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ABSTRACT:  We provide empirical evidence of the dynamics of city size distribution for the whole of the 
twentieth century in U.S. cities and metropolitan areas. We focus our analysis on the new cities that were 
created during the period of analysis. The main contribution of this paper, therefore, is the parametric and 
nonparametric analysis of the population growth experienced by these new-born cities. Our results enable us 
to confirm that, when cities appear, they grow very rapidly and, as the decades pass, their growth slows or 
even falls into decline. Moreover, the nonparametric analysis shows that the most of the growth differential 
is driven by the cities’ first decade of existence. This is consistent with the theoretical framework regarding 
mean reversion (convergence) in the steady state and with the theories of sequential city growth.  
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1. Introduction 

The dynamics of city size distribution and, in particular, the analysis of Gibrat’s law – that is, that a 

city’s population growth rate is independent of its initial size –has attracted the attention of researchers for 

many years. In fact, there are plenty of studies evaluating the performance of Gibrat’s law for different 

countries and periods. Ioannides and Overman (2003) find that Gibrat’s law holds for the US, Eeckhout 

(2004) points out the same when including all the cities without restriction and so does Giesen and Südekum 

(2011) for the case of Germany. Others such as Black and Henderson (2003) or Bosker et al. (2008) find that 

this is not the case both for the US and West Germany respectively. Despite this amount of literature 

quantifying the size effect on growth, there is little evidence on analysing the effect of city’s age on its 

growth. In this context, this paper adopts parametric and nonparametric techniques to evaluate the age-

dependent patterns of urban growth using data on cities and Metropolitan Statistical Areas (MSAs) of the 

US for the period 1900 to 2000. Moreover, the non parametric analysis provides additional empirical 

evidence to the above mentioned theories regarding the acceptance or rejection of Gibrat’s law focusing on 

the role of new-born cities.  

The inclusion of new cities is of special relevance in the case of the US which saw its cities grow in 

number from 10,496 to 19,211 over the 20th century. Besides, at the same time, these cities increased in 

population and size. Figure 1 shows the evolution of the total number of cities throughout the twentieth 

century in the US. At first glance we can observe that the number of cities grows over time but this growth is 

not the same trough all the period. In fact, the graph shows that this growth is concave, being higher during 

the first third of the century12 and becoming more stable the years after. There are many examples of cities 

appearing during the 20th century. For instance, Long Beach in the State of New York, was created in 1922, 

and today is the 15th biggest city in the State (the 18th in 2000). With a population of 35,462 inhabitants 

(2000), it enjoyed an annual growth rate of between 4.5 and 5.5% during its first three decades of existence, 

though this rate slowed down to 0.5% in the 1990s. The second half of the twentieth century is characterized 

by a suburbanization process and the proliferation of cities in the south of the country. Good examples of 

this phenomenon are provided by Carson City and San Marcos, two cities in California. The former is, in 

fact, a suburb of Los Angeles and the latter of San Diego. Both cities were created during the 1960s as a 

consequence of the aforementioned process and the creation of the Sun Belt. Carson City was born in 1968, 

grew at an annual rate of 1.3% during its first decade of existence and then at a slower rate up to 2000. The 

case of San Marcos differs slightly. The decline in its growth rate with the passing decades is the same as in 

the previous case, but its annual growth rates have been much higher: ranging from 15% on average for the 

first decade of its existence to 3% over the last decade, growing from a settlement of just 3,896 inhabitants 

                                                           
1 In fact, 62.26% of the new cities created in the whole century were born in the first three decades, while the average rate of new 
creations for the rest of the period stands at around 5% per decade. 



3 

in 1970 to 54,977 in 2000. These are three examples from our dataset but we can find almost 9,000 similar 

cases. 

[FIGURE 1] 

However, we are not the first focusing the analysis on new cities. Previous works by Dobkins and 

Ioannides (2000) and Henderson and Wang (2007) also allow new cities to enter the sample when crossing a 

particular threshold. However, the inclusion of all new cities without any threshold restriction is only 

considered in the works by Giesen and Südekum (2012) who uses data on the foundation dates of 7,000 

American cities for the period 1790 to 2000 and Desmet and Rappaport (2013) whose data consist on the 

entire set of counties and MSAs for the US from 1800 to 2000. Our work closely relates to both studies. 

Giesen and Südekum (2012), by means of a theoretical model, find that the distribution of city sizes is 

systematically related to the country’s city age distribution. They point out that young cities initially grow 

faster but in the long run all the cities grow at the same rate (Gibrat’s law). Desmet and Rappaport (2013) 

point out that in earlier periods smaller counties converge and larger ones diverge but, taking into account 

the changes in age composition over time, both convergence and divergence dissipate and Gibrat’s law 

gradually emerges. Our results are very much in line with theirs. We find that young small cities tend to 

grow at higher rates but, as decades pass, their growth stabilizes or even declines. Moreover, this high level 

of growth rates is spread across ages but is especially important in the first years of existence. After that, 

Gibrat’s law tends to hold better.  

Our work shows then, a sequential growth pattern of cities according to their age. To grow sequentially 

means that, within a country, a few cities initially grow much faster than the rest, but at some point their 

growth slows and other cities start to grow, and so on. This fact has been theoretically documented by 

Cuberes (2009) and Henderson and Venables (2009) with some models in which cities grow sequentially, 

allowing for the entrance of new cities in the sample. The only empirical approach to these theories is 

Cuberes (2011) who, drawing on data for cities from 54 countries and on data for metropolitan areas from 

115 countries, shows that urban agglomerations have followed a sequential growth pattern. However, these 

set of studies focus on the sequential pattern driven by the size of the city while our work does so tracing the 

age-dependent patterns. 

Moreover, we reproduce the analysis for metropolitan areas as they represent more accurate economic 

areas than cities. However, our results do not confirm our earlier findings for cities. This could reflect the 

fact that a metropolitan area is an aggregation of different cities; even if the area is new, the cities within it 

might not be. Moreover, it is not possible to know how old the area is since it does not enter the sample until 

it reaches the minimum population threshold of 50,000 inhabitants. As such, larger - and, therefore, more 
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mature - cities within the area, have lower growth rates than smaller cities within the same area and the 

aggregate effects may disappear.    

The rest of the paper is structured as follows. Section 2 presents the data. Section 3 explains the 

parametric empirical methodology and section 4 discuss its main results. Section 5 provides the 

nonparametric analysis and its results. Section 6 concludes.  

 

2. Data 

We use data for US cities and Metropolitan Statistical Areas (MSAs) for the whole of the 20th century. 

The database is the same as that employed by González-Val (2010) with the addition of extra periods for the 

MSA dataset. The information for both geographical units was obtained from the annual census published 

by the US Census Bureau. From the outset, it should be borne in mind that a city can be defined in many 

ways. Here, for our analysis, we use that of the ‘incorporated place’. According to the census, an 

incorporated place is a type of governmental unit incorporated under state law as a city, a town (except in 

New England, New York and Wisconsin), a borough (except in Alaska and New York city), or a village and 

having legally prescribed limits, powers and functions. The Census Bureau recognizes incorporated places 

in all states except Hawaii, for which reason it is excluded from our sample. In addition, the states of Puerto 

Rico and Alaska are excluded as they (together with Hawaii) were not annexed until the second half of the 

20th century. As Eeckhout (2004) stresses, the whole sample of cities in each state without restriction of size 

needs to be considered since otherwise a truncated distribution can produce biased results. 

Data for MSAs are also used so as to take into account that part of the population that lives outside 

cities and so as to be able to compare the results provided by both geographical units. In line with Ioannides 

and Overman (2003), for the period from 1900 to 1950, we use data from Bogue’s Standard Metropolitan 

Areas (1953). These are based on the definition of Standard Metropolitan Areas (SMAs)23for 1950, used to 

reconstruct the population for the period 1900 to 1940. This means, however, that in 1900 some of the 

SMAs were below the 50,000-inhabitant threshold, and these are excluded until they reach that cutoff. For 

the period 1950 to 2000 our MSA data are taken from the Census Bureau.  

As Glaeser and Shapiro (2003) point out, MSAs are multi-county units that capture labor markets and, 

as such, might serve as more effective economic units than incorporated places. Yet, the use of MSAs gives 

rise to a problem that is directly related to their definition: as an MSA usually comprises a group of counties 

that requires a central city with a minimum of 50,000 inhabitants (a criterion that has changed over the 

period of analysis), only larger cities are considered. Using MSAs gives rise to another more specific 

                                                           
2 The definition of a metropolitan area was first issued in 1949 under the name of Standard Metropolitan Area (SMA). It changed 
to Standard Metropolitan Statistical Area (SMSA) in 1959 and in 1983 was replaced by Metropolitan Statistical Area (MSA). 
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problem for the analysis we conduct here. As Dobkins and Ioannides (2001) show, the US system is 

characterized by the entry of new cities that can have an impact on its city size distribution. As we are 

particularly interested in these cities, the data on incorporated places provide more information than those on 

the MSAs. However, MSAs are larger geographical areas and include a large proportion of the population 

living in rural areas. Yet, despite the fact that the sample of incorporated places accounts for a lower 

percentage of the total population, it is considerably more urban (94.18% in 2000) than that of the MSAs 

(88.35%).  

Table 1 shows the descriptive statistics for the population of incorporated places in each decade of the 

twentieth century, while Table 2 presents the same statistics for the MSAs, the minimum threshold being 

50,000 inhabitants. An initial inspection shows that the number of cities and MSAs increases over time as 

does their size. In fact, new-born cities represent 42.52% of the total sample of incorporated places while the 

number of new MSAs amounts to 180, which represents 49.85% of the sample. What these tables illustrate, 

therefore, is the urbanization process that the US experienced over the last century. The number of cities in 

2000 is almost twice that in 1900; the number of MSAs has increased more than threefold. This is clearly 

indicative of the importance of taking into consideration the appearance of new units (cities or MSAs) when 

studying the US population growth process. 

 

[TABLE 1] 

 

[TABLE  2] 

3. Empirical analysis 

In the context of studies of city size distribution and, in particular, related to the sequential city growth 

literature, using a panel dataset we seek to test which US cities grew the most during each decade of the 20th 

century. In line with this literature, we expect the new-born cities to grow rapidly during the first decades of 

their life before stabilizing (and even declining) in the decades that follow. In order to test this hypothesis, 

we estimate the following model: 

 i,tsrs
k

ttik,i,tki,t εµηφδγcity sizedβg ++++++=∑
≥

−
1

1,        (1) 

where the dependent variable git is the growth rate for each city (or MSA) i at time t calculated 

as 1lnln −−= ititit ppg , being p the population. The variable dk is a dummy capturing the age of the cities. 

The sub index k represents the number of decades34that a city is present in our sample. Therefore, d1 

                                                           
3 As our data are divided by decades (not years), in 1910 we would have cities created from 1901 to 1910. In 1920 we find cities 
from 1911 to 1920. The same holds for the other eight nine decades of the century. 
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( kd when 1=k ) is equal to one when the city is new (first decade of existence) and zero otherwise. A city is 

considered new when it records a positive population in one decade while having no population in the 

previous one(s). Additionally, d2 ( kd when 2=k ) is equal to one if the city has existed for two decades and 

zero otherwise,  d3 ( kd when 3=k ) is equal to one if the city has existed for three decades and zero 

otherwise and so on. Therefore, this dummy variable represents cities of all ages, from new-born (d1) to nine 

decades old (d9), for all the period of analysis. The variable city size controls for the initial size of the city, 

tδ  is a time fixed effect, sφ  is a state fixed effect (in cities’ estimations we also add county fixed effects), rη  

is a region fixed effect and sµ is a dummy capturing other location fixed effects. ti ,ε  is the error term. 

Table 3 shows the evolution of the nine age dummies over the 20th century. For each decade, d1 is the 

number of new cities created in that decade so that in 1910 a total of 3,291 new cities were born; in 1920 the 

number was of 1,747 new cities, and so on. For each decade, d2 is the number of cities with one decade of 

existence. For instance, in 1950 there were 489 cities with one decade of existence in 1960 there were 627 

an so on. Column d3 shows the cities with two decades of existence, column d4 the ones with three decades 

of existence, and so on. The total number of cities by age (independently of the year of their creation) is 

displayed at the bottom of each column of Table 3. This number is the sample size used in the nonparametric 

analysis conducted in Section 5. Moreover, we can trace the cities’ evolution from the decade they first 

appeared until the end of the period by observing the diagonals in table 3. In fact, if d1 shows the number of 

new cities per decade, d2 the ones with one decade of existence, d3 those with three decades each decade and 

so on, then, we can trace the 3,291 newborn cities in 1910 by observing the number of cities corresponding 

d2 in 1920, d3 in 1930 and so on.  Thus, it becomes apparent that some cities disappeared during the century 

because the numbers in the diagonals are not always the same. This fact can be explained by a variety of 

causes including hurricanes, the death of the town’s benefactor or the fact that some cities expanded their 

borders and absorbed others. This phenomenon was concentrated in some western states and in the 

American Great Plains, especially during the first half of the 20th century45. However, the number of cities 

disappearing from the sample always represents less than a 3% of the US total number of cities (1,667 

disappearances throughout the whole period), even in the first half of the century. Consequently, if we 

calculate the average net and gross creation rates of cities over the 20th, we find that they do not vary much 

between them, being the average net creation rate of cities a 6.51% and the average gross creation rate of 

cities a 7.46%.  

[TABLE 3] 

                                                           
4 See Blanchard (1960) for a fuller discussion of ghost towns in the US. 
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Based on the hypothesis we seek to test here, we expect kβ  to be positive and significant during the first 

decades following the birth of the city but, as the decades pass, we expect this coefficient to decrease, even 

acquiring a negative value. However, in order to avoid any bias in these estimations, we need to add a 

number of controls that capture the time or space effects that might influence these results. Thus, we 

incorporate time and state fixed effects in our estimation. On top of the state fixed effects, for the cities’ 

estimations, we also include county fixed effects in order to control for a smaller geographical area. 

Additionally, Black and Henderson (2003) find that US cities with coastal locations grow faster and 

they incorporate regional variables in their analysis so as to capture their market potential. Other studies, 

including Rappaport and Sachs (2001), Mitchener and McLean (2003) and Bleakley and Lin (2012), also 

point out that having access to navigable waters plays an important role in accounting for population 

distribution and growth. Thus, to control for these characteristics, we also include a dummy variable that 

captures the access to navigable waters (including access to rivers, lakes and oceans) at the state level, and 

four dummy variables, one for each of the major US regions: the Northeast, the Midwest, the South and the 

West. 

Moreover, Duranton (2007) points out that cities grow or decline following gains or losses of the 

industries. Therefore, we include one more control variable capturing changes in industrial composition in 

the US over the course of the 20th century. As Kim and Margo (2004) explain, during the first half of the 

twentieth century, the rise of the industrial economy and the manufacturing (or ‘rust’) belt saw people move 

westwards. Since 1950, thanks to the diffusion of air conditioning and milder winters, the population has 

grown in the southern part of the country, leading to the creation of the Sun Belt56. Thus, we include two 

dummies at the state level, one for each of the rust and sun belts respectively, in order to control for these 

regional and industrial impacts on the population growth rate. 

Furthermore, in order to account better for the magnitude of the city age effects on its growth and 

distinguish them from those of the city size on its population growth, we also include a variable capturing 

the initial city size of the cities (lnpit-1). In line with the literature, by including this variable we are able to 

test the mean reversion hypothesis. When the coefficient of this variable is negative, we can assume mean 

reversion (convergence) in the steady state while a positive one may indicate divergence. A non-significant 

coefficient can be interpreted as being indicative of independence between growth and initial size, 

supporting Gibrat’s law and, therefore, rejecting the mean reversion hypothesis. In the previous literature, 

some authors like Black and Henderson (2003) and Henderson and Wang (2007) find that the smallest cities 

grow faster, supporting the mean reversion hypothesis. In our analysis, we have also introduced the age of 

the city, which is correlated with the size (Giesen and Südekum, 2013). Therefore, it may be difficult to 

                                                           
5 Other studies like Rappaport (2007) also study the population mobility according to the weather conditions. 
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distinguish between the net effect of city age on growth from the one of size on growth in the parametric 

analysis. As a consequence, in order to examine the exact relationship between the temporal dimension of 

growth (the age of the city) and its initial size on growth, we perform a nonparametric analysis in Section 5. 

More specifically, the nonparametric analysis aims to evaluate which is the exact size effect on growth for 

every city’s decade of existence. Therefore, we can also examine whether we can accept the mean reversion 

hypothesis or reject it (being Gibrat’s law the one holding) and if there are relevant differences on the impact 

of city size on growth across different ages. Moreover, the city size may, in some cases, be a source of 

possible endogeneity. However, our results regarding the effect of city’s age on its growth are robust to the 

inclusion or not of the city size variable. 

We reproduce the analysis for the MSAs in order to test whether the growth pattern of cities still applies 

when aggregating the geographical units. Table 4 shows the evolution of the nine age-dummies for the 

MSAs during the 20th century. Two main differences can be seen between Tables 3 and 4: first, no MSAs 

disappear from the sample (once an MSA reaches the minimum population threshold it never falls below it) 

and, second, the falling trend in the appearance of new MSAs is not as clear as that for the cities. The former 

relates to the MSA definition: to become an MSA a minimum population of 50,000 in the central city is 

required. Then, when working with MSAs we are taking into account mainly larger cities with high levels of 

capital stock and scale externalities that make them to remain big and not disapear67. The second distinctive 

characteristic is attributable to the change in the criterion used to define an MSA in 1960 (47.2% of the 

MSAs were created that decade).  

 

[TABLE 4]  

 

4. Results 

In this section we present the results of the estimation of Eq. (1). Table 5 shows the results for cities 

while Table 6 presents those for the MSAs. All regressions include the nine age dummy variables. The 

control variables are sequentially introduced from regression (1) to (6). For both geographical units (cities 

and MSAs), the regressions corresponding to each column represent the same specification with only the 

unit of analysis being changed from cities to MSA.  

The coefficients can be interpreted as the average impact, measured in logarithmic points, on the growth 

rate of a specific city i (or MSA) depending on the age of that city (or MSA) compared to the other pre-

existing cities in the sample. As explained above, d1 represents the city when it is newly born, d2 when it has 

                                                           
6 See Henderson and Wang (2007) for further explanations of how larger cities do not loose a big proportion of their population 
over the period 1960-2000.  
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existed for one decade, d3 two decades and so on, meaning that d9 represents more mature cities than 

d1.Therefore, the coefficient associated with d1 represents the average impact on growth of being a new-born 

city with respect to the rest of pre-existing cities in the sample (base category), the one associated with d2 

represents the average impact of one-decade old cities with respect to the rest of the cities i.e. the older ones, 

and so on so forth. For that reason, we are interested in the trend presented by the coefficients from d1 to d9, 

as this represents the dynamic effects of cities’ age on their growth.  

Table 5 presents the results for cities where the total number of observations corresponds to the 

summation of all the cities that grow (the newborn and the incumbents) over the 20th century. Column (1) 

presents the results of estimating Eq. (1) by OLS without any control variable (not even the city size). 

Column (2) shows the same estimation but including the city size variable. At first glance, we see that the 

coefficients of the nine dummies in both specifications follow the expected pattern: they are significantly 

positive for d1 and become smaller until they record negative values. However, note that the results from (1) 

and (2) might lack precision as there may well be a considerable amount of missing and uncontrolled 

information in these specifications. In order to solve any problem of bias, we estimate equations (3), (4), (5) 

and (6) using different control variables. In column (3) we estimate the same equation but taking into 

account the possibility that time effects might be driving part of the results. However, the coefficients are 

similar to those estimated in the previous regressions as is the overall trend. As before, the coefficient 

associated with d1 is significantly positive and it decreases with the increase in city age, becoming negative 

when the city is mature. 

Column (4) presents the results for the city fixed effect estimation. Here, the interpretation of the 

coefficients is different from those of the other five regressions. Now, the estimated parameters show how 

new-born city i grows in decade t>1 in comparison with how new-born city i grew in decade t. An analysis 

of the coefficients reveals that the trend followed is the same as that in the previous estimations (the 

coefficient associated with d1 being higher than that associated with d2 and so on), indicating that the growth 

of a new-born city is greater than that of a mature city. However, the overall size of the coefficients is 

smaller than before. In fact, the first two dummies are not significant because they are indeed the base 

category78but from d3 to d9 they become significantly negative. In column (5) we estimate the same model 

but we include a state fixed effect and a county fixed effect to control for a spatial dimension. The results, 

again, present the same pattern with significantly positive coefficients associated with d1 and a decreasing 

trend until d9. It is not, in fact, a perfectly decreasing trend because with the passing decades growth tends to 

stabilize and only declines at the end of the period. This trend can be observed in Figure 2 that plots the 

estimated parameters for column (5).  

 

                                                           
7  We estimated the same regression without the incumbent cities and the results were robust. 
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[FIGURE 2] 

 

Finally, column (6) shows the results when estimating Eq. (1) including all the control variables: size, 

time, state, county and regional fixed effects. We also include the other geographical dummy variables: 

access to navigable waters and belonging to the Sun or Rust belts. As in all the previous cases, the 

coefficients follow the same decreasing trend allowing us to demonstrate that when a city is born, its growth 

is high and as the decades pass, the growth becomes more moderate and even declines. The average impact 

on growth (in logarithmic points) of a city in the first decade of its creation is about 0.106 more with respect 

to the pre-existing cities (the older incumbent ones). One decade later, the coefficient falls significantly 

(from 0.106 to 0.023), although the impact on growth remains positive. Thus, the higher growth occurs 

during the first decade of a city’s existence. However, if we focus on the coefficient associated with the last 

decade (-0.024), we see that the older the city becomes the lower is its average impact on growth. These 

results are consistent with the theories of sequential city growth. 

However, despite the results for the city age impact on its growth are consistent across the different 

estimations, the coefficients associated with the city size variable do not present the same pattern. As 

mentioned before, this initial city size variable seeks to capture the existence of mean reversion. In line with 

the preceding discussion, it should be significantly negative in order to accept the mean reversion hypothesis 

or non significant to accept Gibrat’s law. By observing the coefficients associated with this variable from 

columns (2) to (6), we see that all of them apart from the one corresponding to column (4) are significantly 

positive. As mentioned before, regressions (2), (3), (5) and (6) correspond to OLS estimations while column 

(4) presents the results for a city-fixed effects estimation. The OLS procedure is a between estimator, which 

typically uses just the cross-sectional variation to estimate the parameters while the fixed effects is a within 

estimation which evaluates changes in time within subjects. 

Although the difference across within and between estimators is not significant when evaluating the 

nine dummy variables capturing the age of a city89, it is so for the city size variable. We argue that, when 

estimating by OLS, we are comparing across cities (big and small) while already controlling for age (but 

only for newborn cities which are typically the smallest).  However, in the within estimation, the time 

variation within the city size is the exploit dimension. As a consequence, the coefficient of the OLS 

procedure, although very small, is significantly positive and so nothing can be said about mean reversion 

while the one in the fixed effects one is significantly negative confirming the existence of mean reversion. 

                                                           
8 The interpretation of the coefficients varies between OLS and fixed effects but the results are the same. The coefficients 
associated to the nine dummy variables in the between estimation represent the difference in the impact on growth rates between 
the newborn cities and the pre-existing ones (d1), the one decade old cities and the older ones (d2) and so on. On the other hand, 
the coefficients of the within estimation can be interpreted as being d1 and d2 the base category and then, we can observe the 
cities’ age evolution compared to the base category (the city being newborn). In both cases indeed, the results lead to the same 
conclusion. 
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Moreover, we are not the first to empirically document this moderately positive relation between initial city 

size and growth. Desmet and Rappaport (2013) also find it across intermediate and large locations during the 

late nineteenth and early twentieth centuries. 

 However, to differentiate between the direct effects of city size on its growth from this of city’s age on 

its growth, we conduct a non parametric analysis in Section 5. More precisely, we are interested in whether 

there are systematic deviations from Gibrat’s law for cities of all ages or they are focused on any specific 

city’s age.  Thus, we try to see if there are different impacts of size on growth across different city ages.  

 

[TABLE 5] 

 

Table 6 presents the results for the MSAs, its six columns being the same as those in Table 5, being the 

total number of observations, as in the case of the cities, the summation of all the MSAs that grow (the 

newborn and the incumbents) over the 20th century. In the first two columns (1) and (2) we cannot identify 

the same decreasing trend as the one we found in the cities’ estimation (Table 5). These specifications might 

lack precision, as those first two identified above for the cities. For this reason, we also estimate the model 

incorporating time fixed effects, city fixed effects and state fixed effects in columns (3), (4) and (5) 

respectively.  None of these three regressions presents the same results’ pattern as in those for the cities in 

terms of a declining growth trend.  

Finally, column (6) includes state, time and region fixed effects and the geographical controls. As with 

the previous columns, almost none of the coefficients are statistically significant and the expected 

decreasing trend is not seen. Thus, we can conclude that the MSAs do not present the same trend as the one 

presented by cities and that the aggregation of geographical units does not provide the same results. 

Moreover, the results of the MSA size in some regressions presents a significantly negative value but, when 

adding all the control variables (column 6) it becomes non significant. These results seem to point out that 

there is no relation between the initial size of a city and its growth when dealing with MSAs data and then, 

Gibrat’s law may be confirmed for bigger units of analysis than cities.  

 Nevertheless, some studies like Cuberes (2011) and Desmet and Rappaport (2013) find that both cities 

and MSA’s grow sequentially which is not happening in our estimations as our results point out that cities 

are the only ones following this sequential pattern. However, these results are sensitive to the unit and period 

of analysis and, although they use data for MSA’s, their MSA definitions and the periods analysed differ 

from ours. Cuberes (2011) uses a worldwide dataset for many different periods. In fact, for the case of the 

US, he uses MSAs typically above a threshold which is not the same as ours (50,000 inhabitants). In the case 

of Desmet and Rappaport (2013), they work with a hybrid of metro areas and the remaining US counties for 
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the period 1800 to 2000. Additionally, our study starts in 1900; almost one hundred years after theirs, and 

then, MSA growth patterns may be different than those shown by both analysis.  

Thus, a plausible explanation for our results lies in the definition of an MSA. A metropolitan area 

typically comprises a group of counties with a central city with a minimum of 50,000 inhabitants and a 

number of other smaller places located at points in the orbit of this central city. According to the sequential 

growth literature, the central city (assumed to be older and therefore larger than most surrounding places) 

will present different growth patterns over the time period to those of other cities within the same MSA. 

More specifically, the central city will be more mature than the rest and its growth rate is therefore not 

expected to be as high. By contrast, there will be other smaller and younger cities that will grow more 

rapidly during the same period. As such, the final growth rate of the MSA is the average of many rates of 

different cities weighted by city size. Another plausible explanation is that in order to become an MSA a city 

with more than 50,000 inhabitants is needed. Therefore, a new MSA is nothing but the evolution of the cities 

within it and it might be the case that the definition of a new MSA is not as accurate as the one of a newborn 

city.  

[TABLE 6] 

 

5. Nonparametric analysis 

A number of studies employ a nonparametric approach to evaluate the relationship between growth and 

city size and growth to examine whether Gibrat’s law and mean reversion in the steady state holds. 

Ioannides and Overman (2003), for example, undertake such an analysis with a time-series dataset for 

metropolitan areas. This same methodology is adopted by Eeckhout (2004) and González-Val (2010). The 

former uses it to evaluate the impact of city size on its growth for all the cities in the US for two specific 

years: 1990 and 2000. González-Val (2010) uses the same database as the one described here which includes 

all cities without restriction. All three studies find that Gibrat’s law holds (at least for means) for their data 

and periods analysed. On the other hand, Michaels et al. (2012) regress population growth on a full set of 

fixed effects for initial population density using their self-made dataset of county subdivisions finding an 

increasing relationship between population growth and initial population density in intermediate population 

densities. 

However, our study is much in line with Desmet and Rappaport (2013). Using data on counties and 

MSAs, they empirically document the relationship between the level of population and the growth rate of a 

city for every twenty-year period over the nineteenth and twentieth centuries. They find that, although 

Gibrat’s law emerges gradually, it never fully attains. We perform a similar analysis, consisting on the 

nonparametric estimation of city growth against city size for every decade of existence of the US cities. By 
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doing so, we may be able to disentangle between the city age and city size effects on growth and extract 

some conclusions about the acceptance or rejection of the mean reversion hypothesis. Moreover, we also 

examine whether this conclusion holds independently of the age of the city or, on the contrary, it differs 

across ages. 

Our nonparametric approach is the same as the methodology developed by Ioannides and Overman 

(2003) and used in Eeckhout (2004) and González-Val (2010), but differs in terms of the data we use. Thus, 

we include only the cities identified as being new-born in each decade and estimate a pool for any possible 

city age, from one to nine910. This means that in decade one, we include the total number of cities with one 

decade of existence; no matter the year in which they were created (the last row in Table 3 is the sample size 

for each estimation)  

The regression we estimate is the following: 

( ) iii smg ε+=  

where gi is the normalized growth rate, i.e., the difference between growth and the contemporary sample 

mean divided by the contemporary standard deviation and si is the logarithm of the population size of a 

city. iε  is the error term. The aim of this approach is to provide an estimation of m(si) without imposing any 

specific parametric functional form. The estimation of m(si) is a local average that smooths the value around 

the point s. The smoothing is conducted using a kernel which is a symmetrical, weighted and continuous 

function around s. The Nadaraya-Watson method1011is used to calculate the estimate of m, based on the 

following expression: 
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where Kh denotes the dependence of K on the bandwidth h, and where K is an Epanechnikov kernel11
12. 

Figure 2 shows the results for ( )sm̂  calculated for a bandwidth of h = 0.512
13 for every decade of the twentieth 

century including only the new-born cities. Bootstrapped 95 percent confidence bands, calculated using 500 

random samples with replacement, are also displayed. 

 

                                                           
9 We consider a city age up to nine decades (i.e., over the course of the twentieth century). To be able to consider a city with an 
age of ten decades, data for 1890 are required. 
10 Employed here as used in Härdle (1990). 
11 The results are robust to the use of a Gaussian kernel as well as the local polinomial fit technique. 
12 The results are robust to different bandwidths including the optimal one for each decade 
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[FIGURE 3] 

 

This type of analysis allows us to visually compute the temporal evolution of cities by their size. If 

random growth does not exist, the average growth of the smallest cities would differ from that of the largest 

ones. If this were not the case, the figures would only present horizontal lines on the zero value of the 

growth axis and there would be no deviation from the mean. In Figure 2, it is immediately apparent that 

smaller cities of all ages present higher growth rates, and that the larger the city the lower its growth rate 

tends to be. However, as a city becomes bigger (city size increases), the average growth stabilizes in the 

mean. Therefore, it seems that, for every decade of the 20th century, smaller cities tend to grow more.  

However, if we plot all the decades together in the same graph, this conclusion can be narrower. Figure 

3 shows the nine different estimations on figure 2 in the same plot. Then, although we can argue that there 

are still some differences in growth rates between the smaller cities and the rest, those differences are much 

higher for the younger ones (those which are one-decade old). In fact, the dashed line corresponds to the 

youngest cities in the sample while the others are those corresponding to the cities between two and nine 

decades old. By examining them, we clearly see that, apart from the one corresponding to the young cities, 

the others almost look flat around the zero value of growth. Therefore, despite we can assume that there are 

deviations from Gibrat’s law for cities of all ages, they are especially important when regarding young cities. 

In fact, as cities become older, Gibrat’s law may fit better13
14. Moreover, these results do not contradict our 

parametric findings in which we find that the higher impact of age on growth is mainly driven by the first 

decade of existence.  

 

[FIGURE 4] 

 

Our results are in line with those of Giesen and Südekum (2012) that, by means of a theoretical model, 

find that cities grow with the same expected rate in the long run (Gibrat’s law), but young cities initially 

grow faster. We are also in line with the results of Desmet and Rappaport (2013) who, using different data, 

find that city size and growth are negatively correlated across small locations for the 19th and early 20th 

centuries but Gibrat’s law gradually emerges while time passes though without completely hold.  

6. Conclusions  

In this paper we have drawn on data for cities and MSAs in the United States in order to study the 

                                                           
13 From the parametric results of MSA’s, which, almost by definition, represent more mature (and bigger) cities, we can clearly 
see in regresión (6) that the MSA size coefficient is not statistically significant, showing that Gibrat’s law fits better as cities 
become older (and bigger). 
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evolution of city growth throughout the twentieth century. More specifically, we have focused our attention 

on the role played by the new-born cities that have been created during the decades of our period of analysis. 

Applying parametric and nonparametric methods we have obtained two main results. Our first finding is that 

differences exist in city growth rates according to the age of the city. In general, when a city is born it 

records very high rates of growth but as the decades pass it matures and its growth stabilizes or even 

declines. These results are consistent with those of the sequential city growth literature, which reports that in 

each decade a few cities will grow at a faster rate than the others.  

Our second finding is related to the analysis of the dynamics of the city size distribution, i.e. the study 

of Gibrat’s law. We perform nonparametric regressions to examine the relationship between the temporal 

dimension of growth (the age of the city) and a city’s initial size. Our results confirm that there are 

deviations from Gibrat’s law for cities of all ages but they are especially important when regarding young 

cities. In fact, as cities become older, Gibrat’s law may fit better. Therefore, these results point out that most 

of the growth differential is driven by the first decade of existence, which is pretty much in line with our 

parametric results as well as with the recent papers analyzing the age impact of cities on their growth. 

Our results are very much in line with those presented by the city growth literature and, in particular, 

with those in studies of sequential city growth. Furthermore, our findings could provide interesting input for 

policy makers in developing countries such as China and India, which are now experiencing their own 

processes of urbanization. In recent decades, both countries have experienced a change from a rural to an 

urban society, i.e., the same pattern followed by the US and many other developed countries. As urban 

policies slowly adjust to the dynamics of growth, and given the huge populations of both India and China, it 

must surely be in the best interests of these countries’ policy makers to learn lessons from experiences such 

as that of the US. In fact, if there is a statistical regularity driving some of the population growth of cities, 

dependent on their initial size or age, some investment (especially in public infrastructure) can be performed 

strategically.  
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Figure 1. Evolution of the number of cities in the U.S. over the 20th century 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Estimated parameters for regression (5) 
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 Figure 3. Growth and size by age 
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Figure 4. Population growth and size 
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Table 1. Descriptive statistics of cities   

Year Cities Mean Size 
Standard 
Deviation 

Minimum Maximum 

1900 10,496 3,468.27 42,617.51 7 3,437,202 
1910 13,577 3,610.36 50,348.78 7 4,766,883 
1920 15,073 4,087.61 57,540.69 3 5,620,048 
1930 16,183 4,771.31 68,462.35 1 6,930,446 
1940 16,400 4,977.44 72,001.37 1 7,454,995 
1950 16,923 5,662.07 76,487.59 2 7,891,957 
1960 17,825 6,455.86 75,195.01 1 7,781,984 
1970 18,302 7,149.50 75,690.26 4 7,895,563 
1980 18,752 7,431.72 69,475.36 2 7,071,639 
1990 18,953 7,998.27 72,178.75 2 7,322,564 
2000 19,211 8,939.77 78,175.03 1 8,008,278 

Note: Alaska, Hawaii and Puerto Rico are excluded    
 

 

 

 

Table 2. Descriptive statistics of MSAs     

Year MSAs Mean Size 
Standard 
Deviation 

Minimum Maximum 

1900 104 280,915 586,361 52,577 5,048,750 
1910 130 307,261 719,325 50,731 7,049,047 
1920 139 362,905 847,072 51,284 8,490,694 
1930 145 445,147 1,063,769 50,872 10,900,000 
1940 148 473,984 1,125,419 51,782 11,700,000 
1950 150 570,480 1,127,541 56,141 12,900,000 
1960 264 477,991 1,095,872 51,616 13,000,000 
1970 268 561,378 1,318,920 53,766 16,100,000 
1980 279 617,269 1,455,040 57,118 18,900,000 
1990 348 588,405 1,457,107 51,359 19,500,000 
2000 350 658,734 1,510,498 52,457 18,300,000 

Notes:   (1) The minimum threshold is 50,000 inhabitants     
             (2) Alaska, Hawaii and Puerto Rico are excluded 
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Table 3. Evolution of cities over the 20th century 

year  d1 d2 d3 d4 d5 d6 d7 d8 d9 

1910 3,291 0 0 0 0 0 0 0 0 

1920 1,747 3,229 0 0 0 0 0 0 0 

1930 1,267 1,711 3,171 0 0 0 0 0 0 

1940 505 1,245 1,684 3,132 0 0 0 0 0 

1950 646 489 1,210 1,657 3,088 0 0 0 0 

1960 1,046 627 470 1,164 1,614 3,025 0 0 0 

1970 756 1,025 619 459 1,155 1,597 3,010 0 0 

1980 553 750 1,008 612 457 1,143 1,588 2,987 0 

1990 313 553 750 1,008 612 457 1,143 1,588 2,987 

Total 10,124 9,629 8,912 8,032 6,926 6,222 5,741 4,575 2,987 
Source: Self elaboration with US Census Bureau data   

 

 

Table 4. Evolution of MSAs over the 20th century 

year  d1 d2 d3 d4 d5 d6 d7 d8 d9 

1910 26 0 0 0 0 0 0 0 0 
1920 9 26 0 0 0 0 0 0 0 
1930 6 9 26 0 0 0 0 0 0 
1940 3 6 9 26 0 0 0 0 0 
1950 2 3 6 9 26 0 0 0 0 
1960 114 2 3 6 9 26 0 0 0 
1970 4 114 2 3 6 9 26 0 0 
1980 11 4 114 2 3 6 9 26 0 
1990 69 11 4 114 2 3 6 9 26 

Total 244 175 164 160 46 44 41 35 26 

Source: Self elaboration with US Census Bureau data    
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Table 5. Estimation of the dynamic effects of cities  

 

Dependent variable: population growth at the city level 

 Decades of existence (1) (2) (3) (4) (5) (6) 

d1 0.142*** 0.169*** 0.154*** -0.079 0.111*** 0.106*** 

 (0.005) (0.005) (0.005) (0.079) (0.004) (0.005) 

d2 0.048*** 0.07*** 0.070*** -0.129 0.017*** 0.023*** 

 (0.004) (0.004) (0.004) (0.079) (0.004) (0.004) 

d3 0.017*** 0.036*** 0.036*** -0.144* -0.010*** -0.004 

 (0.003) (0.003) (0.003) (0.079) (0.003) (0.003) 

d4 0.003 0.019*** 0.004 -0.159** -0.016*** -0.0267*** 

 (0.003) (0.003) (0.003) (0.079) (0.004) (0.004) 

d5 -0.016*** -0.0007 -0.023*** -0.173** -0.029*** -0.044*** 

 (0.003) (0.003) (0.004) (0.079) (0.004) (0.004) 

d6 -0.025*** -0.009*** -0.016*** -0.160** -0.036*** -0.0281*** 

 (0.003) (0.003) (0.003) (0.079) (0.003) (0.004) 

d7 -0.028*** -0.013*** -0.015*** -0.155* -0.031*** -0.009*** 

 (0.003) (0.003) (0.003) (0.079) (0.004) (0.004) 

d8 -0.096*** -0.082*** -0.033*** -0.170** -0.131*** -0.024*** 

 (0.003) (0.003) (0.004) (0.079) (0.004) (0.004) 

d9 -0.02*** -0.005 -0.020*** -0.162** --- --- 

 (0.004) (0.004) (0.005) (0.079)   

City size t-1   0.025*** 0.028***  -0.219***  0.006***  0.007***  

    (0.0005)  (0.0006) (0.003)  (0.0009)  (0.0009) 

City fixed effects No No No Yes No No 

Time effects No No Yes Yes No Yes 

County effects No  No No No Yes Yes 

State effects No No No No Yes Yes 

Region effects No No No No No Yes 

Navigable waters No No No No No Yes 

Sun & Rust Belts No No No No No Yes 

Observations 160,292 160,292 160,292 160,292 130,836 130,836 

R-squared 0.019 0.034 0.042 0.194 0.156 0.174 

Notes:   (1) Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1) 
             (2)  d9 is not included in regressions (4) and (5) because collinearity problems with the county effects 
             (3)  The number of observations varies between regressions (5) and (6) and the rest due to the exclusion of d9 
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Table 6. Estimation of the dynamic effects of MSAs 
 

Dependent variable: population growth at the MSA level 

Decades of existence (1) (2) (3) (4) (5) (6) 

d1 0.053*** 0.035** 0.117*** 0.007 -0.028*** 0.035* 

 (0.012) (0.014) (0.018) (0.035) (0.008) (0.021) 

d2 0.067*** 0.052*** 0.121*** 0.025 -0.042*** 0.042** 

 (0.015) (0.016) (0.020) (0.033) (0.015) (0.021) 

d3 0.010 -0.001 0.082*** -0.014 -0.027* -0.011 

 (0.022) (0.023) (0.025) (0.031) (0.015) (0.028) 

d4 0.028** 0.019 0.091*** 0.003 -0.086*** -0.001 

 (0.013) (0.013) (0.014) (0.026) (0.024) (0.017) 

d5 0.180*** 0.173*** 0.151*** 0.064* -0.064*** 0.067** 

 (0.033) (0.034) (0.030) (0.033) (0.014) (0.029) 

d6 0.003 0.001 0.069*** -0.006 0.084** -0.011 

 (0.018) (0.019) (0.018) (0.023) (0.033) (0.019) 

d7 0.026 0.025 0.098*** 0.035 -0.081*** 0.019 

 (0.021) (0.022) (0.022) (0.025) (0.017) (0.022) 

d8 -0.047 -0.045 0.032 -0.021 -0.052*** -0.050 

 (0.042) (0.043) (0.042) (0.027) (0.020) (0.039) 

d9 -0.039** -0.035* 0.053*** --- -0.122*** -0.022 

  (0.017) (0.019) (0.018)  (0.017) (0.018) 

MSA size t-1   -0.013*  0.009 -0.138***  -0.028***  -0.002 

    (0.003)  (0.009) (0.020)  (0.004)  (0.004) 

MSA fixed effects No No No Yes No No 

Time effects No No Yes Yes No Yes 

State effects No No No No Yes Yes 

Region effects No No No No No Yes 

Navigable waters No No No No No Yes 

Sun & Rust Belts No No No No No Yes 

Observations 1,975 1,975 1,975 1,611 1,975 1,975 

R-squared 0.036 0.040 0.153 0.244 0.201 0.301 
Notes:   (1) Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1) 
             (2) d9 is not included in regression (3) because collinearity problems with the city-fixed effects 
             (3) The number of observations varies between regression (4) and the rest due to the exclusion of d9 
 


