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The role of scientific and market knowledge in the inventive process:
evidence from a survey of industrial inventors1

Alessandra Scandura

Department of Geography & Environment
London School of Economics and Political Science

a.scandura@lse.ac.uk

Abstract

This paper studies the role of scientific and market knowledge in the inventive process by asking
whether these two types of knowledge complement each other for the inventor’s performance.
The empirical analysis makes use of an original survey of industrial inventors carried out in three
European regions in 2012 that aimed at exploring the inventive process of inventors working
inside firms. The econometric analysis employs the so-called productivity approach, in which
the inventors’ knowledge sourcing strategies are used as explanatory factors for inventors’ perfor-
mance, measured in terms of both quantity and quality of inventions. To the best of the author’s
knowledge, this is one of the first attempts to apply this approach at the inventor’s level. The
results suggest that complementarity exists, since the joint use of scientific and market knowledge
is positively and significantly related to the inventor’s performance, across different estimations.
Furthermore, variation exists across mobile and non-mobile inventors, especially as far as the
quality of inventions in concerned. Tracing a positive link between the use of external knowledge
and the inventive process at individual level is not only relevant for research, but also for policy,
considering that knowledge exchange across a wide range of organisations is at the core of the
innovation policy agendas in most countries.

1The research leading to these results has received funding from the European Union Seventh Framework
Programme FP7/2007-2013 under grant agreement n◦ SSH-CT-2010-266959; Project PICK-ME.
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1 Introduction

It is nowadays well established that knowledge that is internal to the firms, though essential, is
not sufficient for the creation of innovation and thus, in order to successfully produce innovation
and stay competitive on the market, firms tap into knowledge that rests outside their bound-
aries (see e.g. Allen and Cohen, 1969; Allen, 1977; Arora and Gambardella, 1990; Cassiman and
Veugelers, 2006; Chesbrough, 2003; Frenz and Ietto-Gillies, 2009; Tijssen, 2002). External-to-
the-firm knowledge is supplied by a wide range of actors with different characteristics - hence
providing different types of knowledge. It is possible to distinguish scientific knowledge, supplied
by scientific actors, such as universities and research centres, and technical knowledge, supplied
by market actors - and for this reason referred to as market knowledge - such as other competitor
firms, suppliers and customers (see e.g. Von Hippel, 1988). Scientific knowledge is usually discon-
nected from the market and its purpose is to foster technological progress (Fleming and Sorenson,
2004), while market knowledge is more applicative because it aims at addressing specific users’
problems and is, by definition, market-oriented (Cohen et al., 2002). As a consequence, scien-
tific knowledge is seen as fundamental for the idea-generation phase of the innovation process,
whereas market knowledge is essential for the technical realisation of a given innovation (see e.g.
Aghion et al., 2005; Frenz and Ietto-Gillies, 2009; Hagedoorn, 1993; Tijssen, 2002; Utterback,
1971).

The empirical evidence on the relation between firms’ knowledge sourcing strategies and the cre-
ation of innovation is vast, though not fully conclusive yet (see e.g. Arora and Gambardella, 1990,
1994; Cassiman and Veugelers, 2006, 2007; Frenz and Ietto-Gillies, 2009). Both complementar-
ity and substitutability between internal and external knowledge, as well as between different
types of external knowledge (e.g. scientific and market knowledge), have been found. This is
suggestive of the need to get a closer look at the role of knowledge by exploiting a finer unit of
analysis, such as the individuals inside firms. More recently, the empirical literature has indeed
looked at the role of knowledge for the individual who is responsible of the innovative process,
i.e. the inventor. By exploiting information provided by patents and by surveys of inventors, a
number of papers uncovered some of the factors that influence the inventor’s patenting activity,
including individual characteristics (e.g. education, age, mobility) and knowledge flows (see e.g.
Giuri et al., 2007; Hoisl, 2007; Mariani and Romanelli, 2007; Schneider, 2009). However, the
relevance of different sources of knowledge and how these combine has been rarely addressed at
the micro level of the individual inventor.

This paper focuses on the individuals that are primarily responsible for the inventive activity
inside the firm, i.e. patent inventors, based on the consideration that innovation is not simply
the product of firms and organisations, but also requires individual creativity. Morevoer, patents
are commonly recognised as creative output (Huber, 1998) and therefore they represent the right
innovative outcome to look at. The aim of this paper is to show that scientific and market
knowledge sources are complementary for the patenting performance of inventors, by testing the
hypothesis that the joint use of scientific and market knowledge has a higher impact on the
inventor’s performance than the separate use of each of the two knowledge sources. In addition,
the role of both individual and employer’s factors will be studied.

2



The novelty of the present study lies, in the first place, in the focus on the individual innova-
tor as unit of analysis, instead of the firm, which is the typical unit of analysis for these types
of studies. In addition, the paper exploits an original data source that combines a survey of
industrial inventors carried out in three European regions with patent data from the European
Patent Office (EPO). Whereas previous literature has mainly relied on proxies for the knowledge
linkages of inventors to knowledge sources, the survey data here presented is likely to provide a
better indicator since inventors were explicitly asked questions on the use of different knowledge
sources in the inventive process.

In the empirical analysis, a number of measures of inventors’ performance (i.e. quantity and
quality of patents) will be estimated as a function of scientific and market knowledge sourcing
strategies, controlling for individual-level characteristics as well as patent- and firm- level deter-
minants. This is also known as the productivity (or direct) approach (Cassiman and Veugelers,
2006), which has been widely used in the management literature to analyse the relevance of
knowledge flows for firms and, to the best of the author’s knowledge, it is one of the first at-
tempts to apply it at the inventor’s level. Ordinary least squares with robust standard errors
will be used. Along with the baseline regressions, the breakdown by inventor’s job mobility will
be shown and a further robustness check carried out.

The remainder of the paper is organised as follows: section 2 provides a review of the literature
that leads to the hypothesis of the paper; sections 3 and 4 present the method and the data used
for the empirical analysis; the empirical results are presented and commented in sections 5 and
6 and these include the baseline regressions as well as a robustness check. The last section will
conclude the paper by summing up and discussing the empirical findings.

2 Theoretical framework and hypothesis

2.1 The role of scientific knowledge and market knowledge for firms

External knowledge acquisition is necessary for innovation activities carried out by firms, es-
pecially in the current context of market globalisation and rapid technological change. Both
the early literature on technological change (see e.g. Allen and Cohen, 1969; Allen, 1977) and
the more recent studies on the knowledge sourcing strategies of firms (see e.g. Arora and Gam-
bardella, 1990, 1994; Cassiman and Veugelers, 2006, 2007; Frenz and Ietto-Gillies, 2009) assert
that firms cannot rely only on their internal resources and have to tap into knowledge outside
their boundaries in order to successfully produce innovation.

The long-standing debate on the nature of technological change - whether it is mainly market-pull
or technology-push - has evolved around the distinction between market knowledge and scientific
knowledge. The seminal works of e.g. Griliches (1987); Jaffe (1989); Adams (1990), have uncov-
ered the role of external knowledge from academia - often referred to as scientific knowledge - for
innovation activities of firms and economic development. For instance, Jaffe (1989) shows that
there is a significant effect of university research on firms’ patenting activity. Since then, the
literature on firm-university links has grown and complemented those seminal studies (see e.g.
Mansfield, 1995; Mansfield and Lee, 1996; Cohen et al., 2002), demonstrating that firms exploit
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scientific knowledge in order to produce innovations and stay competitive on the market. On
the other hand, firms seek and exploit technical knowledge from external agents that are close
to the market in order to reduce the uncertainty associated with innovation (Hagedoorn, 1993),
that is, to find new ideas, or address technical issues that arise during the innovation process.
These close-to-the-market actors are clients and customers, direct competitors, or suppliers (see
e.g. Von Hippel, 1988). The literature usually refers to the knowledge provided by these actors
as market knowledge in order to stress its source - as opposed to scientific knowledge that comes
from scientific actors2.

The theoretical literature has underlined how different typologies of knowledge originating from
different sources are useful at different stages of the research process. In his seminal work on
the process of technological innovation, Utterback (1971) distinguishes three overlapping stages
through which an innovation is realised. The first is the idea-generation phase, which results in
the origination of a technical proposal or design concept; the second is the problem-solving phase,
resulting in an invention or an original technical solution; the third stage consists of the imple-
mentation and market introduction, culminating in the diffusion of the innovation3. Specifically
referring to external knowledge, Utterback states that “The greater the degree of communication
between the firm and its environment at each stage of the process of innovation (. . . ), the more
effective the firm will be in generating, developing and implementing new technology” (Utterback,
1971, pag. 85), thus suggesting that external knowledge is beneficial to the whole innovation
process, from the idea-generation phase, to the implementation and commercialisation of an
innovation. In addition, a recent theoretical contribution that investigates the advantages and
disadvantages of academic and private research, demonstrates that academia is most useful in
the early stages of the research process, while the private sector tends to do better in the later
stages (Aghion et al., 2005). The reasons lie behind the different systems of incentives within
academia and within firms. Academia, because of its commitment to leaving creative controls
in the hands of scientists, can be indispensable for early stage research aimed at fostering new
research lines; on the other hand, the private sector’s focus on higher payoff activities makes it
more useful for later-stage research, aimed at producing profitable innovations and introducing
them to the market. Therefore, the theoretical literature first suggests that external knowledge
is fundamental to the innovation process, and, second, that different sources of knowledge must
be accounted for, because potentially having different effects on the different stages of the inno-
vation process.

Besides, the empirical literature shows that firms adopt and use knowledge from different sources,
often combining internal and external knowledge acquisition strategies (see e.g. Arora and Gam-
bardella, 1990, 1994; Cockburn and Henderson, 1998). In this respect, the seminal work of Cohen
and Levinthal (1990) on the concept of absorptive capacity - defined as the capacity of a firm
to recognize, assimilate and exploit external knowledge - particularly stresses the co-existence

2It would also be appropriate to call it technical knowledge for its main problem-solving nature; since the
present study stresses the channels through which knowledge reaches inventors, knowledge coming from market
channels will be called market knowledge.

3The latter is not strictly considered as part of the process of innovation since it partly occurs outside the firm,
hence the literature generally considers the first two (overlapping) phases as the main ones (Weck and Blomqvist,
2008).
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of different types of knowledge inputs and their contribution to the firm’s innovative activities.
Among others, Cassiman and Veugelers (2006) show that internal R&D and external knowledge
acquisition are complementary innovation activities, while the same authors finds evidence of
substitution effect between embodied and disembodied technology acquisition strategies (Cassi-
man and Veugelers, 2007). Criscuolo et al. (2005) and Crespi et al. (2008) make use of firm-level
data and estimate a knowledge production function to study the contribution of different knowl-
edge flows to firm-level productivity. Whereas Criscuolo et al. (2005) show that globally engaged
firms innovate more thanks to the intra-firm worldwide pool of information as well as from sup-
pliers, customers and universities, Crespi et al. (2008) stresses the importance of clients, among
the knowledge flows. Even if evidence is mixed, it seems quite clear that external knowledge
contributes to the innovation process and that different typologies of knowledge flowing from a
wide range of different actors matter.

2.2 The role of scientific knowledge and market knowledge for inventors

Whereas the existing evidence on the the role of external knowledge for innovation mainly takes
the firm and its innovative activities (e.g. commercial activities, inventions, sales of innovative
products) as the unit of analysis, recently the attention has also moved down to a finer level of
analysis, such as the individual inventor inside the firm (see e.g. Giuri et al., 2007; Hoisl, 2007;
Mariani and Romanelli, 2007; Pasquini et al., 2012; Schneider, 2009; Weck and Blomqvist, 2008).
The interest in the inventor as the main unit of analysis is justified by the fact that innovation
is not simply the product of firms and organisations. It ultimately requires individual creativity
and patents are, indeed, commonly recognised as creative output (Huber, 1998). As a matter of
fact, the empirical evidence about university inventors is vast, partly because of a large amount
of information publicly available. Instead, evidence on industrial inventors is rather limited and
not conclusive yet.

The empirical literature confirms that patent productivity among private inventors is skewed,
similarly to that of academic inventors - i.e. few inventors produce a high number of innovations
whereas the vast majority display a low invention rate - but, because of the lack of informa-
tion at individual level, it is hard to identify the reasons behind this behaviour (Mariani and
Romanelli, 2007; Menon, 2011). Furthermore, it has been shown that both inventor’s factors
and characteristics of the employers affect the inventor’s performance (Giuri et al., 2007). As
mentioned above, more recently there have been attempts to address the role of knowledge flows
for inventors. Previous studies showed that scientific sources of knowledge are often the least
important for inventors (and more generally, for firms) and market sources of knowledge are
instead the most important ones (Eurostat, 2007; Giuri et al., 2007). This is not surprising,
since the distance between purely scientific knowledge and technical knowledge stemming from
market channels is quite large. Notwithstanding, only recently the interdependence of the two
for the inventive process has been inquired in the literature. On the one hand, it has been
shown that scientific and market sources of knowledge display a subadditive relationship for the
monetary value of the inventions (Schneider, 2009). On the other hand, it has been uncovered
a positive and significant contribution of external-to-the-firm knowledge to the probability that
a patent is commercialised (Pasquini et al., 2012). Moreover, a qualitative case study on the
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inter-organisational relationships developed by inventors within a company, found that patent
competitiveness benefits more from buyer-seller relationships than from R&D consortia (Weck
and Blomqvist, 2008).

The evidence on the role of knowledge for industrial inventors and their performance is, therefore,
still scarce and not yet conclusive. In addition, the existing studies, though accounting for the
inventors’ use of knowledge, exploits patents as the ultimate outcome measure, instead of the
inventor. The present study intends to fill these gaps by focusing on the relationship between
the industrial inventor’s knowledge sourcing strategy and her patenting activity. In order to shed
new light on the role of different knowledge sourcing strategies for inventors’ performance, the
research question that will be addressed in this paper is whether scientific and market knowl-
edge are complement or substitute for the inventors’ patenting activity. In other words, we will
ask whether inventors who combine the use of both scientific and market sources of knowledge
display higher (lower) productivity and produce higher (lower) quality inventions than inventors
who use only one or none of them.

As previous studies suggest, scientific and market knowledge produce different effects on the
inventive process, due to their very different nature. Scientific knowledge is usually disconnected
from the market and its purpose is to foster technological progress (Fleming and Sorenson, 2004),
whereas market knowledge is more applicative, aims at addressing specific users’ problems and
is, by definition, market-oriented (Cohen et al., 2002). These differences are evocative of very
different impacts on the inventors’ innovation activity, suggesting that inventors who merely use
scientific knowledge might find radical ideas but create innovations that are far from the mar-
ket or hard to commercialise, while inventors who prefer market knowledge might not focus on
breakthrough innovation but instead create close-to-the-market and more profitable innovations.
In reality, inventors often combine these sources of knowledge, which suggests that there could
be a complementarity relationship between the two and this might have consequences on the
inventors’ performance. Hence, the following hypothesis will be tested:

Hp: The joint use of scientific knowledge and market knowledge has a higher impact on the in-
ventors’ performance than the separate use of each of the two knowledge sources

In line with the open innovation paradigm (Chesbrough, 2003), we expect that inventors draw-
ing upon a higher number of knowledge sources - therefore having an “open” search strategy -
display a better performance than inventors who do not. Hence, it will be argued that knowledge
produced in and sourced from science-related channels (university and public research centres)
display a complementarity relationship with knowledge from market-related actors (suppliers,
customers, competitors, consultants) for the inventors’ performance in terms of patent produc-
tivity and quality. The argument is that, by combining these two types of knowledge, inventors
could exploit different characteristics of the latter that fulfil different needs throughout the in-
ventive process: in other words, inventors would be merging the technological and innovative
potential that derives from scientific knowledge with the market potential that derives from
market knowledge.

In order to test the hypothesis, the inventors’ knowledge sourcing strategies will be measured
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and used as explanatory variables for the inventors’ productivity, by exploiting the so-called
productivity approach (Cassiman and Veugelers, 2006). In the next section the data sources are
first described, followed by the empirical strategy and the construction of the variables employed
in the analysis, along with their descriptive statistics.

3 Data and method

3.1 The PickMe Survey of inventors and the EPO data

The data source consists of a survey of industrial inventors matched to patent data from the
European Patent Office (EPO). The survey of private inventors is part of a European Union
Seventh Framework Program funded project (PICK-ME) and was carried out between 2011 and
2012 in three European regions, namely, Catalonia (Spain), East and West Midlands (United
Kingdom) and Piedmont (Italy). The aim of the survey is to explore the inventive process of
industrial inventors in order to provide new insights about the demand of knowledge expressed by
the actors directly involved in the innovative process. In addition, the survey aims at obtaining
individual-level information that are not usually available in patent documents, such as their
age, gender, education and occupation.

The questionnaire was sent to industrial inventors who filed one or more patent applications
between 2000 and 2006 and whose residential address is in one of these regions. Information on
the inventors’ names and home address was extracted from the Patstat-Kites EPO dataset4. The
selection of regions was based on a number of factors and for a matter of comparability. On the
one hand, the aim was to choose non-core regions, particularly non-capital regions that, because
of the presence of national research institutions and/or other core research organisations, display
peculiar characteristics in terms of knowledge linkages. On the other hand, regions with a similar
industrial structure were chosen and this applies particularly to the case of Piedmont and the
Midlands, being both regions characterised by the presence of a core industry - in both cases the
automotive - and having experienced similar de-industrialisation patterns in the last 30 years or
so.

The survey includes a question on the use of different sources of knowledge, split into internal
sources (colleagues inside the firm and other business unites/departments) and external sources,
i.e. customers, competitors, suppliers, consultancy, universities and public research centres. The
question asks to the inventor to rank the relevance of each source from 0 (not used) to 4 (very
important). The sample of respondents includes 225 inventors from Catalonia (response rate
14%), 117 inventors from the Midlands (response rate 13%) and 533 inventors from Piedmont
(response rate 45%). These have been matched to the Patstat-Kites database via the inventor’s
identifier. It has been possible to retrieve all patent information for each inventor, including
the number of patent applications, the status of the application - whether the patent has been
granted or not -, patent technological classes (reclassified into 7 macro-classes), number of forward
citations of each patent, assignee of the patents (i.e. the owner).

4The EPO Patstat (PATent STATistical) database is a patent statistics raw database, held by the EPO and
developed in cooperation with the World Intellectual Property Organisation (WIPO), the OECD and Eurostat.
A clean version of the raw data is provided by Kites-Bocconi (http://db.kites.unibocconi.it/).
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3.2 Empirical strategy

The estimation strategy follows the so-called productivity (or direct) approach (Cassiman and
Veugelers, 2006), in which measures of inventors’ productivity and quality are estimated as a
function of the inventors’ knowledge sourcing strategies, as well as a number of control variables to
account for individual characteristics, patent features and firm factors. The knowledge sourcing
strategies will be constructed as exclusive dummies that indicate whether the inventors use only
scientific knowledge or only market knowledge, or both, or none of them. The model will be
estimated with ordinary least squared regressions with robust standard errors.

In order to test the hypothesis of complementarity between scientific and market knowledge we
estimate a model in which the dependent variables (Yi) - fully explained in the next section -
lNpat (log of number of patent applications per inventor), Meanfcc (average quality of inventions
per inventor) and Maxfcc (quality of the best inventions per inventor), are regressed on the
inventors’ knowledge strategies plus the vector of control variables (Xi):

Yi = α+ β1scionlyi + β2mktonlyi + β3scimkti + γXi + εi (1)

Where (1) scionly is a dummy variable taking value 1 for inventors who use only scientific
knowledge, (2) mktonly is a dummy variable taking value 1 for inventors who use only market
knowledge and (3) scimkt is a dummy variable taking value 1 for inventors who use both scientific
and market knowledge. The strategy (4) noscimkt, taking value 1 for inventors who do not use
any external source of knowledge, is excluded from the regression to avoid collinearity and hence
is the baseline case. The hypothesis will be confirmed if the estimated coefficient on the joint
use of scientific knowledge and market knowledge is positive (and significant) and larger than
the coefficients of the use of scientific or market knowledge only.

The econometric analysis will be performed on the full sample as well as on the subsamples of
mobile and non-mobile inventors. In addition, a robustness check for the quality measure will
be carried out, in which a weighted measure of quality will be used.

4 Measures

4.1 Dependent variables

4.1.1 Inventor productivity

The variables of interests for the analysis are quantity and quality of inventions at inventor’s level.
In the patent literature, patent count is usually used as a measure of inventor’s productivity (see
e.g. Hoisl, 2007; Mariani and Romanelli, 2007). Patents suffer from one main limitation in this
respect, that is, they do not capture the non-patented inventions. Therefore, by accounting only
for inventions that successfully reached the market, one neglects the relevance of other inventions,
whose patent applications are still under evaluation by the EPO or have been rejected, but that
still represent the outcome of innovative activity. Since the EPO dataset keeps track of all the
patent applications, it is possible to mitigate that bias by taking into account both granted
patent and patent applications, hence capturing those inventions that had the potential to be
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patented and therefore applied for a patent but - at present - have not been granted a patent
(yet). Therefore, we include in the patent count measure (Npat, used in log in the regression)
both patent applications and granted patents between 2000 and 2006.

Due to the short time span, only a truncated measure of inventor’s productivity can be observed.
As a consequence, we would be treating inventors who started patenting before 2000 the same as
inventors who start later or after 2000, hence not taking into account the past patenting activity
(if any). This bias, known as truncation bias, can be mitigated by controlling for the age of
inventors and for the year in which each inventor enters the sample. In particular, the aim of
the latter control is to compare inventors with those that are part of the same cohort, namely
those who “start” patenting in the same year.

4.1.2 Quality of inventions

The second variable of interest is the quality of each inventor’s patents and will be measured with
the forward citations received by each patent. Each patent has to cite the prior art on which it
builds on, and the forward citations count is the number of times the patent is cited by other
patents after it has been granted5. Previous empirical evidence shows that forward citations are
highly correlated with the value of inventions (see e.g. Hall et al., 2001, 2005; Harhoff et al., 1999;
Lanjouw and Schankerman, 2004; Trajtenberg, 1990). Therefore, the more forward citations a
patent receives, the higher is the quality of the patent. This relationship relies on the assumption
that a highly cited patent represents an important invention that will constitute relevant prior
art for future patents. Although forward citations represent an imperfect measure, they are still
considered a valuable proxy for the quality of a patent because they mirror the technological
value of the patent (Nagaoka et al., 2010).

Based on the forward citations received by each inventor’s patents, two measures of quality are
created. Following inter alia Hoisl (2007) and Mariani and Romanelli (2007), in order to measure
the patent quality at inventor’s level, we use the average number of forward citations across each
inventor’s patent during 2000-2006 and the highest number of forward citations among each
inventor’s patents in the same period. The former (Meanfcc) measures the average quality of
inventors6, whereas the second (Maxfcc) accounts for the “best” invention among those produced
by each inventor and thus measures the highest technological success of the inventor during the
time span under consideration.

Table 1 summarises the descriptive statistics of the dependent variables in the whole sample as
well as split by region of residence. The variables are Npat (number of patent applications)7,
Meanfcc (average number of forward citations) andMaxfcc (highest number of forward citations).

5Forward citations differ from backward citations, which are the past patents cited in patent applications.
6Patent citations take time and only a small number of citations occur for younger patents. In order to deal

with this problem, usually only the number of forward citations received within 5 years (or so) from the publication
is taken into account, based on the evidence that more than 50% of citations received occur within this period
(Nagaoka et al., 2010). However, because of the peculiarity of the data, applying this correction would lead to a
very small sample of observations.

7This variable will be use in log in the regression. It is here reported in absolute value in order to give a real
measure of how many patents each inventor produces.
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TABLE 1 ABOUT HERE

In the whole sample of 875 inventors, the average number of patent applications per inventor
is 1.82. In line with previous evidence (Giuri et al., 2007; Menon, 2011), the variable is higly
skewed, since the maximum number of patent applications is 27. The histogram in figure 1 shows
the distribution of this variable: 67% of inventors applied for a patent only once between 2000
and 2006, while only 6% of the sample did it more than five times. Though it could be concluded
that the majority of inventors in the sample are occasional inventors, because patenting only
once, one has to account for the short time span, hence such conclusion cannot be proved. The
average number of patent applications in Catalonia and the Midlands is the same (1.57) and
below the average, while in Piedmont it is above the average (1.98).

Looking at the quality measures, the average number of forward citations across each inventor’s
patents is 2.21 and, similarly to the absolute number of patent applications, this variable is
highly skewed. Looking at the inventions with the highest number of citations, 3.21 is the
average, meaning that on average, the best invention has been cited 3.21 times by other patents.
However, one can see that this figure rises up to 114, hence showing that there is a high variation
across inventors.

FIGURE 1 ABOUT HERE

4.2 Explanatory variables

4.2.1 Knowledge sources

In order to build the knowledge variables we use one question of the survey that asks to the
inventors to rank the importance of a number of sources of knowledge, from 0 (not applicable
because not used) to 4 (very important). The question specifically states “Please indicate whether
interactions with any of the following actors have been important to get relevant information and
knowledge for the work related to your patenting activity during the period 2000-2006 ”. The actors
listed are both internal and external-to-the-firm. However, the focus of this paper is on the role
of external organisations, which are (as listed in the question): suppliers, clients and customers,
competitors and consultancy/private R&D laboratories; universities and public research centres
(see Table 2).

TABLE 2 ABOUT HERE

Firstly, from the respondents’ answers, we build a measure of the use of each knowledge source,
hence six dummies indicating that the inventor used each given source if she answered 1 to
4, and not used it if she answered 0. In order to create the scientific and market knowledge
measures, universities and public research centres are aggregated under the category “scientific
knowledge” and all the others under the category “market knowledge”. Therefore, the dummy
variable that indicates whether the inventor used scientific knowledge (SCIKnow) has value 1 if
she used either knowledge from universities or from public research centres (or both), while the
variable indicating the use of market knowledge (MKTKnow) assumes value 1 if the inventor
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used at least one (or more) of the market sources. Table 3 shows the descriptive statistics of
each knowledge source, as well as their aggregation into scientific and market sources. The share
of inventors who used at least one scientific source is 62% and the correlation between the use of
universities and that of public research centres is quite high, 0.62, supporting their aggregation.
Almost every inventor used at least one of the market sources (91%), although it ranges from
54% of inventors exploiting knowledge from consultants to 71% of inventors using knowledge
from clients and customers. As for the correlation among them, it is worth noticing that the
figures are all above 0.30, with the highest for the correlation between knowledge from suppliers
and knowledge from customers (0.43). Finally, the correlation between scientific knowledge and
market knowledge is 0.2 and it is significant at the 5% level, suggesting that there is a positive
link between the two.

TABLE 3 ABOUT HERE

4.2.2 Inventors’ knowledge sourcing strategies

In order to apply the methodology of the productivity approach, the inventors’ knowledge sourc-
ing strategies have to be derived from the above mentioned knowledge dummies for scientific and
market sources. Hence, we create the following mutually exclusive dummies:

1. scionly : taking value 1 for inventors who use only scientific knowledge (SCIKnow=1 and
MKTKnow=0);

2. mktonly : taking value 1 for inventors who use only market knowledge (SCIKnow=0 and
MKTKnow=1);

3. scimkt : taking value 1 for inventors who use both scientific and market knowledge (SCI-
Know=1 and MKTKnow=1);

4. noscimkt : taking value 1 for inventors who use none of them (SCIKnow=0 and MKT-
Know=0).

By using this approach we intend to compare the performance of inventors who used both scien-
tific and market knowledge, with that of inventors who used only scientific or market knowledge
or none of them. Table 4 shows the frequencies of the exclusive dummies and the values of the
dependent variables for each sub-group of inventors.

The most widespread strategy is that of both using scientific and market knowledge sources
(59% of inventors), followed by the use of market sources only (31,25%). Very few inventors
used only scientific sources and none of the knowledge sources (3,06% and 6,65% respectively).
The breakdown of the dependent variables by knowledge sourcing strategy shows that inventors
using both scientific and market knowledge have the highest performance in terms of number of
patent applications (Npat) (1,98), and best invention (Maxfcc) (3,51). Inventors who only use
market sources have the highest number of average citations across patents (2,42), therefore the
highest average quality of inventions (Meanfcc). The groups of inventors using only scientific
knowledge and none of the sources have the lowest performance. These figures, although only
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descriptive, seems to tell that inventors who combine the two sources of knowledge benefit more
than inventors who do not combine them, therefore suggesting the existence of a complemen-
tarity relationship between scientific and market knowledge. The correlation table shows that
there is a positive - although weak - correlation between the joint use of scientific and market
knowledge and the performance measures. Inventors’ quality is also positively correlated with
the use of market knowledge only.

TABLE 4 ABOUT HERE

4.3 Control variables

Control variables have been created at inventor level. These are: individual characteristics,
which could be derived from the survey, patent features, which have been extracted from the
patent data, and employer information provided by the inventors in the survey responses. As for
individual characteristics, we control for inventor’s gender, age and age squared, assuming that
age might display a non linear (e.g. quadratic) relationship with inventor’s performance, and the
education level, by using 4 dummies for the highest education level attained by the inventors.
From the survey it was possible to extract information on inventors’ mobility between jobs and
job position inside the firm (e.g. R&D department, sales, marketing, etc.). We also control for
whether the inventor retired during the period under analysis. Finally, dummies for the region
where inventors live are introduced. At patent level, we control for whether the inventor has
ever realised patents with other inventors and for the share of foreign-owned patents, calculated
as the share of patents whose owner is not located in the country where the inventor lives. Both
variables serve as proxies for the inventors “openness” toward external knowledge (Hoisl, 2007).

In order to mitigate the truncation bias arising from using a short time span, we control for the
year in which each inventor enters the sample. To do so we use the year indicated in the priority
date of the first patent application (for each inventor) in the time frame 2000-2006. The priority
date is the date of filing of an earlier (or the first) application for which priority is claimed. The
aim of this control is to compare inventors that are part of the same cohort, namely those who
start patenting in the same year. Finally, in order to account for variation across technological
classes, we control for seven patent technological macro classes, following the reclassification of
the International Patent Classification system developed by the french Observatoire des Sciences
et des Techniques (OST). These are Electrical Engineering and Electronics (ost1), Instruments
(ost2), Chemicals and Materials (ost3), Pharmaceuticals and Biotechnology (ost4), Industrial
Processes (ost5), Mechanical Engineering, Machines and Transport (ost6), and Civil Engineering
and Consumer goods (ost7)8.

As for employer’s features, we control for the international exposure of the most recent employer
listed by the inventor, with a dummy that equals one if the firm is a multinational company
9. This variable should account for the firm’s “openness”, assuming that more internationalised
firms also tend to co-operate with external actors and hence widen the pool of knowledge that the

8These are non-exclusive dummies, because each patent can be classified under more than one class.
9This variable has been created by checking companies’ webpages and/or companies accounts.
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inventor can tap into. We also include firm fixed effects to control for the fact that some of the
firms employ more than one inventor of the sample. A set of dummies has been hence created -
one dummy variable for each firm - including both those that employ just one inventor and those
that employ more than one inventor. By controlling for this, we aim at isolating unobservable
drivers of inventors’ performance that are explained by employer characteristics.

The average age of inventors in the sample10 is 44 years old, 40% of them have a Bachelor Degree,
while 18% also hold a PhD. Quite a large share of inventors (68%) changed job at least once during
the period 2000-2006 and around 44% of the whole sample work in an R&D job position inside the
firm. As for their patenting behaviour, most of them (70%) have co-invented at least one of their
patents; on average, 16% of an inventor’s patents is owned by an organisation located abroad
with respect to the inventor’s country of residence. Furthermore, the majority of inventors apply
for patents classified in the technological classes of mechanical engineering (37%) and electrical
engineering (28%), while pharmaceutical has the lowest frequency of patents applied for (11%).
Finally, almost half of the inventors are employed by a multinational firm and roughly half of
the inventors work in a firm where at least another inventor of the sample is employed too. The
cross tabulation of the variables mne and co-employment shows that 38% of the inventors that
are co-workers are employed by a multinational company.

TABLE 5 ABOUT HERE

5 Results

5.1 Inventors’ performance: quantity of patents

Columns (1) to (4) in table 6 shows the results of the OLS regression of inventors’ productivity
measured as the number of patent applications between 2000 and 2006 (in log). The joint use
of scientific and market knowledge (scimkt) is always positive and significant as well as constant
across different estimations, while the sole use of scientific (scionly) or market (mktonly) knowl-
edge is never significant. This indicates that inventors who jointly use knowledge from market
sources and from university or research centres have a higher patent productivity than those who
do not use any of them (the baseline is noscimkt) as well as than those who use only market or
scientific knowledge. This suggests that, as hypothesised, inventors performing better are those
who combine into their inventions the technological and scientific potential of knowledge sourced
from university and research centres with the market potential of knowledge coming from market
actors.

Along with the inventors’ knowledge sourcing strategies, the inventors’ personal characteristics
are first introduced (column (1)), followed by dummies for the region of residence, job character-
istics and year dummies (column (2)), then patent features are added (column (3)) and finally
firm factors - dummy for MNEs and firm dummies - are controlled for (column (4)). The coef-
ficient of age has the expected positive sign and is significant at 10% level, showing that older
inventors have more patents, but this disappears once the year dummies to control for when

10The figures in table 5 are based on a sample of 710 observations, corresponding to the sample used in the
regressions analysis. Descriptive statistics for the full sample are provided in table 12 in Appendix A.
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inventors started patenting are introduced. Inventors with a PhD degree patent less (coefficient
negative and significant at 5% level in column (1)) than inventors who just hold a high school
diploma (baseline), which could be explained by the fact that the latter group enters the job
market right after secondary education (or most likely after the university degree), hence start
patenting earlier, but this relationship disappears once more factors are controlled for. Out of
the other controls, only the dummy for co-inventors has some explanatory power and shows - as
expected - that inventors who cooperate with other inventors (which are in fact the vast majority
- 70% of the sample) are also more productive. The R squared in column (4) rises up to 0.7 once
the firm dummies are introduced in the regression. These serve as controls for firm unobservable
factors that it is not otherwise possible to control for, and show that employers’ characteristics
might play a role in individual decisions. Hence, it can be argued that inventors’ productivity
can be related to some extent to firm decisions aside individuals’ ones. However, it should be
noted that the joint use of scientific and market knowledge - although less significant than in
the other estimations - still represents a driving factor of productivity, with a coefficient for
scimkt of 0.198, corresponding to an increase in the number of patents per inventor by 21.8%11.
In conclusion, it can be said that the joint use of scientific knowledge and market knowledge
systematically shows a positive relationship with inventors’ productivity, and that it is also quite
stable when controlling for individual characteristics, patent features and firm factors.

TABLE 6 ABOUT HERE

5.2 Inventors’ performance: average quality and top invention

Table 7 displays the OLS regression results for the inventor’s quality, expressed in terms of
number of average citations across the inventor’s patents - Meanfcc - (columns (1) to (4)) and
the highest number of citations obtained by one of the inventor’s patents - Maxfcc - (column (5)
to (8)). It can be noticed that the coefficient for the joint use of scientific and market knowledge
(scimkt) is positive and significant until we do not control for employers’ factors. In fact, the
introduction of a control for MNEs and the firm dummies soaks up part of the explanatory
power (apart for the coefficient for co-inventor that is still positively and significantly correlated
to the highest number of citations received). Therefore, once controlling for firm factors, the
hypothesis of complementarity between scientific and market sources seems to have no support.
In addition, the coefficient for scimkt is very similar to that for mktonly, indicating that the joint
use of different knowledge sources is not systematically better than the separate use of market
knowledge for the quality of inventions. This is suggestive of the fact that the interaction of
inventors with only market actors (i.e. other firms mainly) can have a positive impact on the
quality of the inventions, whereas this was not the case for the quantity of patents applied for.

As for individual inventors’ characteristics, it is worth noticing the existence of an inverted-U
shape relationship between the age of the inventors and the quality of inventions - in columns
(1) and (5) the coefficient for age is positive and significant and that for age squared (agesq) is
negative and significant, both at 5% level) - though it loses significance once other factors are
controlled for. As the inventors grow older, they tend to produce inventions of higher quality,

11Being this a log-linear model and scimkt a dummy variable, the estimated effect is calculated as exp(0.198)-1.
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but after a threshold the relationship becomes negative, meaning that after a certain age (around
45 years old for both average quality and best invention), the quality of inventions decreases.
The fact that the inventor works in an R&D department, rather than in other departments
(e.g. marketing or sales) seems to be indicative of higher quality inventions - the coefficient
for R&Djob is positive and significant in model (2), (3), (6) and (7) - which could be due to
the fact that better inventors tend to be employed in R&D departments. Finally, similarly
to the case of inventors’ productivity, the dummy variable for co-inventors has a positive and
significant coefficient in almost every model, but it is particularly important for the quality of
the best invention. This could be explained by the fact that, working in teams of inventors
rather than working alone, increases the chances to develop a technological hit as well as the
quality of the latter. The variables of interest lose any significance in models (4) and (8) once
firm factors are accounted for, which will bring to the argument that - similarly to the case of
inventors’ productivity - there might be some firms’ unobservable factors that drive inventors’
performance, as well as their decision to use any external source of knowledge. To sum up, there
is a positive relationship between the joint use of different sources of knowledge and inventor’s
quality but this is less clear than it was for inventors’ productivity. This is partly because the
use of knowledge from market channels is almost qually relevant for the quality of inventions,
and it is particularly true when employers’ factors are accounted for.

TABLE 7 ABOUT HERE

5.3 Inventors’ mobility and the use of scientific and market knowledge

The literature on inventors’ performance has underlined that one of the influencing factors of
inventors’ productivity and quality is their job mobility pattern. Trajtenberg (2005) is one of
the first who studied the link between mobility and productivity and shows that the former
has a positive impact on innovative output. In particular, mobile inventors have more valuable
patents, that is, more cited patents. Hoisl (2007) studies a sample of German inventors and
shows that those who change job are more productive than those who do not, although increases
in productivity decrease the probability of observing a move. Since 67.4% of inventors in our
sample changed job at least once during the years 2000-06, it is interesting to look for any het-
erogeneity of the results across the two groups of mobile and non-mobile inventors. In order
do so, the sample of inventors will be split into mobile and non-mobile inventors, by exploiting
the dummy jobmobility, that has been constructed from the information provided by the survey
respondents. Mobile inventors are those who moved from one job to another job between 2000
and 2006. Non-mobile inventors are those who did not change job in 2000-2006 (but may have
done so earlier or later). The decision to observe mobility in this time frame is due to the fact
that the key variables of interests - both dependent and independent - are observed during that
time period.

Table 8 shows the OLS results obtained by regressing the measure of inventors’ productivity
(lNpat) against the knowledge sourcing strategies, the individual characteristics and patent fac-
tors, for the subsample of mobile inventors (67% of the sample) in the left panel and for non-
mobile inventors (33% of the sample) in the right panel. Table 9 displays the same regressions
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results but on the measures of quality, both average forward citations (Meanfcc) and highest
number of citations (Maxfcc). In both tables only the coefficients for the three knowledge sourc-
ing strategies are reported12.

Whereas there is not a striking difference between mobile and non-mobile inventors in terms of
their number of patent applications (the coefficients for scimkt are very similar, though slightly
higher for non-mobile inventors), the same cannot be said for the quality of their inventions,
which instead displays some variation across the two sub-samples. In particular, there is no sig-
nificance of the coefficients for the knowledge sourcing strategies in the sub-sample of non-mobile
inventors. If one considers job mobility as a proxy for openness, this result can be interpreted as
that non-mobile inventors are less open to external knowledge and when they use it, this does not
impact the quality of their inventions because they lack the ability and competences to exploit
it.

On the other hand, the joint use of scientific and market knowledge is positively and significantly
related to both average quality of inventions and quality of the best inventions for mobile inven-
tors. This can be explained by the fact that mobile inventors have developed connections with
other (external) organisations due to their job experience and have, hence, the ability to exploit
external knowledge, which, in turns improves the quality of their inventions.

TABLE 8 AND 9 ABOUT HERE

6 Robustness check for the quality of inventors

The empirical results discussed so far suggest that inventors’ quality display more variation than
quantity with respect to the use of external-to-the-firm sources of knowledge. It is thus worth to
further check whether the results hold, by carrying out a robustness check. As mentioned before,
the employment of the number of forward citations received by a patent, though a widely used
proxy for inventors and inventions’ quality, raises a number of concerns with respect to its reli-
ability. Among other things, different technological classes might display quite large differences
in terms of number of inventions and number of forward citations received by patents (see e.g.
Hall et al., 2001). As shown in figure 2, there is quite a high variation in the total number of
forward citations per technological class, ranging from around 4000 citations received by patents
classified into civil engineering to more than 9000 citations received by patents into mechanical
engineering. The mean value (number of total citations weighted for the number of patents)
varies much less than the absolute, with the most cited - on average - patents into chemicals (3)
and the lowest into civil engineering (1.6). By looking at figure 3 it is possible to notice that
there is even more variation across both regions and technological classes.

It is hard to say whether such differences just depend on different citations practices, hence are
somehow artifactual, or reflect a “real” phenomenon. In particular, these can be due to the fact
some technological areas are more innovative and characterised by innovation breakthroughs -

12In tables 8 and 9 firm dummies are never introduced due to the small number of observations, especially in
the sub-sample of non-mobile inventors.
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hence by a higher rate of patenting and more citations - whereas some others are less innovative
and mainly produce incremental innovation - hence less patenting activity and lower citations
(Hall et al., 2001). When such differences exist, the use of the simple mean number of citations
across each inventor’s patent might not capture this heterogeneity. Therefore, as a robustness
check for the estimation of inventor’s quality, we will employ a different dependent variable with
the dual aim of correcting for this potential bias and check whether the main results hold. This
measure is a weighted average of forward citations at inventor level in which the number of ci-
tations received by each patent is firstly weighted for the average number of citations received
by all patents in the same technological class (i.e.: for each patent, its “weighted quality” is
calculated). This first step is done by region of residence of the inventor, so that each patent is
compared to the average number of forward citations received by patents in the same class within
the same region13. This is done to account for variation across both regions and technological
classes and follows the rationale proposed by Hall et al. (2001), according to which, in order to
remove all sources of variation in citation intensities, it is necessary to re-scale citation counts by
dividing them for the average citation count of a group of patents to which the patent of interest
belongs14.

Secondly, the “weighted quality” of each patent is used to create the measure of inventor qual-
ity, by calculating the mean across each inventor’s patents, similarly to what has been done for
the variable Meanfcc15. Table 10 displays the mean values of the newly created variable Mean-
fcc_weighted : the figures show that there is still some variation across regions, but less so across
technological classes (within region), which is what the new measure was thought for16.

FIGURE 2 AND 3 ABOUT HERE

TABLE 10 ABOUT HERE

The econometric analysis follows the same model employed in section 5 of the paper: the measure
of inventor’s quality is estimated as a function of the three knowledge sourcing strategies plus the
usual vector of control variables. The OLS results in table 11 shows that the findings are generally
consistent with the main estimation in table 7, hence confirming the positive relationship between
the joint use of scientific and market knowledge and the performance of industrial inventors.
Similarly to the previous estimates with Meanfcc and Maxfcc as dependent variables, it should
be noticed that the sole use of market knowledge is also significantly related to inventors’ quality.
The coefficient for mktonly is indeed higher or very similar to that for scimkt. Therefore, it is
arguable that the development of market channels is per se an influencing factor of the quality of
the inventors’ patents, and thus, it is not possible to fully confirm that the joint use of market and
scientific knowledge has systematically a higher impact on quality than the separate use of either

13The total count and average of forward citations per technological class are calculated from the full patent
sample in each region - hence not only on the sub-sample of respondents’ patents.

14Hall et al. (2001) use the patent year as reference group for each patent, hence they weight the citation counts
by the average citation count of patents granted in the same year.

15When a patent is classified into more than one technological class, its number of citations is weighted for the
mean value of the average quality of each class.

16Note that the data in table 10 cannot be compared with those displayed in the histograms because the first
are at inventor level whereas the diagrams display data at patent level.
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scientific or market knowledge. Furthermore, the introduction of controls at firm level makes
the variables of interest not significant, which has to be interpreted as the potential existence
of unobservable factors at firm level that should be controlled for. Overall, by using a better
measure of inventors’ quality it is possible to confirm the main findings, and hence to conclude
that inventors’ performance is influenced by the use of external knowledge, although it is not
possible to conclude that the joint use of scientific and market knowledge has a better effect than
the use of each of the sources separately.

TABLE 11 ABOUT HERE

7 Discussion and conclusion

This paper has investigated the role of scientific and market knowledge in the inventive process
inside firms by asking whether industrial patent inventors who exploit both types of knowledge
at the same time display higher performance than those who use them separately. By applying
an empirical framework only rarely employed at individual level, we estimate a model where
the inventor’s performance depends upon her knowledge sourcing strategies (using only scientific
knowledge, using only market knowledge, using both of them) as well as a number of other indi-
vidual, patent and firm level factors. The data comes from an original survey of private inventors
who reside in three European regions, matched to patent data from the European Patent Office.
The findings show that there is a positive and significant relation between both quantity - num-
ber of patent applications - and quality - average forward citations and highest forward citations
received - of inventors’ patenting activity and the joint use of scientific and market knowledge.
The sole use of knowledge from market sources is also significantly related to the quality of
inventors in some of the estimations. Furthermore, mobile inventors seem to benefit more than
non-mobile ones from external knowledge, most likely because of their greater openness towards
external-to-the-firm organisations. The robustness check carried out in the last section further
shows that, when accounting for the uneven distribution of forward citations across different
patent technological classes, the findings are consistent with the previous estimates. Finally, it is
worth noticing that scientific knowledge seems to be never effective if used alone - the coefficient
for the corresponding knowledge sourcing strategy never turns significant - and that some drivers
of inventors’ performance at firm-level may have remained unobserved, since the coefficients of
interest lose significance once employer’s factors are controlled for.

Before underlying the potential implications of this study, it is worth noticing that a number of
limitations emerged. In first place, by administering the survey questionnaire to patent inven-
tors only, non-patenting inventors have been automatically excluded from the sample, therefore
nothing is known about the knowledge sourcing strategies of the latter group. This bias is partly
overcome by taking into account both granted and not-yet granted patents. Moreover, the cross-
sectional nature of the data does not allow to properly control for time-invariant factors. Finally,
although forward citations are widely acknowledged as being among the best proxies for patent
quality, it is also well-known that these have some limitations and might only provide a partial
picture. The creation of a weighted count of forward citations represented an attempt to improve
this measure of quality.
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Yet, the findings of this study offer some contributions to the literature. First, the focus of this
paper is on the individual who is primarily responsible for the inventive activity behind patents,
this being justified by the fact that innovation is not simply the product of firms and organisa-
tions, but it ultimately requires individual creativity. Whereas previous evidence has extensively
focused on the role of organisational-level factors and/or intrinsic patent features in explaining
the outcomes of innovative activities (see e.g. Hall et al., 2005; Harhoff et al., 1999; Pasquini et al.,
2012; Suzuki, 2011), in this paper individual decisions are taken into account as fundamental
drivers of individual outcomes. Existing evidence suggests that inventors should rely on differ-
ent sources of knowledge to increase the chances of patent commercialisations (Pasquini et al.,
2012), though it seems that the opposite is true for the value of patented inventions (Schneider,
2009). This study adds that quantity as well as quality of inventors’ patents benefit from the
recombination of different sources of external knowledge. In addition, in order to analyse the
role of inventors’ knowledge sourcing strategies, the empirical analysis makes use of an original
data source: the PickMe survey of industrial inventors in fact provides brand new insights about
the demand of knowledge expressed by the actors directly involved in the innovative process and
also provides a number of information at individual level, including biographical information,
that are not available from patent applications.
This study also offers some implications for innovation policies. In particular, the evidence of a
complementarity relationship between different sources of knowledge for the inventive process in-
side firms suggests that knowledge exchange across a wide range of organisations - both academic
and non-academic - is beneficial and should be adequately supported.
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Tables

Npat Meanfcc Maxfcc
Obs. Mean Min Max Mean Min Max Mean Min Max

CATALONIA 225 1.57 1 15 2.04 0 25 2.81 0 39
MIDLANDS 117 1.57 1 8 2.06 0 17 3.02 0 35
PIEMONTE 533 1.98 1 27 2.32 0 45.33 3.42 0 114
FULL SAMPLE 875 1.82 1 27 2.21 0 45.33 3.21 0 114

Table 1: Descriptive statistics of the dependent variables

Sources of knowledge Types of knowledge
Suppliers of equipment/materials
Clients and customers MARKET KNOWLEDGE
Competitors
Consultants and private R&D laboratories
Universities SCIENTIFIC KNOWLEDGE
Public research institutes

Table 2: Sources of knowledge

Variable Obs. Mean 1 1a 1b 2 2a 2b 2c 2d
1 Scientific Know. 765 0.62 1
1a University Know. 764 0.61 0.97 1
1b Public research centres
Know.

744 0.40 0.65 0.62 1

2 Market Know. 783 0.91 0.20 0.21 0.23 1
2a Clients Know. 761 0.71 0.16 0.15 0.22 0.52 1
2b Competitors Know. 748 0.68 0.29 0.30 0.37 0.48 0.40 1
2c Suppliers Know. 757 0.70 0.22 0.22 0.27 0.51 0.43 0.32 1
2d Consultants Know. 745 0.54 0.46 0.46 0.48 0.36 0.31 0.33 0.31 1

Table 3: Descriptive statistics of the knowledge sources

Correlations Means
Strategy Freq. Percent Npat Meanfcc Maxfcc Npat Meanfcc Maxfcc
1 scionly 23 3.06 -0.02 -0.02 -0.03 1.57 1.92 2.30
2 mktonly 235 31.25 -0.05 0.03 0.00 1.70 2.42 3.31
3 scimkt 444 59.04 0.09 0.01 0.04 1.98 2.30 3.51
4 noscimkt 50 6.65 -0.07 -0.05 -0.06 1.34 1.56 1.92

Table 4: Descriptive statistics of the independent variables. Note: the total number of inventors sums
up to 752, which is less than the total of 875; this is due to missing answers.
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Variable Description Obs. Mean St.Dev. Min Max
Female Dummy equal to 1 for female inventors 710 0.1014 0.3020 0 1
Age Age of the inventor in 2006 710 44.4 10.2125 22 79
Agesq Age squared 710 2075.51 971.3473 484 6241
HiSc Secondary school degree 710 0.2225 0.4162 0 1
BSc Bachelor degree 710 0.4014 0.4905 0 1
MSc Master degree 710 0.1845 0.3881 0 1
PhD Doctoral studies 710 0.1802 0.3846 0 1
Jobmobility Dummy 1/0 for inventors who changed job at

least once in 2000-06
710 0.6831 0.4656 0 1

R&Djob Dummy 1/0 for inventors whose job position
is in the R&D department of the firm

710 0.4436 0.4971 0 1

Retired Dummy 1/0 for inventors who retired in 2000-
06

710 0.0760 0.26521 0 1

Piedmont Dummy 1/0 for inventors from Piedmont 710 0.5957 0.4911 0 1
Catalonia Dummy 1/0 for inventors from Catalonia 710 0.2464 0.4312 0 1
Midlands Dummy 1/0 for inventors from the Midlands 710 0.1577 0.3647 0 1
ost1 Electrical Engineering; Electronics 710 0.2802 0.4494 0 1
ost2 Instruments 710 0.1746 0.3794 0 1
ost3 Chemicals; Materials 710 0.1746 0.3799 0 1
ost4 Pharmaceuticals; Biotechnology 710 0.1183 0.3232 0 1
ost5 Industrial Processes 710 0.1915 0.3937 0 1
ost6 Mechanical Engineering; Machines; Transport 710 0.3704 0.4832 0 1
ost7 Civil Engineering; Consumer goods 710 0.1225 0.3281 0 1
Co-inventor Dummy 1/0 for whether the inventor has ever

co-invented a patent
710 0.7056 0.4561 0 1

Share-foreign-
patents

Share of the inventors’ patents that are owned
by firms not located in the country where the
inventor lives

710 0.1608 0.3637 0 1

Mne Dummy 1/0 for whether the firm (the last
reported by the inventor in the survey) is a
multinational company

710 0.5169 0.5000 0 1

Co-
employment

Dummy 1/0 for inventors that work in the
same firm

710 0.4985 0.5003 0 1

Table 5: Descriptive statistics of the control variables
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(1) (2) (3) (4)
VARIABLES lNpat lNpat lNpat lNpat

scionly -0.0287 -0.0397 -0.0274 -0.0234
(0.125) (0.147) (0.133) (0.210)

mktonly 0.0983 0.0583 0.0147 0.0943
(0.0649) (0.0657) (0.0634) (0.134)

scimkt 0.211*** 0.181*** 0.147** 0.198*
(0.0620) (0.0628) (0.0600) (0.118)

female -0.00399 -0.00271 -0.0348 0.110
(0.0588) (0.0590) (0.0646) (0.139)

age 0.0239* 0.00958 0.0104 0.0288
(0.0136) (0.0146) (0.0139) (0.0345)

agesq -0.000224 -7.17e-05 -7.95e-05 -0.000301
(0.000142) (0.000160) (0.000148) (0.000377)

BSc -0.0342 0.0340 0.0356 -0.00719
(0.0603) (0.0641) (0.0568) (0.127)

MSc -0.107 -0.0459 -0.0342 -0.0319
(0.0681) (0.0728) (0.0665) (0.152)

PhD -0.147** -0.0380 -0.0296 0.188
(0.0723) (0.0766) (0.0770) (0.266)

jobmobility 0.00843 -0.0150 -0.0704
(0.0461) (0.0427) (0.0937)

R&Djob 0.0451 0.0218 -0.0318
(0.0482) (0.0450) (0.103)

retired -0.0334 -0.0288 0.147
(0.0990) (0.0858) (0.478)

coinventor 0.109** 0.258**
(0.0463) (0.104)

share_foreign_pat 0.00804 0.00103
(0.0479) (0.174)

mne 0.0217
(0.424)

Constant -0.332 0.0835 -0.480 -1.040
(0.323) (0.358) (0.357) (1.106)

Region dummies - Yes Yes Yes
Year dummies - Yes Yes Yes
Patent techn. classes - - Yes Yes
Firm dummies - - - Yes
F-test (scionly, F(3,731)=5.02 F(3,689)=4.10 F(3,680)=4.08 F(3,298)=1.27
mktonly, scimkt) Pr>F=0.0019 Pr>F=0.0068 Pr>F=0.0069 Pr>F=0.2851
Observations 741 710 710 710
R-squared 0.027 0.111 0.278 0.699

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: OLS regression. Dependent variable: log of number of patent applications
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Mobile inventors Non-mobile inventors
VARIABLES lNpat lNpat lNpat lNpat

scionly 0.0428 -0.0187 -0.132 -0.188
(0.181) (0.177) (0.0888) (0.125)

mktonly 0.0675 -0.0161 0.154 0.0747
(0.0919) (0.0887) (0.0951) (0.0937)

scimkt 0.202** 0.146* 0.257*** 0.168*
(0.0914) (0.0865) (0.0912) (0.0876)

Constant -0.252 -0.300 -0.274 -0.483
(0.445) (0.509) (0.522) (0.519)

Region dummies - Yes - Yes
Year dummies - Yes - Yes
Patent techn. classes - Yes - Yes
Firm dummies - - - -
F-test (scionly, F(3,475)=2.58 F(3,456)=3.45 F(3,216)=11.62 F(3,196)=3.41
mktonly, scimkt) Pr>F=0.0532 Pr>F=0.0165 Pr>F=0.0000 Pr>F=0.0185
Observations 485 485 226 225
R-squared 0.038 0.280 0.044 0.351

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: OLS regression. Dependent variable:log(Npat), breakdown by inventor’s mobility
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CATALONIA MIDLANDS PIEDMONT
electrical eng 1.25 1.15 0.95
instruments 1.09 0.51 1.27
chemicals 0.88 0.41 0.83
pharmaceuticals 0.88 0.23 0.97
industrial eng 0.95 1.20 1.10
mechanical eng 1.22 0.74 1.31
civil eng 1.20 0.89 0.73

Table 10: Mean values of Meanfcc_weighted, breakdown by technological class and region

(1) (2) (3) (4) (5)
VARIABLES Meanfcc_w Meanfcc_w Meanfcc_w Meanfcc_w Meanfcc_w

scionly 0.290 0.284 0.423 0.476 0.660
(0.418) (0.434) (0.482) (0.498) (1.377)

mktonly 0.410** 0.357** 0.319* 0.257 0.323
(0.176) (0.177) (0.167) (0.171) (0.465)

scimkt 0.359** 0.335** 0.340** 0.306* 0.273
(0.165) (0.168) (0.161) (0.167) (0.426)

Constant 0.714*** -0.709 1.059 0.808 -1.914
(0.138) (0.893) (0.808) (0.860) (3.680)

Personal characteristics - Yes Yes Yes Yes
Region and year dummies - - Yes Yes Yes
Patent techn. classes - - - Yes Yes
Firm dummies - - - - Yes
F-test (scionly, F(3,741)=2.06 F(3,728)=1.63 F(3,686)=1.67 F(3,677)=1.20 F(3,297)=0.20
mktonly, scimkt) Pr>F=0.1045 Pr>F=0.1805 Pr>F=0.1726 Pr>F=0.3072 Pr>F=0.8984
Observations 745 738 707 707 707
R-squared 0.003 0.010 0.140 0.157 0.560

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 11: OLS regression. Dependent variable: Meanfcc_weighted
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Figures

Figure 1: Distribution of patent applications per inventors

Figure 2: Forward citations received by all patents, breakdown by technological class (classification into
7 classes)
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Figure 3: Average forward citations of all patents, breakdown by technological class and region
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Appendix A

Variable Obs. Mean St.Dev. Min Max
Female 881 0.1044268 0.3059871 0 1
Age 870 44.71954 10.39018 22 79
Agesq 870 2107.669 990.8317 484 6241
HiSc 881 0.2315551 0.4220658 0 1
BSc 881 0.3904654 0.4881318 0 1
MSc 881 0.1702611 0.3760755 0 1
PhD 881 0.1634506 0.3699863 0 1
Jobmobility 807 0.6741016 0.4690002 0 1
R&D 832 0.4290865 0.4952434 0 1
Retired 831 0.0746089 0.2629175 0 1
Piedmont 881 0.6118048 0.4876162 0 1
Catalonia 881 0.2553916 0.4363288 0 1
Midlands 881 0.1328036 0.3395551 0 1
ost1 875 0.272 0.4452444 0 1
ost2 875 0.1782857 0.382972 0 1
ost3 875 0.1748571 0.3800621 0 1
ost4 875 0.1154286 0.3197212 0 1
ost5 875 0.192 0.3940983 0 1
ost6 875 0.3782857 0.4852368 0 1
ost7 875 0.1291429 0.3355498 0 1
Co-inventor 875 0.7085714 0.4546804 0 1
Share-foreign-patents 875 0.1652 0.3677253 0 1
Mne 881 0.4892168 0.5001677 0 1
Co-employment 881 0.4687855 0.4993082 0 1

Table 12: Descriptive statistics of the control variables, full sample
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