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Abstract: If the intensity parameter in a jump diffusion model is identically zero, then parameters characterizing

the jump size density cannot be identified. In general, this lack of identification precludes consistent estimation of

identified parameters. Hence, it should be standard practice to consistently pretest for jumps, prior to estimating

jump diffusions. Many currently available tests have power against the presence of jumps over a finite time span

(typically a day or a week); and, as already noted by various authors, jumps may not be observed over finite time

spans, even if the intensity parameter is strictly positive. Such tests cannot be consistent against non-zero intensity.

Moreover, sequential application of finite time span tests usually leads to sequential testing bias, which in turn leads

to jump discovery with probability one, in the limit, even if the true intensity is identically zero. This paper introduces

tests for jump intensity, based on both in-fill and long-span asymptotics, which solve both the test consistency and the

sequential testing bias problems discussed above, in turn facilitating consistent estimation of jump diffusion models.

A “self excitement” test is also introduced, which is designed to have power against path dependent intensity, thus

providing a direct test for the Hawkes diffusion model of Ait-Sahalia, Cacho-Diaz and Laeven (2013). In a series of

Monte Carlo experiments, the proposed tests are evaluated, and are found to perform adequately in finite samples.
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1 Introduction

Jump diffusions are widely used in the financial econometrics literature when analyzing returns or

exchange rates, for example, as discussed in Duffi e, Pan and Singleton (2000), Singleton (2001),

Anderson, Benzoni and Lund (2002), Jiang and Knight (2002), Chacko and Viceira (2003) and

Eraker, Johannes and Polson (2003), among others. Various estimation techniques have been

developed, and the common practice is to jointly estimate the parameters of both the continuous

time and the jump components of these diffusion models. Thus, parameters characterizing the

drift, variance, jump intensity and jump size probability density are jointly estimated. However, an

obvious non-standard feature of this class of models is that the parameters characterizing the jump

size density are not identified when the jump intensity is identically zero. This is an issue both when

the intensity parameter is constant, as in standard stochastic volatility models with jumps (see,

e.g. Andersen, Benzoni and Lund (2002)) as well as when the intensity follows a diffusion process,

as in the important case of the Hawkes diffusion models analyzed by Ait-Sahalia, Cacho-Diaz and

Laeven (2013). Clearly, when one estimates a jump diffusion with jump intensity equal to zero,

a subset of the parameters is not identified. This in turn precludes consistent estimation of other

parameters in the model (see Andrews and Cheng (2012)).

The above estimation problem serves to underscore the importance of pretesting for jumps. In

the extant literature, there is a large variety of tests for the null of no jumps versus the alternative of

jumps. Tests include those based on the comparison of two realized volatility measures, one which

is robust, and the other which is not robust to the presence of jumps (see, e.g. Barndorff-Nielsen,

Shephard and Winkel (2006) and Podolskji and Vetter (2009a)), tests based on a thresholding

approach (see, e.g. Corsi, Pirino, and Reno (2010)), and tests based on power variation, as discussed

in Ait-Sahalia and Jacod (2009). All of these tests are carried out using a finite time span (typically

a day or a week), and limiting distributions are found using in-fill asymptotic approximations.

However, over a finite time span we may not observe jumps, even if the intensity parameter is

positive. Thus, these tests are not consistent against the alternative of positive jump intensity,

as pointed out by Huang and Tauchen (2005) and Ait-Sahalia and Jacod (2009), for example.

Moreover, sequential application of these tests (again, typically done daily or weekly) results in

a failure to control the probability of false jump discovery. This is because of the well known

sequential testing size distortion problem. This paper develops new and practical methods for

solving the above testing and associated estimation problems in the context of the specification of

jump diffusion models.

Consider solving the above problem of pretesting and subsequent estimation in stages by first

testing the null of zero versus positive intensity using a score, Wald or likelihood ratio test, as in

Andrews (2001), and subsequently estimating the model using standard techniques. This would

involve treating the parameters of the jump size density as nuisance parameters unidentified under
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the null. Furthermore, such an approach would require correct specification of both the continuous

and the jump components of the diffusion; and misspecification of one or both components would

in general affect the overall outcome of the test. Just as importantly, the likelihood function

of a jump diffusion is not generally known in closed form, and therefore estimation (which is

needed for construction of these jump tests) is usually based on either simulated GMM (see, e.g.

Duffi e and Singleton (1993) and Anderson, Benzoni and Lund (2002)); Indirect Inference (see, e.g.

Gourieroux and Monfort (1993) and Gallant and Tauchen (1996)); or Nonparametric Simulated

Maximum Likelihood (see, e.g. Fermanian and Salanie (2004) and Corradi and Swanson (2011)).

However, it goes without saying that one cannot simulate a diffusion with a negative intensity

parameter. This, in turn, precludes the existence of a quadratic approximation around the null

parameters of the criterion function to be maximized (minimized). Given that the existence of such

quadratic approximations is a necessary condition for estimation and inference about parameters

on the boundary (see, e.g. Andrews (1999,2001), Beg, Silvapulle and Silvapulle (2001), and Chapter

4 in Silvapulle and Sen (2005)), we cannot rely on simulation-based estimators if attempting to

pretest using standard score, Wald or likelihood ratio tests. A different variety of jump pretest is

instead required. The approach taken in this paper is to propose model free jump pretests, and to

subsequently estimate the jump diffusion using standard estimation techniques, depending upon

the outcome of the test(s).

In particular, this paper makes two key contributions to the literature. First, we introduce

model free “jump”tests for the null of zero intensity. The tests are based on both in-fill and long-

span asymptotics, thus addressing the issues of consistency and sequential testing bias discussed

above. Second, under the maintained assumption of strictly positive intensity, we introduce a

“self excitement” test for the null of constant intensity against the alternative of path dependent

intensity. The objective in this context is the provision of a direct test for Hawkes diffusions (see

Ait-Sahalia, Cacho-Diaz and Laeven (2013)) in which jump intensity is modeled as a mean-reverting

diffusion process. When the tests are implemented prior to model specification, standard estimation

of jump diffusions can be subsequently carried out, avoiding the identification problems discussed

above.

The jump tests are based on sample third moments, and are constructed using a long time

span of high frequency observations. Two versions of these tests are discussed. One version does

not allow for leverage, in the sense that rejection of the null may be due either to the presence

of jumps or due to the presence of leverage effects in the underlying data generating process. An

alternative version is robust to leverage effects, with the caveat that it is a less powerful test than its

non-robust counterpart. The limiting behavior of the proposed statistics can be readily analyzed

via use of a double asymptotic scheme wherein the time span goes to infinity and the discrete

interval approaches zero. The tests are model free, except for a drift component, which is assumed
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to be constant1. Under the null hypothesis of zero intensity, the statistics are characterized by

normal limiting distributions. Under the alternative, it is necessary to distinguish between the case

in which the density of the jumps is asymmetric and the case in which the density is symmetric.

In the former case, the proposed tests have a well defined Pitman drift and have power against
√
T−local alternatives, where T denotes the time span. In the latter case, the sample third moment

approaches zero, but the probability order of the statistics is larger than that which obtains under

the null, since the jump component does not contribute to the mean, while it does contribute to

the variance. To ensure power under both types of alternatives, it follows that we cannot rescale

the test statistics by an estimator of the variance. We instead construct bootstrap critical values,

the first order validity of which is established in the sequel.

Turning now to the self excitement test, note that if the null of zero intensity is rejected, one

can proceed with a second test that is carried out in order to ascertain whether jump intensity is a

constant, or follows a diffusion process, as in the case of Hawkes diffusions. This test is based on the

sample autocorrelation of the (log) first differences of the data, and is analyzed using asymptotic

approximations closely related to those used in the analysis of the jump test statistics.

As none of the tests proposed in this paper are robust to microstructure noise, one might choose

to build a dataset consisting of observations at the highest frequency for which the noise is not

binding. However, the assumptions posited in order to analyze the tests herein simply require that

the discrete interval approaches zero; and this does not have to occur at a minimum speed. Indeed,

in our framework the time span can grow faster than the discrete interval.

The finite sample behavior of the suggested statistics is studied via Monte Carlo experimen-

tation. The jump tests exhibit empirical size very close to nominal and empirical power close to

unity, across various empirically motivated parameterizations. The self excitement test likewise has

very good size and good power properties, whenever there are “enough” jumps and the degree of

self excitation is not “too weak”. In an examination of the finite sample behavior of the tests, when

carried out in sequence (i.e., carry out the self excitement test in all instances for which the jump

test rejects the null of no jumps), we also find evidence of adequate performance.

The rest of the paper is organized as follows. Section 2 describes the set-up. Section 3 provides

heuristic arguments for the testing approach taken in this paper. Section 4 discusses the jump

and self excitement tests, derives their asymptotic properties, and discusses asymptotically valid

bootstrap based inference using an m out of n bootstrap procedure. Section 5 reports the findings

of a Monte Carlo study designed to examine the finite sample properties of the tests, and concluding

remarks are gathered in Section 6. All proofs are collected in an Appendix.

1Recall that drift terms can be ignored over finite time spans, while they have a non-negligible impact on asymptotic
approximations over long time spans. Hence, this “trade-off”is not surprising.
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2 Set-Up

Consider the following jump diffusion model,

d lnXt = µdt+
√
VtdW1,t + ZtdNt, (1)

where volatility Vt is defined according to either (i), (ii), (iii), or (iv), as follows:

(i) a constant:

Vt = v for all t; (2)

(ii) a measurable function of the state variable:

Vt is Xt −measurable; (3)

(iii) a stochastic volatility process without leverage:

dVt = µV,t(θ)dt+ g (Vt, θ) dW2,t, E (W1,tW2,t) = 0; (4)

(iv) a stochastic volatility process with leverage:

dVt = µV,t(θ)dt+ g (Vt, θ) dW2,t, E (W1,tW2,t) = ρ 6= 0. (5)

Here,

Pr (Nt+∆ −Nt = 1|Ft) = λt∆ + o (∆) , (6)

Pr (Nt+∆ −Nt = 0|Ft) = 1− λt∆ + o (∆) , (7)

and

Pr (Nt+∆ −Nt > 1|Ft) = o (∆) , (8)

where Ft = σ (Ns, 0 ≤ s ≤ t) , and the jump size, Zt, is identically and independently distributed
with density f(z; γ).

We consider two general cases. The first is that of Poisson jumps, in which λt = λ, for all t.

The second is that of Hawkes diffusions, in which the intensity is an increasing function of past

jumps (see Bowsher (2007) and Ait-Sahalia, Cacho-Diaz and Laeven (2013)). In this case:

λt = λ∞ + β

∫ t

0
exp (−a (t− s)) dNs,

with λ∞ ≥ 0, β ≥ 0, a > 0, and a > β (in order to ensure intensity mean reversion). Thus,

dλt = a (λ∞ − λt) dt+ βdNs (9)
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and E(λt) = aλ∞
a−β . If λ∞ = 0, then E(λt) = 0; and since λt can never be negative, this in turn

implies that λt = 0 a.s., for all t (i.e., Nt = 0 a.s., for all t). But, if Nt = 0 a.s., for all t, then β

cannot be identified, and consequently a is not identified. Furthermore, if Nt = 0 a.s., for all t, then

γ cannot be identified. In summary, if λ∞ = 0, β, α, γ are not identified. By contrast, if λ∞ > 0,

then γ and β are identified. However, if λ∞ > 0 but β = 0, a is not identified. These observations

highlight the importance of being very clear as to which of the two assumptions, λ∞ = 0 or λ∞ > 0,

is made for statistical inference in the foregoing Hawkes diffusion model. In practice, thus, we are

concerned with the following hypotheses H0 : λ∞ = 0 versus HA : λ∞ > 0. This is a nonstandard

inference problem because, under H0, some parameters are not identified and a parameter lies on

the boundary of the null parameter space. Additionally, depending upon the outcome of tests of the

above hypotheses, we are also interested in the following hypotheses (i.e., self excitement pretests):

H0 : β = 0 versus HA : β > 0.

At this juncture, we provide further heuristic motivation by discussing various key differences

between existing jump tests and tests based directly on testing the intensity proposed in the sequel.

3 Testing for Jumps or Jump Intensity - Heuristic Arguments

In recent years, a large variety of tests for jumps have been developed. One common feature of

these tests is that they are all performed using high frequency observations over a finite time span.

We thus argue that none of these tests is consistent against the alternative λ∞ > 0. Many of the

extant tests can be broadly classified as belonging in one of three groups: (i) Hausman type tests

(ii); threshold type tests; and (iii) higher order power variation tests.

Hausman type tests are based on the comparison of non-robust and robust realized volatil-

ity measures (see, e.g. Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen, Shephard and

Winkel (2006), and Huang and Tauchen (2005)). More recently, related tests have been proposed

that are based on comparisons using pre-averaged volatility measures, in order to obtain tests that

are robust to microstructure noise (see, e.g. Podolskij and Vetter (2009a)). Hausman type tests

are able to detect whether
∑Nt+1

j=Nt
c2
j = 0 or

∑Nt+1

j=Nt
c2
j > 0, where Nt denotes the number of jumps

up to time t, and cj is the (random) size of the jumps. However, λ∞ > 0 does not imply that∑Nt+1

j=Nt
c2
j > 0, given that Pr (Nt+1 −Nt > 0) < 1.

Threshold type tests are based on the difference between “standard” volatility measures and

trimmed realized measures, where the trimming is implemented at a threshold level which allows

for the separation of jump and continuous components. Such tests have power against jump size,

but not necessarily against jump intensity (see, e.g. Corsi, Pirino and Reno (2010) and Lee and

Mykland (2008)).

A more recent class of tests is based on higher order power variation, and is motivated by

the fact that for p > 2,
∑n−1

i=1

∣∣X(t+(i+1)∆ −Xt+i∆

∣∣p converges to ∑t≤s≤t+1 |Xs −Xs−|p , where
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∑
t≤s≤t+1 |Xs −Xs−|p is strictly positive if there are jumps and zero otherwise (see, e.g. Ait-

Sahalia and Jacod (2009) and Ait-Sahalia, Jacod and Li (2012)). Even in this case, power obtains

because of jump size, and not because of jump probability.

More generally, for tests performed on a finite time span, are able to distinguish between2:

Ωc
t = {ω : s→ Xs is continuous on [t, t+ 1)}

and

Ωj
t = {ω : s→ Xs has jumps on [t, t+ 1)} .

Hence, all of the tests discussed above are dependent upon pathwise behavior. Clearly, one might

decide in favor of Ωc
t , even if λ∞ > 0, simply because jumps are not observed over the interval

[t, t+ 1). Lee, Loretan and Ploberger (2013) discuss the optimality properties of jump tests against

local alternative defined in terms of jump sizes. It follows that in order to carry out a consistent

jump test, one must test the composite hypothesis:

Ωc
T = ∩T−1

t=0 Ωc
t ,

versus it negation. Broadly speaking, one must test the composite null hypothesis that none of

the daily (or weekly, say) paths contain jumps. In fact, under mild conditions on the degree

of heterogeneity of the process, failure to reject Ωc
∞ = limT→∞ ∩T−1

t=1 Ωc
t implies failure to reject

λ∞ = 0. The diffi culty herein lies in how to implement a test for Ωc
T , when T gets large. Needless

to say, sequential application of finite time span jump tests leads to sequential test bias, and for

T large Ωc
T is rejected with probability going to unity. At issue here is the control of overall size

when testing composite hypotheses. One common approach to this problem is based on controlling

the overall Family-Wise Error-Rate (FWER), which ensures that no single hypothesis is rejected

at a level larger than a fixed value, say α. This is typically accomplished by sorting individual

p−values, and using a rejection rule which depends on the overall number of hypotheses. For
further discussion, see Holm (1979), who develops modified Bonferroni bounds, White (2000), who

develops the so-called “reality check”, and Romano and Wolff (2005), who provide a refinement of

the reality check. However, when the number of hypotheses in the composite grows with the sample

size, the null will (almost) never be rejected. In other words, approaches based on the FWER are

far too conservative for our purpose.

An alternative approach, which allows for the number of hypotheses in the composite to grow

to infinity, is based on the Expected False Discovery Rate (E-FDR). When using this approach, one

controls the expected number of false discoveries (rejections). For further discussion, see Benjamini

and Hochberg (1995) and Storey (2003). Although the E-FDR approach applies to the case of a

2Jump test inconsistency has been pointed out by Huang and Tauchen (2005) and Ait-Sahalia and Jacod (2009),
among others.
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growing number of hypotheses, it is very hard to implement in the presence of generic dependences

across p-values, as it is in our context.

In summary, a key advantage of jump tests based on high frequency observations over finite time

spans is that they are virtually model free, as minimal regularity assumptions on the underlying

process are required. A key disadvantage is that they are not consistent against the alternative of

positive jump intensity. On the other hand, if more structure is imposed, and most importantly

if the transition density is known in closed form, then it is easy to construct a consistent test for

jumps, based only on a long time span of discrete observations. In particular one can easily test

H0 : λ∞ = 0 against HA : λ∞ > 0. This fact can be illustrated by considering a score test. Suppose

that the skeleton of the process lnXt in Eq. (1) is observed. Namely, lnX1, lnX2, ..., lnXT , is

observed, with Vt defined as in Eq. (4) or Eq. (5); and for sake of simplicity suppose that λt = λ∞.

Now, using the notation in Eqs. (1)-(8), let δ = (θ, µ, ρ, λ∞, γ) = (ϑ, γ) . It immediately follows

that, provided the transition density is known in closed form, the likelihood can be written as:

lT (ϑ, γ) =
1

T

T−1∑
t=1

lt(ϑ, γ) =
1

T

T−1∑
t=1

ln fy+1|y (Yt+1|Yt, ϑ, γ) .

The score statistic for testing H0 is thus3:

KT (γ) = max

{
0,
(
RÎT (γ)−1V̂T (γ)ÎT (γ)−1R′

)−1/2
UT (γ)

}
,

where R is a 1× p matrix, with p denoting the dimension of ϑ. Additionally,

UT (γ) =
√
T
(
RÎT (γ)−1∇ϑlT

(
ϑ̂T , γ

))
,

ÎT (γ) =
1

T

T∑
t=1

∇ϑϑlt
(
ϑ̂T , γ

)
, (10)

ϑ̂T = arg min
ϑ
lT (ϑ, γ) s.t. Rϑ = λ∞ = 0,

and

V̂T (γ) =
1

T

τT∑
j=−τT

T−τT∑
t=τT

ωj∇ϑlt
(
ϑ̂T , γ

)
∇ϑlt+j

(
ϑ̂T , γ

)′
, ωj = 1− j

1 + τT
. (11)

Now, given mild regularity assumptions controlling the smoothness of the likelihood, under the null

3 If λ∞ is not scalar (for example, consider allowing for different up and down jump intensities, as in Chacko and
Viceira (2003)), then the score statistic can be written as:

K (γ) = UT (γ)
′
(
RÎT (γ)−1V̂T (γ)ÎT (γ)−1R′

)−1

UT (γ)

− inf
λ≥0

(UT (γ)− λ)′
(
RÎT (γ)−1V̂T (γ)ÎT (γ)−1R′

)−1

(UT (γ)− λ)
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of λ∞ = 0,

sup
γ∈Γ

K (γ)
d→ sup
γ∈Γ

max
{

0,
(
RI(γ)−1V (γ)I(γ)−1R′

)−1/2
Z (γ)

}
,

where supγ∈Γ

∣∣∣ÎT (γ)− I(γ)
∣∣∣ = op(1), supγ∈Γ

∣∣∣V̂T (γ)− V (γ)
∣∣∣ = op(1), and Z(·) is a Gaussian

process with covariance kernel,

C(γ1, γ2) =

(
RI(γ1)−1V (γ1, γ1)I(γ1)−1R′ RI(γ1)−1V (γ1, γ2)I(γ2)−1R′

RI(γ2)−1V (γ1, γ2)I(γ1)−1R′ RI(γ2)−1V (γ2, γ2)I(γ2)−1R′

)
,

where V (γ1, γ2) = p limT→∞V̂T (γ1, γ2).

Note also that supγ∈ΓK (γ) diverges to infinity under the alternative. This test has power

against
√
T−local alternatives. Additionally, the limiting behavior of the test depends on the

quadratic approximation of the likelihood around λ∞ = 0 (see Andrews (2001)). Hence, if the

likelihood is known in closed form, and if both the continuous and the jump components of the

model are correctly specified, then inference can be easily carried out using this score test, or using

analogous Wald or likelihood ratio tests. However, it is well known that for interesting models the

likelihood is usually not known in closed form. In such cases, as discussed in the introduction, one

often relies on simulation based estimation techniques such as simulated GMM, indirect inference,

or nonparametric simulated maximum likelihood. However, as one cannot simulate observations

with negative intensity, a quadratic approximation of the criterion function cannot be constructed,

and these sorts of tests are not applicable. It is for this reason that we instead focus on simple

moment based jump and self-excitement tests.

4 Long Time Span Jump Tests

4.1 Test of λ∞ = 0 (no leverage effects)

From the above discussion, recall that tests based on high frequency observations over a finite time

span are model free, but are not consistent against the alternative λ∞ > 0. On the other hand,

tests based on discrete observations over a long time span are consistent against λ∞ > 0, but

require correct specification of both the continuous and jump components, as well as knowledge

of the transition density. This is because long time spans ensure test consistency against non-zero

intensities (note that the intensity parameter cannot be identified on a given finite time span), while

the use of high frequency observations does not require knowledge of the parametric specification

of the diffusion. In order to have tests that are consistent against λ∞ > 0, but still (almost)

model free, we use functions of sample moments and rely on double in-fill and long-time span

asymptotic approximations. The only (small) price to pay is that the drift component is assumed

to be constant. This follows because the drift term can be ignored over a finite time span, while it
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has a non-negligible impact on asymptotic approximations over a long time spans.

In the sequel, assume the existence of a sample of n observations over an increasing time span T

and a shrinking discrete interval ∆, so that n = T
∆ , with T →∞ and ∆→ 0. Proceed in two steps.

First test for zero jump intensity (λ∞ = 0). Then, if the null is rejected, test for path dependence

(β = 0). In the first step, thus, interest lies in the following hypotheses:

H0 : λ∞ = 0

HA = H
(1)
A ∪H

(2)
A :

(
λ∞ > 0 and E

(
(Zt − E (Zt))

3
)
6= 0
)

∪
(
λ∞ > 0 and E

(
(Zt − E (Zt))

3
)

= 0
)
.

Notice that the alternative hypothesis is the union of two different alternatives, designed to allow

for both symmetric and asymmetric jump size density. Let Yk∆ = lnXk∆ − ∆
T

∑n
k=1 lnXk∆, and

Y(k−1)∆ = lnX(k−1)∆ − ∆
T

∑n
k=2 lnX(k−1)∆. Also, let:

λ̂T,∆ =
1

T

n∑
k=2

(
Yk∆ − Y(k−1)∆

)3
,

and define the statistic:

ST,∆ =
T 1/2

∆
λ̂T,∆. (12)

The asymptotic behavior of ST,∆ is analyzed under the following set of assumptions.

Assumption A: (i) lnXt is generated by Eq. (1) and Vt is defined in Eq. (2), (3), or (4). (ii) lnXt

is generated by Eq. (1) and Vt is defined in Eq. (5). For C a generic constant, (iii) E
(
|Vt|k

)
≤ C,

k ≥ 3, (iv) Nt satisfies Eqs. (6)-(8), and λt is either constant or it satisfies Eq. (9). (v) The jump

size, Zt, is independently and identically distributed, and E
(
|Zt|k

)
≤ C, for k ≥ 6.

Theorem 1: Let Assumptions A(i) and A(iii)-(v) hold. Also, assume that as n → ∞, T → ∞
and ∆→ 0.

(i) Under H0 :

ST,∆
d→ N (0, ω0) ,

with ω0 = 15E
(
V 3
k∆

)
+ 4 (E (Vk,∆))3 − 12E (Vk,∆)E

(
V 2
k,∆

)
and ST,∆ defined as in Eq. (12).

(ii) Under H(1)
A , there exists an ε > 0, such that:

lim
T→∞,∆→0

Pr

(
∆√
T
|ST,∆| > ε

)
= 1.

10



(iii) Under H(2)
A , there exists an ε > 0, such that:

lim
T→∞,∆→0

Pr (∆ |ST,∆| > ε) = 1.

It follows immediately that ST,∆ converges to a normal random variable under the null hypoth-

esis, diverges at rate
√
T

∆ under the alternative of asymmetric jumps, and diverges at the slower

rate of 1
∆ under the alternative of symmetric jumps. As shown in the Appendix, as ∆ → 0 and

T → ∞, we have that λ̂T,∆
p→ λ∞E

(
(Zt − E (Zt))

3
)
. Now, if E

(
(Zt − E (Zt))

3
)
6= 0, then under

H
(1)
A , the test has power against

√
T

∆ −alternatives. Nevertheless, under H0 the statistic has Pitman

drift “only” against
√
T−alternatives. This is because the limiting distribution of the statistic

under H(1)
A differs from that under H0 both in terms of the location and scale. In fact, under

H
(1)
A the statistic has a mean (Pitman drift) of order

√
T , and has a standard deviation of order

∆−1, while under H0 the limiting distribution has mean zero and finite variance. On the other

hand, if E
(

(Zt − E (Zt))
3
)

= 0, then λ∞ is not identified, and so under H(2)
A the Pitman drift

is zero. Indeed, λ̂T,∆
p→ 0 regardless of whether λ∞ = 0 or λ∞ > 0. Although it is not possible

to distinguish between H0 and H
(2)
A based on the different locations of the limiting distribution

(Pitman drift), it is possible to distinguish between H0 and H
(2)
A based on the different scales of

the limiting distribution of T 1/2

∆ λ̂T,∆. This is because the order of magnitude of the variance of
T 1/2

∆ λ̂T,∆ is larger when λ∞ > 0 and E
(

(Zt − E (Zt))
3
)

= 0 than when λ∞ = 0. Broadly speaking,

under H0, ST,∆
d→ N (0, ω0) , while under H(2)

A , ∆ST,∆
d→ N (0, ω1) , with ω1 6= ω0. This is what

allows one to distinguish between H0 and H
(2)
A .

If the moments of Vt were known, then an estimator of the variance which is consistent for the

true variance under the null and bounded in probability under the alternative could be constructed;

and consequently one could carry out inference on a simple t−statistic. However, spot volatilities
are not generally observed, and hence the moments are not generally known. Heuristically, one may

think of using σ̂2
λ,T,∆ = 1

T∆2

∑n
k=1

(
Yk∆ − Y ∆

)6
as an estimator of var

(√
T

∆ λ̂T,∆

)
. However, while

σ̂λ,T,∆ is consistent for the “true”standard deviation under the null, it is order Op
(
∆−1

)
under

either of the alternatives. As a consequence, under H(2)
A , tλ,T,∆ =

√
T

∆
λ̂T,∆

σ̂λ,T,∆
would remain bounded

in probability. Hence, tλ,T,∆ does not have power against the alternative of jumps characterized by

a symmetric distribution. Needless to say, if one rules out the possibility of symmetric jumps, then

one could simply compare tλ,T,∆ with standard normal critical values. However, in order to allow

for the possibility of symmetric jumps, the statistic should not be rescaled, and hence inference

should be based on the use of the bootstrap.

Finally, not that 1
T

∑n
k=2

(
Yk∆ − Y(k−1)∆

)4 p→ λ∞E
(

(Zt − E (Zt))
4
)
, and hence a statistic

based on the sample fourth moment has a well defined Pitman drift against
√
T−alternatives,

regardless whether the jump size density is symmetric or not. We did not attempt to construct
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a statistic based on the sample fourth moment as, under the null hypothesis it could not have a

limiting Gaussian distribution, because of the boundary issue and the impossibility of having a

quadratic approximation around λ∞ = 0.

4.2 Bootstrap Critical Values

Given that the variance is of a different order of magnitude under the null and under each alterna-

tive, the “standard”nonparametric bootstrap is not asymptotically valid. This issue arises because

the variance of the bootstrap statistic mimics the sample variance. This implies that the bootstrap

statistic is of order ∆−1 under the alternative. This is not be a problem under H(1)
A , since the

statistic is of order
√
T∆−1, but is a problem under H(2)

A , since the actual and bootstrap statistics

would be of the same order. To ensure power against H(2)
A , it suffi ces to ensure that the bootstrap

statistic is of a smaller order than the actual statistic. This can be accomplished by resampling

observations over a rougher grid, ∆̃, using the same time span, T.

Set the new discrete interval to be ∆̃, such that ∆/∆̃→ 0, and resample, with replacement,(
Y ∗
k∆̃
− Y ∗

(k−1)∆̃
, ..., Y ∗

ñ∆̃
− Y ∗

(ñ−1)∆̃

)
from

(
Y
k∆̃
− Y

(k−1)∆̃
, ..., Y

ñ∆̃
− Y

(ñ−1)∆̃

)
, where ñ = T

∆̃
. Now,

let:

λ̃
T,∆̃

=
1

T

ñ∑
k=2

(
Y
k∆̃
− Y

(k−1)∆̃

)3
,

and

λ̃∗
T,∆̃

=
1

T

ñ∑
k=2

(
Y ∗
k∆̃
− Y ∗

(k−1)∆̃

)3
.

Further, define the bootstrap statistic:

S∗
T,∆̃

=

√
T

∆̃

(
λ̃∗
T,∆̃
− λ̃

T,∆̃

)
.

Finally, let c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

be the (α/2)th and (1−α/2)th critical values of the empirical

distribution of S∗
T,∆̃

, constructed using B bootstrap replications.

Theorem 2: Let Assumptions A(i) and A(iii)-(v) hold. Also, assume that as n → ∞, B → ∞,
T →∞, ∆→ 0, ∆̃→ 0 and ∆/∆̃→ 0.

(i) Under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ ST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 1− α.

(ii) Under H(1)
A ∪H

(2)
A :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ ST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 0.

12



It is immediate to see that rejecting the null whenever
√
T

∆ λ̂T,∆ < c∗
α/2,B,∆,∆̃

or
√
T

∆ λ̂T,∆ >

c∗
(1−α/2),B,∆,∆̃

, and otherwise failing to reject, delivers a test with asymptotic size equal to α and

asymptotic power equal to unity. Note that the bootstrap statistic is of P ∗−probability order 1

∆̃

under both H(1)
A and H(2)

A , while the actual statistic is of P−probability order
√
T

∆ under H(1)
A and

1
∆ under H(2)

A . Hence, the condition that ∆

∆̃
→ 0 ensures unit asymptotic power under H(2)

A . As

the suggested statistics are not robust to the presence of microstructure noise, the optimal discrete

interval, ∆, is the highest frequency at which microstructure noise doesn’t bind. Visual inspection

of the signature plots of Andersen, Bollerslev and Diebold (2000) provides a useful tool for choice

of interval. It should also be noted that the statistic is constructed over an increasing time span;

and hence it is not straightforward to ascertain whether simple pre-averaging will make the statistic

robust to microstructure noise (as in the case of the realized pre-average power variation discussed

in Podolskji and Vetter (2009b)). Future exploration of this issue is left to future research.

4.3 Test of λ∞ = 0 (leverage effects)

The statements in Theorems 1 and 2 require absence of leverage effects. In particular, the re-

sults presented in these theorems rely on the fact that under the null of no jumps, returns are

symmetrically distributed. More precisely, all results are derived under the assumption that

E
((
Yk∆ − Y(k−1)∆

)3)
= 0, whenever there are no jumps. However, in the presence of leverage,

if Vt is generated as in Eq. (5), E
((∫ k∆

(k−1)∆ V
1/2
s dW1,s

)3
)
6= 0, and is instead of order ∆2. For

example, if Vt is generated by a square root process (i.e., dVt = κ (θ − Vt) dt + ηV
1/2
t dW2,t), then

E
((
Yk∆ − Y(k−1)∆

)3)
= λ∞E (Zt − E (Zt))

3 ∆ + ηθρ
2κ ∆2 (see Ait-Sahalia, Cacho-Diaz and Laeven

(2013)). Although, the contribution to the third moment of the asymmetric jump component is

of a larger order than that of the leverage component, inference based on the comparison of ST,∆

with the bootstrap critical values c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

will lead to the rejection of the null of

no jumps, even if the null is true. This is established in the theorem below.

Theorem 3: Let Assumptions A(ii)-(v) hold. Also, assume that as n → ∞, T → ∞, ∆ → 0,

∆̃→ 0 and ∆/∆̃→ 0. Then, under both H0 and H
(1)
A ∪H

(2)
A :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ ST,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 0.

It follows that, in the presence of leverage, we always reject the null of no jumps, regardless as

to whether it is true or false. To avoid spurious rejection due to the presence of leverage, use the

following modified statistic:

S̃T,∆ =
1

T 1/2+ε
ST,∆, (13)

with ε > 0, arbitrarily small.
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Theorem 4: Let Assumption A(ii)-(v) hold. Also, assume that as n → ∞, T → ∞, ∆ → 0,

∆̃→ 0, and (T 1/2+ε∆)/∆̃→ 0.

(i) Under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ S̃T,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 1.

(ii) Under H(1)
A ∪H

(2)
A :

lim
T,B→∞,∆,∆̃→0

Pr
(
c∗
α/2,B,∆,∆̃

≤ S̃T,∆ ≤ c∗(1−α/2),B,∆,∆̃

)
= 0.

It follows that inference based on the comparison of S̃T,∆ with the bootstrap critical values

c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

delivers a test with zero asymptotic size and unit asymptotic power.

Needless to say, the statements in Theorem 4 are also valid when there is no leverage. However, in

the this case tests should be based on ST,∆, in order to maximize power.

4.4 Test of β = 0

If the null hypothesis of zero intensity is rejected, one can proceed to test the null of no self-

excitation or path dependence. The null in this case is β = 0, and the alternative is β > 0, with β

defined as in Eq. (9). As shown by Ait-Sahalia, Cacho-Diaz and Laeven (2013), β can be identified

from the autocorrelation function. In particular, they show that given Eq. (9),

E
((
Yk∆ − Y(k−1)∆

) (
Y(k+τ)∆ − Y(k+τ−1)∆

))
=
βλ∞ (2a− β)

2 (a− β)
exp (− (a− β) τ) (E (Z))2 ∆2 + o

(
∆2
)
. (14)

Given that λ∞ > 0, it follows that E
((
Yk∆ − Y(k−1)∆

) (
Y(k+τ)∆ − Y(k+τ−1)∆

))
= 0 if and only if

β = 0. Our objective is to test the following hypotheses:

H0 : β = 0

HA : β > 0.

Define the statistic:

ZT,∆ = max {0, tβ,T,∆} ,

where

tβ,T,∆ =

√
T
∆ τ̂T,∆

σ̂β,T,∆
, (15)
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with

τ̂T,∆ =
1

T

n−1∑
k=2

(
Yk∆ − Y(k−1)∆

) (
Y(k+1)∆ − Yk∆

)
(16)

and

σ̂2
β,T,∆ =

1

T∆

n−1∑
k=2

(
Yk∆ − Y(k−1)∆

)2 (
Y(k+1)∆ − Yk∆

)2
.

From Eq. (14), and recalling that a > 0, β ≥ 0, and a > β, it follows immediately that the

autocorrelation can never be negative. This is why the test is one-sided.

Theorem 5: Let Assumption A(i) or A(ii) and A(iii)-(v) hold, and let λt be the solution to Eq.

(9). Also, assume that E (Z) 6= 0, and as n→∞, T →∞ and ∆→ 0.

(i) Under H0 :

ZT,∆
d→ max {0, Z} ,

where Z is a standard normal random variable.

(ii) Under HA, there exists an ε > 0 such that:

lim
T→∞,∆→0

Pr

(√
∆

T
ZT,∆ > ε

)
= 1.

It follows that ZT,∆ converges to an half-normal random variable under the null, and diverges

at rate
√

∆
T under the alternative.

Remark 1: The test statistic is only a function of the first autocovariance term. It follows

immediately that one can construct a test based on an increasing number of autocovariance terms,

with the number of terms chosen adaptively (see, e.g. Escanciano and Lobato (2009)).

Remark 2: If the nulls of zero intensity and no self-excitation are both rejected, then one can

proceed to estimate the full Hawkes diffusion using GMM, as in Ait-Sahalia, Cacho-Diaz and

Laeven (2013). Of course, there is still a positive probability that the nulls have been falsely

rejected. Because of this, one should consider carrying out somewhat conservative inference, using

a “small”significance level.

Remark 3: In this paper, we only derive model free tests for the null of zero jump intensity in asset

returns. However, the same approach can be used for testing equivalent hypotheses for volatility.

Such tests would require estimators of the spot volatility, say V 2
k∆, which can be constructed using

a finer grid of observations than used in the above tests, such as if there are M observations over

each interval of order ∆. The order of magnitude of the error due to the estimation of the spot

volatility is derived in Bandi and Reno (2012), under various settings.

Remark 4: In this section, we consider the case of self-exciting intensity. However, from an

empirical point of view, an interesting case is that of financial contagion, where the contagion is

due to “common”jumps. In this case, the jump intensity is an increasing function not only of its
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own past jumps but also of past jumps in other assets. In order to test for (no) cross-excitation, it

suffi ces to construct a statistic based on cross correlations instead of autocorrelations (see Theorem

4 in Ait-Sahalia, Cacho-Diaz and Laeven (2013)). For example, let:

τ̂
(I,II)
T,∆ =

1

T

n−1∑
k=2

(
Y

(I)
k∆ − Y

(I)
(k−1)∆

)(
Y

(II)
(k+1)∆ − Y

(II)
k∆

)
,

and note that if the jump intensity in asset II does not depend on past jumps in asset I, then

τ̂
(I,II)
T,∆ → 0. On the other hand, if the intensity in asset II increases when there is a jump in asset

I, then τ̂ (I,II)
T,∆ has a strictly positive probability limit.

5 Monte Carlo Results

In this section we carry out a set of experiments designed to evaluate the finite sample properties

of (i) the test for the null of zero intensity, based on ST,∆, as defined in Eq. (12) and, for the case of

leverage, based on S̃T,∆, as defined in Eq. (13); (ii) the test for the null of no jump path dependence

based on ZT,∆, as discussed in the previous section; and (iii) the overall procedure according to

which, if we reject the null of no jumps, according to either ST,∆ or S̃T,∆, we then proceed to test

the null of no path dependence, using ZT,∆.We now outline the data generating processes (DGPs)

used in the simulation experiments, namely:

d lnXt = µdt+
√
VtdW1,t + ZtdNt,

where volatility is modeled as a square-root process:

dVt = κv(θv − Vt)dt+ ζ
√
VtdW2,t,

with E(W1,tW2,t) = ρ. We have set µ = 0.5, ρ = {0,−0.5}, κv = 5, θv = 0.04, and ζ = 0.5.

Additionally, Nt satisfies the conditions in Eqs. (6)-(8) and for the jump size density we consider

two cases, (a) Zt an iid N(0.5, 0.01) random variable, and (b) Zt an exponential random variable

with parameter equal to 5. The jump intensity evolves according to:

λt = λ∞ + β

∫ t

0
exp (−a (t− s)) dNs, (17)

where λ∞ = {1/20, 1/10, 1/5, 3/10, 2/5} , and (a, β) = {(0, 0), (0.2, 0.1), (2, 1), and (5, 4)}. Note
that the case where (a, β) = {(0, 0)} is consistent with both the case of no jumps (i.e., λ∞ = 0)

and constant jump intensity (i.e., λt = λ∞).

We simulate observations using a Milstein discretization scheme, with discrete interval h =

1/100. For DGPs with ρ = 0, we sample the simulated observations using ∆ = 1/60 when con-
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structing the test statistics and ∆̃ = 1/20 when constructing bootstrap statistics. For DGPs with

ρ = −0.5, we set ∆ = 1/100 and ∆̃ = 1/10 for test statistics and bootstrap statistics, respectively.

In all experiments, we perform 1000 Monte Carlo replications. Finally, recall that only the jump

intensity test uses bootstrap critical values (see the statements in Theorems 2 and 4).

Conducting Monte Carlo experiments involving bootstrap estimators are always quite compu-

tationally demanding. In our experiments the computational burden is potentially even higher

than usual, since we rely on a joint in-fill and long-span asymptotics, and since we need to con-

trol for the discretization error when simulating according to diffusion processes. To cope with

this computational cost, we construct bootstrap critical values using the Warp-Speed approach of

Giacomini, Politis and White (2013). This approach involves carrying out only one bootstrap repli-

cation for each simulated sample, and then averaging the bootstrap statistics over all Monte Carlo

replications. Hence, the overall number of bootstrap replications is equal to the number of Monte

Carlo replications, which is 1000 in our case. Under mild regularity conditions, the accuracy of the

Warp-Speed bootstrap approaches is the same as that of the usual bootstrap, as both the sample

size and the number of Monte Carlo replications go to infinity (see Corollary 5 in Giacomini, Politis

and White (2013)).

The findings from our simulation studies are reported in Tables 1-4. Table 1 reports the empirical

size, with the nominal size set at 10%. In Table 1 the first three columns consider DGPs with no

leverage, while the last three columns consider DGPs with leverage. The first row displays the

rejection frequencies for the test of H0 : λ∞ = 0 vs HA : λ∞ > 0, with the first three entries

reporting results for the ST,∆ and the last three corresponding to S̃T,∆. For ST,∆ the empirical

size is very accurate, and is effectively equal to the nominal size, for T ≥ 500, while, as stated

in Theorem 4, the rejection frequencies under the null for S̃T,∆ are identically equal to zero. The

first and second quadrants in Table 1 contain rejection frequencies for H0 : β = 0 vs HA : β > 0,

when data are generated with jumps characterized by constant intensity and jump sizes normally

or exponentially distributed. Here, each row denotes a different intensity, from the lowest (1/20)

in the top row to the highest (2/5) in the bottom row. The third and fourth quadrants report

rejection frequencies for the full sequential procedure. In particular, they report how many times

H0 : λ∞ = 0 vs HA : λ∞ > 0 has been rejected and how many times H0 : β = 0 vs HA : β > 0 has

not been rejected. Overall, the empirical size is quite close to the nominal, though slightly smaller

for the rows characterized by a large intensity parameter.

Table 2 contains the results of power experiments using ST,∆ (non-leverage case), and using

S̃T,∆ (leverage case). Panels A and B report rejection frequencies for DGPs generated with Poisson

jumps characterized by constant intensity ranging from 1/20 (top row in each quadrant) to 2/5

(bottom row in each quadrant). The empirical power is essentially unity, even for the lowest

intensity, and hence the test is powerful even in the presence of relatively few jumps. This is true

also for the case of normal (symmetric) jumps, despite of the fact that the Pitman drift is zero, so
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that rejections are due only to the different order of magnitude of the variance. Interestingly, when

∆/∆̃ is small enough, the power in the leverage cases is as high as in the non-leverage case. Panels

C and D report rejection frequencies in the case of no-leverage and self-exciting jumps (i.e., when

λt is generated as in Eq. (17)), with exponential and normal jump densities, respectively. Panels

E and F report analogous results for the leverage case. For cases where the mean intensity is low,

rejection frequencies in the leverage case (i.e., tests based on S̃T,∆) are now slightly lower than

corresponding rejection frequencies in the non-leverage case (i.e., tests based on S̃T,∆). However,

for λ∞ ≥ 1/5, rejection frequencies are rather close to unity.

Table 3 contains results from power experiments (i.e., H0 : β = 0 vs HA : β > 0), under the

maintained assumption that λ∞ > 0. Note that for the test for no-path dependent intensity, we use

the same statistic max {0, tβ,T,∆} , as defined in Eq. (15), regardless of the presence of leverage or
not. However, for the sake of completeness, we still report result for the no-leverage case in Panels

A and B, and for the leverage case in Panels C and D. From Eqs. (14) and (17) is immediate

to see that the smaller is a and the smaller is (a − β), the higher is the level of self-excitation.

For example, when a = 0.1 and β = 0.2, rejection frequencies are above 0.9, regardless of mean

intensity. However, the case where a = 0.1 and β = 0.2 imply a somewhat implausibly high level

of path dependence. For an intermediate degree of self-excitation, we consider a = 2 and β = 1. In

this case, the rejection frequencies are reasonably high, from 0.65 to 0.80, when there are “enough”

jumps (i.e., when λ∞ ≥ 3/10). Finally, in the case of low self-excitation (i.e., a = 5, β = 4) the

power is slightly below 0.50, even for the highest mean intensity.

Table 4 summarizes experimental findings based on implementation of the full (sequential)

procedure. Namely, whenever we reject H0 : λ∞ = 0 vs λ∞ > 0, we proceed to test H0 : β = 0

vs HA : β > 0. Entries in the table denote that rejection frequencies indicating that both null

hypotheses are rejected (sequentially). As the power of the jump intensity test against path-

dependent jumps is very close to 1 (see Panels C-F in Table 2), it is not surprising to note that the

entries in Table 4 are very close to those in Table 3.

In summary, the test for zero jump intensity has excellent empirical size and power across all

cases. On the other hand, the test for no path dependence and the sequential procedure have the

very good empirical size but good power only when jumps are frequent enough and the degree of

self-excitation is not too low.

6 Concluding Remarks

If the intensity parameter in a jump diffusion model is identically zero, then parameters charac-

terizing the jump size density cannot be identified. In general, this lack of identification precludes

consistent estimation of identified parameters. Hence, consistent estimation of jump diffusions re-

quires consistent pretesting for the null of zero jump intensity. Currently available tests, which are
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based on high frequency observations over a finite time-span, are model free but are not consistent.

On the other hand, tests based on discrete observations over a long time-span are consistent, but

require full specification of the model as well as knowledge of a closed form expression for the tran-

sition density. This paper introduces novel (almost) model free tests which are consistent against

the alternative of positive intensity. They are based on sample third moments, and make use of

high frequency observations over a long time-span. Inference is based on m out n type bootstrap

critical values, whose first order validity is established. A "self-excitement" test is also introduced,

which is designed to have power against path dependent intensity, thus providing a direct test

for the Hawkes diffusion model of Ait-Sahalia, Cacho-Diaz and Laeven (2013). The finite sample

behavior of the suggested statistics is studied via Monte Carlo experimentation. The jump tests

exhibit empirical size very close to nominal and empirical power close to unity. The self excitement

test likewise has very good size and good power properties, whenever there are “enough” jumps

and the degree of self excitation is not “too weak”.
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7 Appendix

Proof of Theorem 1:

(i) Under H0 Nt = 0, since the drift term is constant,

ST,∆

=
1√
T∆

n∑
k=2

((
lnXk∆ −

∆

T

n∑
k=1

lnXk∆

)
−
(

lnX(k−1)∆ −
∆

T

n∑
k=2

lnX(k−1)∆

))3

=
1√
T∆

n∑
k=2

(∫ k∆

(k−1)∆

√
VsdW1,s −

∆

T

n∑
k=1

∫ k∆

(k−1)∆

√
VsdW1,s

)3

(1 + op(1))

=
1√
T∆

n∑
k=2

(
∆1/2

√
V(k−1)∆εk∆

)3
(1 + op(1))

−
√
T

∆2

(
∆

T

n∑
k=2

∆1/2
√
V(k−1)∆εk∆

)3

(1 + op(1))

− 2√
T∆

n∑
k=2

∆V(k−1)∆ε
2
k∆

(
∆

T

n∑
k=1

∆1/2
√
V(k−1)∆εk∆

)
(1 + op(1))

+
2√
T∆

n∑
k=2

∆1/2
√
V(k−1)∆εk∆

(
∆

T

n∑
k=2

∆1/2
√
V(k−1)∆εk∆

)2

(1 + op(1))

= IT,∆ + IIT,∆ + IIIT,∆ + IVT,∆, (18)

where εk∆ is an iid N(0, 1) random variable, and where the op(1) terms denote terms approaching

zero as ∆→ 0, uniformly in T.

Let F(k−1)∆ = σ
(
V∆, ..., V(k−1)∆

)
and note that under A(i),

E
(
V

3/2
(k−1)∆ε

3
k∆

∣∣F(k−1)∆

)
= V

3/2
(k−1)∆E

(
ε3k∆

∣∣F(k−1)∆

)
= 0, and hence V 3/2

(k−1)∆ε
3
k∆ is a martingale

difference sequence. It follows that,

var

(
1√
T∆

n∑
k=1

(
∆1/2

√
V(k−1)∆εk∆

)3
)

=
1

T∆2

T

∆
∆3E

(
V 3

(k−1)∆ε
6
k∆

)
= 15E

(
V 3

(k−1)∆

)
. (19)

We first show that IIT,∆ and IVT,∆ are op(1).

IIT,∆ =
2
√
T

∆2

∆3

T 3/2

(√
∆

T

n∑
k=1

(√
V(k−1)∆εk∆

)3
)

(1 + op(1))

=
∆

T
Op(1) = op(1),
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since, recalling Eq. (19),
√

∆
T

∑n
k=1

(√
V(k−1)∆εk∆

)3 satisfies a CLT for martingale difference se-
quences. Additionally,

IVT,∆ = 2
∆

T

√
∆

T

n∑
k=1

(√
V(k−1)∆εk∆

)(√∆

T

n∑
k=1

(√
V(k−1)∆εk∆

))2

(1 + op(1))

=
∆

T
Op (1) = op(1).

Now, var (IT,∆) = 15E
(
V 3

(k−1)∆

)
, given Eq. (19), and

var (IIIT,∆) = 4 (E (Vk,∆))2 var

(√
∆

T

n∑
k=1

√
V(k−1)∆εk∆

)
= 4 (E (Vk,∆))2 E (Vk,∆) = 4 (E (Vk,∆))3 ,

with

cov (IT,∆, IIIT,∆) = −4E (Vk,∆) E
(
V 2
k,∆

)
E
(
ε4k∆

)
.

Thus,

(IT,∆ + IIIT,∆)
d→ N (0, ω0) ,

with ω0 = 15E
(
V 3

(k−1)∆

)
+ 4 (E (Vk,∆))3 − 12E (Vk,∆) E

(
V 2
k,∆

)
. The statement in (i) then follows.

(ii) Under H(1)
A , there are additional jump components, including:

1√
T

n∑
k=1

1

∆

(
Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
− ∆

T

n∑
k=1

Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3

,

plus related cross-terms. Now,

∆

T

n∑
k=1

1

∆

(
Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
− ∆

T

n∑
k=1

Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3

pr→ λE (Z − E (Z))3 .

Thus, whenever E (Z − E (Z))3 6= 0, ST,∆ is of probability order
√
T

∆ , and

limT→∞,∆→0 Pr
(

∆√
T
|ST,∆| > ε

)
= 1. The statement in (ii) then follows.

(iii) Under H(2)
A , by the law of large numbers,

∆

T

n∑
k=1

1

∆

(
Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
− ∆

T

n∑
k=1

Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3

pr→ 0.
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Since E (Z − E (Z))3 = 0, and given the central limit theorem,

√
∆

T

n∑
k=1

1

∆

(
Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
− ∆

T

n∑
k=1

Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3

= Op(1).

Moreover, if β = 0 (no path dependent intensity), then:

var (ST,∆)

= var

(
1√
T∆

n∑
k=1

(
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3)
(1 + o(1))

=
1

T∆2

n∑
k=1

var
((
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3)
(1 + o(1))

=
1

∆3
var
((
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))3)
(1 + o(1))

= O

(
1

∆2

)
.

Alternatively, if β > 0, one must take autocovariance terms into account when carrying out similar

calculations. However, given A(iv), the order of magnitude of the variance is still O
(

1
∆2

)
. Hence,

ST,∆ is of probability order ∆−1 and the statement in (iii) follows.

Proof of Theorem 2: Hereafter, let E∗ and var∗ denote the mean and variance operators under

the bootstrap probability measure P ∗, conditional on the sample, and let d∗ denote convergence in

distribution under P ∗.

(i) Note that:

E∗
(
S∗
T,∆̃

)
=

1√
T ∆̃

ñ∑
k=1

E∗
((

Y ∗
k∆̃
− Y ∗

(k−1)∆̃

)3
−
(
Y
k∆̃
− Y

(k−1)∆̃

)3
)
.

Now, since:

E∗
(
Y ∗
k∆̃
− Y ∗

(k−1)∆̃

)3
=

∆̃

T

ñ∑
k=1

(
Y
k∆̃
− Y

(k−1)∆̃

)3
,

it follows immediately that E∗
(
S∗
T,∆̃

)
= 0. Now, consider var∗

(
S∗
T,∆̃

)
. First note that, by the

same argument as that used in the proof of Theorem 1, part (i),

S∗
T,∆̃

=
1√
T ∆̃

ñ∑
k=1

(
V
∗3/2

(k−1)∆̃
∆̃3/2ε∗3

k∆̃
− 2V ∗

(k−1)∆̃
∆̃ε∗2

k∆̃

∆̃

T

ñ∑
k=1

V
∗1/2

(k−1)∆̃
∆̃1/2ε∗

k∆̃

)

22



− 1√
T ∆̃

ñ∑
k=1

(
V

3/2

(k−1)∆̃
∆̃3/2ε3

k∆̃
− 2V

(k−1)∆̃
∆̃ε2

k∆̃

∆̃

T

ñ∑
k=1

V
1/2

(k−1)∆̃
∆̃1/2ε

k∆̃

)
+ o∗p(1) + op(1)

=

√
∆̃

T

ñ∑
k=1

(
V
∗3/2

(k−1)∆̃
ε∗3
k∆̃
− V 3/2

(k−1)∆̃
ε3
k∆̃

)
− 2

∆̃

T

ñ∑
k=1

V ∗
(k−1)∆̃

ε∗2
k∆̃

√
∆̃

T

ñ∑
k=1

V
∗1/2

(k−1)∆̃
ε∗
k∆̃

−∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

√
∆̃

T

ñ∑
k=1

V
1/2

(k−1)∆̃
ε
k∆̃

+ o∗p(1) + op(1)

=

√
∆̃

T

ñ∑
k=1

(
V
∗3/2

(k−1)∆̃
ε∗3
k∆̃
− V 3/2

(k−1)∆̃
ε3
k∆̃

)
− 2

∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

√∆̃

T

ñ∑
k=1

V
∗1/2

(k−1)∆̃
ε∗
k∆̃

−

√
∆̃

T

ñ∑
k=1

V
1/2

(k−1)∆̃
ε
k∆̃

+ o∗p(1) + op(1).

Hence,

var∗
(
S∗
T,∆̃

)
= var∗

√∆̃

T

ñ∑
k=1

V
∗3/2

(k−1)∆̃
ε∗3
k∆̃


+ 9

(
∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

)2

var∗

√∆̃

T

ñ∑
k=1

V
∗1/2

(k−1)∆̃
ε∗
k∆̃


− 6

(
∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

)
cov∗

√∆̃

T

ñ∑
k=1

V
∗3/2

(k−1)∆̃
ε∗3
k∆̃
,

√
∆̃

T

ñ∑
k=1

V
∗1/2

(k−1)∆̃
ε∗
k∆̃


and so,

var∗
(
S∗
T,∆̃

)
=

∆̃

T

ñ∑
k=1

V 3
(k−1)∆̃

ε6
k∆̃

+ 4

(
∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

)2
∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

− 4

(
∆̃

T

ñ∑
k=1

V
(k−1)∆̃

ε2
k∆̃

)
∆̃

T

ñ∑
k=1

V 2
(k−1)∆̃

ε4
k∆̃

= var
(
S
T,∆̃

)
+ op(1).

As S∗
T,∆̃

d∗→ N
(

0, var∗
(
S∗
T,∆̃

))
, the statement in (i) follows.
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(ii) S∗T,∆ now contains the following additional term:

J∗
T,∆̃

=
1√
T ∆̃

ñ∑
k=1

(
Z∗3

(k−1)∆̃

(
N∗

(k−1)∆̃
−N∗

(k−1)∆̃

)3
− Z3

(k−1)∆̃

(
N

(k−1)∆̃
−N

(k−1)∆̃

)3
)
,

plus additional cross product terms, which cannot be of larger P ∗−order than J∗
T,∆̃

.Now, E∗
(
J∗
T,∆̃

)
=

0, and

var∗
(
J∗
T,∆̃

)
=

1

∆̃2

∆̃

T

ñ∑
k=1

1

∆̃

(
Z6

(k−1)∆̃

(
N

(k−1)∆̃
−N

(k−1)∆̃

)6
)

=
1

∆̃2
Op(1),

and so S∗
T,∆̃

is of P ∗−order 1

∆̃
. Recalling that S

T,∆̃
is of P−order 1

∆ , with ∆/∆̃→ 0, the statement

in (ii) follows.

Proof of Theorem 3: Suppose that H0 is true, and so λ∞ = 0. In this case:

E
((
Yk∆ − Y(k−1)∆

)3)
= O

(
∆2
)
, and by the same argument as in the proof of Theorem 1,

1

T

n∑
k=1

(
Yk∆ − Y(k−1)∆

)3
=

1

T

n∑
k=1

((
Yk∆ − Y(k−1)∆

)3 − E
((
Yk∆ − Y(k−1)∆

)3))
+ E

((
Yk∆ − Y(k−1)∆

)3)
= Op

(
∆√
T

)
+ E

((
Yk∆ − Y(k−1)∆

)3)
∆−1 = Op

(
∆√
T

)
+O(∆).

Hence,

ST,∆ =
1√
T∆

n∑
k=1

(
Yk∆ − Y(k−1)∆

)3
= Op (1) +O(

√
T ).

On the other hand, it is immediate to see from the proof of Theorem 2, part (i), that E
(
S∗
T,∆̃

)
= 0,

regardless of the presence of leverage. This is because the mean of the bootstrap statistic is always

zero. Hence, the comparison of ST,∆ with the critical values of S∗
T,∆̃

will lead to a rejection of the

null, with probability approaching one.

Proof of Theorem 4:

(i) Under H0, ST,∆ = Op(
√
T ), so that S̃T,∆ = Op(T

−ε) = op(1). As S∗
T,∆̃

has a well defined,

zero mean, normal limiting distribution (regardless the presence of leverage), the statement in (i)

follows.

(ii) Under H(1)
A , ST,∆ is of probability order

√
T

∆ , and so S̃T,∆ is of probability order 1
T ε∆ . Under
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H
(2)
A , ST,∆ is of probability order 1

∆ , and so S̃T,∆ is of probability order
1

T 1/2+ε∆
. Now, from the proof

of Theorem 2, we have that under both H(1)
A and H(2)

A , S∗
T,∆̃

diverges at rate 1

∆̃
. As T 1/2+ε∆

∆̃
→ 0,

the statement follows.

Proof of Theorem 5:

(i) Recall Eq. (16), which can be written as follows:√
T

∆
τ̂T,∆

=
1√
T∆

n−1∑
k=1

(
∆1/2V

1/2
(k−1)∆εk∆ −

∆

T

n−1∑
k=1

∆1/2V
1/2

(k−1)∆εk∆ + Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
−∆

T

n−1∑
k=1

Z(k−1)∆

(
Nk∆ −N(k−1)∆

))(
∆1/2V

1/2
k∆ ε(k+1)∆ −

∆

T

n−1∑
k=1

∆1/2V
1/2
k∆ ε(k+1)∆

+Zk∆

(
N(k+1)∆ −Nk∆

)
− ∆

T

n−1∑
k=1

Zk∆

(
N(k+1)∆ −Nk∆

))
(1 + op(1))

=
1√
T∆

n−1∑
k=1

((
∆1/2V

1/2
(k−1)∆εk∆ + Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
− E (Z) E (λ) ∆

)
(

∆1/2V
1/2
k∆ ε(k+1)∆ + Zk∆

(
N(k+1)∆ −Nk∆

)
− E (Z) E (λ) ∆

))
+ op(1).

Let Zk∆

(
N(k+1)∆ −Nk∆

)
= Zk∆

(
N(k+1)∆ −Nk∆

)
− E (Z) E (λ) ∆, and note that under the null

of constant intensity,

var

(
1√
T∆

n−1∑
k=1

Zk∆

(
N(k+1)∆ −Nk∆

)
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))
= ∆−2E

((
Zk∆

(
N(k+1)∆ −Nk∆

))2 (
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))2)
= ∆−2E

((
Zk∆

(
N(k+1)∆ −Nk∆

))2)
E
((
Z(k−1)∆

(
Nk∆ −N(k−1)∆

))2)
=
(

E (λ) E
(

(Z − E (Z))2
))2

,

var

(
1√
T∆

n−1∑
k=1

∆V
1/2

(k−1)∆V
1/2
k∆ εk∆ε(k+1)∆

)
= E

(
V(k−1)∆Vk∆

)
,

and

cov

(
1√
T∆

n−1∑
k=1

Zk∆

(
N(k+1)∆ −Nk∆

)
,

1√
T∆

n−1∑
k=1

∆1/2V
1/2

(k−1)∆

)
= 0.

25



Now, consider σ̂2
β,T,∆, the expression for which can be written as follows:

σ̂2
β,T,∆ =

∆

T

n−1∑
k=1

V 2
(k−1)∆V

2
k∆ε

2
k∆ε

2
(k+1)∆

+
∆

T

n−1∑
k=1

∆−2Z2
(k−1)∆

(
Nk∆ −N(k−1)∆

)2
Z2
k∆

(
N(k−1)∆ −Nk∆

)2
+ op(1)

=
(

E
(
V 2

(k−1)∆ε
2
k∆

))2
+
(

E (λ) E
(

(Z − E (Z))2
))2

+ op(1).

The statement then follows immediately from the central limit theorem for iid random variables

and from the continuous mapping theorem.

(ii) Note also that τ̂T,∆ can be written as follows:

τ̂T,∆

= ∆
∆

T

n−1∑
k=1

∆−2Z(k−1)∆

(
Nk∆ −N(k−1)∆

)
Zk∆

(
N(k+1)∆ −Nk∆

)
+ op(1),

and

∆

T

n−1∑
k=1

∆−2Z(k−1)∆Zk∆

(
Nk∆ −N(k−1)∆

) (
N(k+1)∆ −Nk∆

)
p→ βλ (2a− β)

2 (a− β)
exp (− (a− β) τ) E (Z)2

> 0.

The statement in the theorem follows by noting that:

∆

T

n−1∑
k=1

∆−2Z2
(k−1)∆

(
Nk∆ −N(k−1)∆

)2
Z2
k∆

(
N(k−1)∆ −Nk∆

)2
= Op(1)

under both hypotheses, given that for β < a, the time dependence of jumps declines at an expo-

nential rate.
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Table 1: Experimental Results - Empirical Size *
Data Generated According to a Stochastic Volatility Process

No Leverage in DGP Leverage in DGP
T=300 T=500 T=1000 T=300 T=500 T=1000

Jump Test
0.110 0.104 0.102 0.000 0.000 0.000

Self Excitement Test
Jumps Generated Using Exponential Dist.

0.119 0.102 0.103 0.111 0.108 0.117
0.090 0.100 0.088 0.111 0.116 0.118
0.080 0.076 0.081 0.088 0.075 0.083
0.080 0.081 0.070 0.083 0.072 0.074
0.058 0.067 0.067 0.072 0.064 0.066

Self Excitement Test
Jumps Generated Using Normal Dist.

0.117 0.101 0.101 0.111 0.111 0.110
0.086 0.110 0.100 0.109 0.116 0.124
0.090 0.094 0.102 0.096 0.092 0.097
0.097 0.102 0.086 0.088 0.094 0.100
0.078 0.080 0.088 0.081 0.083 0.080

Sequential Jump and Self Excitement Test
Jumps Generated Using Exponential Dist.

0.111 0.102 0.103 0.107 0.099 0.114
0.090 0.100 0.088 0.110 0.116 0.118
0.080 0.076 0.081 0.088 0.075 0.083
0.080 0.081 0.070 0.083 0.072 0.074
0.058 0.067 0.067 0.072 0.064 0.066

Sequential Jump and Self Excitement Test
Jumps Generated Using Normal Dist.

0.114 0.101 0.101 0.100 0.105 0.107
0.086 0.110 0.100 0.109 0.116 0.124
0.090 0.094 0.102 0.096 0.092 0.097
0.097 0.102 0.086 0.088 0.094 0.100
0.078 0.080 0.088 0.081 0.083 0.080

* Notes: Entries denote rejection frequencies based on comparing ST,∆ with 10% critical values
calculated using the bootstrap (Jump Test) and based on comparing ZT,∆ with 10% critical values
from the normal distribution (Self Excitement Test). Additionally, results are reported for the
sequential test whereby ZT,∆ is constructed whenever implementation of ST,∆ results in a rejection
of the null of no jumps. Results are reported in "blocks" of 5 rows. Each of these 5 rows of entries
corresponds to a different jump intensity. As discussed above, "average jump arrival times" are
assumed to be every {20 days, 10 days, 5 days, 10/3 days, 5/2 days}, and the rows correspond to
these arrivals, in order from least frequent to most frequent. All experiments are based on 1,000
Monte Carlo iterations. For complete details see above.
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Table 2: Experimental Results - Jump Test Empirical Power *
Data Generated According to a Stochastic Volatility Process

T=300 T=500 T=1000 T=300 T=500 T=1000
Panel A: No Leverage, No Self-Excitement in DGP

Exponential Dist. Normal Dist.
0.938 0.991 1.000 0.973 1.000 1.000
0.999 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
Panel B: Leverage, No Self-Excitement in DGP
Exponential Dist. Normal Dist.

0.933 0.960 0.976 0.903 0.931 0.985
0.981 0.999 1.000 0.994 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000

a = 0.1,β = 0.2 a = 2,β = 1 a = 5,β = 4
T=300 T=500 T=1000 T=300 T=500 T=1000 T=300 T=500 T=1000
Panel C: No Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.917 0.939 0.958 0.545 0.511 0.797 0.811 0.917 1.000
0.975 0.995 1.000 0.682 0.865 0.996 0.921 0.978 1.000
0.995 1.000 1.000 0.993 0.999 1.000 0.998 1.000 1.000
1.000 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 0.999 1.000 0.999 1.000 0.999
Panel D: No Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.
0.952 0.978 0.983 0.919 0.986 0.995 0.974 0.998 0.995
0.984 0.983 0.972 0.986 0.996 0.985 0.988 0.989 0.992
0.986 0.969 0.966 0.980 0.983 0.955 0.969 0.974 0.955
0.973 0.968 0.960 0.964 0.960 0.929 0.956 0.952 0.941
0.952 0.952 0.968 0.952 0.936 0.916 0.963 0.940 0.903
Panel E: Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.906 0.917 0.944 0.345 0.261 0.288 0.370 0.812 0.729
0.974 0.987 0.999 0.458 0.471 0.471 0.725 0.699 0.509
0.995 0.999 1.000 0.767 0.757 0.720 0.802 0.834 0.956
1.000 1.000 1.000 0.941 0.953 0.964 0.976 0.943 1.000
1.000 1.000 1.000 0.998 0.997 0.998 0.996 0.999 1.000
Panel F: Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.

0.948 0.939 0.929 0.592 0.668 0.697 0.784 0.921 0.949
0.974 0.963 0.957 0.915 0.939 0.967 0.985 0.988 0.978
0.966 0.940 0.899 0.964 0.963 0.932 0.981 0.965 0.915
0.957 0.930 0.908 0.950 0.937 0.903 0.960 0.951 0.887
0.951 0.932 0.870 0.942 0.922 0.880 0.952 0.934 0.851

* See notes to Table 1. In results reported in Panels A-B, jump intensity follows a Poisson distrib-
ution, with constant intensity, while in Panels C-F, intensity follows a Hawkes diffusion, and (a, β)
parameterize path dependence strength. For complete details see above.
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Table 3: Experimental Results - Self-Excitement Test Empirical Power *
Data Generated According to a Stochastic Volatility Process

a = 0.1,β = 0.2 a = 2,β = 1 a = 5,β = 4
T=300 T=500 T=1000 T=300 T=500 T=1000 T=300 T=500 T=1000
Panel A: No Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.889 0.885 0.861 0.203 0.224 0.215 0.151 0.124 0.130
0.965 0.963 0.937 0.316 0.343 0.282 0.172 0.167 0.164
0.952 0.932 0.919 0.456 0.457 0.448 0.223 0.200 0.181
0.916 0.906 0.874 0.576 0.555 0.530 0.283 0.298 0.250
0.882 0.867 0.839 0.610 0.624 0.567 0.360 0.311 0.264
Panel B: No Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.
0.898 0.894 0.875 0.204 0.246 0.220 0.169 0.144 0.139
0.969 0.973 0.970 0.322 0.368 0.327 0.194 0.186 0.176
0.973 0.959 0.945 0.480 0.496 0.482 0.258 0.236 0.236
0.962 0.941 0.932 0.618 0.614 0.595 0.331 0.339 0.322
0.935 0.924 0.911 0.672 0.675 0.642 0.402 0.408 0.322
Panel C: Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.921 0.905 0.900 0.242 0.248 0.241 0.185 0.153 0.144
0.968 0.960 0.965 0.372 0.373 0.344 0.164 0.184 0.166
0.949 0.950 0.905 0.530 0.527 0.517 0.294 0.288 0.231
0.943 0.925 0.910 0.663 0.624 0.629 0.326 0.321 0.295
0.932 0.912 0.860 0.738 0.693 0.654 0.428 0.384 0.353
Panel D: Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.

0.920 0.909 0.906 0.256 0.250 0.262 0.183 0.161 0.135
0.979 0.974 0.980 0.385 0.386 0.380 0.176 0.207 0.191
0.976 0.966 0.949 0.560 0.550 0.557 0.314 0.304 0.282
0.970 0.958 0.951 0.680 0.654 0.666 0.360 0.369 0.342
0.966 0.952 0.925 0.766 0.745 0.718 0.470 0.431 0.411

* See notes to Table 2.
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Table 4: Experimental Results - Sequential Jump and Self Excitement Test Empirical Power *
Data Generated According to a Stochastic Volatility Process

a = 0.1,β = 0.2 a = 2,β = 1 a = 5,β = 4
T=300 T=500 T=1000 T=300 T=500 T=1000 T=300 T=500 T=1000
Panel A: No Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.855 0.869 0.859 0.167 0.167 0.194 0.127 0.118 0.130
0.941 0.960 0.937 0.283 0.330 0.282 0.164 0.164 0.164
0.947 0.932 0.919 0.455 0.457 0.448 0.223 0.200 0.181
0.916 0.906 0.874 0.575 0.555 0.529 0.283 0.298 0.250
0.882 0.867 0.839 0.610 0.623 0.567 0.359 0.311 0.263
Panel B: No Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.
0.887 0.888 0.868 0.197 0.244 0.219 0.164 0.144 0.139
0.967 0.964 0.963 0.320 0.366 0.321 0.189 0.185 0.175
0.968 0.954 0.939 0.477 0.491 0.474 0.252 0.230 0.226
0.955 0.930 0.928 0.614 0.608 0.569 0.323 0.329 0.307
0.922 0.910 0.905 0.663 0.659 0.622 0.397 0.388 0.297
Panel C: Leverage, Self-Excitement in DGP, Jumps Generated Using Exponential Dist.
0.869 0.875 0.892 0.170 0.165 0.167 0.101 0.133 0.114
0.945 0.951 0.965 0.306 0.318 0.291 0.137 0.154 0.121
0.944 0.949 0.905 0.513 0.501 0.487 0.274 0.270 0.227
0.943 0.925 0.910 0.655 0.619 0.623 0.325 0.314 0.295
0.932 0.912 0.860 0.737 0.693 0.653 0.427 0.384 0.353
Panel D: Leverage, Self-Excitement in DGP, Jumps Generated Using Normal Dist.

0.913 0.897 0.881 0.205 0.204 0.224 0.158 0.154 0.132
0.967 0.955 0.949 0.372 0.373 0.367 0.175 0.205 0.185
0.962 0.938 0.899 0.543 0.539 0.514 0.309 0.292 0.241
0.951 0.927 0.905 0.665 0.627 0.623 0.346 0.351 0.293
0.948 0.923 0.864 0.746 0.717 0.662 0.453 0.405 0.336

* See notes to Table 2.
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