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Abstract

This study suggests a two-step approach to identifying and interpreting regional con-

vergence clubs in Europe. The first step calculates Bayesian probabilities for various

assignments of regions to two clubs using a general stochastic space-time dynamic panel

relationship between growth rates and initial levels of income as well as endowments of

physical, knowledge and human capital. This approach produces club assignments that

are unconditional on specific parameter estimates. The second step uses the club assign-

ments in a dynamic space-time panel data model to assess long-run dynamic direct and

spillover responses of regional income levels to changes in initial period endowments for

clubs that were identified. Correctly determining the dynamic partial derivative impacts

of changes in initial endowments on regional income levels is an important contribution

of our study. The dynamic trajectories of regional income levels over time allow us

to draw inferences regarding the timing and magnitude of regional income responses to

changes in (physical capital, human capital and knowledge capital) endowments for the

clubs that have been identified in the first step. We find different responses to endow-

ments by regions in two clubs that appear consistent with low- and high-income regions

as clubs.

KEYWORDS: Dynamic space-time panel data model, Bayesian Model Compari-

son, European regions.

JEL: C11, C23, O47, O52
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Introduction

During the past two decades, the question of systematically identifying and interpreting

convergence clubs has received increasing attention.1 A convergence club is a group of

economies whose initial conditions are near enough to converge towards the same long-

term equilibrium. This notion of club convergence can be traced back to Baumol (1986),

but owes its more rigorous formulation to Durlauf and Johnson (1995), and Galor (1996).

The concept is based on new growth theories that yield multiple, locally stable steady

state equilibria in per capita output.2 In contrast to conventional wisdom Galor (1996) has

demonstrated that if heterogeneity is permitted across individuals, multiplicity of stationary

equilibria may also occur in Solow (1956) and Mankiw et al. (1992) worlds, and in these

cases the distribution of initial income per capita determines the club to which a particular

region will belong.3 But neither neoclassical nor new growth theories offer explicit guidance

in determining the number and composition of clubs within a given cross-section of regions.

The determination of such clubs is a difficult issue. Some authors use a priori (exoge-

nous) criteria to define the clubs, such as belonging to the same geographic area or having

similar initial per capita incomes. But endogenous club determination dominates in the

literature. Endogeneity may involve either the number of clubs, the composition of clubs,

or both. Endogenous methods of club determination are quite diverse and include classifi-

cation and regression tree methods (Durlauf and Johnson 1995; Fagerberg and Verspagen

1996), projection pursuit methods (Desdoigts 1999), cluster-analytic methods combined

with cointegration tests (Hobijn and Franses 2000; Corrado et al. 2005), cluster-analytic

methods along with time series regression tests (Phillips and Sul 2007; Bartkowska and

Riedl 2012), switching regression methods (Fève and Le Pen 2000), and Bayesian methods

that identify a mixture distribution for the predictive density of per capita output (Canova

2004), among others. All these club selection methodologies, however, are non-spatial in

nature, and hence neglect the importance of spatial dependence for club detection.

Some other methods of club determination explicitly take into account the spatial di-

mension of the data and use exploratory spatial data analysis tools to detect spatial regimes.

Examples include Moran scatterplots, based on the initial per capita income of a sample

of European regions, to determine spatial clubs (Ertur, LeGallo and Baumont 2006). Fis-

cher and Stirböck (2006), LeGallo and Dall’erba (2006), and Dall’erba and LeGallo (2008)
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alternatively take the Getis-Ord statistics, applied to initial per capita income. This gen-

erates a two-way partitioning of the sample: spatial clusters of high values of per capita

income (corresponding to positive values of the statistic) and spatial clusters of low values

of per capita income (corresponding to negative values of the statistic). These methods

may be labelled semi-endogenous, since the number of clubs is fixed a priori (four in the

case of Moran scatterplots and two in the case of the Getis-Ord statistic), but the regions

are endogenously allocated to the clubs.

This paper suggests a novel methodological approach for (semi-endogenous) club deter-

mination that draws on Bayesian ideas to identify regional convergence clubs in Europe. A

very general stochastic panel relationship4 between growth rates and initial levels of income

as well as endowments of physical, knowledge and human capital with regional random

effects is used to derive posterior probabilities for various assignments of regions to two

clubs.5 These are based on splits of the sample of regional growth rates according to vary-

ing levels of initial period income. This stochastic space-time dynamic panel relationship

serves not as a model with corresponding parameters to be estimated, but rather as a basis

for integrating over all parameters of the relationship to find posterior probabilities for the

various assignment of regions to the two clubs based on sample splits according to varying

initial period income levels.

It is important to note that rather than estimating a single set of panel data parameters

for the growth rates versus initial levels (of income and endowments), our approach is to

integrate over all possible values that can be taken by the parameters of this relationship.

Determining posterior probabilities for club assignment based on the varying initial levels

of income using this approach means that our club assignments do not depend on particular

parameter values taken by variables in the relationship, (including parameters for space,

time and space-time covariance of the growth rates process, as well as the regional random

effects parameters, and parameters that relate initial period income and endowments levels

to the growth rates).

In other words, our club selection approach avoids dependence on specific parameter

estimates and relies on a very general dynamic space-time panel relationship of growth

rates and initial period income and endowments, and this is in contrast to non-spatial

and spatial cross-section studies/relationships as well as studies based on both non-spatial

and spatial panel data models. This is one important contribution of our methodology, a
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procedure for club assignment of regions that is unconditional on any specific set of model

estimates.

In addition to the club selection methodology, our paper distinguishes itself from previ-

ous work by using a Bayesian space-time panel data model to assess long-run dynamic direct

and spillover responses of regional income levels to changes in initial period endowments

that are not part of other studies.6 Correctly determining the partial derivative impact of

changes in initial endowments on regional income levels is another important contribution

of our study. The dynamic trajectories of changes in regional income levels over time allow

us to draw inferences regarding the timing and magnitude of regional income responses

to changes in (physical capital, human capital and knowledge capital) endowments for the

clubs that have been identified in the first step of the methodology. We find different re-

sponses to endowments by regions in the two clubs that appear to be considered with low-

and high-income regions as clubs.

The next section outlines the general stochastic panel relationship, and the formal

methodology for calculating posterior probabilities for club assignment of regions, as it

applies to our work here.7 Of course, the resulting club classification is conditional on the

dynamic space-time panel relationship used in the comparison procedure.

The methodology for identifying clubs

The first step of our approach uses a formal Bayesian methodology to classify European

regions into clubs. Each region must be classified into one of two clubs. The classification

takes place conditional on a space-time (random effects) panel data relationship8 of regional

income growth given by

gt = ϕgt−1 + ρWgt + θWgt−1 + ψlnyt−1 + αιN +Xt−1β + φt, (1)

φt = µ+ εt,

gt = ln(yt)− ln(yt−1), t = 2, . . . , T.

The growth regression relationship is between the N × 1 vector of time t growth rates

(gt) and those from the previous time period (gt−1), neighboring regions in the current time
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period (Wgt), and also to those of neighboring regions in the previous time period (Wgt−1).

gt = (g1t, . . . , gNt)
′ is the N × 1 vector of observed income growth rates for the tth time

period, with yt denoting income levels at time t, and ψ the parameter reflecting dependence

on previous period levels. The intercept parameter is α and ιN is an N × 1 column vector

of ones. Previous period endowments of physical capital, knowledge capital and human

capital which are thought to exert an influence on regional income growth are contained in

the N ×K matrix Xt−1 with K denoting the number of (conditioning) variables included

to capture proximate determinants of economic growth and β representing the associated

parameter vector.

The vector φt = µ+εt represents the summation of two unobserved normally distributed

random components: µ an N × 1 column vector of random effects with µi ∼ N (0, σ2µ), i =

1, . . . , N , that are the same for all time periods, and the N × 1 stochastic disturbance εt,

assumed to be independent and identically distributed with zero mean and scalar variance

σ2εIN , t = 1, . . . , T . We make the traditional assumption that µ is uncorrelated with εt for

identification purposes. W is a known N×N spatial weight matrix whose diagonal elements

are zero. This matrix defines the dependence between cross-sectional (spatial) observational

units. We will also assume that W is row-normalized from a symmetric matrix, so that

all eigenvalues are real and less than or equal to one. The strength of spatial dependence

is measured by the parameter ρ, the first order time dependence is reflected in the scalar

parameter ϕ, and θ represents the component mixing space and time dependence.

We note for future reference that the relationship in (1) can be viewed as applying a

space-time filter to the regional growth rates. Specifically we have expressions (2) and (3),

where L is a time lag operator: Lgt = gt−1.

(IN − ϕL)(IN − ρW )gt = ψlnyt−1 + αιN +Xt−1β + φt, t = 2, . . . , T (2)

(IN − ϕL− ρW + ϕρLW )gt = ψlnyt−1 + αιN +Xt−1β + φt

(IN − ϕL− ρW − θLW )gt = ψlnyt−1 + αιN +Xt−1β + φt. (3)

This view of the relationship implies a restriction on the parameter ϕρ of the cross-product

term (LW ), but we introduce a parameter θ indicated in (3) that does not impose the

restriction θ = −ϕρ.9
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Most theoretical models of multiple steady states (see, for example, Azariadis and

Drazen 1990; Galor 1996) predict that if (regional) economies are concentrated around sev-

eral steady states, then their initial per capita output levels (here measured in terms of GVA

per capita levels) will fall into distinct (i.e. non-overlapping) categories (Durlauf and John-

son 1995). This motivates our use of a panel data variant of the traditional cross-sectional

growth regression relationship to identify/classify regions into low- and high-income clubs

(which we label Club 1 and Club 2). The relationship of focus is that between income

growth rates and the previous period (logged) level of income and (logged) previous period

endowments of physical, knowledge and human capital.

Islam (1995) was one of the first studies to examine conventional cross-sectional growth

regressions using a panel data setting. He proposed splitting the overall sample into several

shorter time spans, with the motivation being that annual growth rates are “too short to

be appropriate for studying growth convergence” since “short-term disturbances may loom

large in such brief time spans”. He relied on five-year time intervals for his panel data model

estimation. Despite this brief and informal argument against using annual growth rates in

a panel data setting, almost all panel data growth convergence studies have followed the

approach of Islam (1995). This includes the space-time dynamic panel data relationship

used in a growth convergence study by Yu and Lee (2012), where four and five year intervals

were used.

Our limited sample size of 11 years does not allow us to fully explore this issue. In the

context of Islam’s non-dynamic panel data model, use of initial period endowments from

four or five years ago may make sense. It is less clear how one should proceed for the case of

a space-time dynamic relationship of the type in (1). For a dynamic model that takes into

account space, time and space-time diffusion of regional growth rates, imposing multi-year

time intervals should not be required when calculating growth rates. We also show how

the partial derivatives from these models imply both short- and long-run responses of the

dependent variable to changes in values of the explanatory variables. This issue requires

further econometric study, perhaps in a Monte Carlo or simulation setting. To explore this

issue, we consider relationship (4) that imposes a 3-year lag on the initial period endowment

variables. This specification could be justified on an ad-hoc basis as in Islam (1995) because

it allows a longer time lag before endowment levels influence income growth rates. We

present classification results for regions into the two clubs based on relationships (1) and
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(4), and these produced similar results.

gt = ϕgt−1 + ρWgt + θWgt−1 + ψlnyt−3 + αιN +Xt−3β + φt, (4)

φt = µ+ εt,

gt = ln(yt)− ln(yt−3), t = 4, . . . , T.

The dynamic space-time panel data relationship in (1) expressed in matrix/vector form

shown in (5) is used in conjunction with Bayesian methods to assign regions to clubs.

Pg = Hψ + ιN(T−1)α+Xβ + φ (5)

P =



B 0N×N 0N×N . . . 0N×N

A B 0N×N . . . 0N×N

0N×N A B
...

...
. . .

. . .
. . . 0N×N

0N×N . . . 0N×N A B


(6)

H =

(
ln(y1) . . . ln(yT−1)

)′

X =

(
X1 . . . XT−1

)′

A = −(ϕIN + θW )

B = IN − ρW

φ ∼ N (0,Ω)

Ω = [(T − 1)σ2µ + σ2ε ](J̄T−1 ⊗ IN ) + σ2ε
[
(IT−1 − J̄T−1)⊗ IN

]
. (7)

We use ⊗ to denote the Kronecker product in the expression for Ω in (7), which represents a

decomposition proposed by Wansbeek and Kapteyn (1982), that replaces JT−1 = ιT−1ι
′
T−1

by its idempotent counterpart J̄T−1 = JT−1/(T − 1) (see Parent and LeSage 2012).

The scalars σ2µ and σ2ε denote the variances of the random effects vector µ and noise

vector ε, respectively. This specification uses the first time period to “feed the lag”, leading

to the N(T − 1)×NT matrix P in (6). Treating the first period in this way simplifies work

involved in analytically calculating the log-marginal likelihood needed to compute posterior
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probabilities for model comparison purposes, and should have little impact in cases where

T is reasonably large.

In our empirical application N = 216 European regions and T = 11 years covering the

period from 1995 to 2005, with the initial period being 1995, so T is not excessively large

here. To assign regions to candidate clubs we introduce a dummy variable that splits the

sample according to initial year (1995) regional income levels above and below (or equal

to) m during the initial year 1995. Regions with incomes below m are assigned to Club

1 and those with incomes above this level to Club 2. In (8), we express the dynamic

panel relationship including the N × 1 dummy vector D with zero values for regions where

y1 ≤ m and ones for y1 > m, and an N ×K dummy matrix D̃ =

(
D D . . . D

)
. The

Hadamard (element-by-element) product ⊙ is used in conjunction with the dummy matrix

D̃, where we use α̃, β̃, ψ̃ for parameters associated with the club dummy.

gt = ϕgt−1 + ρWgt + θWgt−1 + ψln(yt−1) + ψ̃Dln(yt−1)

+ αιN + α̃DιN +Xt−1β + (D̃ ⊙Xt−1)β̃ + φt, t = 2, . . . , T. (8)

Parent and LeSage (2011) show that the log-likelihood for this relationship (with the

random effects vector µ integrated out) can be expressed as in (9). For simplicity we use Z

to denote a matrix containing all explanatory variables for each time period, and we define:

λ = σ2µ/σ
2
ε .

lnLT−1(υ) = −N(T − 1)

2
ln(2π)−N(T − 1)[ln(σ2µ)− ln(λ)]−N ln((T − 1)λ+ 1)

+ T ln |IN − ρW | − 1

2(σ2µ/λ)
e′Ω−1e (9)

λ = σ2µ/σ
2
ε

e = (Pg − Zδ)

Z =

(
Z1 . . . ZT−1

)′

Zt−1 =

(
lnyt−1 Dlnyt−1 ιN DιN Xt−1 (D̃ ⊙Xt−1)

)
δ =

(
ψ ψ̃ α α̃ β β̃

)′

υ = (ϕ, ρ, θ, λ, δ′).

9



To determine Bayesian probabilities for various assignments of regions to the two clubs,

we wish to find an expression for the log-marginal likelihood. Zellner (1971) sets forth

the basic Bayesian approach to this. This involves specifying prior probabilities for each

split of the sample as well as prior distributions for the regression parameters. Posterior

probabilities are calculated for each split of regions according to initial income levels and

used for inferences regarding the “best split” of the sample into two clubs. The Bayesian

theory involves specifying prior probabilities for each of the r alternative sample splits

{R1, R2, . . . , Rr} under consideration, which we label π(Rq), q = 1, . . . , r, as well as prior

distributions for the parameters π(υ). If the sample data are to determine the posterior

probabilities for the various splits, the prior probabilities should be set to equal values of

1/r, making each split equally likely a priori. We treat the spatial weight matrix W as

fixed and exogenous, relying on a weight structure consisting of the 10 nearest neighboring

regions (measured in terms of great circle distances). The motivation for this is that use of

the 10 nearest neighboring regions allows the island regions of Greece to be connected to

mainland Greece.10 We also treat the number of clubs as fixed at two, but hope to extend

this in future research.

The prior distributions for the parameters are combined with the likelihood for (g, Z,W )

conditional on υ as well as the set of models R, which we denote p(g|υ,R,Z,W ). The joint

probability for Rq, υ, and g takes the form in (10), for the qth sample split at initial period

income level m = mq.

p(Rq, υ, g, Z,W,m = mq) = π(Rq)π(υ|Rq)p(g|υ,R,Z,W ). (10)

Application of Bayes rule produces the joint posterior for both split levels and parameters

as:

p(Rq, υ|g, Z,W ) =
π(Rq)π(υ|Rq)p(g|υ,R,Z,W )

p(g)
. (11)

The posterior probabilities regarding the split levels take the form:

p(Rq|g, Z,W ) =

∫
p(Rq, υ|g, Z,W )dυ (12)

which requires integration over the parameter vector υ. We follow LeSage and Parent (2007)
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who develop expressions for the log-marginal likelihood in the case of a cross-sectional model

by analytically integrating out the parameters δ and σε, leaving a simple univariate numeri-

cal integration over the spatial dependence parameter ρ. Things are more complicated here,

but we are able to analytically integrate out the parameters δ (see the Appendix for tech-

nical details), and numerically integrate over the space and time dependence parameters ρ

and ϕ. This requires that we fix λ = σ2µ/σ
2
ε , the variance ratio of the random effects and

noise.

We make the following observation regarding λ. For small values of λ the effects magni-

tudes are likely to be close to their mean values of zero and not of substantive importance.

Large values for the effects magnitudes accompanied by large values of λ likely suggest

the relationship is not consistent with the sample data. This leads us to posit that a well-

specified relationship would exhibit probabilities for various splits of the sample that should

not be sensitive to fixing the value of λ, based on say, estimates for the parameters σ2µ, σ
2
ε

from a panel data model with no dummy variables. We examine the resulting posterior

probabilities at values around the estimated value: λ̂ = σ̂2µ/σ̂
2
ε , to check robustness of

results with regard to this ratio of variances.

Another simplification can be achieved by fixing the parameter θ = −ρϕ which is a

restriction implied by the space-time filter view of the panel data relationship. Parent

and LeSage (2012) discuss the role of this restriction which simplifies both estimation and

interpretation in the context of using our relationship to actually estimate the parameters

of a model. They also show that the restriction is often consistent with sample data sets,

a finding in the empirical application undertaken here. The advantage of this restriction is

that we have a bivariate numerical integration problem involving the parameters ϕ and ρ

rather than trivariate numerical integration.

To conclude this discussion, we note that our methodological approach for club deter-

mination draws on Bayesian ideas to identify regional convergence clubs in Europe. Using

a general stochastic panel relationship between growth rates and initial levels of income

as well as endowments of physical, knowledge and human capital with regional random ef-

fects we derive posterior probabilities for various assignments of regions to two clubs. This

stochastic space-time dynamic panel relationship serves not as a model with corresponding

parameters to be estimated, but rather as a basis for integrating over all parameters of

the relationship to find posterior probabilities for the various assignment of regions to the

11



two clubs based on sample splits according to varying initial period income levels. This

procedure assigns regions to clubs in such a way that the resulting clubs do not depend

on specific parameter estimates from a single model specification. This approach is in con-

trast to non-spatial and spatial cross-section and panel data studies found in the literature.

This is one important contribution of our methodology, a procedure for club assignment of

regions that is unconditional on any specific set of model estimates.

An alternative approach to assigning regions to clubs would be to attempt random

assignment of a single region to each club and then examine the posterior probabilities for

these two assignments. Postiglione et al. (2012) adopt this type of random assignment of

individual regions strategy, but rely on the Potts model from image processing to impose a

contiguity penalty on assignment of regions to clubs. The Potts smoothing penalty arises

with image restoration because nearby pixels from images are likely to be the same as

neighboring pixels. A measure of fit (normalized sum of squared errors) based on residuals

from a spatial Durbin model is used in conjunction with the Potts penalty term in either a

simulated annealing or iterated conditional modes optimization routine. They find evidence

of four clubs using a sample of 187 EU regions over the 1981 to 2004 period.

We attempted a random assignment approach similar to that of Postiglione et al. (2012)

using our log-marginal likelihood as a Metropolis-Hastings accept/reject step in a formal

Bayesian Markov Chain Monte Carlo comparison approach. Our attempt to implement this

strategy indicated that posterior probabilities changed very slightly when a single region

was moved from one club assignment to another. A reason for this can be see by considering

Figure 1 which shows a frequency distribution of 1995 GVA per capita levels for regions.11

Large changes in the number of regions assigned to each club from splitting the sample

of regions at some income levels would lead to more dramatic changes in the posterior

probabilities for these splits of the sample. This should be clear by considering that adding

or subtracting a single region from the set of Club 1 regions should lead to small changes

in the log-marginal likelihood (and associated probabilities). In contrast, changing the sub-

samples through addition or subtraction of many regions would lead to larger changes in

the posterior probabilities.
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(Figure 1 about here)

The smaller changes in posterior probabilities meant that our formal approach to assigning

single regions to one of the two clubs failed to produce convergence. The Postiglione et al.

(2012) approach should be similar to the one we tried, with the important difference being

the contiguity smoothing penalty. Since this penalty was not included in our more formal

Bayesian comparison approach, it could mean that their results are driven by the Potts

penalty term. A spatial contiguity penalty may not be consistent with economic theory

that predicts regional economies concentrated around several steady states will have initial

per capita output levels that fall into distinct (non-overlapping) categories (Durlauf and

Johnson 1995).

This motivated our approach that calculates posterior probabilities for sample splits

based on a number of different candidate initial period income levels. The empirically

determined club assignments are reported in the next section.

Empirical club assignments

We present results from implementing the club assignment strategy that calculates Bayesian

probabilities associated with splits according to varying 1995 income levels for a set of

216 European regions. This includes: a description of the sample data used to form the

relationship in (1) between growth rates and initial period income as well as endowments of

physical, knowledge and human capital; and a data generated example to demonstrate that

the methodology works; and empirical results showing posterior probabilities associated

with splits of the 216 regions at various initial period income levels.

The sample data

Our sample is a cross-section of 216 regions representing the 15 pre-2004 EU member states,

Norway and Switzerland over the 1995-2005 period. The units of observation are the NUTS-

2 regions12 (NUTS revision 2003). These regions, though varying in size, are generally

considered to be appropriate spatial units for modelling and analysis purposes. In most

cases, they are sufficiently small to capture subnational variations. But we are aware that

NUTS-2 regions are formal rather than functional regions, and their delineation does not

represent the boundaries of regional growth processes very well. The sample regions include
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regions located in Europe covering Austria (nine regions), Belgium (11 regions), Denmark

(one region), Finland (five regions), France (22 regions), Germany (40 regions), Greece (13

regions), Ireland (two regions) Italy (20 regions), Luxembourg (one region), the Netherlands

(12 regions), Norway (seven regions), Portugal (five regions), Spain (16 regions), Sweden

(eight regions), Switzerland (seven regions) and United Kingdom (37 regions).

We use gross-value added, GVA, rather than gross regional product at market prices

as a proxy for regional income. The proxy is measured in accordance with the European

Systems of Accounts (ESA) 1995. The data for the EU regions come from Eurostat’s

Regio database, and those for Norway and Switzerland from Statistics Norway (Division

for National Accounts) and the Swiss Office Féderal de la Statistique (Comptes Nationaux),

respectively.

We use three variables in the dynamic space-time growth relationship to group regions

based on initial levels: physical capital, knowledge capital and human capital. Physical

capital stock data is not available in Cambridge econometrics database, but gross fixed

capital formation in current prices is. Thus, the stocks of physical capital were derived

for each region from investment flows, using the perpetual inventory method. We applied

a constant rate of 10 percent depreciation, and the annual flows of fixed investments were

deflated by national gross-fixed capital formation deflators. The mean annual rate of growth,

which precedes the benchmark year 1995, covers the period 1990-1994 to estimate initial

regional physical capital stocks.

Corporate patent applications are used to proxy knowledge capital. Corporate patents

cover inventions of new and useful processes, machines, manufactures, and compositions

of matter. To the extent that patents document inventions, an aggregation of patents

is arguably more closely related to a stock of knowledge than is an aggregation of R&D

expenditures. However, a well known problem of using patent data is that technological

inventions are not all patented. This could be because applying for a patent, is a strategic

decision and, thus, not all patentable inventions are actually patented. Even if this is not

an issue, as long as a large part of knowledge is tacit, patent statistics will necessarily miss

that part, because codification is necessary for patenting to occur.

Patent stocks were derived from European Patent Office (EPO) documents. Each EPO

document provides information on the inventor(s), his or her name and address, the com-

pany or institution to which property rights have been assigned, citations to previous
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patents, and a description of the device or process. To create the patent stocks for 1995-

2005, the EPO patents with an application date 1990-2005 were transformed from individual

patents into stocks by first sorting based on the year that a patent was applied for, and

second the region where the inventor resides. In the case of cross-region inventor teams we

used the procedure of fractional rather than full counting. Then for each region i, patent

stocks were derived from patent data, using the perpetual inventory method. Because of

evident complications in tracking obsolescence over time, we used a constant depreciation

rate of 12 years that corresponds to the rate of knowledge obsolescence in the US over the

past century, as found in Caballero and Jaffe (1993). Patent stocks were initialized the

same way as physical capital (see Fischer et al. 2009 for details).

There is no clear-cut consensus of how human capital should be represented and mea-

sured. In this study we follow Fischer et al. (2009) and measure human capital in terms

of educational attainment based on data for the active population aged 15 years and older

that attained the level of tertiary education, as defined by the International Standard Clas-

sification of Education (ISCED) 1997 classes five and six. This variable is clearly imperfect:

it completely ignores primary and secondary education, and on-the-job training, and does

not account for the quality of education.

A test of the club assignments methodology

We test the Bayesian comparison procedure using a generated vector of growth rates con-

structed from our sample data for 216 European regions. A set of parameter estimates were

used to produce predicted values that reflected two regimes with regions’ split at an income

level of 20,000. When generating predicted values, parameters ρ̂ = 0.65, ϕ̂ = −0.18 were

used, in conjunction with a value of θ = 0.025, which does not obey the restriction on the

parameter θ = −ϕρ. Specifically, θ = −ϕρ = −(−0.18×0.65) = 0.117, rather than the value

θ = 0.025 used to produce a sample of growth rates. However, posterior probabilities were

calculated based on the assumption that θ = −ϕρ, as a test of the impact on performance

in this type of setting where the assumption is violated. For this experiment, a dummy

variable vector was used to split the sample at initial period income levels of m = 20, 000.

The distributions of generated growth rates for the two clubs that resulted from this

approach are shown in Figure 2, where we see the high income club exhibiting a slightly

lower mean growth rate than the lower income club. This is of course consistent with
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the usual notion of β-convergence, where regions with lower initial levels of income exhibit

higher growth rates than higher income regions.

(Figure 2 about here)

The estimated ratio of variances λ̂ = σ̂2µ/σ̂
2
ε equalled 0.2594. Table 1 shows posterior

probabilities derived from a comparison of splits of the regions based on initial period

income levels ranging from 10, 000 to 32, 000 in increments of 2, 000, for values of λ̂ as well

as (1/2) λ̂ and 2λ̂. The resulting posterior probabilities point to the correct split of the

regions at the m = 20, 000 level for all three settings of λ. As we would expect, there is

some degradation of performance for values based on 1/2λ and 2λ, but the correct inference

would be drawn in these cases. We also note that this test of the methodology relied on

estimates from the growth relationship in (8), but altered values of ϕ and ρ so they did

not obey the restriction θ = −ϕρ. This did not appear to produce erroneous inferences

regarding the correct split level.

(Table 1 about here)

Club assignments of the regions

As indicated, there is some question regarding whether growth rates should be calculated

using a single year or multiple year interval. Elhorst et al. (2010) study a panel data

relationship between EU regional income growth rates as the dependent variable and growth

rates of: savings, population, technical progress, and the depreciation rate, as explanatory

variables. They make a number of methodological points including an observed decrease

in (small T ) bias arising from decreasing the time interval over which the growth rates are

measured. Yu and Lee (2012) report estimation results from use of a dynamic spatial panel

model covering 48 years but having no explanatory variables. They explore four and five

year time intervals for calculating growth rates and find no difference in estimates for the

time (ϕ), space (ρ) and space-time dependence (θ) parameters. They also find the data to

be consistent with the restriction θ = −ϕρ.

We report posterior probability results for sample splits of the regions by initial period

income levels using growth rates calculated from one- and three-year intervals in Table 2.

Given our small number of 11 time periods, we were limited in our ability to explore this
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issue. However, we find identical inferences regarding the initial period income level at

which to split the sample of regions into two clubs.

(Table 2 about here)

There appears to be support for a split of the sample around 16,000, for the case of relation

(1), with splits based on this level for initial period (1995) income levels exhibiting the

highest posterior probabilities. These results were relatively stable across values of the

noise variance ratio parameter λ, always giving slightly more posterior probability support

for a split at 16,000. It should be noted that we are forcing a choice of “the best split”

from this finite set of initial period income levels ranging from 8,000 to 30,000. This means

that the posterior probabilities sum to unity, with all mass being assigned to the finite set

of splits. For the specification in relation (4), results point to a split of the regions into two

clubs based on 14,000 initial period income levels, which is close to the results for relation

(1). It should be noted that these results involve a smaller panel of only eight periods

because of the imposition of a 3-year lag on endowments.

The conclusion we draw from relation (1) is that the preponderance of evidence points

to the existence of two clubs based on splitting the sample at initial period (1995) per capita

GVA levels of 16,000. If we used relation (4), the split would occur at 14,000, producing a

similar set of club assignments of regions. Figure 3 shows a map of the European regions

classified into the two clubs based on a split according to the 1995 GVA per capita levels

for regions above and below 16,000.

The next section describes the second step of our approach, which uses a dynamic space-

time panel data model to analyze the space-time dynamic relationship between regional

levels of income over time and space.13 The model includes spatial and temporal dependence

as well as space-time covariance so that changes in the endowments of a single region (say

i) at time t can impact own- and other-regions (j ̸= i) in the current and future time

periods. In particular, we focus on the partial derivative impact of changes in the regional

endowment variables on regional income levels at various time horizons, an issue that has

received little attention in the spatial panel data model literature.14
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(Figure 3 about here)

Space-time dynamics for the two clubs

The second step of our approach involves estimating a space-time dynamic panel data model

that uses (logged) levels of regional income as the dependent variable and (logged) levels of

previous period endowments of physical, knowledge and human capital stocks, to examine

the response of regional income levels over space and time to changes in initial period

endowments, in each of the two clubs of regions. Our focus is on the partial derivative

effects associated with changing the physical, knowledge and human capital stocks. The

next section sets forth the fixed effects variant of our dynamic space-time panel data model

used for calculating dynamic response elasticities for regional income levels over space and

time, to changes in initial period endowments of physical, knowledge and human capital

stocks.

The space-time levels relationship

We use a fixed effects variant of our dynamic space-time panel data model, and focus on the

(logged) levels relationship between the dependent yt and explanatory variables Xt−1 as well

as a linear combination of neighboring region explanatory variablesWXt−1, with associated

parameters η. The log transformation allows us to calculate dynamic response elasticities

for regional income levels over space and time, to changes in initial period endowments of

physical, knowledge and human capital stocks.15 The (fixed effects) dynamic space-time

panel model takes the form:

yt = ϕyt−1 + ρWyt + θWyt−1 +Xt−1β + (D̃ ⊙Xt−1)β̃

+ WXt−1η + (D̃ ⊙WXt−1)η̃ + Fγ + εt, t = 2, . . . , T. (13)

where yt, Xt−1 have been log-transformed, εt is i.i.d. across i and t with zero mean and

variance σ2εIN , and F represent fixed effects with γ the associated parameters.

We rely on a Bayesian Markov Chain Monte Carlo estimation scheme described in Parent

and LeSage (2012) to produce estimates of the parameters in the model. Our focus here is

on the partial derivative effects associated with changing the explanatory variables in this
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model, reflecting human and physical capital stocks as well as knowledge capital stocks.

This model has own- and cross-partial derivatives that measure the impact on own- and

other-regions income. We will use yit to reference elements in the N×1 vector yt pertaining

to the ith element/region at time t, and we drop the explicit log (ln) symbols for notational

simplicity. The own-partial derivative: ∂yit/∂X
k
it, represents the time t direct effect on

region i’s (logged) income level (at time t), arising from a change in the kth explanatory

variable (say logged physical capital levels) in region i (at time t). There is also a cross-

partial derivative ∂yjt/∂X
k
it that measures the time t indirect effect, that falling on regions

(j) other than i, where most of the spatial spillover impacts fall on regions j that are nearby

or neighbors to region i.

We are most interested in partial derivatives that measure how region i’s (logged) in-

come level responds over time to changes in the initial period (logged) endowment levels of

physical and human capital, as well as knowledge capital, since this is the essence of the

debate concerning regional convergence in levels of income over time. The model allows

us to calculate partial derivatives that can quantify the magnitude and timing of regional

income responses at various time horizons to changes in the initial period levels of the ex-

planatory variables. Expressions for these are presented and discussed in the sequel. We

simply note here that we are referring to: ∂yit+T /∂X
k
it which measures the T−horizon

own-region i response to changes in its initial endowments, and ∂yjt+T /∂X
k
it, that reflects

spillovers/diffusion effects over time that impact other regions j when region i’s initial

period human, physical or knowledge capital are changed.

We follow Yu et al. (2008) and treat the dynamic space-time process as conditional on

the initial cross-section. A careful analysis of issues related to treatment of the first period

observation can be found in Parent and LeSage (2012), and we do not address this issue

here. For simplicity of exposition, we assume that the first period is only subject to spatial

dependence, which allows us to write the model as in (14), with accompanying definitions

in (15), (16), (17) and (18).

QY =

(
X (IT−1 ⊗W )X

) β

η

+ (IT−1 ⊗ D̃)⊙
(
X (IT−1 ⊗W )X

) β̃

η̃


+ Fγ + ε (14)
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Q =



B 0N×N 0N×N . . . 0N×N

A B 0N×N . . . 0N×N

0N×N A B
. . .

...
...

. . .
. . .

. . . 0N×N

0N×N . . . 0N×N A B


(15)

A = −(ϕIN + θW ) (16)

B = (IN − ρW ) (17)

F = ιT−1 ⊗ IN . (18)

The dependent variable vector Y = (y′2, . . . , y
′
T )

′, consisting of N × 1 vectors of cross-

sectional observations for each time period yt = (y1t, . . . , yNt)
′. The matrixX = (X ′

2, . . . , X
′
T )

′,

so that Xt denotes the N×K matrix of (lagged) non-stochastic regressors at time t. We use

Xk
it to reference elements associated with the kth variable for region i at time t. The matrix

product [(It−1 ⊗ D̃)⊙X] applies the club dummy variables to the explanatory variables X

and WX for each time period, allowing for parameters β, η associated with Club 1, the low

initial period income club, and parameters β + β̃, η + η̃ for Club 2, the high initial period

income club.

The N×1 column vector γ represents fixed effects parameters, and the N(T−1)×N ma-

trix F the associated regional indicator variables. The disturbance vector ε = (ε′2, . . . , ε
′
T )

′,

with εt = (ε1t, . . . , εNt)
′, t = 2, . . . , T , assumed to be i.i.d. across i and t, with zero mean

and variance σ2. Spatial dependence is measured by the parameter ρ and time dependence

is reflected in the scalar parameter ϕ, while the covariance between space and time is cap-

tured by the parameter θ. The space filter matrix B = (IN − ρW ) is nonsingular, where

the scalar spatial dependence parameter is ρ and the N × N matrix W is assumed to be

a known row stochastic spatial weight matrix (exogenous with row-sums of unity and with

zeros on the diagonal). This matrix defines the dependence between cross-sectional spatial

units. We will also assume thatW was created by row-normalizing our 10 nearest neighbors

matrix, so that all eigenvalues are less than or equal to one. To address time-specific effects,

we apply the time mean differencing matrix transformation J = IT−1 ⊗ (IN − (1/N)ιN ι
′
N ))

to put each time period in deviations from the time mean form.16
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The associated data generating process (DGP) is shown in (19).

Y = Q−1{
[
X (IT−1 ⊗W )X

] β

η


+ (IT ⊗ D̃)⊙

[
X (IT−1 ⊗W )X

] β̃

η̃

+ Fγ + ε} (19)

Of course, the values taken by the kth explanatory variable change with time periods

so we need to further elaborate expression (19). For future reference we note that Debarsy

et al. (2012) show that the matrix Q−1 takes the form of a lower-triangular block matrix,

containing blocks with N ×N matrices. 17

Q−1 =



B−1 0N×N 0N×N 0N×N . . . 0N×N

C1 B−1 0N×N 0N×N . . . 0N×N

C2 C1 B−1 0N×N . . . 0N×N

C3 C2 C1 B−1 . . .
...

...
...

. . .
. . .

. . . 0N×N

CT−1 CT−2 . . . C2 C1 B−1


(20)

Cs = (−1)s(B−1A)sB−1, s = 1, . . . , T − 1.

One implication of this is that we need only calculate the two N × N matrices: A

and B−1 to analyze the partial derivative impacts for any time horizon T . This means we

can use a panel involving say ten years to analyze the cumulative impacts arising from a

permanent change in endowments at any time t extending to future horizons t + T . Of

course, long horizons where T represents 30, 50 or 100 years are of interest for regional

growth and convergence issues.

The one-period-ahead impact of a (permanent) change the kth variable at time t for

regions in Club 1 are shown in (21) and those for regions in Club 2 are in (22).

∂Yt+1/∂X
k
t = C1[INβk +Wηk] (21)
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= −B−1(ϕIN + θW )B−1[INβk +Wηk]

∂Yt+1/∂X
k
t = C1[IN (βk + β̃k) +W (ηk + η̃k)] (22)

= −B−1(ϕIN + θW )B−1[IN (βk + β̃k) +W (ηk + η̃k)].

More generally, the T -period-ahead (cumulative) impact arising from a permanent change

at time t in Xk
t takes the form in (23) for regions in Club 1 and (24) for Club 2 regions. Note

that we are cumulating down the columns (or rows) of the matrix in (20). For interpretative

purposes we follow LeSage and Pace (2009) who note that the columns represent partial

derivative changes arising from a change in a single region, whereas the rows reflect changes

in all regions.

∂Yt+T /∂X
k
t =

T∑
s=1

Cs[INβk +Wηk] (23)

∂Yt+T /∂X
k
t =

T∑
s=1

Cs[IN (βk + β̃k) +W (ηk + η̃k)] (24)

Cs = (−1)s(B−1A)sB−1.

By analogy to LeSage and Pace (2009), the main diagonal elements of the N × N

matrix sums for time horizon T represent (cumulative) own-region impacts that arise from

both time and spatial dependence. The off-diagonal elements of these matrix sums reflect

diffusion over space and time. We note that it is not possible to separate out the time from

space and space-time diffusion effects in this model.18

The next section reports parameter estimates for the model along with scalar summary

measures of the dynamic elasticity responses of income levels to changes in initial endow-

ments.

Dynamic elasticity responses for the two clubs

We first report parameter estimates for the model, although these are not directly in-

terpretable in terms of the space-time dynamic impacts associated with changes in the

explanatory variables on the dependent variable (regional income levels). Posterior means,

medians and standard deviations as well as a ratio of the mean/standard deviation are

reported for the space-time dependence parameters ϕ, ρ, θ and the noise variance parameter
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σ2ε in Table 3.

(Table 3 about here)

From the table we see significant time, space and space-time dependence, with the restriction

that θ = −ρϕ discussed in Parent and LeSage (2012) being quite consistent with this

dataset, since 0.72352×−0.78199 = −0.5658, which is very close to the unrestricted estimate

for θ = −0.5685. In fact, the difference of 0.0027 between these two estimates is much

smaller than the estimated standard deviation for θ equal to 0.01330. We come to a similar

conclusion regarding the restriction that θ = −ρϕ using the posterior medians in place of

the means.

The table also reports coefficient estimates for the three explanatory variables used:

(logged) regional levels of physical capital, knowledge capital and human capital as β co-

efficients, along with those from an average of the 10 neighboring regions recorded as η

coefficients on the WX variables. The coefficients for the Club 2 dummy variables asso-

ciated with these two sets of explanatory variables are denoted using β̃, η̃, and we note

that neighboring region η coefficients for knowledge and human capital appear to exert a

significant influence, as do the neighboring region dummy variable coefficients η̃ for knowl-

edge and human capital.19 It should be noted that none of these coefficients (β, η, β̃, η̃) are

directly interpretable as indicating how the dependent variable responds to changes in the

explanatory variables, a point that has frequently been overlooked in the dynamic panel

data model literature.

The dynamic elasticity responses are shown in Table 4 for the direct (own-region) and

indirect (other-region) responses to changes in the physical capital stock variable for both

clubs. The cumulative direct effects estimates reported show time horizon zero effects

that reflect simultaneous own-region spatial effects, while time horizons one to 30 years

include the future period own-region impacts that arise from time dependence as well as

some spatiotemporal feedback effects. Note that in this model regional income depends on

neighboring regions, implying that future period changes in neighboring regions’ income will

set in motion a feedback loop that produces second order benefits/costs to the own-region

as a result of spatial spillover benefits/costs generated for neighbors in earlier time periods.
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(Table 4 about here)

The first column shows the time horizon (t+T ). The next three columns show a lower 0.99

credible interval constructed using 10,000 MCMC draws retained from a set of 50,000 draws,

the posterior mean estimate, and an upper 0.99 credible interval. A positive mean with

positive lower and upper 0.99 intervals should be interpreted as a positive and significant

effect. Effects whose credible intervals span zero are not significant. Cumulative effects

are interpreted as the percentage changes in regional income levels that would arise over

time in response to a permanent percentage increase in the level of capital stock in the

representative/typical region. The same format was used to report (cumulative) direct

effects for Club 2 alongside those of Club 1 for comparison purposes. The table also includes

indirect (or spatial spillover) effects in the same format.

The dynamic cumulative elasticity responses reveal that a 10 percent increase in physical

capital stocks in Club 1 (initial period low income) regions would lead to a long-run own-

region (direct) increase in income (GVA per capita) of 2.4 percent, and a very similar 2.1

percent increase for Club 2 (initial period high income) regions. The empirically derived

credible intervals calculated for the responses show that increases in physical capital have

a long-lived impact on regional incomes, since the effects level off at 19- and 20-years,

respectively.

These results suggest no difference in how low and high income regions (Clubs 1 and

2 respectively) are able to convert increased physical capital stocks into higher regional

income levels. As a test for significant differences between the responses for the two clubs,

the top panel of Figure 4 shows a plot of the posterior mean difference between Club 1

and 2 (Club 1 minus Club 2), along with 0.99 lower and upper credible intervals. The

credible intervals were empirically determined using the 10,000 retained MCMC draws for

the difference between the two clubs effects estimates. The plot makes it clear that the

difference between the effects is very close to zero and the credible intervals span zero.

(Figure 4 about here)

Table 4 also shows the cumulative indirect (spatial spillover) effects associated with a change

in physical capital stocks. Here we see positive but not significant spillovers for both Club

1 and Club 2 regions. The cumulative spillover magnitudes of 0.74 for Club 1 and 0.12
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for Club 2 appear very different. However, the second panel of Figure 4 shows posterior

mean differences and empirical credible intervals indicating no significant difference.20 We

conclude that changes in physical capital for the typical region in both Club 1 and Club 2

do not produce significant spatial spillover impacts on income levels of neighboring regions.

One explanation for positive and long-lived direct effects arising from changes in regional

physical capital but zero spatial spillover effects might be the type of capital stock changes

taking place. For example, increases in physical capital representing resources shared be-

tween regions such as public transportation infrastructure would be more likely to produce

spatial spillovers than physical capital put in place by private firms.21

Table 5 shows the direct cumulative effect responses to changes in knowledge capital

stocks for regions in Clubs 1 and 2. Here we see (cumulative long-run) direct responses

for the Club 2 regions (0.0925) that are positive and significant, while those for Club 1

regions are not different from zero. This would indicate that high income regions benefit

from increased knowledge stocks while low income regions do not.

(Table 5 about here)

The top panel of Figure 5 shows that the difference between the mean cumulative direct

effects (e.g., 0.0592 long-run mean response for Club 1 versus 0.0925 long-run mean response

for Club 2) for the two clubs is not significant. However, the evidence from Table 5 suggests

that we interpret the mean response for Club 1 as truly zero, and the mean response for Club

2 is significantly different from zero using the lower 0.01 and upper 0.99 credible intervals

reported in the table.

(Figure 5 about here)

Indirect effects responses in Table 5 indicate positive and significant spatial spillovers from

knowledge capital stocks for Club 1, but not for Club 2 regions. The magnitude is such

that a 10 percent increase in knowledge stocks of neighboring regions would lead to a

four percent (long-run) increase in income levels of the low income Club 1 regions. An

implication of these results is that Club 1 (low income) regions that are close neighbors to

Club 2 (high income) regions may benefit greatly from spatial spillovers and diffusion effects

arising from increases in knowledge stocks in Club 2 regions. In contrast, Club 2 regions

would not benefit from spillover and diffusion effects as a result of being neighbors to Club
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2 regions where knowledge stocks are increasing. The bottom panel of Figure 5 shows that

the difference between the mean indirect effects for Clubs 1 and 2 are significantly positive.

The magnitude of (cumulative) spillovers (e.g., 0.429 long-run response) may seem large,

especially when compared to the long-run (cumulative) direct effects of 0.0925. It must

be noted that these are cumulative spillovers, where the cumulation takes place over all

neighboring regions, neighbors to the neighboring regions and so on. Effects falling on

any individual region are smaller than the direct effects, consistent with spillovers being a

“second order effect”. This can be seen by considering that there are 10 first order neighbors

alone, so if we divide the spillover/indirect effects estimates by a factor of 10, the marginal

impacts of 0.043 associated with a single region are much smaller than the direct effects.

Further note that we should in reality divide by a number much greater than the 10 first

order neighbors, since these effects emanate out to more distant neighbors as time passes,

a phenomenon representing spatial diffusion impacts. See Parent and LeSage (2010) for a

decomposition of the effects into time-specific and space-specific as well as diffusion-specific

impacts.

The direct effects from changes in human capital reported in Table 6 are positive and

significant for Club 1 low income regions but not significant for Club 2 regions. The top

panel of Figure 6 indicates that the difference between direct effects for the two clubs is

significant. Club 1 regions benefit from increases in human capital whereas Club 2 regions

do not.

(Table 6 about here)

Indirect effects from changes in human capital reported in Table 6 are negative for Club 1

regions and positive for Club 2 regions, but not significantly different from zero for either

club. This indicates that changes in human capital do not produce spatial spillovers to

neighboring regions. The bottom panel of Figure 6 indicates that the difference between

the negative and positive mean indirect effects is significant, but this is irrelevant since both

sets of mean effects are not significantly different from zero.
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(Figure 6 about here)

Concluding remarks

This paper describes a two-step approach to identifying and interpreting regional conver-

gence clubs in Europe. The first step uses a formal Bayesian methodology to produce

posterior probabilities for alternative classifications of European regions into convergence

clubs. Each region must be classified into one of two clubs. The classification takes place

conditional on a space-time panel data relationship for regional income growth. Since ob-

servations are regions in our relationship, the comparison problem is one of comparing

classifications based on different assignments of each observation (region) to one of the two

club categories based on initial period income levels. A key contribution is that we use a

dynamic (panel) growth regression relationship and integrate over the space of all parame-

ters in the relation rather than produce classifications that are conditional on a single set

of parameter estimates from a model.

Even for the case of two clubs, the classification problem leads to a high dimensional

model space consisting of 2N possible models where N is the number of regions in the sample

that need to be compared for classification purposes. To overcome this, we use a procedure

that splits the sample into clubs based on the initial period (per capita) income levels of

the regions, and log-marginal likelihood expressions to calculate posterior probabilities for

sample splits based on different initial period income levels. Deriving the log-marginal

likelihood used for classification comparison purposes here involved a combined strategy

that relied on: (i) analytical integration for some parameters of the model, (ii) numerical

integration over the space and time dependence parameters, and (iii) fixing the variance

ratio for the random effects versus noise vector.

Results from applying the classification procedure to split a sample of 216 European

regions according to initial period income levels were reported. They suggest strong evidence

of two clubs based on a split of regions at the 16,000 level of 1995 level of per capita GVA.

A limitation of our approach is that we assumed only two clubs.

The second step of the approach involved estimating a space-time dynamic panel data

model that used (logged) levels of regional income as the dependent variable and (logged)

levels of previous period endowments of physical, knowledge and human capital stocks. An-

alytical expressions from Debarsy et al. (2012) for the partial derivatives showing dynamic
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response elasticities were used to examine the response of regional income levels over space

and time to changes in initial period endowments. These dynamic responses provide clear

evidence of the distinct long-term behavior of the two clubs of regions.
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Notes

1See Durlauf et al. (2005), Magrini (2004), as well as LeGallo and Fingleton (2013) for useful growth

empirics literature reviews.

2Modern growth theory has suggested that the distribution of per capita income of regions may display

a tendency for the steady state distribution to cluster around a small number of poles of attraction, and

hence lead to convergence clubs (Canova 2004). This tendency may be due to several factors: capital market

imperfections, non-convexities, imperfectly competitive market structures, and spillovers due to physical and

human capital accumulation (Galor 1996).

3Regions that are similar in their structural characteristics, but differ in their initial distribution of

income, may cluster around different steady state equilibria (see Durlauf 1996; Quah 1996). It should be

noted that if multiple equlibria depend on initial income cut-offs, the relationship between subsequent growth

and initial income will not be linear.

4We use the term relationship to distinguish this from a model. Models have an associated set of parameter

estimates and inferences about club assignments would be conditional on this set of estimates.

5For matters of simplicity, we concentrate on the determination of two clubs here. The existence of two

clubs is supported by empirical regularities in the dynamics of cross-region income distributions in Europe

as evidenced in Pittau and Zelli (2006), and Fischer and Stumpner (2008).

6Most approaches to estimating and testing the club convergence hypothesis have focused on calculating

scalar measures of the speed of convergence taken from the cross-sectional models literature.

7Of course, there is a relationship between growth rates and level values taken by variables (such as

income, physical and human capital) over time which is explored in detail for the case of spatially dependent

sample data in LeSage and Fischer (2008).

8This type of space-time panel data relationship has been originally proposed by Anselin (2001), and

explored by Yu et al. (2008) as well as Parent and LeSage (2012). Examples of empirical studies using this

type of specification include Parent and LeSage (2010), and Debarsy et al. (2012).

9 Parent and LeSage (2012) point to several computational advantages that arise when θ = −ϕρ, and

there are also interpretative advantages regarding the partial derivatives of the model discussed in Debarsy

28



et al. (2012).

10Posterior probabilities of the type reported in Table 1 were constructed for varying weight matrices as

a test of robustness to this assumption, and they showed no change regarding the level of income at which

we split our sample.

11A restriction to regions with 1995 GVA per capita below 50,000 was implemented to improve scaling of

the figure.

12We exclude the Spanish North African territories of Ceuta and Melilla, the Portuguese non-continental

territories Azores and Madeira, the French Départements d’Outre-Mer Guadaloupe, Martinique, French

Guayana and Réunion.

13The motivation for the use of this model type is that it can provide us with useful information about

the clubs of regions not available from cross-section (spatial) regressions.

14Parent and LeSage (2010) as well as Debarsy et al. (2012) are exceptions.

15Ertur and Koch (2007) derive this type of expression where neighboring region explanatory variables

arise in a growth regression framework from neoclassical growth theory.

16This transformation is applied to Y and X as well as F and it obliterates the intercept term from the

model. For clarity we do not include this in the notation regarding our discussion of the partial derivative

impacts on yt+T arising from changes in Xit, since it does not influence these.

17See Parent and LeSage (2010) for the special case that arises when the restriction θ = −ρϕ is imposed.

18See Parent and LeSage (2010) for the special case where space and time are separable.

19 The role of neighboring region endowments was ignored by Yu and Lee (2012) in their implementation

of this model for US data.

20There is evidence that the differences are significant using a 0.95 credible interval. This difference is

positive indicating that low income (Club 1) regions enjoy larger spatial spillovers from changes in physical

capital stock.

21The evidence of greater spillovers for Club 1 regions using the 0.95 intervals seems consistent with more

public infrastructure investment in low income Club 1 regions over the period we examine.
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Appendix

Deriving the log-marginal likelihood used for model comparison purposes in our study in-

volves a combined strategy that relies on analytical integration for some parameters of the

model, numerical integration over the space and time dependence parameters, and fixing the

variance ratio for the random effects versus noise vector. We will develop the log-marginal

likelihood expressions to calculate posterior probabilities for models involving splits based

on different initial period income levels of the sample of regions. Let us start with the task

of analytically integrating out the parameters δ = ( ψ ψ̃ α α̃ β β̃ )′.

Proceeding to the task of analytically integrating out the parameters δ, we can concen-

trate out the parameters δ using:

δ̂ = (Z ′Z)−1Z ′Pg

which can be strategically written using the following expressions:

δ̂ = (δ0 − ϕδϕ − ρδρ − θδθ)

δ0 = (Z ′Z)−1Z ′(F ⊗ IN )g

δϕ = (Z ′Z)−1Z ′(L⊗ IN )g

δρ = (Z ′Z)−1Z ′(F ⊗W )g

δθ = (Z ′Z)−1Z ′(L⊗W )g

where

L =



−1 0 0 . . . 0

0 −1 0 . . . 0
...

. . .
. . .

...

0 . . . 0 −1 0


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F =



0 1 0 . . . 0

0 0 1
...

...
. . .

. . . 0

0 . . . 0 1


with L and F being (T − 1)× T matrices.

Now consider the errors: e = Pg − Zδ, which can be written using:

e =

(
1 −ϕ −ρ −θ

)


E(1)

E(2)

E(3)

E(4)


E(1) = (F ⊗ IN )g − Z(Z ′Z)−1Z ′(F ⊗ IN )g

E(2) = (L⊗ IN )g − Z(Z ′Z)−1Z ′(L⊗ IN )g

E(3) = (F ⊗W )g − Z(Z ′Z)−1Z ′(F ⊗W )g

E(4) = (L⊗W )g − Z(Z ′Z)−1Z ′(L⊗W )g

e′Ω−1e = τ ′Qτ

τ =

(
1 −ϕ −ρ −θ

)
Qij = tr(E(i)′Ω−1(λ)E(j)), i = 1, . . . , 4 j = 1, . . . , 4.

The advantage of this specification is that the likelihood can be written expressing the

sum of squared residuals e′Ω−1e as a function of only the parameters ϕ, ρ, θ in the vector τ

and the parameter λ, plus sample data information g, Z,W .

We assign an inverse gamma prior IG(a, b) for σ2µ/λ:

πs(σ
2
µ/λ) ∼ (ab/2)a/2

Γ(a/2)
(σ2µ/λ)

−(a+2
2

)exp

(
− ab

2σ2µ/λ

)
,

where a, b are parameters of the inverse gamma prior. We follow LeSage and Parent (2007)

and assign Zellner’s g-prior (Zellner 1986) to the parameters δ:
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πd(δ|σ2µ/λ) ∼ N (0, (σ2µ/λ)V
−1)

V = GZ ′Z.

Using Bayes theorem the marginal likelihood for the model can be written as the integral

below, where we use D to denote the data g, Z,W .

∫
πd(δ|σ2µ/λ)πs(σ2µ/λ)p(D|α, δ, ρ, ϕ, θ, σ2µ/λ) dδ d(σ2µ/λ) dρ dϕ dθ

= κ(2π)−(N(T−1)+K)/2((T − 1)λ+ 1)−N |V |1/2

×
∫

|IN − ρW |T λ
[N(T−1)]+a+2K+1

σ2µ

× exp

(
− 1

2σ2µ/λ
[ab+ e′Ω−1e+ δ′V δ + (δ − δ̂(ϕ, ρ, θ))′(Z ′Z)(δ − δ̂(ϕ, ρ, θ))]

)
× πδπϕπρπθdδ dϕ dρ dθ

κ = Γ

(
a

2

)−1 (ab
2

)a/2

.

We can use the properties of the multivariate normal pdf and the inverted gamma pdf

to analytically integrate out the parameters δ and σ2µ/λ which produces an expression for

the marginal likelihood as a function of the three parameters ζ = (ϕ, ρ, θ) only.

An expression that is analogous to that from LeSage and Parent (2007) arises:

p(ζ|D) = κ̃(
G

1 +G
)K/2(Tλ+ 1)−N

×
∫

|IN − ρW |T [ab+R(ζ) + S(ζ)]−[N(T−1)+a−1]/2πϕπρπθ dϕ dρ dθ

where

κ̃ =
Γ[(N(T − 1) + a− 1)/2]

Γ(a/2)
(ab)a/2π−[N(T−1)−1]/2

R(ζ) + S(ζ) =
1

G+ 1
τ ′Qτ

+
G

G+ 1
(Pg − α̂ιNT )

′ (Pg − α̂ιNT )

α̂ = U (1) − ϕU (2) − ρU (3) − θU (4)
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U (1) = (F ⊗ IN )g

U (2) = (L⊗ IN )g

U (3) = (F ⊗W )g

U (4) = (L⊗W )g

with Γ denoting the gamma function. Recall that e′Ω−1e = τ ′Qτ and Ω is a function of λ

which we are treating as a fixed scalar, so Ω is presumed known. Without loss of generality

we can view λ as equal to any fixed value here, but in practice we should test for robustness

across various values of this parameter reflecting the variance ratio of the random effects to

noise.

While we developed these expressions for the case of unrestricted θ, we can reduce the

trivariate numerical integration to a bivariate problem by imposing the restriction θ = −ρϕ,

which is the approach we take in our application.
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Tables

Table 1: Posterior probabilities for splits of the generated data example

Sample split y0 levels Prob(split q) Prob(split q) Prob(split q)

λ = (1/2)λ̂ λ = λ̂ λ = 2λ̂

10,000 0.0000 0.0000 0.0000
12,000 0.0000 0.0000 0.0000
14,000 0.0001 0.0000 0.0000
16,000 0.0000 0.0000 0.0000
18,000 0.2744 0.1157 0.2495
20,000* 0.6723 0.8658 0.6689
22,000 0.0009 0.0010 0.0005
24,000 0.0523 0.0000 0.0000
26,000 0.0000 0.0000 0.0000
28,000 0.0000 0.0000 0.0811
30,000 0.0000 0.0175 0.0000
32,000 0.0000 0.0000 0.0000

* indicates split that generated the growth rates
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Table 2: Posterior probabilities for various splits of the sample based on 1995 levels of
income

Sample split Relation (1) Probs Relation (1) Probs Relation (1) Probs Relation (1) Probs
y0 levels (λ = 0.3) (λ = 0.4) (λ = 0.5) (λ = 1)

8,000 0.0206 0.0102 0.0739 0.0064
10,000 0.0251 0.0118 0.0214 0.0534
12,000 0.0063 0.0012 0.0011 0.0039
14,000 0.0260 0.0099 0.0089 0.0162
16,000 0.7165 0.5206 0.7062 0.4670
18,000 0.0013 0.0058 0.0109 0.0007
20,000 0.0070 0.0143 0.0039 0.0063
22,000 0.1777 0.4147 0.1634 0.1809
24,000 0.0150 0.0022 0.0065 0.0080
26,000 0.0009 0.0059 0.0004 0.0003
28,000 0.0031 0.0004 0.0008 0.2532
30,000 0.0006 0.0030 0.0026 0.0037

Sample split Relation (4) Probs Relation (4) Probs Relation (4) Probs Relation (4) Probs
y0 levels (λ = 0.3) (λ = 0.4) (λ = 0.5) (λ = 1)

8,000 0.0591 0.4197 0.1664 0.0442
10,000 0.0451 0.0535 0.0667 0.2515
12,000 0.0064 0.0089 0.0084 0.0046
14,000 0.4476 0.3962 0.3797 0.4338
16,000 0.3201 0.1038 0.1020 0.0719
18,000 0.0135 0.0036 0.0074 0.0030
20,000 0.0089 0.0022 0.0040 0.0063
22,000 0.0377 0.0071 0.0890 0.1828
24,000 0.0125 0.0017 0.0056 0.0002
26,000 0.0014 0.0010 0.1694 0.0008
28,000 0.0468 0.0004 0.0005 0.0003
30,000 0.0009 0.0021 0.0008 0.0006

2



Table 3: Dynamic space-time panel data model estimates

Posterior statistics ϕ ρ θ σ2
ε

Mean 0.72352 0.78199 -0.56850 0.000660
Median 0.72382 0.78130 -0.57011 0.000659
Std 0.00812 0.01301 0.01330 0.000021
Mean/Std 89.08836 60.07254 -42.72632 30.746086

Variables Mean Std Mean/Std t−probability

β physical capital 0.05151 0.0137 3.73 0.00019
β knowledge capital 0.01048 0.0064 1.63 0.10247
β human capital 0.03411 0.0091 3.71 0.00021
η W (physical capital ) 0.00822 0.0248 0.33 0.74036
η W (knowledge capital) 0.01919 0.0096 1.98 0.04780
η W (human capital) -0.07255 0.0192 -3.77 0.00016

β̃ physical capital 0.01290 0.0206 0.62 0.53225

β̃ knowledge capital 0.01564 0.0089 1.74 0.08136

β̃ human capital -0.04841 0.0147 -3.28 0.00105
η̃ W (physical capital) -0.04952 0.0293 -1.68 0.09138
η̃ W (knowledge capital) -0.04293 0.0109 -3.92 0.00009
η̃ W (human capital) 0.10238 0.0241 4.23 0.00002
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Figure 1: Frequency distribution of 1996 GVA per capita levels
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Figure 2: Distributions of low- and high-income regional growth rates generated using
m = 20, 000
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Figure 3: A map of regions classified into two clubs
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Figure 4: (Club 1 - Club 2) physical capital direct and indirect effect differences
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Figure 5: (Club 1 - Club 2) knowledge capital direct and indirect effect differences
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Figure 6: (Club 1 - Club 2) human capital direct and indirect effect differences
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