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Spatio-temporal Analysis of Regional Systems: 
A Multiregional Spatial Vector Autoregressive Model for Spain 

  

Julián Ramajo, Miguel A. Márquez – UNIVERSITY OF EXTREMADURA (SPAIN, EU) 

Geoffrey JD. Hewings – UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (USA) 

 

Abstract: 

This paper contributes to the recent literature in spatial econometrics that focuses on 
space-time data modeling implementing a multi-location time-series statistical 
framework to analyze a regional system. Therefore, taking as a point of departure the 
Global Vector Autoregression approach introduced in Pesaran et al. (2004), a 
multiregional spatial vector autoregressive model (MultiREG-SpVAR) is formulated 
and then applied to study the spatio-temporal transmission of macroeconomic shocks 
across the regions in Spain.  
The empirical application analyzes the extent to which a region’s economic output 
growth is influenced by the growth of its neighbors (push-in or inward growth effect), 
and also investigates the relevance of spillovers derived from temporary region specific 
output growth shocks (push-out or outward growth effect). Our results identify some 
regions that perform as ‘growth generating’ within the Spanish regional system since 
growth shocks from these regions spill over to a large number of regions of the country, 
playing a key role in transmitting regional business cycles. The policy implications of 
our results suggest that national and/or regional governments should stimulate economic 
activity in these leading regions in order to favor the economic recovery process of the 
whole Spanish economy. 
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1. Introduction 

There has been a growing interest over the last decade to address with the modeling 

of spatio-temporal data in applied economic analysis (see, for example, Anselin et al. 

(2008), Mur and López (2010), Rey and Janikas (2010), or Elhorst (2010, 2012), and 

the references contained therein). This interest can be explained, at least in part, by the 

fact that these types of data permit the modeling of the dynamic interdependencies 

existing between spatial units, incorporating simultaneously the presence of serial 



correlation and spatial dependence between the observations over time and at each point 

of time, respectively. 

Within the vector autoregressive (VAR) approach introduced by Sims (1980), that 

makes it possible to handle the complete set of possible temporal interactions of a set of 

geo-referenced data, a number of efforts have been made in order to explore more 

flexible models of this type. As a result, a new class of spatial vector autoregressive 

(SpVAR) models has recently appeared in the spatial econometrics literature. SpVARs 

are a general type of multivariate vector autoregressions that include spatial as well as 

temporal lags of the state variables.  In contrast to standard VARs, that do not allow the 

joint modeling of dynamic spatio-temporal interdependencies within a group of 

connected economies (regions, states, metropolitan areas or local districts), in SpVAR 

models endogenous variables can exhibit co-movements over time and also over space.  

At the moment, there have been few studies incorporating space in VAR 

specifications. Among these one finds the contributions of Carlino and DeFina (1995) 

who fitted a traditional VAR for a single variable observed in several regions and than 

LeSage and Pan (1995), subsequently generalized by LeSage and Krivelyova (2002), 

who introduced spatial priors in standard univariate Bayesian VAR models with the aim 

of improving the out-of-sample predictive performance of the estimated models. 

Conley and Dupor (2003) and Neusser (2008), based on earlier work of Chen and 

Conley (2001), use a semi-parametric spatial VAR framework to examine sectoral 

interdependencies. In their models, the effect of one sector on another is a function of 

the economic distance between then, and these distances are used to impose a priori 

restrictions in order to estimate (in a semi-parametric way) the proposed SpVAR 

models. More recently, Azomahou et al. (2009) use this semi-parametric approach to 

study the spatial effects of the demographic system on economic growth. 

Di Giacinto (2003, 2006, and 2010) uses spatial prior information in structural VAR 

models in order to provide parameter restrictions that permit the identification of the 

impulse responses derived from the estimated models. Márquez et al. (2010) also use 

structural VAR models, but rather than using spatially lagged variables in order to 

model spatial dependence, bi-regional specifications are used which allow more 

information on spatial dependence to be incorporated and tested. 



Pesaran et al. (2004) and Dees et al. (2007) introduced global VAR specifications to 

study international macroeconomic fluctuations, where spatial information is used to 

model the regional interdependencies that can exist between the variables considered. 

The SpVAR model used in Dewachter et al. (2012) to analyze the propagation through 

space and time of macroeconomic shocks in Europe is a restricted version of this type of 

global models. 

Beenstock and Felsenstein (2007) develop general multivariate spatial VAR models 

which include spatial as well as temporal lags and which can contain spatial error 

components. Kuethe and Pede (2011) use a similar approach but within a simpler 

reduced-form specification to model regional housing price cycles. Brady (2011) uses a 

simple spatial autoregressive specification to measure the diffusion of housing prices 

across space and over time.  Also in Márquez et al. (2013) SpVAR models are 

estimated, in this case with the aim of analyzing the effects of shocks to the relative 

productive capacity of different regions, trying to uncover the pattern of regional 

competition within a country. 

Finally, Canova and Ciccarelli (2009) introduced very general multi-area Bayesian 

panel VAR models, which allow cross-unit interdependencies, unit-specific dynamics 

and time variations in the parameters.  However, contrary to LeSage and Pan (1995) or 

Di Giacinto (2003, 2006, and 2010), they imposed non-spatial prior information to 

obtain posterior distributions for the parameters. 

In this paper, a multiregional spatial vector autoregressive model (MultiREG-

SpVAR) is built. The model is composed of individual Spatial VAR (SpVAR) 

specifications, namely vector autoregressive models augmented by spatially-lagged 

explanatory variables that are combined in a consistent manner following the linking 

approach followed by Pesaran et al. (2004) and Dees et al. (2007). 

The paper is organized as follows. Section 2 outlines the proposed multiregional 

SpVAR model. In Section 3, an illustration of the methodology is provided based on 

estimating a MultiREG-SpVAR model for the Spanish regional system. Prior to the 

analysis of the spatio-temporal propagation of macroeconomic shocks across regions in 

Spain, firstly a brief discussion about regional business cycles and growth spillovers is 

made. Thereafter, information is provided on the data (and their properties) and the 

spatial weights matrices used in the empirical application and a simple correlation 



analysis between the output growth rates of the Spanish regions is made. Next, the 

results of the different estimates of spatial spillovers are presented and discussed. 

Section 4 concludes the paper  

2. The multiregional spatial vector autoregressive (MultiREG-SpVAR) model 

2.1. Econometric specification 

In the proposed MultiREG-SpVAR model the regions are considered as small open 

economies, though allowing for feedbacks between the variables of different regions: 

each region is linked with the others in the regional system under study by including 

external variables in the econometric specification, in such a way that all regions are 

potentially affected by developments in the other regions of the system. These external 

variables are spatial lags of the state variables that have been constructed using spatial 

weights, which specify the neighborhood set for each location. 

Specifically, we consider N regions, indexed by i=1,2,…,N, and the SpVAR(pi,qi) 

multivariate space-time model for region i at time t (t=1,2,…,T) is formulated 

incorporating temporal as well as spatial dynamics as 

Yit = !0i +!1it+"1iYi,t#1 +…+" pii
Yi,t#pi +$0iYit

* +$1iYi,t#1
* +…+$qii

Yi,t#qi
* +uit  (1) 

where Yit = (y1,it, y2,it,…, yG,it !)  is the G!1  vector of internal state variables, 

Yit
* = (y1,it

* , y2,it
* ,…, yG,it

* !)  is the 1×G  vector of external spatially-lagged variables, t  is 

the vector of the deterministic time trends, jiΛ  (j=0,1), jiΓ  (j=1,2,…,pi) and jiΦ  

(j=0,1,2,…,qi) are conformable matrices of parameters, and itu  is the G!1  vector of 

shocks assumed to be serially uncorrelated with a zero mean and a non-singular 

covariance matrix, !ii =Cov(uk,it,ul,it ) = (! ii,kl ) . In (1), the ! jiYt" j  terms represent the 

temporal dynamics, the !0iYit
*  term indicates the presence of spatial dynamics and, 

finally, the !jiYt" j
*  terms represent the temporal-spatial dynamics. 

For each region, the vector of external variables is built as Yit* = wijYjt
j=1

N

! . The region 

specific weights w
ij

 form a row-standardized NN ×  connectivity matrix Wwith 



elements known a priori satisfying 
  
w

ii
= 0  and wij

j=1

N

! =1. This matrix reflects the 

network of relationships in the regional system. Then, the spatially lagged vector Yit*  

summarizes the state of the economy in the neighboring regions, and their components, 

yg,it
* = wijyg, jt

j=1

N

! , are a weighted average of gy  in all regions except the ith. The 

specification of the spatial weights matrix will be addressed in section 3. 

It can be seen from (1) that spatially heterogeneous model dynamics is allowed 

because parameters in the SpVAR models are assumed to vary unrestrictedly at the 

level of the individual regions. Also cross-region correlation among the disturbances is 

allowed, given by !ij =Cov(uit,u jt )  for i ! j . Therefore, the isolated region-specific 

SpVAR models allow for cross-unit contemporaneous interdependencies through two 

channels: (i) correlation among internal and external variables (!0i  matrices); (ii) 

correlation of shocks in different regions (!ij  matrices). 

To build the MultiREG-SpVAR model, first internal and external variables are 

grouped as Zit = ( !Yit , !Yit
* !)  in order to put all the regional models together as a system  

A01Z1t = !01 +!11t+A11Z1,t"1 +…+Ar1Z1,t"r +u1t
A02Z2t = !02 +!12t+A12Z2,t"1 +…+Ar2Z2,t"r +u2t

…
A0NZNt = !0N +!1Nt+A1NZN ,t"1 +…+ArNZN ,t"r +uNt

#

$

%
%

&

%
%

 

 

(2) 

where A0i = (IG,!"0i ) , Aki = (!ki,"ki )  (i=1,…,N ; k=1,…,r) and  r=max(pi,qi).  

Secondly, link matrices Li  of order (2!G)! (N !G)  are constructed on the basis of 

the regional weights connection w
ij

 in order to obtain the identity Zit = LiYt  that relates 

the region-specific variables Zit  to the ‘global’ variable Yt = ( !Y1t, !Y2t,…, !YNt !) , Yt  being 

a vector of order (N !G)!1  containing all the endogenous variables of the 

multiregional model. Thus, the system of individual models (2) yields a compact 

specification in terms of Yt  given by 

G0Yt = !0 +!1t+G1Yt"1 +…+GrYt"r +ut  (3) 



where G j = ((A j1L1 !) , (A j2L2 !) ,…, (A jNLN !) !)  (j=0,1,…,r), ! j = ( "! j1, "! j2,…, "! jN ")  

(j=0,1), and ut = ( !u1t, !u2t,…, !uNt !)  with !u =Cov(ut ) .  

Finally, since it can be shown that 0G  is a (N !G)! (N !G)  non-singular matrix if 

the global model is to be complete (that is, if it is possible to uniquely solve the state 

variables of all the regions), the following integrated reduced form can be obtained by 

premultiplying expression (3) by the matrix 1
0
−G : 

Yt = !0
1 +!0

2t+!1Yt"1 +…+!rYt"r + et  (4) 

where !0
j =G0

"1# j  (j=0,1), !j =G0
"1G j  (j=0,1,…,r) and et =G0

!1ut  with !e =Cov(et ) , 

a non-restricted covariance matrix. 

Having reparametrized the original system (2) as (4), the multiregional spatial vector 

autoregressive model can be seen as a reduced-form VAR model for the regional system 

vector Yt = ( !Y1t, !Y2t,…, !YNt !) . This expression is the basis for the analysis of the 

dynamic properties of the multiregional model, and can be utilized among other things 

for the simulation of the response of the regional system to shocks in specific regions, 

as set out in section 3. 

2.2. Relationship with the spatial econometrics literature 

Although our proposed MultiREG-SpVAR model shares some similarities with other 

models proposed in the spatial econometric literature, it also has important differences.1  

In this regard, the Beenstock and Felsenstein (2007) SpVAR models are similar to 

(1), including spatial as well as temporal lags, but only homogeneous dynamics is 

permitted (coefficients do not vary across locations). The MultiREG-SpVAR model is 

more general than the one proposed by Beenstock and Felsenstein because it is allows 

heterogeneous dynamics, a distinctive feature of multiregional time series (panel) data. 

Moreover, the Canova and Ciccarelli (2009) multicountry VAR models use an 

econometric specification as in (4), allowing cross-unit lagged interdependencies, 

heterogeneous dynamics, and structural time variations. Due to the high dimensionality 
                                                
1 We do not include in this comparison some previous contributions due to the univariate nature of the 
proposal (Carlino and DeFina, 1995; LeSage and Pan, 1995; LeSage and Krivelyova, 2002; Chen and 
Conley, 2001; Conley and Dupor, 2003). 



of the proposed models, the framework of the analysis is Bayesian. Abstracting from 

the statistical framework, our specification is in one sense more general than that 

proposed by Canova and Ciccarelli because cross-region contemporaneous (and also 

time-lagged) spatial interdependencies are allowed, but it is more restricted in other 

sense because no time variations are allowed in the parameters. 

Finally, the Di Giacinto (2010) structural SpVAR specifications are comparable to 

(3), but assume a block-triangular structure for the matrix of simultaneous interactions 

0G , thus restricting the spatial interaction coefficients. Although spatial heterogeneity is 

allowed, permitting all model parameters to vary unrestrictedly at the level of the 

individual regions, the recursive identification scheme (causal ordering of the 

endogenous variables) makes the De Giacinto’ specification less general than the 

MultiREG-SpVAR model. 

In conclusion, the suggested multivariate specification occupies an intermediate 

position in the spatial econometrics literature, being more general in some senses (cross-

unit interdependencies and heterogeneity in the underlying dynamic process), and 

having some restrictions in other sense (time variations in the coefficients).  

2.3. Example 

To illustrate the proposed approach we present a simple MultiREG-SpVAR(1,1) 

model composed of N=3 regions in G=2 state variables. 

For region i=1,2,3 the SpVAR structure is given by:  
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where  y1,it
* = wi1y1,1t +wi2y1,2t +wi3y1,3t

 
and y2,it

* = wi1y2,1t +wi2y2,2t +wi3y1,3t , and wij  are a 

set of spatial weights forming a matrix: 

W =

0 w12 w13
w21 0 w23
w31 w32 0

!

"

#
#
##

$

%

&
&
&&

 



with the properties that w12 +w13 =1, w21 +w23 =1  and w31 +w32 =1 . 

Written in disaggregated form, each SpVAR(1,1) takes the form: 

y1,it = !0i
1 +!1i

1 t +"1i,1
1 y1,it#1 +"1i,2

1 y2,it#1 +$0i,1
1 y1,it

* +$0i,2
1 y2,it

* +$1i,1
1 y1,it#1

* +$1i,2
1 y2,it#1

* +u1,it
y2,it = !0i

2 +!1i
2 t +"1i,1

2 y1,it#1 +"1i,2
2 y2,it#1 +$0i,1

2 y1,it
* +$0i,2

2 y2,it
* +$1i,1

2 y1,it#1
* +$1i,2

2 y2,it#1
* +u2,it

%
&
'

('
 

The three region-specific SpVAR models can be written together as: 

y1,1t !"01,1
1 y1,1t

* !"01,2
1 y2,1t

* = #01
1 +#11

1 t +$11,1
1 y1,1t!1 +$11,2

1 y2,1t!1 +"11,1
1 y1,1t!1

* +"11,2
1 y2,1t!1

* +u1,1t
y2,1t !"01,1

2 y1,1t
* !"01,2

2 y2,1t
* = #01

2 +#11
2 t +$11,1

2 y1,1t!1 +$11,2
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* +"11,2
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y1,2t !"02,1
1 y1,2t
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1 y2,2t
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1 +#12

1 t +$12,1
1 y1,2t!1 +$12,2

1 y2,2t!1 +"12,1
1 y1,2t!1
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1 y2,2t!1
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Then, defining the vectors Zit = (y1,it, y2,it, y1,it
* , y2,it

* !) , we have: 

A01Z1t = !01 +!11t+A11Z1,t"1 +u1t
A02Z2t = !02 +!12t+A12Z2,t"1 +u2t
A03Z3t = !03 +!13t+A13Z3,t"1 +u3t

#

$
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where A0i = (I2,!"0i ) , A1i = (!1i,"1i )  for i=1,2,3. 

Now the full regional system vector Yt = (y1,1t, y2,1t, y1,2t, y2,2t, y1,3t, y2,3t !)  is defined, and 

link matrices Li  of order 4!6  are constructed in order to obtain the identity Zit = LiYt  

for i=1,2,3. In this example, these matrices have the form: 

L1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 w12 0 w13 0
0 0 0 w12 0 w13
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L2 =
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After that, the individual models are stacked to yield a model for Yt  given by: 
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or, more compactly, given by:  

G0Yt = !0 +!1t+G1Yt"1 +ut  

where G0 =
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Premultiplying the equation for Yt  by 1
0
−G , the following reduced-form VAR model 

is obtained: 

Yt = !0
1 +!0

2t+!1Yt"1 + et  

that in disaggregated form can be written as: 
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3. An illustrative application of the MultiREG-SpVAR methodology: the 
transmission of shocks in the Spanish regional system 

To place the application in context, first a brief discussion is made in this section 

about regional business cycles and growth spillovers. Thereafter, the Spanish regional 

system, the data (and their statistical properties) and the spatial weights matrices used in 

the empirical application are presented. Then, a short exploratory analysis of the 

Spanish regional cycles is made through a simple correlation approach. Finally, in 

subsections 3.6 and 3.7 the estimation results and simulations derived from the 

MultiREG-SpVAR model applied to the Spanish regional system are presented. Given 

the very large number of regressions and intermediate results involved in the estimation, 

only the main estimation and specification tests results are presented. Specifically, only 

output shocks are analyzed, although employment or capital (private or public) could 

also be investigated. Then, our empirical application concentrates on the relevance of 

growth spillovers within Spain. 

3.1. Regional business cycles and growth spillovers 

Over the recent years, considerable attention has been paid to the degree of co-

movement of economic activity across regions (Montoya and de Haan, 2008). This fact 

can be explained because the analysis of regional business cycles is an important issue 

for policy makers (for example, Kouparitsas, 1999, and Mihov, 2001). The majority of 

studies have focused on the research into economic integration (Darvas and Szapáry, 

2004) and regional business cycle synchronization (Clark and van Wincoop, 2001), with 

their corresponding derivations on economic policy (Larsson et al., 2009) and trade 

recommendations (spurred by the seminal articles of Frankel and Rose, 1997,1998). In 

addition, a few studies have examined the extent to which different factors may lead to 

changes in regional business cycles (Artis et al., 2011).  

Much less attention has been devoted to the impact of regional shocks on regional 

economic cycles. Motivated by recent empirical literature using aggregate-level data at 



the international level (see for instance Arora and Vamvakidis (2005) and Bagliano and 

Morana (2012)), we go beyond existing regional studies by considering growth 

spillovers within a country. Effectively, notwithstanding the fact that regional business 

cycles is a topic with an extensive economic literature, to our knowledge, no studies can 

be found that directly allow the joint modeling of dynamic interdependencies of 

business cycles within a regional system trying to analyze the spatial and temporal 

responses in all regions to a temporary shock in an state variable of one specific region.  

In this context, the main underlying hypothesis in our empirical application is the 

existence of regional growth spillovers, where the evolution of one regional economy 

influences the growth of neighboring regional economies (Cheshire and Carbonaro, 

1996). According to Capello (2009) growth spillovers would make reference to 

influences from a single regional economy on the growth of neighboring regional 

economies through trade linkages and market relationships. In the particular case of the 

Spanish economy, a question emerges: Can positive growth shocks from some regions 

in Spain spill over to other regions, stimulating the economic growth of the Spanish 

regional system? 

3.2. Data for the Spanish regions 

The database used consists of yearly time series for the Spanish Autonomous 

Communities. This corresponds with a NUTS2 level of disaggregation in the Eurostat 

nomenclature of statistical territorial units.2 Spain is a decentralized state composed of 

17 regions and Ceuta and Melilla (two Spanish North African cities), and they 

constitute the so-called Autonomous Communities (see figure 1).  These regions have 

achieved the status of self-governed territories, sharing governance with the Spanish 

central government within their respective territories. Due to the transfer of important 

economic responsibilities from the central government to the regional executives, the 

NUTS2 level of disaggregation in Spain is the most interesting level from a political 

economy perspective.  

<<insert figure 1 about here>> 

                                                
2 Although the Spanish national statistical office (INE) and other institutions provide some information at 
NUTS3 level (provinces in the Spanish nomenclature), there is not enough information available to 
assemble a complete database for output and all productive factors considered.   



The data for the 17 Spanish regions cover the period 1964-2003 and for each region 

the macroeconomic variables used are the following: gross value added, GVA, measured 

at basic prices in thousands of year 2000 constant euros; total employment (E), in 

thousands of employed persons; and private (KPR) and public (KPU) net capital stocks, 

in thousands of year 2000 constant euros.  The regional series for GVA and E have been 

drawn from the BD.MORES database (Bustos et al., 2008) and the time series for KPR 

and KPU have been taken from the Fundación BBVA-Ivie database (Mas et al., 2009). 

Some summary statistics of these and other variables (population –POP- and relative 

GVA per capita –GVApc) on the seventeen Spanish regions are shown in Table 1. 

 <<insert table 1 about here>> 

3.3. Spatial weights 

With respect to the matrix W  reflecting the spatial connectivity structure between 

regions necessary to build the region-specific spatially-lagged variables (Yit* = wijYjt
j=1

N

! ) 

used in the MultiREG-SpVAR model, we experiment with two alternative definitions of 

spatial weights, and then we use ‘goodness-of-fit’ statistics to choose the model that 

best represents the data.3 

The first spatial weights matrix is based on a pure geographical criterion (physical 

distance), a standard first-order contiguity scheme, this being defined by the existence 

of a common border between each two regions.4 Then, a binary neighborhood-based 

spatial weights matrix is built defining non-normalized weights *
ijw  as (by convention, 

self-neighbors are excluded, so wii
* = 0 ): 

wij
* =

1    if regions i and j  are geographical neighbors
0   otherwise

!
"
#

$#
 

and next a Wgeog = (wij )  row-standardized weights matrix is defined as ∑=
j ijijij www ** . 

                                                
3 Some recent discussions about the different approaches in constructing the spatial weights matrix can be 
found in Elhorst (2010), Harris et al. (2011) or Corrado and Fingleton (2012). 
4 In the geographical case, we only use the first-order contiguity weights matrix because Stakhovych and 
Bijmolt (2008) show in a Monte Carlo simulation research that this matrix performs better on average 
than those using the K-nearest neighbors and inverse distance weights matrices in terms of their 
probabilities of finding the true model and the lower mean squared error of the parameters. 



The second weights matrix is based on an economic criterion, hypothesizing that the 

spillover effect a region has on another depends on the ‘economic’ distance between 

them, such as technological proximity or the intensity of economic activity. So the 

Wecon  matrix has been built using information on trade linkages among the regions in 

order to capture the economic interaction of region j with the ith region’s economy and 

not only the geographic interaction.5 The trade-based weights were computed using data 

on interregional trade in Spain drawn from the C-Intereg database (Llano et al., 2008, 

2010). 

Initially, we used a fully-connected trade-share weights matrix based on the averages 

of regional goods trade flows in Spain. Thus, mean trade shares ijs  were computed as 

portions of region j in the total trade (exports plus imports) of region i over the period 

2004-2007 (measured in millions of euros), and the spatial weights were defined as 

ijij sw =*  (and wii
* = 0 ). The resulting multiregional model was not dynamically stable 

(some eigenvalues of the model were slightly above unity) so we decided to transform 

the trade-share matrix into a more sparse matrix, trying at the same time to mitigate the 

potential endogeneity problem caused by using a weight matrix determined by one 

variable (trade) directly related with the phenomenon under study (regional economic 

growth).6 

 As a result, a binary trade-based spatial weights matrix with a cut-off point was built 

defining non-normalized weights *
ijw  as  

wij
* =

1    if   sij !!

0   if   sij <!

"
#
$

%$
 

                                                
5 The relationship between trade and business cycle synchronization has been well documented in the 
literature (see, for example, Baxter and Kouparitsas, 2004, Imbs, 2004, or Calderón et al., 2007). For the 
Iberian case, Barrios and De Lucio (2003) show that trade and industrial specialization play an important 
role in determining regional economic fluctuations. Then, the intensity and pattern of trade between 
Spanish regions can influence the size and the shape of shocks across them. 
On the other hand, the literature on technological diffusion documents that economies exchanging goods 
take advantages of technological improvements and market (pecuniary) externalities in other economies 
(Vayá et al., 2004). Then, changes in the state variables of trading partners can spread out to the regional 
system. 
6 Anselin and Rey (1991) and Farber et al. (2009) show that high connectivity of the weights matrix has a 
negative impact on the probability of detecting the true model specification. Smith (2009) also shows that 
strongly connected matrices introduce a downward bias for the estimates of spatial parameters. These 
results, along with the instability of the model using the full-connected trade matrix, reinforce our 
decision to use a sparser binary trade-contiguity matrix as the proposed below. 



and then a Wecon = (wij )  row-standardized weights matrix was defined as 

∑=
j ijijij www ** . In the application we have used as trade-neighbors of region i those 

regions j that have a mean trade share above 10% (! = 0.1 ) of the total trade. This 

criterion is based on the idea that only ‘relevant traders regions’ have non-negligible 

spatio-temporal effects on their neighbors, the remaining regions being less important 

and assumed to have negligible individual impacts. The 10% critical cut-off point yields 

a set of 3 to 5 (not necessarily geographically contiguous) neighbors.7  

Table 2 presents in two panels the 17!17  weight matrices (for the seventeen Spanish 

regions) used in this work, where weights are displayed in row-normalized form by 

region, such that the elements of each row sum to one. Note that, contrary to the purely 

geographical case, the trade-based spatial weights matrix is non-symmetric, reflecting 

asymmetry in the weight importance of the trade relationship between regions. 

Moreover, the data of the trade-based matrix highlight the key role played by six 

regions (Andalusia, Catalonia, Castile and León, Madrid, the Basque Country and the 

Valencian Community), which are the more integrated with the rest of Spanish regional 

economies. If a major transmission mechanism for externalities is trade, we should 

expect that spatial spillovers will often emanate from these six core regions in terms of 

the exporting and importing of goods and services across geographical space (and also 

in terms of size and performance), playing an important role in the propagation of 

shocks across the Spanish regional system. 

<<insert table 2 about here>> 

The weights matrix finally used in the construction of the multiregional model has 

been selected by estimating the corresponding individual SpVAR models, and 

subsequently evaluating the results using information criteria. Following Stakhovych 

and Bijmolt (2008), this information criteria checking is the best statistical procedure to 

find the correct specification of the weights matrix, increasing both the probability of 

identifying its true specification and the precision of the parameter estimates. 

Table 3 presents the AIC statistics obtained in both cases. An inspection of the 

numbers in this table shows that in most cases the econometric specifications utilizing 

                                                
7 To check the robustness of our results we have used two other values (α=0.05 and α=0.15), and the 
results were qualitatively similar to those presented in this paper, so we omit them for the sake of brevity. 



trade-based weights work better than those using geographic-based weights. Then, we 

employ only the Wecon  matrix in the rest of the application. 

3.4. Unit root analysis 

As a step prior to the VAR analysis of subsection 3.6, the integration properties of all 

the variables have been examined in order to determine the existence of unit roots [I(1)] 

or stationarity [I(0)] in their time-series behavior.  

First, we investigated the order of integration of each variable (in logs) by means of 

the standard Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) and also 

we used the Weighted Symmetric Dickey-Fuller (WS) test (Park and Fuller, 1995) in 

order to increase the small-sample power performance of the unit root analysis. Both 

type of tests provided evidence favoring the hypothesis that the vast majority of the 

series under study behave as I(1) non-stationary variables.  

Further, we used some panel unit-root tests to test the presence of unit roots in the 

series (Breitung and Pesaran, 2008). These panel unit-root results provide again general 

evidence for not rejecting the hypothesis that the variables in the database behave in a 

non-stationary manner.8 Hence, all the SpVAR models that make up the multiregional 

specification have been estimated in log first differences, and not levels.9 

3.5. Spanish regional business cycle comovements through time 

In this subsection we analyze, in a very simple descriptive manner, business cycle 

comovements through time between the Spanish regions.10 Column 2 of table 4 shows 

the Pearson’s correlation coefficients for yearly real GVA growth rates between Spain 

and its seventeen regional economies for various sub-periods. It appears that economic 

growth in the regions is quite correlated with that in the national economy in the four 

subintervals considered. Moreover, the correlation coefficients generally are slightly 

lower in the 1976-1985 period, and clearly declined in the post-1996 period. 

                                                
8 For the sake of brevity, we omit the details of this and other intermediate outputs. Complete results can 
be obtained on request from the authors. 
9 Although stationarity in not required in the multi-location methodology, because vector error correction 
methods can be used for cointegrated series (Pesaran et al., 2004), due to the limited length of the time 
series we decided to postpone such long-run analysis for future works. 
10 An exhaustive investigation into regional business cycles within Spain over the 1991-2009 period can 
be found in the recent work of Gadea et al. (2012). 



Since it would be more illustrative to develop a correlation analysis conducted by 

filtering out the irregular variations in GVA growth data, the asymmetric time varying 

band-pass filter of Christiano and Fitzgerald (2003) was applied to the original growth 

data. This filter is an optimal linear approximation to the ideal band-pass filter, and is 

designed to eliminate low-frequency trend variation and to smooth high-frequency 

irregular variation, while retaining intermediate business cycle components.  

Column 3 of table 4 contains the calculated correlation coefficients for the 

transformed data, and figure 2 shows the frequency filtered time series. After removing 

the irregular variations in the real GVA growth data, the pattern of business cycle 

synchronization that emerge from these correlation coefficients is the same as in the un-

filtered series: there is a high degree of economic comovement within the Spanish 

regional system, suggesting that there is over time an increased degree of economic 

linkages between the Spanish regions and also increased growth spillovers. 

<<insert table 3 about here>> 

<<insert figure 2 about here>> 

While this discussion reveals important information regarding the relationships and 

the degree of business cycle synchronization in the Spanish regional system, the 

correlation analysis does not provides a measure of the spillover effects of individual 

regions and does not indicate how economic shocks are transmitted across the regional 

system; this will be addressed in the next two sections.  

3.6. Model specification and estimation 

Since we are considering N=17 regions, seventeen individual SpVAR(pi,qi) models 

need to be estimated before the construction of the multiregional model. All regional 

models contain the four domestic variables Yit = (gvait,eit,kprit,kpuit ) , where 

gvait = log(GVAit ) , eit = log(Eit ) , kprit = log(KPRit )  and kpuit = log(KPUit ) , and the 

corresponding region-specific external variables contained in Yit* . Due to data 

limitations, we initially set the lag order of the domestic and external variables to two 

(pi=2) and one (qi=1), respectively. The optimum lag was chosen according to AIC 

choice criterion; table 5 presents the finally selected lags for each regional SpVAR 

model. 



<<insert table 5 about here>> 

According to Pesaran et al. (2004), three requirements need to be met for the validity 

of the multi-location methodology.11 First, the global model must be dynamically 

stable; this condition implies that the eigenvalues of the model (4) must be less than or 

equal to unity: in this application, the moduli of the 136 (17x8) eigenvalues were all on 

or within the unit circle; specifically, the number of unitary roots was as expected 68 

(17x4). Secondly, the weights must be relatively small; as reported in table 2 the binary 

trade-based weights are not close to one, the largest weight being 0.33 for some regions. 

Thirdly, the cross-dependence of the idiosyncratic shocks must be sufficiently small: in 

our application, several sets of average pairwise cross-section correlations were 

calculated, related to the endogenous variables in levels and in differences and to the 

SpVARX residuals obtained from each individual model; very low cross-section 

correlations between residuals were observed, allowing us to simulate shocks which are 

mainly region-specific. 

In summary, given that all the mathematical conditions for the validity of the 

approach are met, the estimation of the MultiREG-SpVAR is justified, and the dynamic 

properties of the estimated model can be investigated.  

3.7. Impulse responses: spatio-temporal propagation of shocks 

In this section, we simulate how macroeconomic shocks are transmitted across the 

regions of Spain.  To accomplish this task, we use the econometric results outlined in 

the previous section. 

Push-in spillover effects 

From the estimation of the regional models, we can obtain the estimates of the 

contemporaneous effects of external variables on their region-specific counterparts (the 

diagonal elements of the matrices !0i  in equation 1). These short-run inward elasticities 

measure the impact variation of the internal variables due to a one percent change in its 

                                                
11 The weak exogeneity of the region-specific external variables is another key assumption of this 
approach: in our case, because no cointegrating relation between internal and external variables is 
assumed, this exogeneity hypothesis cannot be tested but is automatically assured. 



corresponding external counterpart; this is an important step in order to identify co-

movements in the macroeconomic variables across different regions.12  

Table 6 reports the estimated push-in spillover effects derived from each individual 

SpVAR model. When positive, values greater than one indicate that the internal 

variables of a region are more sensitive to a variation on their external counterparts; the 

opposite holds when impact elasticities are lower than one (and positive).  

In our case, except for two negative but non-significant estimates, all the impact 

elasticities are positive and most of them are statistically significant at least at the 90% 

confidence level (53 of 68), pointing to strong interregional linkages among the Spanish 

regions. Moreover, most of the overreactions (elasticities greater than one) occur in the 

output and employment variables. This result suggests that output and employment in 

the Spanish regions are much affected in the short-run by changes in the economic 

conditions of the regions with which they maintain trade linkages. Thus, as expected, 

trade acts as a mechanism of interregional transmission of business cycles, 

‘synchronizing’ the dynamics of the main macroeconomic variables across regions. 

<<insert table 6 about here>> 

Push-out spillover effects 

The dynamic analysis that we present in this section follows the Generalized Impulse 

Response (GIR) approach proposed by Koop et al. (1996) and Pesaran and Shin (1998). 

This approach generalizes the traditional Orthogonalized Impulse Response method of 

Sims (1980); further, it is invariant to the ordering of the variables in the SpVAR 

models and does not require the identification of shocks. Although it is not possible to 

interpret the economic shocks in a structural sense, the GIR functions are a very useful 

tool to analyze the mechanism of the propagation of shocks among the regions of a 

country, as is the case in this analysis. 

Starting from the system given by (3), obtained during the solution of the 

multiregional model, the GIR function of a unit shock (one standard error) at time t to 

                                                
12 Because all the variables are in log-differences form, the Yi*  vector contains spatially-lagged variables 
that are linear combinations of (approximately) growth rates of state variables from related regions. Then, 
the parameters contained in !0i  provide in each case a measure of influence for related region’s growth 
rates on the growth rate of region i. If positive, these parameters indicate that regional growth rates are 
positively related to a linear combination of those from related regions. 



the lth equation in the system on the jth variable at time t+s (s=0,1,2,…) is defined as the 

jth element of the vector 

GIR(Yt;ult, s) =
!v jMsG0

"1#uvl
!vl#uvl

 

where vl = (0, 0,…, 0,1, 0,…, 0 !)  is a selection vector with unity as the lth element and 

zeros otherwise, and the Ms  moving-average matrices can be derived recursively as 

Ml = !1Ml"1 +!2Ml"2 +…+!rMl"r  for l=1,2,… with M0 = I . 

In our application, when we simulate the response of the system to a temporary 

shock in an internal variable in one specific region of Spain, due to the existence of 

trade links between regions, other regions in the system will be affected from the 

disturbance.  The results of this impact analysis provide relevant information about the 

degree of interregional spillovers in the Spanish regional system. 

Essentially, the empirical analysis is carried out by simulating the space-time output 

effects of a temporary unit increase (one standard error positive shock) in the output of 

the different regions of Spain. These simulations will determine the degree of 

importance of each region in terms of the generation of outward output spillovers, 

serving to identify the ‘growth spillover leaders’ in the Spanish regional system. 

The impact (zero-year) and medium-term (three-years) median bootstrap estimates13 

in each case are presented in table 7, each number measuring the impact from region i’s 

growth shock to region j’s output growth rate (push-out output spillover effect).14  

<<insert table 7 about here>> 

The results presented in table 7 reveal that six regions can be identified as key 

sources of outward growth spatial spillovers: Andalusia, Aragón, Catalonia, Madrid, the 

Basque Country and the Valencian Community, and especially the role of Madrid as a 

source of transmission of positive growth impulses. This result should not be surprising 

since these regions account for about 70% of total Spanish output and, further, these are 

                                                
13 The sieve bootstrap technique with 1000 replications was applied in the calculations. Details about the 
bootstrapping method used are exposed in the Supplement A of Dees et al. (2007). 
14  As a complement, the GIR functions showing the dynamic response of the output over a time horizon 
of 25 years were plotted. All the GIRF’s settle down in the long-run, providing confidence that the 
estimated MultiREG-SpVAR model is stable. Results are available upon requests. 



the most important regions in terms of interregional trade-volume and trade-

connectivity (see panel two of table 2). 

The key regions identified using our multiregional spatial VAR approach are, except 

in the case of Aragón, the same key regions found by Llano (2009) using the 

hypothetical regional extraction (HRE) method over a Spanish interregional input-

output model in order to compute the interregional backward and feedback effects of 

every region in Spain.  Similarly, these regions have also been identified as strategic 

regions (Catalonia being the most relevant) by Pavía et al. (2006) when they analyzed 

the Spanish interregional commercial flows by means of an input-output scheme, 

computing the corresponding Rasmussen (1963) key sector identification methodology. 

4. Final remarks and conclusions 

In this paper, a MultiREG-SpVAR approach is developed to address the problem of 

investigating the spatio-temporal transmission of macroeconomic shocks across 

regional economies.  In contrast to previous work in regional science, the approach 

allows the joint modeling of dynamic interdependencies of business cycles within a 

regional system, analyzing the spatial and temporal response of all regions to a 

temporary shock in a state variable of one specific region. A key feature of the 

multivariate specification is that it allows consideration of the cross-unit 

interdependencies and heterogeneity in the underlying dynamic process.  

We illustrate the use of our approach in a study of the extent to which a Spanish 

region’s economic output growth is influenced by the growth of its neighbors (push-in 

or inward growth effect); we also investigate the relevance of spillovers derived from 

temporary region specific output growth shocks (push-out or outward growth effect). 

Overall, we find significant spatial dependence across Spanish regions. In particular, 

estimation results identify some regions that perform as ‘growth generating’ within the 

Spanish regional system because growth shocks from these regions spill over to a large 

number of regions of the country, playing a key role in transmitting regional business 

cycles. These regions are Andalusia, Aragón, Catalonia, Madrid, the Basque Country 

and the Valencian Community. The policy implications of our results suggest that 

national and/or regional governments should stimulate economic activity in these 



leading regions in order to favor the economic recovery process of the whole Spanish 

economy. 

In the future work, we will study how to extend our approach to quantify the 

relevance of different channels of transmission of spillovers, how to obtain sectoral data 

and so, sectoral results. Other pending tasks are the analysis of both the determinants of 

the size of growth spillovers and the sources of growth in the ‘growth leaders’. From a 

technical point of view, it is an open question as to whether features of our approach 

could be extended to more complex dynamic panel data models (prior knowledge of 

some parameters; non-linear relationships; error correction, time varying or factor-

augmented SpVARs, etc.). 
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Table 1. Summary statistics of the database (year base 2003) 

 GVA 
(share) 

E 
(share) 

KPR 
(share) 

KPU 
(share) 

POP 
(share) 

GVApc 
(relative) 

AND 13.8 15.0 13.6 14.9 17.9 77.2 
ARA 3.1 3.2 3.5 4.4 2.9 106.4 
AST 2.2 2.2 2.5 3.1 2.6 85.7 
BAL 2.4 2.4 2.7 1.7 2.2 111.8 
CAN 4.1 4.1 4.5 4.3 4.4 93.1 

CANT 1.3 1.3 1.3 1.5 1.3 96.3 
CAT 18.8 17.8 18.4 14.0 15.6 120.1 
CLM 3.4 4.0 3.8 4.9 4.3 79.3 
CYL 5.5 5.7 6.2 8.1 5.9 93.4 
EXT 1.7 2.0 2.0 2.5 2.6 66.1 
GAL 5.1 5.7 5.2 6.4 6.5 78.2 
MAD 17.7 15.8 15.6 13.7 13.4 131.6 
MUR 2.5 2.8 2.3 2.3 3.0 83.8 
NAV 1.7 1.7 1.8 1.9 1.4 126.9 
PV 6.2 5.5 6.4 6.0 5.0 124.2 

RIO 0.8 0.8 0.8 0.9 0.7 111.2 
VAL 9.7 10.3 9.4 9.3 10.3 94.0 

SPAIN 100 100 100 100 100 100 
SOURCE: Own elaboration from BD.MORES and Fundación BBVA-Ivie databases.  
REGIONAL ABBREVIATIONS: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands 
(BAL), Canary Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile 
and León (CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), 
Basque Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 

 



Table 2. Spatial weights matrices used in the empirical application 

a) Weights based on first-order contiguity geographical neighbors (Wgeog ) 

 AND ARA AST BAL CAN CANT CAT CLM CYL EXT GAL MAD MUR NAV PV RIO VAL 

AND 0 0 0 0 0 0 0 0.33 0 0.33 0 0 0.33 0 0 0 0 
ARA 0 0 0 0 0 0 0.17 0.17 0.17 0 0 0 0 0.17 0 0.17 0.17 
AST 0 0 0 0 0 0.33 0 0 0.33 0 0.33 0 0 0 0 0 0 
BAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CANT 0 0 0.33 0 0 0 0 0 0.33 0 0 0 0 0 0.33 0 0 
CAT 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 
CLM 0.14 0.14 0 0 0 0 0 0 0.14 0.14 0 0.14 0.14 0 0 0 0.14 
CYL 0 0.11 0.11 0 0 0.11 0 0.11 0 0.11 0.11 0.11 0 0 0.11 0.11 0 
EXT 0.33 0 0 0 0 0 0 0.33 0.33 0 0 0 0 0 0 0 0 
GAL 0 0 0.50 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 
MAD 0 0 0 0 0 0 0 0.50 0.50 0 0 0 0 0 0 0 0 
MUR 0.33 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0.33 
NAV 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.33 0 
PV 0 0 0 0 0 0.25 0 0 0.25 0 0 0 0 0.25 0 0.25 0 

RIO 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0.25 0.25 0 0 
VAL 0 0.25 0 0 0 0 0.25 0.25 0 0 0 0 0.25 0 0 0 0 

 

b) Weights based on regional trade flows (Wecon ) 

 AND ARA AST BAL CAN CANT CAT CLM CYL EXT GAL MAD MUR NAV PV RIO VAL 

AND 0 0 0 0 0 0 0.33 0 0 0 0 0.33 0 0 0 0 0.33 

ARA 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0.33 0 0.33 

AST 0 0 0 0 0 0 0 0 0.25 0 0.25 0.25 0 0 0.25 0 0 

BAL 0.33 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0.33 

CAN 0.33 0 0 0 0 0 0.33 0 0 0 0 0.33 0 0 0 0 0 

CANT 0 0 0 0 0 0 0.33 0 0.33 0 0 0 0 0 0.33 0 0 

CAT 0.25 0.25 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0.25 

CLM 0.25 0 0 0 0 0 0.25 0 0 0 0 0.25 0 0 0 0 0.25 

CYL 0 0 0 0 0 0 0.25 0 0 0 0.25 0.25 0 0 0.25 0 0 

EXT 0.25 0 0 0 0 0 0 0.25 0.25 0 0 0.25 0 0 0 0 0 

GAL 0 0 0.20 0 0 0 0.20 0 0.20 0 0 0.20 0 0 0.20 0 0 

MAD 0.20 0 0 0 0 0 0.20 0.20 0.20 0 0 0 0 0 0 0 0.20 

MUR 0.33 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0.33 

NAV 0 0.33 0 0 0 0 0.33 0 0 0 0 0 0 0 0.33 0 0 

PV 0 0 0 0 0 0 0.25 0 0.25 0 0 0.25 0 0.25 0 0 0 

RIO 0 0 0 0 0 0 0.25 0 0.25 0 0 0 0 0 0.25 0 0.25 

VAL 0.25 0 0 0 0 0 0.25 0 0 0 0 0.25 0.25 0 0 0 0 

NOTE: Regional abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands 
(BAL), Canary Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile 
and León (CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), 
Basque Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 

 



Table 3. Information criterion for alternative specifications of the spatial weights 
matrix: AIC statistics for each regional SpVAR model 

 Geographical weights 
matrix 
(Wgeog ) 

Economic weights  
matrix 
(Wecon ) 

AND 511.45  516.45 
ARA  489.27 494.28 
AST  453.32 452.34 
BAL  - 463.76 
CAN  - 446.39 

CANT  436.34 441.26 
CAT  484.12 503.49 
CLM  471.31 467.60 
CYL  513.98 492.63 
EXT  459.44 461.55 
GAL  501.15 509.50 
MAD  417.63 442.29 
MUR  438.64 445.14 
NAV  412.84 421.44 
PV  462.22 467.88 

RIO  389.99 370.13 
VAL  503.84 518.20 

NOTE: Regional abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands 
(BAL), Canary Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile 
and León (CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), 
Basque Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 

 



Table 4: Correlation of real GVA growth rates (year-on-year) and filtered real GVA 
growth rates between Spain and regional economies, 1965-2003 

 Real GVA growth rates Filtered Real GVA growth rates 

 1965-
1975 

1976-
1985 

1986-
1995 

1996-
2003 

1965-
1975 

1976-
1985 

1986-
1995 

1996-
2003 

AND 0.97 0.98 0.94 0.72 0.97 0.98 0.99 0.78 

ARA 0.95 0.95 0.97 0.13 0.90 0.93 0.99 0.69 

AST 0.87 0.18 0.82 0.37 0.95 0.45 0.96 0.82 

BAL 0.91 0.72 0.95 0.50 0.73 0.34 0.98 0.76 

CAN 0.82 0.73 0.75 0.61 0.69 0.35 0.97 0.91 

CANT 0.85 0.92 0.84 0.83 0.88 0.81 0.99 0.89 

CAT 0.99 0.97 0.98 0.67 0.99 0.98 0.99 0.92 

CLM 0.96 0.94 0.94 0.05 0.95 0.86 0.99 0.92 

CYL 0.99 0.98 0.74 0.26 0.92 0.96 0.97 -0.05 

EXT 0.96 0.81 0.79 0.57 0.96 0.68 0.99 0.71 

GAL 0.99 0.94 0.87 0.72 0.99 0.84 0.99 0.75 

MAD 0.93 0.89 0.98 0.88 0.90 0.96 0.99 0.97 

MUR 0.96 0.88 0.93 0.77 0.96 0.77 0.99 0.95 

NAV 0.89 0.83 0.90 0.74 0.93 0.69 0.96 0.95 

PV 0.80 0.80 0.99 0.92 0.91 0.78 0.99 0.97 

RIO 0.98 0.89 0.86 0.53 0.94 0.20 0.96 0.80 

VAL 0.98 0.97 0.99 0.93 0.96 0.95 0.99 0.93 

NOTE: Regional abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands 
(BAL), Canary Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile 
and León (CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), 
Basque Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 

 



Table 5. SpVAR order of individual models 

 pi qi 

AND 2 1 
ARA 2 1 
AST 2 1 
BAL 2 1 
CAN 1 1 

CANT 2 1 
CAT 2 1 
CLM 2 1 
CYL 2 1 
EXT 2 1 
GAL 2 1 
MAD 1 1 
MUR 2 1 
NAV 2 1 
PV 2 1 

RIO 2 1 
VAL 2 1 

NOTE: 1) pi: lag order of domestic variables; qi: lag order of external variables. 2) Regional 
abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands (BAL), Canary 
Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile and León 
(CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), Basque 
Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 

 



Table 6. Push-in spillovers effects: estimated contemporaneous responses of region-
specific variables to a unitary shock to their external counterpart (by rows) 

Region y e kpr kpu 

AND 0.71* 

[3.90] 
0.82* 
[3.45] 

0.17* 
[1.95] 

0.22 
[1.43] 

ARA 0.72* 
[2.35] 

1.07* 
[4.69] 

0.42* 
[2.61] 

-0.02 
[-0.15] 

AST 1.08* 
[5.06] 

0.91* 
[8.79] 

0.38 
[1.28] 

0.65* 
[4.49] 

BAL 1.19* 
[5.10] 

1.40* 
[3.43] 

0.37* 
[2.44] 

0.74* 
[4.79] 

CAN 0.61* 
[2.09] 

1.08* 
[4.43] 

0.48* 
[3.26] 

0.63* 
[5.58] 

CANT 0.42 
[1.30] 

1.46* 
[6.34] 

0.73* 
[3.40] 

0.38* 
[1.81] 

CAT 1.03* 
[5.94] 

0.94* 
[4.92] 

0.70* 
[4.30] 

1.28* 
[7.06] 

CLM 0.81* 
[2.25] 

0.91* 
[3.67] 

0.07 
[0.59] 

0.78* 
[6.78] 

CYL 0.83* 
[3.17] 

0.81* 
[3.66] 

0.34 
[1.59] 

0.42* 
[3.53] 

EXT 1.46* 
[5.29] 

0.59* 
[2.57] 

0.69* 
[4.60] 

0.69* 
[6.29] 

GAL 0.70* 
[3.57] 

0.12 
[0.94] 

0.11 
[0.94] 

0.42* 
[2.62] 

MAD 0.52 
[1.46] 

1.21* 
[5.59] 

1.29* 
[6.75] 

0.92* 
[4.16] 

MUR 1.42* 
[4.68] 

0.46* 
[1.76] 

0.42* 
[3.01] 

0.42* 
[2.23] 

NAV 0.48* 
[2.46] 

1.45* 
[6.89] 

-0.05 
[-0.59] 

0.50 
[1.50] 

PV 0.86* 
[2.65] 

0.58* 
[3.68] 

0.44 
[1.17] 

0.60* 
[3.45] 

RIO 0.29 
[0.96] 

1.35* 
[5.86] 

0.52* 
[2.13] 

0.63 
[1.05] 

VAL 0.83* 
[4.44] 

0.43 
[1.10] 

0.93* 
[11.41] 

0.56* 
[3.91] 

NOTE: 1) t-ratios are reported in square brackets below the corresponding elasticities, calculated using 
autocorrelation and heteroscedasticity consistent Newey-West standard errors. 2) Superscript (*) denotes 
that the corresponding 90% percentile confidence interval does not include zero. 3) Regional 
abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands (BAL), Canary 
Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile and León 
(CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), Basque 
Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 



Table 7. Push-out spillover effects: estimated bilateral responses of output to a unitary shock to GVA in each region of Spain (by rows) 

Response 
(%) in: AND ARA AST BAL CAN CANT CAT CLM CYL EXT GAL MAD MUR NAV PV RIO VAL 

After 
(years) 

0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 

AND 0,65* 0,35 0,30* 0,04 0,21 0,12 0,62* 0,53 -0,17 -0.39 -0,12 -0,46 -0.05 -0.40 0,62* 0.09 0,31* 0,17 0,31* 0,22 -0.13 -0.17 -0.15 -0.52 0.39 -0.08 0.06 -0.38 0.11 -0.16 0.27* 0.15 0.22 -0.16 

ARA 0.21 -0.02 0,83* 0,64 0,26* 0,15 0,07 -0.25 0,18 0,03 0,30* 0,34 0,31* 0,02 0,25 0,03 0,42* 0,18 0,42* 0,16 0,16* 0,12 -0,05 -0,22 0,33 0,01 -0,14 -0,23 -0,25 -0,41 0,03 0,11 0,00 -0,09 

AST 0,00 0,11 0,11 0,07 0,89* 0,82* 0,25 0,47 -0,43 -0,42 0,04 -0,20 -0,23 -0,21 0,33 0,29 0,22* 0,23 0,27 0,08 -0,08 0,00 -0,24 -0,26 -0,16 -0,09 -0,32 -0,35 0,14 0,16 0,16 0,04 -0,26 -0,35 

BAL 0,03 -0,32 -0,13 -0,57 0,32* -0,11 0,98* 0,85* -0,13 -0,51 -0,08 -0,72 -0,41 -0,88 0,20 -0,50 0,10 -0,17 0,27 -0,47 0,10 -0,35 -0,39 -1,02 -0,38 -0,83 -0,14 -0,79 0,13 -0,43 0,35* -0,05 0,03 -0,64 

CAN 0,00 -0,06 0,09 0,13 -0,15 -0,12 0,08 -0,08 1,42* 1,53* 0,34* 0,59 0,09 0,10 -0,14 -0,10 -0,11 -0,17 -0,01 -0,13 0,28* 0,25 0,18 0,28 0,28 0,28 0,12 0,21 -0,08 -0,09 -0,01 0,13 0,20 0,30 

CANT -0,05 0,25 0,21 0,44 0,09 0,27 0,08 0,27 0,47* 0,83 0,90* 1,36* 0,19 0,56 -0,10 0,39 -0,14 0,05 0,07 0,07 0,32* 0,49 -0,10 0,30 -0,12 0,26 0,13 0,54 -0,11 0,37 0,28* 0,48* 0,11 0,48 

CAT -0,08 0,01 0,25* 0,42 0,02 0,10 -0,27 -0,50 0,20 0,37 0,38* 0,82* 0,71* 0,92 -0,09 0,23 0,07 0,13 0,05 0,27 0,21* 0,37 0,33* 0,63 0,24 0,44 0,31* 0,54 0,17 0,31 -0,28 -0,03 -0,04 0,35 

CLM 0,06 -0,27 0,09 -0,26 0,58* 0,18 0,40* 0,29 -0,30 -0,62 0,00 -0,54 -0,26 -0,70 0,99* 0,22 0,39* 0,10 0,48* 0,04 0,14 -0,22 -0,36 -0,82 -0,35 -0,71 -0,03 -0,55 0,25 -0,20 0,18 -0,08 -0,05 -0,52 

CYL 0,22 -0.03 0,34* 0,07 0,39* 0,10 0,22 0,16 -0,22 -0,51 -0,17 -0,58 -0,01 -0,32 0,51* 0,13 0,84* 0,53* 0,44* 0,29 0,10 -0,06 -0,16 -0,51 0,07 -0,28 -0,25 -0,60 -0,07 -0,44 -0,14 -0,31 -0,07 -0,40 

EXT 0,00 -0,20 -0,13 -0,25 0,05 -0,14 0,04 -0,09 -0,08 -0,27 -0,14 -0,24 -0,13 -0,39 0,05 -0,27 -0,09 -0,22 0,94* 0,63* -0,17 -0,32 -0,12 -0,33 0,39 0,06 -0,16 -0,33 -0,17 -0,40 -0,04 -0,15 -0,03 -0,22 

GAL -0,09 0,07 0,05 0,19 -0,17 -0,12 0,04 0,11 0,48* 0,68 0,32* 0,52 0,09 0,27 -0,03 0,30 0,03 0,02 -0,04 -0,25 0,66* 0,58* -0,05 0,16 -0,28 -0,04 0,26 0,41 -0,27 -0,06 0,22 0,35 0,19 0,41 

MAD 0,38* 0,68 0,30* 0,74 0,20 0,68 0,07 -0,01 0,75* 1,41* 0,20 1,02* 0,75* 1,24* 0,09 0,62 0,03 0,30 -0,07 0,41 0,19 0,79* 1,31* 2,03* 1,05* 1,32* 0,71* 1,18* 0,98* 1,40* -0,10 0,32 0,51* 1,21* 

MUR 0,11 0,08 0,08 0,09 -0,01 0,06 -0,20 -0,31 0,29 0,26 -0,18 -0,08 0,12 0,13 -0,12 -0,07 -0,07 -0,05 0,30* 0,48 -0,34 -0,24 0,26 0,31 1,04* 0,82 -0,06 0,03 0,06 -0,09 -0,37 -0,33 -0,03 0,00 

NAV -0,03 -0,15 -0,28 -0,38 -0,06 -0,21 0,23 0,17 0,11 0,01 0,23* 0,15 -0,04 -0,21 0,26 0,07 -0,19 -0,23 -0,01 -0,02 0,26* 0,05 -0,09 -0,25 -0,20 -0,29 0,67* 0,32 0,08 -0,05 0,17 0,05 0,33* 0,18 

PV 0,18 0,06 0,01 -0,23 0,57* 0,38 0,49* 0,58 -0,07 -0,14 -0,03 -0,39 0,02 -0,19 0,42* 0,13 0,15 0,09 0,09 -0,10 0,08 0,02 0,33* 0,11 0,16 -0,15 0,21 -0,17 1,13* 0,81 0,29* 0,07 0,13 -0,19 

RIO 0,01 0,04 -0,05 -0,04 0,15 0,14 0,33 0,55 -0,11 -0,01 0,21* 0,10 -0,30 -0,27 0,06 -0,02 -0,17 -0,13 -0,13 -0,47 0,14 0,09 -0,29 -0,28 -0,49 -0,39 -0,01 -0,04 0,06 0,20 1,00* 1,04* 0,03 0,02 

VAL 0,32* 0,68 -0,01 0,23 -0,02 0,26 0,61* 0,91* 0,15 0,56 0,20* 0,41 0,00 0,45 0,42* 0,75 0,01 0,17 0,17 0,27 0,30* 0,45 0,02 0,37 0,07 0,43 0,53* 0,70 0,16 0,58 0,42* 0,52 0,70* 0,97* 

NOTE: Numbers reported are median estimates of responses of regional GVA to one standard error positive shock to GVA in the row region. Superscript (*) denotes that the 
corresponding 90% percentile confidence interval does not include zero. Numbers in black indicate statistically significant effects at the 90% confidence level. 

 



Figure 1: Spanish regions 
 

 

 

Figure 2: Regional cycles (band-pass filtered) 
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NOTE: Regional abbreviations: Andalusia (AND), Aragón (ARA), Asturias (AST), Balearic Islands 
(BAL), Canary Islands (CAN), Cantabria (CANT), Catalonia (CAT), Castile-La Mancha (CLM), Castile 
and León (CYL), Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarre (NAV), 
Basque Country (PV), La Rioja (RIO) and the Valencian Community (VAL). 


