/GMM estimators. 
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spatial dependence in the disturbance process, it also provides no information about 

spillovers, as shown in Table 1. This is clearly a major limitation of the SEM if measuring the 

effects of spillovers is of great interest. The direct effect, i.e. the effect of a change of a 

particular explanatory variable in a particular unit on the dependent variable of the same unit, 

is the only information provided. Therefore, if applied researchers want to obtain inference 

on spillovers, alternative spatial econometric models need to be considered.  

 

Insert Table 1 

 

One such model that allows an empirical assessment of the magnitude and 

significance of spillover effects is the SAR model. This is clearly an advantage compared to 

the other widely used SEM model. If the SAR model (3) is rewritten to its reduced form (4), 

the direct and spillover effects can be obtained. 

  

 � � ��� � �ι� � �� � 								 (3) 

 

 � � 
� � ������ι� � 
� � ������� � 
� � �����	 (4) 

 

The matrix of partial derivatives of the expectation of �,  
��, with respect to the kth 

explanatory variable of � in unit 1 up to unit 
 is 

 

 !∂E
��∂$�% …		∂E
��∂$�% & � 
� � ������%, (5) 

 

which is reported in Table 1. The diagonal elements of (5) represent direct effects, while the 

off-diagonal elements contain the spillover effects. To better understand the direct and 

spillover effects that follow from this model, the infinite series expansion of the spatial 

multiplier matrix is considered 

 

 
� � ����� � � � �� � �'�' � �(�( �⋯			 (6) 

 

Since the non-diagonal elements of the first matrix term on the right-hand side (the identity 

matrix I) are zero, this term represents a direct effect of a change in X. Conversely, since the 

diagonal elements of the second matrix term on the right-hand side (ρW) are zero by 
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assumption, this term represents an indirect effect of a change in X. All other terms on the 

right-hand side represent second- and higher-order direct and spillover effects.
9
 From Table 1 

it can also be noted that the SAC model shares the same direct and spillover effect properties 

as the SAR model. 

 An important characteristic of the spillovers produced by these models is that they are 

global in nature. Anselin (2003) describes the difference. A change in X at any location will 

be transmitted to all other locations following the matrix inverse in equation (6), also if two 

locations according to W are unconnected. In contrast, local spillovers are those that occur at 

other locations without involving an inverse matrix, i.e., only those locations that according 

to W are connected to each other. According to LeSage and Pace (2011) another distinction 

between the two is that global spillovers include feedback effects that arise as a result of 

impacts passing through neighboring units (e.g., from region i to j to k) and back to the unit 

that the change originated from (region i), whereas local spillovers do not. As will be 

discussed later, global spillovers are often more difficult to justify, which is an issue 

discussed in many studies, not only Gibbons and Overman (2012), but also Arbia and 

Fingleton (2008) and Lacombe and LeSage (2012). 

In addition, a SAR model has several limitations. Pinkse and Slade (2010, p. 106) 

criticize the SAR model for the laughable notion that the entire spatial dependence structure 

is reduced to one single unknown coefficient. Elhorst (2010) demonstrates that the ratio 

between the spillover effect and direct effect of an explanatory variable is independent of �%. 

The implication is that the ratio between the spillover and direct effects is the same for every 

explanatory variable, which is unlikely to be the case in many empirical studies. Pace and 

Zhu (2012) point out that the parameter ρ affects both the estimation of spillovers and the 

estimation of spatial disturbances. This implies that if the degree of spatial dependence in the 

error terms is different from that in the spillovers, then it can be the case that both are 

estimated incorrectly.  

In contrast to the models above, the SLX model contains spatially lagged explanatory 

variables, taking the following form 

                                                 
9
A note regarding the direct and spillover effect estimates is how they can be reported. Since both the direct and 

spillover effects vary for different units in the sample, the presentation of both effects can be challenging. With 

N units and K explanatory variables, it is possible to obtain K different NxN matrices of direct and spillover 

effects. Even if N and K are small, it may be difficult to compactly report the results. LeSage and Pace (2009) 

propose to report one direct effect measured by the average of the diagonal elements and one spillover effect 

measured by the average row sums of the off-diagonal elements. The total economy-wide effect is the sum of 

the direct and spillover effects. However, whether or not the researcher wants to apply this useful solution 

depends, of course, on the objective and nature of the study.  
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 � � �ι� � �� ���� � 								 (7) 

                                      

The direct and spillover effects do not require further calculation compared to other models 

such as the SAR model. As reported in Table 1, the direct effects are the coefficient estimates 

of the non-spatial variables (βk) and the spillover effects are those associated with the 

spatially lagged explanatory variables (θk). Therefore, a strong aspect is that there are no prior 

restrictions imposed on the ratio between the direct effects and spillover effects, which was a 

limitation of the SAR and SAC models.  

Furthermore, whereas endogenous interaction effects 
��� and interaction effects 

among the error terms 
��� require conditions on � to obtain consistent parameter 

estimates (Kelejian and Prucha, 1998; Lee, 2004), no conditions are required with respect to 

� in the case where this matrix is used to model exogenous interaction effects	
���.10
 One 

of the most important conditions that may be dropped is that � is exogenous and should be 

specified in advance. This opens up the opportunity to parameterize the elements of W. Like 

the SLX model, the direct and spillover effects of the SDEM are the vectors of the response 

parameters β and θ, respectively. Even though these models are easier to estimate and 

interpret and most importantly are useful for investigating local spillovers, they are not as 

commonly applied as global spillover specifications.  

The SDM model, which has recently become more widely used in applied research, 

includes both endogenous and exogenous interaction effects (LeSage and Pace, 2009; 

Elhorst, 2010). To obtain the direct and spillover effects shown in Table 1, the SDM (8) can 

be expressed in its reduced form (9). 

 

 � � ��� � �ι� � �� ���� � 	 (8) 

 

 � � 
� � ������ι� � 
� � �����
�� ����� � 
� � �����	 (9) 

 

From equation (9), the matrix of partial derivatives of  
�� with respect to the kth 

explanatory variable of � in unit 1 up to unit 
 is obtained 

 

                                                 
10

 Lee (2004) shows that one of the following two conditions should be satisfied: (a) the row and column sums 

of the matrices W, (I-ρW)
-1

 and (I-ρW)
-1 

before W is row-normalized should be uniformly bounded in absolute 

value as N goes to infinity, or (b) the row and column sums of W before W is row-normalized should not diverge to 

infinity at a rate equal to or faster than the rate of the sample size N. Condition (a) originates from Kelejian and 

Prucha (1998, 1999) and condition (b) from Lee (2004).  
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 !∂E
��∂$�% …		∂E
��∂$�% & � 
� � ��������% � 	��%� (10) 

 

As reported in Table 1, the diagonal elements of the matrix represent the direct effects and 

the off-diagonal elements, the spillover effects. Just as for the SLX and the SDEM models, 

there are no prior restrictions imposed on the ratio between the direct effects and spillover 

effects. Table 1 shows that this is due to the fact that both the direct effect and the spillover 

effect of an explanatory variable depends not only on the parameter ρ and �, but also on the 

coefficient estimate �% (Elhorst, 2010). The same applies to the GNS model.  

Even though taking the GNS model as point of departure to measure spillovers seems 

appealing since it contains all possible interaction effects, one major problem is that its 

parameters are weakly identified. Two simpler models, namely the SDM and SDEM, are 

already difficult to distinguish from each other.
11

 This problem is strengthened when 

estimating the GNS model, often leading to a model that is overparameterized. Parameters 

have the tendency to become insignificant as a result of which this model does not 

outperform the SDM and SDEM models. The SDM and GNS models are global spillover 

specifications.  

 

Global vs. local spillover specifications 

Our overview of spatial econometric models with all conceivable combinations of different 

types of interaction effects makes clear that four models are able to produce spillover effects 

that in relation to their corresponding direct effects may be different for one explanatory 

variable to another. It concerns the SLX, SDEM, SDM and GNS models. The other models, 

although interesting from an econometric-theoretical viewpoint, are not suitable to study 

spatial spillover effects since they impose restrictions on their magnitude in advance. Since 

Figure 1 shows that the SLX model is the simplest of these four models, it is recommendable 

to take that model as point of departure when having any empirical evidence that the 

observations in the sample are spatially dependent. The next question is whether the SLX 

model describes the spatial dependence structure adequately, and if not, how to decide 

whether to adopt a local or global spillover specification, respectively the SDEM or the SDM 

model. 

                                                 
11

Gibbons and Overman (2012, p. 178) emphasize the identification problem: “only the overall effect of 

neighbors’ characteristics is identified, not whether they work through exogenous or endogenous neighborhood 

effects.”   
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One might use the classic and robust LM-tests proposed by Anselin (1988) and 

Anselin et al. (1996) for this purpose, but it is not clear whether these tests are very powerful 

since their performance has only been investigated based on the residuals of the OLS model 

and not on those of the SLX model. Probably they are not since the difference between the 

log-likelihood function values of the SDEM and SDM models tends to be smaller than that 

between the SEM and SAR models. The empirical application in Section 4 will illustrate this. 

Furthermore, Gibbons and Overman (2012) criticize model specification testing, while 

LeSage and Pace (2009, p. 156) contrary to what Gibbons and Overman seem to believe, 

endorse this viewpoint: “there is too much emphasis in the spatial econometrics literature on 

use of statistical testing procedures to infer the appropriate model specification…” 

The inclusion of spatial effects in applied econometric models is typically motivated 

either on theoretical grounds, following from the formal specification of spatial interaction in 

an economic model, or on practical grounds, due to peculiarities of the data used in an 

empirical analysis (Anselin, 2002). For example, Ertur and Koch (2007) adopt the SDM 

model to analyze economic growth based on a well-founded theoretical background.
12

 One 

example based on the context of the study is Kirby and LeSage (2009), where commuting 

times for residents of Census Tracts is analyzed. A global spillover specification is 

appropriate because congestion on roads in one Census tract will spillover, impacting 

commuting times of residents in other Census tracts throughout the metropolitan area. 

LeSage and Pace (2009, p.28) also provide an econometric-theoretical motivation for 

the SDM model under the following circumstances: (1) there is one (or there are more) 

potentially important variable(s) omitted from the model, (2) this variable is likely to be 

correlated with the explanatory variables included in the model; and (3) the disturbance 

process is likely to be spatially dependent. They show that the SDM model produces 

unbiased, though inefficient, parameter estimates under these circumstances, whereas the 

SLX, SEM and SDEM models do not. Gibbons and Overman (2012, appendix) confirm that 

this setup leads to the SDM model, but emphasize that this does not solve the problem 

whether the causal effect of the observed spatial patterns in the data is due to endogenous 

interaction effects or interaction effects among the error term. In the words of Corrado and 

Fingleton (2012), the coefficient estimate for the WY variable may be significant because it 

may be picking up the effects of omitted WX variables or nonlinearities in the WX variables if 

they are erroneously specified as being linear.  

                                                 
12

Corrado and Fingleton (2012) provide more examples of studies where the spatial econometric model 

specification is theoretically justified.  
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The conclusion must be that global spillover specifications, unless theoretically 

motivated, are difficult to justify and have been overused in applied studies. This is recently 

confirmed by Lacombe and LeSage (2012, p. 9):  

There are many regional science relationships where we should have a priori 

knowledge that spillovers are local in nature as opposed to global. Differences in state 

policies regarding taxes, minimum wages, public assistance programs and so on are 

likely to exert some spillover impacts on migration decisions of residents living in 

border counties. While it might be reasonable that these residents move to 

neighboring counties across the state line, it does not seem reasonable that these 

differences would set in motion a process leading to a new steady-state equilibrium 

having migration (or other) impacts on distant states. 

 

 

3. The SLX model and the parameterization of W 

 

An often criticized aspect of using spatial econometric models is that � is specified in 

advance 	instead of being estimated along with the parameters in the model. There have been 

many studies that attempt to investigate how robust results are to different specifications of 

� and to determine which one best fits the data using criterions such as the log-likelihood 

function values and Bayesian posterior model probabilities. However, parameterizing � is a 

further step forward. The SLX model offers that opportunity.  

Studies dealing with geographical units often adopt a binary contiguity matrix with 

elements *+, � 1 if two units share a common border and zero otherwise, an inverse distance 

matrix, or an inverse distance matrix with a cut-off point of say m kilometers.
13

 If in a 

particular study theory predicts that the connectivity between nearby units will be stronger 

than those further away, this is related to the well-known first law of geography: “Everything 

is related to everything else, but near things are more related than distant things” (Tobler, 

1970, p. 236). However, as critiqued by Partridge et al. (2012), this is often used too readily 

to justify spatial econometric specifications. Even if there are theoretical reasons indicating 

that distance matters, it is often not clear from the theory the degree at which the spatial 

dependence between units diminishes as distance increases. The common practice to adopt 

one of the spatial weight matrices mentioned above can be quite arbitrary and it is preferable 

to be able to estimate the distance decay parameter.  

                                                 
13

Alternative ways to specify W can be found in Corrado and Fingleton (2012), such as using economic 

variables. However, an advantage of specifying W based on location is that the elements are exogenous. 
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Inspired by Newton’s law of universal gravitation, the distance decay can be 

formulated as a power function. For example, the elements of � can be defined based on 

inverse distances with a distance decay factor  

 

 *+, �	 �
-./0, (11) 

 

where dij denotes the distance between observations i and j, and γ is the distance decay 

parameter. A nonlinear but straightforward estimation technique can be used to estimate the 

parameter γ, which provides more information about the nature of the interdependencies of 

the observations in the sample. For example, if the estimate of γ is small this is an indication 

that the commonly applied binary contiguity principle is not an accurate representation of the 

spatial dependence. This is because contiguity can be thought of as a restrictive distance 

measure where interaction between units is confined only to those units that share borders. 

This is visually depicted in Figure 2 where the vertical line (BC) shows how a binary 

contiguity specification would cut-off interaction between units. However, there is still the 

possibility that interaction continues, depending on the degree of distance decay.  

 

Insert Figure 2 

 

We emphasize that theory should be the driving force that determines the specification of W, 

as is discussed extensively in Corrado and Fingleton (2012). If a substantive theoretical 

framework is lacking, then an option could be to compare the results using alternative 

functional forms of W. Although one might argue that there are still numerous functional 

forms that can be specified, of overriding importance is that by parameterizing W it is tested 

rather than assumed to which extent interaction decreases as the distance between units 

becomes greater. Fischer et al. (2006) and Fischer et al. (2009) estimate the distance decay 

parameter using an exponential function in empirical applications investigating knowledge 

spillovers. There have also been other studies that have parameterized W (see e.g., Burridge 

and Gordon, 1981; Pace et al., 1998; Kakamu, 2005).
14

 

 

                                                 
14

 Burridge and Gordon (1981) employ an exponential distance decay function to investigate unemployment in 

British metropolitan labor areas. Pace et al. (1998) parameterized the weight given to neighbors in space and 

time in their spatiotemporal model and provide an empirical application using Fairfax County, Virginia housing 

prices data from 1969-1991. Kakamu (2005) proposes a distance functional weight matrix model where the 

parameter to be estimated reflects the intensity of spatial decay.   
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4. Spatial econometric model comparison: Empirical application 
 

To demonstrate that the adoption of a non-parameterized W may lead to wrong inferences, 

even when applying sophisticated statistical testing procedures, a demand model for 

cigarettes is estimated based on panel data from 46 US states over the period 1963 to 1992. 

This data set is taken from Baltagi (2008) and has been used for illustration purposes in other 

studies as well.
15

 The dependent variable is real per capita sales of cigarettes, which is 

measured in packs per person aged 14 years and older. The explanatory variables are average 

retail price of a pack of cigarettes and real per capita disposable income. All variables are 

taken in logs, as is done in Baltagi and Li (2004). The bootlegging effect, i.e. consumers will 

purchase cigarettes in nearby states if there is a price advantage (Baltagi and Li, 2004), is the 

main motivation to consider an econometric model with spatial interaction effects.  

We include state-specific and time-specific fixed effects.
16

 In view of the complaint 

raised by Partridge et al. (2012, p.168) that spatial econometrics does not always do a good 

job of differentiating between spatial correlation (perhaps due to common explanatory 

factors) and spatial causality, this control for time-period fixed effects is important. Using 

Monte Carlo simulation experiments, Lee and Yu (2010) report that ignoring time-period 

fixed effects may lead to large upward biases (up to 0.45) in the coefficient of the spatial lag. 

The explanation is that most variables tend to increase and decrease together in different 

spatial units over time (e.g., along the business cycle). If this common effect is not taken into 

account and thus not separated from the interaction effect among units, the latter effect might 

be overestimated. Initially, the spatial weights matrix � is specified as a row-normalized 

binary contiguity matrix, with elements *+, � 1 if two spatial units share a common border, 

and zero otherwise. It should be stressed that this specification of � is also used in Baltagi 

and Li (2004) and Elhorst (2012, 2013). Debarsy et al. (2012) specify a row-normalized W 

based on the binary contiguity principle and state border miles in common between the states 

and find that the results are similar regardless of the specification used when estimating a 

dynamic SDM.  

 Table 2 reports the estimation results explaining cigarette demand for the different 

spatial econometric models, as well as the OLS model. The spatial models are estimated by 

                                                 
15

The data is available at www.wiley.co.uk/baltagi/. For an adapted version refer to www.regroningen.nl/elhorst. 

Except for Baltagi and Li (2004), this data set is also used in Elhorst (2012, 2013), Debarsy et al. (2012), and 

Kelejian and Piras (2012).  
16

In this way, specific state characteristics and e.g., policy changes that occurred during the period are controlled 

for. For more details on the reasons to include state and time specific effects, refer to Baltagi (2008). Elhorst 

(2012) found that the model specification with spatial and time-period fixed effects outperforms its counterparts 

without spatial and/or time-period fixed effects, as well as the random effects model. 
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ML, with the exception of the SLX model which is estimated using non-linear least squares. 

The coefficient estimates of the two explanatory variables, price and income, are statistically 

significant at the one percent level for all eight model specifications. The magnitudes and 

signs are as expected: there is a negative price effect and a positive income effect on cigarette 

sales, which is consistent with economic theory and previous studies.  

 

Insert Table 2 

 

Compared to the coefficient estimates of the explanatory variables, the coefficients of 

the spatial interaction effects show much more variation. The coefficient estimate of the 

spatially lagged dependent variable (WY) is positive, significant and almost similar in 

magnitude in the SAR and SDM models, whereas it is negative in the SAC model, and both 

negative and significant in the GNS model. The coefficient estimate of Wu is positive and 

significant in the SEM, SDEM, SAC and GNS models, though substantially higher in the 

latter model. The magnitude and significance level of the exogenous interaction effects (WX) 

are similar for the SLX and SDEM models, which is as anticipated since they differ only in 

that the latter model also accounts for spatial dependence in the disturbances (Wu). By 

contrast, the exogenous price interaction effect in the SDM model has a different sign than in 

the SLX, SDEM and GNS models, and the exogenous income interaction effect in the GNS 

model has a different sign than in the SLX, SDM and SDEM models.  

 

Insert Table 3 

 

Since for some of the model specifications the coefficient estimates cannot be 

interpreted directly, we turn to the direct and spillover effect estimates in Table 3 to better 

compare the different models.
17

 The direct effect estimates include feedback effects that arise 

as a result of impacts passing through neighboring states and back to the state where the 

change instigated. This is the reason that there are differences between the direct effects 

(Table 3) and point estimates of the explanatory variables (Table 2) for the SAR, SAC, SDM 

and GNS models, but not for the OLS, SEM, SLX, and SDEM models (see also Table 1). On 

the other hand, the feedback effects in the first group of models appear to be relatively small. 

                                                 
17

To draw inferences regarding the statistical significance of the effects estimates, LeSage and Pace (2009, p. 

39) suggest simulating the distribution of the direct and indirect effects using the variance-covariance matrix 

implied by the maximum likelihood estimates. We use the variation of 1,000 simulated parameter combinations 

drawn from the multivariate normal distribution implied by the ML estimates.  
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For example, in the SAR model the point estimate for the income variable is 0.465, whereas 

the direct effect is 0.461, amounting to a feedback effect of less than 1%. Overall, the impact 

of a change in income or a change in price in a particular state on cigarette demand in that 

state has almost a similar estimate and inference regardless of what measure (coefficient 

estimate or direct effect) and model is used.  

In contrast, and just like the coefficient estimates of the spatial interaction effects, the 

discrepancies between the spillover impacts are substantial (Table 3). The results show that 

the choice of model specification leads to different conclusions. In particular, both the price 

and income spillover effects in the SAC model are almost zero and statistically insignificant. 

This is due to the point estimate of the spatially lagged dependent variable (WY) being close 

to zero and reflects the fact that this model is similar to the SEM, which by construction does 

not allow for spillover effects. Another noticeable difference is that the spillover effect of 

income corresponding to the SAR model is positive, whereas in the other models it is 

negative. Thus, an increase in per capita income in a particular state leads to increased 

cigarette sales in neighboring states according to the spillover impact corresponding to the 

SAR model, whereas a negative and significant effect is found in the SLX, SDEM, SDM, and 

GNS models. The spillover effect of the price variable is negative for all models, which 

implies that an increase in the price of a pack of cigarettes in a particular state will not only 

lead to reduced cigarette demand in the state itself, but also in nearby states.
18

 Importantly, 

this result is not in line with the bootlegging effect originally found by Baltagi and Levin 

(1992) and which was the main motivation to adopt a spatial econometric model.  

The explanation for this contradictory finding is not so much that the spatial 

econometric model being adopted is too limited. From a statistical viewpoint, it is true that 

the flexible models (SLX, SDEM, SDM, and GNS) produce price and income spillover 

effects that are comparable in terms of sign, magnitude and significance levels, whereas the 

non-flexible models produce erratic results and for this reason should be rejected. 

Furthermore, since the most general model in the set, the GNS, reduces to the next-most 

general, either the SDM if λ=0 or the SDEM if ρ=0, but these two parameters in the GNS 

model appear to be significant, these model reductions need to be rejected too. Nevertheless, 

even this model with all possible spatial interaction effects is still not able to capture the 

bootlegging effect, indicating that it might still be misspecified. A first indication for this is 

                                                 
18

The exceptions are the SAC model which has a positive estimate, although it is almost zero and insignificant 

as was mentioned previously, and the SEM and OLS model which do not allow for the quantification of 

spillover impacts.  
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that the coefficient estimates of the spatial interaction effects in the GNS model have a 

tendency to blow each other up (in absolute value). The spatial autoregressive coefficient 

equals -0.481 and the spatial autocorrelation coefficient 0.628. Although the net effect of 

these two coefficients, 0.147, is close to the spatial autoregressive coefficient of 0.225 in the 

SDM model and the spatial autocorrelation coefficient of 0.229 in the SDEM model, these 

two individual coefficients are difficult to interpret, both in terms of sign and magnitude.  

Additionally, there is the problem that the type of interaction effect causing the 

spillover effects, i.e. the mechanism through which observations at other locations is affected, 

is very different across the SLX, SDEM, SDM, and GNS models. In the SDM and GNS 

model the spillovers work through both endogenous interaction effects, whereas in the SLX 

and SDEM models they only work through exogenous interaction effects. It is therefore 

important to pay more attention to the context of the empirical application, a point we 

emphasized previously. In particular, the nature of the spillovers, either local or global in 

nature should be given more careful thought. In the case of cigarette demand, a local spillover 

model is probably more appropriate since cross-border shopping is not likely to influence 

distant states accompanied by feedback effects. Another problem is that the binary contiguity 

matrix limits cross-border shopping to only adjacent states, while in reality people may also 

benefit from lower prices if they visit states for other purposes. In the next section we 

therefore investigate whether the results improve when adopting a parameterized inverse 

distance matrix. 

 

5. Empirical application using the SLX model with parameterized W 

Table 4 reports the estimation results explaining cigarette demand for the SLX model using 

different functional forms of W and estimating the distance decay parameter, as was 

described in Section 3. The first column shows the results using the row-normalized binary 

contiguity matrix.
19

 The second column reports the estimation results using inverse distance 

with the distance decay parameter γ set equal to one in advance. Row-normalizing a weights 

matrix based on inverse distance causes its economic interpretation in terms of distance decay 

to no longer be valid (Kelejian and Prucha, 2010). For example, the impact of unit i on unit j 

is not the same as that of unit j on unit i, and the information about the mutual proportions 

                                                 
19

 These are the same as the estimation results reported under the SLX model column in Table 2, which are 

repeated in Table 4 to facilitate comparison with the other functional forms.  
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between the elements in the different rows of W gets lost. We therefore scale the elements of 

W based on inverse distance by the maximum eigenvalue.  

 

Insert Table 4 

 

The direct effect estimates are similar across all different functional forms of W, 

although the estimate is a bit lower for price for the parameterized inverse distance 

specification. However, the differences in the direct effects are miniscule compared to the 

substantial differences in the spillover effect estimates. We first draw attention to the results 

of the price spillover effects, which are quite remarkable. In the first specification using the 

binary contiguity matrix, the spillover effect is strongly significant and negative, which was 

discussed previously when comparing the different spatial econometric models. In fact, all 

the models allowing for the quantification of spillover effects resulted in negative price 

spillovers, which is not consistent with the bootlegging effect. In other words, these 

specifications do not confirm that consumers near state borders will purchase cigarettes in 

neighboring states if they are cheaper relative to prices in their own state.  

In the second column using specification (11) with γ = 1 for W, the price spillover is 

still negative, but statistically insignificant. Although the results in the third column are also 

based on the inverse distance matrix, when the distance decay parameter is estimated, the 

result is completely different. The price spillover effect is positive with an elasticity of 0.254 

and significant (t-statistic = 3.083). The interpretation of this latter estimate is that a positive 

increase in own-state prices leads to increased sales of cigarette packs in neighboring states, 

which corroborates the existence of bootlegging behavior. Previous studies have used 

different specifications to capture this bootlegging effect and have mostly found evidence for 

it. However, no previous study has considered the SLX model and parameterizing W and it is 

notable that this specification captures bootlegging even without making the model dynamic, 

as in Debarsy et al. (2012), Kelejian and Piras (2012), and Elhorst (2013).
20

 In this respect it 

should be noted that some researchers prefer simpler models to more complex ones (Occam’s 

razor). One problem of complex models is overfitting, the fact that excessively complex 

models are affected by statistical noise, whereas simpler models may capture the underlying 

process better and may thus have better predictive performance. The estimate of the distance 

                                                 
20

The first two studies adopt a dynamic SDM model, and the last study a dynamic SAR model. The reason 

Kelejian and Piras (2012) chose the SAR model, despite the disadvantages of this model spelled out in Section 

2, is probably again that this model is more interesting from an econometric-theoretic point of view.  
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decay parameter is 2.938 and highly significant. This makes sense because only (the few) 

people living at the border of a state are able to benefit from lower prices in a neighboring 

state on a daily or weekly basis. People living further from their state borders can only benefit 

from lower prices if they visit states for other purposes. It explains why the parameterized 

inverse distance matrix gives a much better fit than the binary contiguity matrix; the degree 

of spatial interaction on shorter distances falls much faster and on longer distances more 

gradually than according to the binary contiguity principle (see Figure 2). This is 

corroborated by the R
2
, which increases from 0.897 to 0.916, and the log-likelihood function 

value, which increases from 1668.2 to 1812.9. 
 

Turning to the income spillover effects in Table 4, the estimates are negative and 

highly significant across all different functional forms. The main difference is that under the 

third column, the estimate is higher. These results indicate that increases in own-state per 

capita income decrease cigarette sales in neighboring states. An explanation could be that 

higher income levels reduce the necessity or incentive to purchase less expensive cigarettes 

elsewhere. In sum, the results suggest two forces at work that influence bootlegging behavior. 

There is a positive price effect which makes sense since higher own-state prices will motivate 

people to search elsewhere. However, increases in income have the opposite effect since 

there will be less motivation to make the effort to travel across the border even if there is a 

relative price advantage.  

 To test whether specification problems are still present in the SLX model with 

parameterized W, it is re-estimated extended to include spatial autocorrelation. There are two 

potential problems that may cause misspecification. Relevant explanatory variables may have 

erroneously been omitted from the model and the true spatial weights matrix W* that 

generated the data may be different from the spatial weights matrix W that is used to model 

exogenous interaction effects. The re-estimated model may be labeled an SDEM model, the 

difference being that the spatial weights matrix used to model spatial dependence in the 

disturbances is a binary contiguity matrix and not the parameterized inverse distance matrix 

used to model the exogenous interaction effects. The main reason to adopt a different matrix 

is methodological. If the spatial weight matrix used to model the exogenous interaction 

effects is still different from the true matrix, this misspecification in the exogenous 

interaction effects (W-W*)X is transmitted to the error term specification, as a result of which 

it loses its property of being distributed with 123
	� � 4'�. Instead, the error term 

specification will follow a spatial autoregressive process with spatial weights matrix V 

different from W and 123
�� � 4'�
� � �1��
� � �1����. Under the null of correct 
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specification, the coefficient estimates should be similar between the SLX and SDEM model. 

This can be tested using a Hausman test since both estimators of the response coefficients in 

the SLX and SDEM models are consistent but differ in efficiency. Pace and LeSage (2008) 

develop a Hausman test for OLS and SEM estimates, which can also be used for comparing 

SLX and SDEM estimates. We find that the test statistic amounts to 0.9267, which follows a 

chi-squared distribution with 4 degrees of freedom equal to the number of regression 

parameters under test. The corresponding p-value is 0.9207. Even though the spatial 

autocorrelation coefficient appears to be significant and the SDEM yields a significantly 

higher log-likelihood function value than SLX, the latter result implies that the null 

hypothesis of equality in SLX and SDEM coefficient estimates cannot be rejected. This 

indicates that a misspecified W or spatially dependent omitted variables do not represent a 

serious problem. 

 

 

7. Conclusions 
 

The Journal of Regional Science has recently published a much-discussed theme issue 

appraising spatial econometrics. Although some of the critiques raised are valid, they are 

issues that can be overcome by improving applied spatial econometric work. This paper  

points out that there should be a shift of focus in the modeling strategy for specifying a 

spatial econometric model. The commonly adopted procedure is to test the OLS model 

against the SAR and SEM models for an exogenously specified spatial weights matrix W. 

Instead, we propose that taking the SLX model using a W that is parameterized represents a 

better point of departure. This paper also emphasizes that there has been excessive reliance 

on statistical tests to infer the appropriate model specification and that instead, theory or the 

specific context of the empirical application should be the most important criterion for 

selecting either a local or global spillover model.  

 To explain the important distinction between local and global spillovers and the 

proposed modeling strategy, a concise overview of the spillovers corresponding to spatial 

econometric models with all different combinations of interaction effects is provided. By 

considering the partial derivatives, which as pointed out by LeSage and Pace (2009) represent 

a more valid basis for examining spatial spillovers, we show that some models are more 

flexible in modeling spillovers than others. Even though most applied work has relied on 

global spillover specifications, unless they are based on substantive theoretical arguments, 

they are more difficult to justify, as is also discussed in other studies (see e.g., Arbia and 
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Fingleton, 2008; Gibbons and Overman, 2012; Lacombe and LeSage, 2012). Although the 

SAR and SAC models are interesting from an econometric viewpoint, for empirical studies 

they are not suitable for investigating spatial spillovers since they impose restrictions on their 

magnitude in advance. Taking the SLX model as point of departure has the benefit that it 

produces spillover effects that are different for different explanatory variables and it allows 

for the parameterization of the spatial weights matrix W. This is a key contribution since one 

of the main criticisms of spatial econometrics is the a priori specification of W.   

As an empirical application we use the well-known Baltagi and Li (2004) US state 

cigarette demand data to demonstrate the spatial spillovers resulting from different model 

specifications adopting an exogenously specified W. Although other studies have used this 

data set for illustrative purposes, no previous study has considered modeling only exogenous 

interaction effects. We also illustrate the proposed modeling strategy with a parameterized W, 

demonstrating that adopting a non-parameterized W may lead to wrong inferences. A notable 

result from the SLX estimation results is that when W is specified using the binary contiguity 

matrix and the inverse distance specification without parameterizing W, the price spillover 

effect estimate does not corroborate the existence of bootlegging. However, when W is 

specified using the parameterized inverse distance specification, there is significant evidence 

of the bootlegging effect. Furthermore, we test for remaining specification problems in the 

SLX model by applying a spatial Hausman test on the SLX and SDEM coefficient estimates. 

This test provides evidence that the SLX model is appropriate. 
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Figure 1. Comparison of different spatial econometric model specifications 
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Table 1. Direct and spillover effects corresponding to different model specifications 

 

Direct effect Spillover effect

OLS / SEM β k 0

SAR / SAC
Diagonal elements of            

(I - ρW )
-1
β k

Off-diagonal elements of         

(I - ρW)
-1
β k

SLX / SDEM β k θ k

SDM / GNS Diagonal elements of Off-diagonal elements of 

(I  - ρW )
-1

[β k +Wθ k ] (I  - ρW)
-1

[β k+Wθ k ]
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Table 2. Model comparison of the estimation results explaining cigarette demand  

OLS SAR SEM SLX SAC SDM SDEM GNS

Price -1.035 -0.993 -1.005 -1.017 -1.004 -1.003 -1.011 -1.020

(-25.633) (-24.483) (-24.684) (-24.770) (-24.494) (-24.597) (-24.879) (-25.404)

Income 0.529 0.461 0.554 0.608 0.557 0.601 0.588 0.574

(11.668) (9.857) (11.069) (10.381) (10.506) (10.329) (10.568) (11.018)

W x Y 0.195 -0.013 0.225 -0.481

(6.791) (-0.219) (6.849) (-7.007)

W x price -0.220 0.051 -0.177 -0.645

(-2.948) (0.622) (-2.244) (-5.968)

W x income -0.219 -0.293 -0.168 0.079

(-2.797) (-3.696) (-2.120) (0.852)

W x u 0.238 0.292 0.229 0.628

(7.263) (4.732) (6.953) (14.599)

R
2

0.896 0.900 0.895 0.897 0.895 0.901 0.897 0.873

Log-likelihood 1661.700 1683.474 1687.236 1668.400 1687.150 1691.373 1691.203 1695.123

 Note: t-statistics are reported in parentheses. 
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Table 3. Model comparison of the estimated direct and spillover effects on cigarette demand 

OLS SAR SEM SLX SAC SDM SDEM GNS

Direct effects

Price -1.035 -1.003 -1.005 -1.017 -1.004 -1.016 -1.011 -0.999

(-25.633) (-25.099) (-24.684) (-24.770) (-24.469) (-24.841) (-24.879) (-25.433)

Income 0.529 0.465 0.554 0.608 0.556 0.594 0.588 0.594

(11.668) (10.175) (11.069) (10.381) (10.563) (10.884) (10.568) (10.346)

Spillover effects

Price -0.232 -0.220 0.010 -0.215 -0.177 -0.122

(-5.626) (-2.948) (0.172) (-2.388) (-2.244) (-1.894)

Income 0.107 -0.219 -0.006 -0.200 -0.168 -0.155

(5.511) (-2.797) (-0.197) (-2.304) (-2.120) (-2.162)

 Note: See note to Table 2. 
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Table 4. SLX model estimation results explaining cigarette demand and parameterization of W  

BC ID   (γ=1) ID ID + λV BC u

Price -1.017 -1.013 -0.908 -0.902

(-24.770) (-25.282) (-24.427) (-24.218)

Income 0.608 0.658 0.654 0.645

(10.381) (13.726) (15.392) (14.697)

W x price -0.220 -0.021 0.254 0.298

(-2.948) (-0.335) (3.083) (3.943)

W x income -0.219 -0.314 -0.815 -0.819

(-2.797) (-6.627) (-4.758) (-6.567)

V BC x u 0.164

(4.584)

γ 2.938 2.904

(16.478) (21.361)

R
2

0.897 0.899 0.916 0.916

Log-likelihood 1668.4 1689.8 1812.9 1819.2  
Notes: t-statistics are reported in parentheses and take into account the uncertainty in the γ estimate under the ID column;  

coefficient estimates of WX variables also denote spillover effects. 


