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Abstract 

In a Regression Kink (RK) design with a finite sample, a confounding 
smooth nonlinear relationship between an assignment variable and an 
outcome variable around a threshold can be spuriously picked up as a kink 
and result in a biased estimate. In order to investigate how well RK designs 
handle such confounding nonlinearity, I firstly implement Monte Carlo 
simulations and then study the effect of fiscal equalization grants on local 
expenditure using a RK design. Results suggest that RK estimation with a 
confounding nonlinearity often suffers from bias or imprecision and 
estimates are credible only when relevant covariates are controlled for. 
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1. Introduction 

To find a plausible exogenous variation which is generated by a 

quasi-experimental situation has become an essential element of recent 

econometric policy evaluation, particularly when it is not possible to randomly 

assign the treatment of interest. 

 Regression Kink (RK) designs have recently been added to the 

methodologies available for the implementation of this trend. The basic idea of 

a RK design is similar to a Regression Discontinuity (RD) design, which is 

now one of the most popular approaches in applied microeconometrics. 

Whereas a RD design utilizes a “discontinuity” or “jump” in treatment status 

at a threshold of an assignment variable, a RK design exploits a “kink” in 

treatment status at a threshold. The applicability of RK designs may be 

potentially broader than that of RD designs in policy evaluation because 

various public policies avoid abrupt discontinuity at a threshold in the 

treatment and outcome status of relevant parties and result in a continuous but 

often kinked transition in status following introduction of the treatment in 

question.  

 Two such examples are progressive taxation and welfare transfer 

programs. Because marginal income tax rates and social welfare benefits are 

often determined by the income levels of taxpayers and welfare recipients, the 

budget constraints of individuals are often kinked at eligibility thresholds. The 

existence of such kinks in budget constraints is well known and is taken into 
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account in empirical studies of labor supply and other relevant topics.1  

 Nonetheless, kinks generated by institutional or policy settings have not 

been recognized as explicit sources of identification. One notable recent 

exception is studies of bunching such as Saez (2010), which exploits the 

bunching behavior of taxpayers at a kink point to estimate labor supply 

elasticity. While the study of bunching utilizes endogenous sorting at a kink 

for identification, RK designs exploit the seemingly exogenous variation that 

is generated by a kink in a manner similar to the way RD designs use a 

discontinuity as a source of exogenous variation.  

 The empirical applications of RK designs are still limited but increasing. 

Before the seminal work of Nielsen et al. (2010) introduced the term 

“Regression Kink design”, a few papers had already exploited a kink as a 

means of identification (Guryan, 2001 and Dahlberg et al., 2008). After 

Nielsen et al. (2010) (working paper 2008), Card, Lee, & Pei (2009) and Card, 

Lee, Pei, and Weber (2012) (hereafter referred to as CLP(2009) and 

CLPW(2012) respectively) formally discussed nonparametric identification 

and estimation using an RK design. Other recent applications include 

Simonsen et al. (2010), Lundqvist et al. (forthcoming), Bravo (2011), 

Engström (2011), Turner (2012), Landais (2013) and Ek (2013).  

 Although an RK design seems to be a fruitful identification strategy which 

can be applied to various institutional settings, there is some concern about the 
                                                   
1 See, among others, Hausman (1985) and Moffitt (1986, 1990) for econometrics issues 
concerning nonlinear budget sets. Studies of nonlinear budget sets have mostly appeared 
in the labor-supply literature, but Moffitt (1984), for example, applies these techniques to 
the study of the effects of federal grants on state and local expenditures. 
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applicability of RK designs to real-world finite samples. That is, although an 

RK design tries to capture a discontinuous change in slope at a kink point, it 

may be incapable of providing accurate estimation with a finite sample if a 

kinked distribution in an outcome variable against an assignment variable is 

significantly confounded by noise around the cutoff point. While a similar 

problem arises in RD designs, RK designs may have a more severe problem 

due to the intrinsic subtleness of the estimation of a “kink” when compared 

with a “jump”.  

 In particular, a confounding smooth nonlinear relationship, e.g. a 

quadratic or more complicated nonlinearity, between an assignment variable 

and an outcome variable around a cutoff point could be problematic in a 

real-world sample, because this smooth nonlinearity could be spuriously 

captured as a kink. This problem is pointed out and considered by Landais 

(2013), but has not been directly investigated in the literature.2  

 In this paper, therefore, I study how well the RK design can eliminate 

confounding smooth nonlinearity around the threshold and capture only the 

“kink” that is generated by a treatment variable. I first examine this problem 

with Monte Carlo simulations and then apply an RK design to a real-world 

                                                   
2 In order to cancel out or reduce estimation bias coming from a quadratic relation which 
is spuriously picked up as a kink, Landais (2013) proposes a double-difference RD design 
which exploits the shifting of kink positions over time and eliminates this spurious kink 
by taking the difference of two RK estimates, one of which is supposed to pick up both a 
true kink and a spurious kink and the other is assumed to capture only the spurious kink at 
the same point of an assignment variable. Although his strategy is attractive, its 
applicability is restricted to situations where the kink point is shifted over time. In 
addition, this double-difference RD design requires the additional assumption that the 
distribution of outcomes against an assignment variable would not have changed before 
and after the kink shift if there had been no treatment intervention. 
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situation where I estimate the effect of a fiscal equalization grant on local 

expenditure with panel data from Japanese municipalities. 

 In my Monte Carlo simulations, I use two different data generating 

processes (DGPs). The first DGP is based on a minimum setting that generates 

both an endogeneity problem and confounding smooth nonlinear relation 

between an assignment variable and an outcome variable. The second DGP is 

an extension of the first DGP and can also be interpreted as a stylized version 

of a Japanese fiscal equalization scheme, which I subsequently investigate. In 

both the first and second DGPs, I also add fixed effects that generate another 

source of confounding nonlinearity.  

 I then examine the plausibility of an RK design using Japanese local 

public finance panel data. Specifically, I investigate the effect of Japanese 

fiscal equalization grants on local expenditure by exploiting the kinked 

formula of the fiscal equalization grant.  

 In the Monte Carlo simulations, my finding is that the RK estimates can 

be biased when there is a confounding nonlinearity around the kink point, 

even if I use a reasonably small bandwidth or a quadratic polynomial in my  

estimation. This bias could be mitigated or eliminated by using an even 

smaller bandwidth or a higher order polynomial, but either procedure comes at 

a cost of reduced precision and power and this cost is often prohibitive. The 

simulation results also show that the performance of RK estimation is 

improved by controlling for observed covariates, but that problems could still 

remain if there are unobserved confounding factors. In addition, simulations 
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with a larger sample provide some evidence that the imprecision and the low 

power of a RK estimator can be significantly improved by adding more 

observations. 

 When it comes to the real-world application of a RK design to the 

Japanese municipality panel data, my results show that their implications are 

more or less consistent with those of the Monte Carlo simulations in at least 

two respects. First, in both the Monte Carlo simulations and the empirical 

application, RK estimation without covariates can be easily biased, and this 

problem can be mitigated by adding basic covariates to the regressors. Second, 

in both cases, a smaller bandwidth and/or a higher order polynomial, even a 

quadratic polynomial, tends to result in imprecise estimates.  

 The rest of the paper is organized as follows. In Section 2, I briefly 

explain the RK design and discuss potential problems in this approach. Section 

3 presents Monte Carlo simulations with the simplest DGP and only the 

minimum necessary variables. In Section 4, I implement Monte Carlo 

simulations with an extended DGP that can also be interpreted as a stylized 

fiscal equalization scheme. Section 5 provides an empirical application of the 

RK design to a real-world situation by studying the effects of fiscal 

equalization grants on local expenditures in Japanese municipalities. Section 6 

concludes.  
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2. Identification in RK designs  

2.1 Estimation in RK designs 

Consider the following constant-effect and additive model that is presented by 

Nielsen et al.(2010):3 

    

𝑌 = 𝜏𝐵 + 𝑔(𝑉) + 𝜀, (1) 

 

where 𝐵 = 𝑏(𝑉) is a deterministic and continuous function of V with a kink 

at 𝑣 = 0, 𝑔(𝑉) is an unrestricted function and 𝜀 is an error term. They 

show that if 𝑔(∙) and 𝐸(𝜀|𝑉 = 𝑣) have derivatives that are continuous in 𝑣 

at 𝑣=0, then the RK estimand 𝜏 can be expressed as follows: 

 

𝜏 =
𝑙𝑖𝑚
𝑣𝑜→0+

�𝑑𝐸[𝑌|𝑉 = 𝑣]
𝑑𝑣 �

𝑣=𝑣0
− 𝑙𝑖𝑚

𝑣𝑜→0−
�𝑑𝐸[𝑌|𝑉 = 𝑣]

𝑑𝑣 �
𝑣=𝑣0

𝑙𝑖𝑚
𝑣𝑜→0+

�𝑑𝑏(𝑣)
𝑑𝑣 �

𝑣=𝑣0
− 𝑙𝑖𝑚

𝑣𝑜→0−
�𝑑𝑏(𝑣)
𝑑𝑣 �

𝑣=𝑣0

. (2) 

 

 Intuitively speaking, the numerator of the RK estimand is the change in 

the slope of the conditional expectation function E(𝑌|𝑉 = 𝑣) at the kink 

                                                   
3 See also CLPW (2012) for a theoretical discussion of generalized RK estimation based 
on a nonseparable model with a heterogeneous treatment effect, 𝑌 = 𝑦(𝐵,𝑉,𝑈) and the 
“fuzzy” version of the RK design which allows for unobserved determinants of 𝐵 and 
measurement errors in 𝐵  and 𝑉 . CLPW(2012) show that an RK estimand can be 
interpreted as the same “local average response” parameter of Altonji and Matzkin (2005) 
or equivalently “treatment on the treated” parameter of Florens et al. (2008) if certain 
conditions are satisfied. Because the objective of this paper is to investigate the 
performance of the RK design in the presence of a confounding nonlinearity around a 
cutoff point, I exclusively rely on constant-effect and additive models in the following 
discussion and Monte Carlo simulations. 
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point (𝑣 = 0 ) and the denominator is the change in the slope of the 

deterministic assignment function 𝑏(𝑉) at the kink. As CPLW (2012) discuss, 

one important feature of the RK design is that it allows for other less extreme 

forms of endogeneity if the density of the assignment variable is smooth and 

rules out deterministic sorting at the kink point. 

 For clarification, suppose a linearly incremental treatment variable 

𝐵 = 𝑏(𝑉) = 𝜅𝑉  where 𝜅 > 0  if 𝑣 > 0  and otherwise 𝐵 = 𝑏(𝑉) = 0  in 

equation (1). Given that 𝑔(∙) is a smooth function that is differentiable in 𝑉 

at 𝑣 = 0, the slope of 𝑌, 𝑑𝑌 𝑑𝑉⁄ , changes discontinuously at 𝑣 = 0 from 

𝑔′(0) to 𝜏𝜅 + 𝑔′(0). Because the change in the slope of 𝐵 = 𝑏(𝑉) at 

𝑣 = 0 is 𝜅, the treatment effect 𝜏 can be recovered as 

 

𝑔′(0) + 𝜏𝜅 − 𝑔′(0)
𝜅 − 0

=
𝜏𝜅
𝜅

= 𝜏, 

 

using the RK estimand in (2).  

 The stylized features of the RK design in this setting can also be 

graphically described as in Figure 1. Here the effect of 𝐵 on 𝑌 at 𝑣 = 0 is 

depicted as the ratio of the change in tangent from the line CD (at 𝑣 → 0−) to 

the line C’D’ (at 𝑣 → 0+) to the change in the slope of the treatment variable 

at 𝑣 = 0. 

 For estimation with a RK design, CLP(2009) propose local polynomial 

models which are analogous to the local polynomial models in a RD design 

(Lee and Lemieux, 2010): 



8 
 

Figure 1. Stylized features of the Regression Kink Design 

 

  

𝑌 = 𝛼0 + ∑ [𝛼𝑝𝑣𝑝
𝑝̅
𝑝=1 + 𝛽𝑝𝑣𝑝 ∙ 𝐷] + 𝜀 𝑤ℎ𝑒𝑟𝑒 |𝑣| ≤ ℎ, (3) 

 

where 𝜀 is a usual random error term and 𝐷 is a dummy variable which 

takes one when the assignment variable 𝑉 exceeds the threshold 𝑣 = 0 and 

otherwise takes zero. 𝑝̅ is the degree of a polynomial and h is the bandwidth 

that determines the window [−ℎ; +ℎ] within which the sample is selected. 

Note that equation (3) does not have the term 𝐷, implying that this model 

imposes a kink at the threshold. In this approach the numerator of equation (2) 

is estimated by the OLS estimator of 𝛽1. Thus the RK estimator 𝜏̂ can be 

obtained by dividing the OLS estimator 𝛽̂1 by the slope change of 𝐵 = 𝑏(𝑉) 

at the threshold.4 

                                                   
4 CLPW(2012) discuss the asymptotic properties of RK estimators with local linear and 
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2.2 Potential problems of a RK design with a finite sample 

Equation (2) holds true only at the cutoff point 𝑣 = 0. In a real-world sample, 

however, we often need to include observations that are not very close to the 

threshold and this inclusion of less relevant observations might lead to a 

biased estimate. For example, suppose 𝑔(∙) can be expressed as a smooth 

nonlinear (e.g. quadratic) function as is depicted in Figure 1. In this case it 

could be difficult to separate out this confounding nonlinearity from a kink 

generated by the treatment with a finite sample. The resulting estimator 𝛽̂1 

can thus be biased and different from 𝜏𝜅. 

 This is of particular concern if the first order polynomial (𝑝̅ = 1) is used 

in equation (3) for RK estimation. To illustrate this problem, Figure 2 

replicates Figure 1 with an arbitrary bandwidth [−ℎ; +ℎ]. The kinked line of 

the treatment variable is dropped for simplicity. In this graph, a kinked line 

EFG expresses fitted values with the piecewise linear model 𝑌 = 𝛼0 + 𝛼1𝑉 +

𝛽1𝑉 ∙ 𝐷 + 𝜀 with bandwidth [−ℎ; +ℎ], which is equivalent to equation (3) 

with 𝑝̅ = 1. In other words, the line EF is a linear fit for observations with 

𝑣 ≤ 0 and the line FG is a linear fit for observations with 𝑣 > 0, where the 

continuity of the two lines (kink) at 𝑣 = 0 is imposed. Here, the estimated 

coefficient 𝛽̂1 is the difference between the slopes of the lines FG and EF, 

which is clearly different from 𝜏𝜅.  

                                                                                                                                     
quadratic regressions (𝑝̅ = 1 and 𝑝̅ = 2) without imposing continuity at the threshold. In 
their empirical application, however, they use local linear and quadratic models that do 
impose such continuity. 
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Figure 2. Bias in a RK estimate with a linear polynomial 

 

 

 The reason for the difference between β�1 and τκ is intuitively quite 

straightforward. 𝛽̂1 is different from 𝜏𝜅 because the linear fits EF and FG 

are not identical with the tangent lines CD and C’D’ when 𝑔(∙)  is a 

nonllinear function around 𝑣 = 0. This gap between 𝛽̂1  and 𝜏𝜅  can be 

reduced by making bandwidth [−ℎ; +ℎ] smaller and goes to zero as ℎ → 0. 

However, with a finite sample, the bandwidth may not be sufficiently 

narrowed to perfectly remove this discrepancy.  

 In this case, a RK design with a local linear regression results in a biased 

estimator of 𝜏. In addition, even if a smaller bandwidth might reduce or even 

eliminate this bias, it comes at the cost of less precision due to a smaller 

sample size and less data variation around the cutoff point. An alternative 
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solution is to use a global or local polynomial regression. For example, in 

Figure 2, quadratic fits in the both sides of the threshold seem to recover the 

slope change 𝜏𝜅 at 𝑣 = 0. However, this procedure may not always work 

well since RK estimation with a higher order polynomial incurs the substantial 

cost of larger variance in the estimator.5 

 In sum, although RK designs are as explicit and straightforward as RD 

designs, there is some concern about their applicability to real-world finite 

samples. In the following sections I discuss the potential defects of a RK 

design with a finite sample using Monte Carlo simulations and real-world 

empirical data.  

 

3. Monte Carlo simulations: baseline settings 

In this section and the next section I implement two types of Monte Carlo 

simulations in order to examine the performance of RK estimators with a finite 

sample and in the presence of noise around the cutoff point. In particular, I 

focus on the cases where there exists a confounding smooth nonlinear relation 

between the assignment variable 𝑉 and the outcome variable 𝑌. The first set 

of Monte Carlo simulations in this section are based on a simple data 

generating process (DGP) which generates confounding nonlinearity between 

𝑉  and 𝑌  through three factors: an observed covariate, an unobserved 

time-varying covariate, and unobserved time-invariant fixed effects.   
                                                   
5 CLPW(2012) argue that, unlike in the case of the kind of local polynomial regression 
for an interior point discussed by Fan & Gijbels (1996), there is a substantial cost in 
variance incurred by using a local quadratic polymomial instead of a local linear 
polynomial in RK designs. 
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3.1 Data Generating Process 

Consider equation (1) again. One primary reason a RK design is required is 

that endogeneity results in a biased estimate if 𝑌 is regressed on 𝐵 with a 

simple OLS. In this subsection, I construct a simple DGP which has the 

following three properties in order to investigate the performance of the RK 

design: 1.an endogeneity problem when simply regressing 𝑌  on 𝐵 , 2.a 

deterministic assignment rule 𝐵 = 𝑏(𝑉)  with a kink at 𝑣 = 0 , and 3. 

confounding nonlinearity between 𝑉 and 𝑌 through an unobserved covariate 

𝑈 . I also generate additional confounding nonlinearity by an observed 

covariate 𝑋 and unobserved fixed effects 𝐹𝐸 to see how adding an observed 

covariate and introducing a fixed effects model can alleviate bias caused by 

confounding nonlinearity.  

 One DGP which satisfies these requirements is described as follows: 

 

𝑋𝑖𝑡 = 𝑥𝑖𝑡 (4) 

𝑈𝑖𝑡 = 𝑢𝑖𝑡 (5) 

𝐹𝐸𝑖 = 𝛿𝑖 (6) 

𝑉𝑖𝑡 = 𝜂1𝑋𝑖𝑡 + 𝜂2𝑋𝑖𝑡2 + 𝜃1𝑈𝑖𝑡 + 𝜃2𝑈𝑖𝑡2  

+𝜆1𝐹𝐸𝑖 + 𝜆2𝐹𝐸𝑖2 + 𝜓𝑖𝑡 
(7) 

𝐵𝑖𝑡 = �𝑉𝑖𝑡  𝑖𝑓  𝑉𝑖𝑡 > 0 
0   𝑖𝑓  𝑉𝑖𝑡 ≤ 0

� (8) 

𝑌𝑖𝑡 = 𝜏𝐵𝑖𝑡 + 𝜌1𝑋𝑖𝑡 + 𝜌2𝑋𝑖𝑡2  + 𝜎1𝑈𝑖𝑡 + 𝜎2𝑈𝑖𝑡2  

+𝜙1𝐹𝐸𝑖 + 𝜙2𝐹𝐸𝑖2 + 𝜔𝑖𝑡, 
(9) 
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where cross-sections and time periods are denoted by 𝑖 = 1, …𝑁  and 

𝑡 = 1, …𝑇  respectively, and 𝑢𝑖𝑡 ,  𝑥𝑖𝑡, 𝛿𝑖, 𝜓𝑖𝑡  and 𝜔𝑖𝑡  are all NID(0,1). 

𝜂𝑚,𝜃𝑚, 𝜆𝑚,𝜌𝑚 ,𝜎𝑚 and 𝜙𝑚 (𝑚 = 1,2) are the coefficients of the covariates 

and 𝜏, the coefficient of 𝐵, denotes the size of the constant treatment effect.  

 In this DGP, the three requirements listed above are fulfilled because the 

effect of 𝐵 on 𝑌 cannot be estimated with a simple pooled regression or 

fixed effects regression due to an omitted variable bias from time-varying 

unobserved 𝑈 (1),  𝐵 is non-stochastically determined by 𝑉 with a kink at 

𝑣 = 0 (2), and there is a confounding nonlinear relation between 𝑉 and 𝑌 

through 𝑈 (3). An observed covariate 𝑋 and unobserved fixed effects 𝐹𝐸 

are also introduced, and they too generate nonlinear relations between 𝑉 and 

𝑌.  

 Figure 3 shows a causal diagram for (4)~(9). The outlined arrow from 𝑉 

to 𝐵 indicates a deterministic kinked relation based on the assignment rule 

(8). As is shown later in the Monte Carlo simulations, in this DGP, simple 

pooled regression with observed covariates or fixed effects regression cannot 

properly identify 𝜏 , because a confounding effect from 𝑈  cannot be 

controlled for. The treatment variable 𝐵, however, deterministically depends 

on 𝑉 with the kinked formula (8), and I can thus exploit a RK design by 

using 𝑉 as an assignment variable and 𝑉 = 0 as a threshold.  
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Figure 3. Causal diagram under the baseline setting 

 
Note: A solid arrow shows causality and an outlined arrow 

represents a deterministic kinked relation. 

 

 Next, I consider the values of the parameters in (7) and (9) and other 

settings in Monte Carlo simulations. First, I impose a one-to-one constant 

treatment effect by setting 𝜏 = 1 . Second, for a baseline analysis, I set 

(𝜂1, 𝜂2,𝜃1, 𝜃2, 𝜆1,𝜆2) = (1,1,1,1,1,1)  in (7) and (𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) =

(1,0,1,0,1,0) in (9) so that 𝑋, 𝑈 and 𝐹𝐸 have nonlinear quadratic effects 

on 𝑉, but linear one-to-one effects on 𝑌. In this DGP there is a nonlinear 

smooth correlation between 𝑉  and 𝑌 through X, 𝑈  and 𝐹𝐸 . 6 Third, the 

sample size is set to 10,000 (𝑁 = 500 and 𝑇 = 20), which is close to 

empirical application I discuss later.  

 In simulation analysis based on this DGP, 𝜏 in (9) is estimated with the 

RK design using (3). Because (8) shows that the slope of 𝐵 = 𝑏(𝑉) changes 

from 0 to 1 at the threshold, the denominator of the RK estimand (2) is 1. The  

                                                   
6 Note that this confounding nonlinear relation between 𝑉 and 𝑌 in this parameter 
setting is different from a straightforward quadratic U-shape relation as is depicted in 
Figure 1.; in this parameter setting, a unit increase in X, 𝑈 or 𝐹𝐸 leads to a direct linear 
increase in 𝑌 and quadratic increase in 𝑉, not vice versa, and therefore the resulting 
distribution of g(V) in equation (1) can be more complicated. One important thing to note, 
however, is that there is no kinked relation between V and Y other than through B, 
implying that the condition that g(∙) has a derivative that is continuous at the cutoff is 
valid.   

X, U, FE

V B Y
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point estimate of 𝛽1 in (3) can therefore be interpreted as a RK estimate itself. 

Equation (3) is estimated with several polynomial orders (𝑝̅) and bandwidth 

choices (ℎ) . I test all of the combinations of the polynomial degrees 

𝑝̅ = 1,2,3, and 4  and bandwidth sizes ℎ = ∞, 1, and 0.5 . I present the 

rejection rates of the null hypotheses of 𝛽1 = 1 (size of test) and 𝛽1 = 0 

(power of test), as well as the means and standard deviations of 𝛽̂1. Test levels 

are set at a conventional 5 percent and I use heteroskedasticity-robust standard 

errors for pooled regressions and clustered robust standard errors (clustering 

on individuals) for fixed effects regressions. Finally, the number of 

simulations conducted is 1,000.  

 In the following subsection I present and discuss the simulation results of 

RK estimation with the first and second order polynomials. The results with 

the third and fourth order polynomials are given in online Appendix A. In 

Appendix A I also provide simulation results with OLS estimation in order to 

compare them to results with RK estimation. In addition, since the sample size 

and parameter settings stated above are rather arbitrary, in this Appendix A I 

also provide simulation results with a larger sample size and different 

parameter setting.7   

 Before presenting the results of the Monte Carlo simulations, Figure 4 

                                                   
7 In online Appendix A, I firstly present the results of Monte Carlo simulations with the 
same parameter settings as above but with a ten-times larger sample size, 100,000 
(𝑁 = 5000  and 𝑇 = 20 ). Second, I change parameters to (𝜂1, 𝜂2,𝜃1,𝜃2, 𝜆1, 𝜆2) =
(1,0,1,0,1,0) in (9) and (𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) = (1,1,1,1,1,1) in (11), which indicate a 
linear one-to-one effect of 𝑈 on 𝑉 and a nonlinear quadratic effect of 𝑈 on 𝑌. This 
DGP  generates a simpler U-shape relationship between 𝑉 and 𝑌 through X, and FE. 
The number of simulations is 1,000. 
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provides an intuitive graphical representation of the estimation bias that could 

be generated by the RK design with a linear polynomial. First, in Figure 4, the 

scatter plots of 𝑌 and 𝐵 against 𝑉 are generated based on the above DGP. 

Second, the kinked linear fits of 𝑌  against 𝑉  are estimated using RK 

estimation with (5). The estimation bias in 𝛽̂ is indicated by a difference 

between the slope change in the linear fits and the slope change in 𝐵 at the 

threshold 𝑉 = 0. With these particular parameter settings, it is not graphically 

clear how the slope change in the linear fits is different from the slope change 

in 𝐵. 

 

Figure 4. One example of scatter plots and linear fits with the baseline settings 

 
Note: Vertical dashed lines indicate ±0.5, which represents the smallest bandwidth used 

in the simulations. 

 

3.2 Results  

The results of the Monte Carlo simulations are shown in Table 1. The first 
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three rows present the results of simulations using the RK estimation with no 

covariates. Row 1 shows that, with both linear and quadratic polynomials, the 

means of estimates are larger than 1 and test sizes are far larger than 5 percent 

if no bandwidth is selected. But the biases are reduced and the test size is 

closer to 5 percent when the bandwidth is  |𝑉| < 1 or |𝑉| < 0.5 (Row 2, 3). 

However, RK estimation with a smaller bandwidth and/or second order 

polynomial leads to higher standard deviations and lower power. 

 Rows 4 to 6 provide the results of simulations using a RK model that 

incorporates the direct effect of a covariate 𝑋 by adding 𝑋 and 𝑋2 to the 

control variables. They indicate that the performance of the RK design does 

not improve much, although the standard deviations are slightly reduced. 

Rows 7 to 9 show the results of estimation with a fixed effects model, and 

once again no significant change is observed. Finally, Rows 10 to 12 present 

simulation results with full covariates where 𝑈, which is otherwise assumed 

to be unobservable, is also added to the regressors. Obviously these results 

show the best performance and the means of estimates are always close to 1, 

although a smaller bandwidth and a quadratic polynomial tend to result in 

higher standard deviation and low power. 
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Table 1. Monte Carlo simulations with the baseline settings 

 
Notes: The number of simulations is 1,000. Standard deviations (S.D.) of estimates are in 
parenthesis. The null hypothesis is tested with a 5 % significance level. 
Heteroskedasticity-robust standard errors are used for pooled regressions and clustered 
robust standard errors (clustering on individuals) are used for fixed effects regressions. 
Fixed effects estimation with a bandwidth uses unbalanced panel data because 
observations are dropped when they exceed the bandwidth. Average number of 
cross-sections is: N=421.6 when |V| < 1 and N=385.5 when |V| < 0.5.  

 

 In sum, the estimation results imply that, in this particular DGP, the 

combination of a smaller bandwidth and a first order polynomial somewhat 

reduces the RK bias caused by smooth nonlinearity, but does not eliminate it 

Mean Size Power Mean Size Power
(S.D.) H 0:β=1 H 0:β=0 (S.D.) H 0:β=1 H 0:β=0

1.156 1.302
(0.053) (0.125)
1.085 1.022

(0.208) (0.782)
1.060 0.981

(0.551) (2.244)

1.191 1.285
(0.050) (0.117)
1.065 1.012

(0.188) (0.712)
1.035 0.989

(0.496) (2.090)

1.212 1.255
(0.037) (0.101)
1.042 1.030

(0.190) (0.697)
1.045 0.986

(0.552) (2.229)

1.000 1.001
(0.033) (0.084)
1.002 1.010

(0.164) (0.599)
1.006 1.021

(0.478) (1.885)

(5)

(6)

(10)

(11)

(12)

(8)

(7)

5.7 100

5.6 35.9

5.7 9.1

2.8 100

5.2 100

4.6 57.1

No 10,000

|V |<1 2,458

|V |<0.5 1,273

74.2 100

3.8 28.2

6.0 7.9

100.0 100

6.2 100

4.6 47.0

3.5 52.0

75.5 100

3.1 26.8

5.7 7.3

4.3 46.5

98.2 100

5.9 100

100

3.2 24.0

4.6 7.8

No covaraites

With covaraites X, X 2

No 10,000

|V |<0.5 1,273

No 10,000

|V |<1 2,458

|V |<1 2,458 6.8 100

90.4 100

With X,  X 2, fixed effects

With X ,  X 2 ,U,  U 2, fixed effects

(1) No 10,000

(2)

(3) |V |<0.5 1,273

(4)

|V |<1 2,458

(9) |V |<0.5 1,273

74.8

Band-
width

Obs.
(Mean)

(I) (II)
Linear polynomial Quadratic polynomial
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completely. The combination of a smaller bandwidth and a second order 

polynomial seems to reduce the bias further, but at the cost of imprecision. 

Introduction of the observed covariate improves the performance of RK 

regression by reducing the bias and increasing the precision of an estimate, but 

the magnitude of this improvement is rather modest. Additional control for 

fixed effects does not change results in a significant way.  

 Finally, online Appendix A provides additional simulation results. Tables 

A1 and A2 present the results of OLS estimates and RKD estimates with 

higher order polynomials. According to Table A1, OLS estimates are precise 

but biased, and the test size is always around 1 unless the “unobservable” 𝑈 

is controlled for. Table A2 shows that the RK estimates with third and fourth 

order polynomials also suffer from biased estimates when global regression 

(without bandwidth) is used. On the other hand, when local regression (with 

bandwidth) is adopted, simulation results present high standard deviation and 

extremely low power. These results suggest that RK estimation with a linear or 

quadratic polynomial works better than OLS estimation and RK estimation 

with a higher order polynomial. Table A3 presents the results with a ten-times 

larger sample and, as expected, shows reduction in standard deviation and 

increase in test power. Figure A shows one example of scatter plots with a 

different parameter setting and Table A4 presents Monte Carlo simulation 

results with this setting. Although quadratic RK estimation seems to work 

better in this case than in the above baseline DGP, the main implications 

mentioned above remain unchanged.  
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4. Monte Carlo simulations: stylized fiscal equalization 

In this section I implement Monte Carlo simulations in which the DGP has 

been modified from that used in the simulations presented in the previous 

section and is similar to the real-world situation I investigate in the next 

section. Because the situation I examine is the effects of Japanese fiscal 

equalization grants on local expenditure, I set up a DGP based on a stylized 

fiscal equalization scheme. 

 

4.1 Data Generating Process 

 Although fiscal equalization schemes differ considerably across countries, 

it can be argued there are in general two important components in fiscal 

equalization transfers from an upper-level government to a lower-level 

government. The first is the equalization of fiscal revenue capacity (revenue 

equalization) and the second is the equalization of expenditure needs (needs 

equalization). 8 According to Dafflon (2007), the fiscal equalization approach 

that takes into account both revenue equalization and needs equalization is 

referred to as “need-capacity gap” equalization. Because Japan has a unified 

fiscal equalization scheme which takes into account both revenue and needs 

equalization, the Japanese fiscal equalization scheme can be categorized as a 

need-capacity gap equalization scheme.    

 In this section, I construct a stylized need-capacity gap equalization 
                                                   
8  See Boadway and Shah ed. (2007) for extensive studies on fiscal equalization 
programs. 
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scheme which can also be interpreted as a simplified version of the Japanese 

fiscal equalization scheme. Under this stylized scheme, fiscal equalization 

general grants are distributed to individual local bodies based on the following 

kinked assignment rule:  

 

𝐺𝑅𝐴𝑁𝑇𝑖𝑡 = �𝑉𝑖𝑡  𝑖𝑓 𝑉𝑖𝑡 > 0
0   𝑖𝑓 𝑉𝑖𝑡 ≤ 0

� (10) 

 

where 𝐺𝑅𝐴𝑁𝑇𝑖𝑡  is the amount of the fiscal equalization grant for 

municipality i at t. 𝑉𝑖𝑡 is the “need-capacity gap” of the municipality and 

defined as follows: 

 

𝑉𝑖𝑡 = 𝑁𝐸𝐸𝐷𝑖𝑡 − 𝐶𝐴𝑃𝑖𝑡 (11) 

 

where 𝑁𝐸𝐸𝐷𝑖𝑡 is the expenditure need, which indicates the total cost of the 

standard levels of local public services for municipality i at period t. 𝐶𝐴𝑃𝑖𝑡  is 

the revenue capacity of municipality i at period t which represents the amount 

of its own tax revenues that municipality 𝑖 can collect under the standard 

local tax system.  

 In short, under this fiscal equalization scheme, grants ensure that all 

municipalities can provide a standard level of local public services by filling 

the need-capacity gap in cases where 𝑁𝐸𝐸𝐷 outweighs 𝐶𝐴𝑃. On the other 

hand, if the need-capacity gap is negative, a municipality is considered rich 
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enough to cover their expenditure needs on their own and no grant is provided.  

 It is not difficult to convert this setting into a DGP for Monte Carlo 

simulations that extends the first DGP given above. First, 𝑁𝐸𝐸𝐷 is defined as 

follows: 

  

𝑁𝐸𝐸𝐷𝑖𝑡 = 𝑁𝐸𝐸𝐷0 +  𝜂1𝑋𝑖𝑡 + 𝜂2𝑋𝑖𝑡2  

                                    +𝜃1𝑈𝑖𝑡 + 𝜃2𝑈𝑖𝑡2 + 𝜆1𝐹𝐸𝑖 + 𝜆2𝐹𝐸𝑖2 + 𝜓𝑖𝑡 
(12) 

 

where 𝑁𝐸𝐸𝐷0 indicates a constant basic expenditure need, 𝑋, 𝑈, and 𝐹𝐸 

are defined as before and 𝜓𝑖𝑡 is a random component with NID(0,1). Second, 

𝐶𝐴𝑃𝑖𝑡 is determined as:   

 

𝐶𝐴𝑃𝑖𝑡 = 𝐶𝐴𝑃0 + 𝜁𝑖𝑡 (13) 

 

where 𝐶𝐴𝑃0 is a constant basic revenue capacity and 𝜁𝑖𝑡 is a random term 

with NID(0,1). For simplicity, I assume that 𝐶𝐴𝑃 is not affected by 𝑋 and 

𝑈  and does not contain fixed effects. Finally, the outcome variable, 

expenditure (denoted as 𝐸𝑋𝑃), is set to be affected by 𝐶𝐴𝑃 as well as the 

same left-hand side variables in (9). One straightforward interpretation of the 

effect of 𝐶𝐴𝑃 on 𝐸𝑋𝑃 is that expenditure should be primarily determined by 

tax revenue capacity.  

 Thus the modified DGP is described as follows: 
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𝑋𝑖𝑡 = 𝑥𝑖𝑡 (14) 

𝑈𝑖𝑡 = 𝑢𝑖𝑡 (15) 

𝐹𝐸𝑖 = 𝛿𝑖 (16) 

𝑉𝑖𝑡 = 𝑁𝐸𝐸𝐷𝑖𝑡 − 𝐶𝐴𝑃𝑖𝑡 (17) 

𝐺𝑅𝐴𝑁𝑇𝑖𝑡 = �𝑉𝑖𝑡  𝑖𝑓  𝑉𝑖𝑡 > 0 
0   𝑖𝑓  𝑉𝑖𝑡 ≤ 0

� (18) 

𝐸𝑋𝑃𝑖𝑡 = 𝜏𝐺𝑅𝐴𝑁𝑇𝑖𝑡 + 𝜋1𝐶𝐴𝑃𝑖𝑡 + 𝜋2𝐶𝐴𝑃𝑖𝑡2 

+𝜌1𝑋𝑖𝑡 + 𝜌2𝑋𝑖𝑡2 + 𝜎1𝑈𝑖𝑡 + 𝜎2𝑈𝑖𝑡2  

+𝜙1𝐹𝐸𝑖 + 𝜙2𝐹𝐸𝑖2 + 𝜔𝑖𝑡, 

(19) 

 

where cross-sections and time periods are defined as before and  𝑥𝑖𝑡 , 𝑢𝑖𝑡 and 

𝜔𝑖𝑡 are all NID(0,1). 𝜏 is the homogeneous treatment effect of 𝐺𝑅𝐴𝑁𝑇 on 

𝐸𝑋𝑃 and other parameters in (19) are the coefficients of covariates. There are 

essentially only two differences between the first DGP in the last section and 

this second DGP. First, the assignment variable 𝑉𝑖𝑡 is now the gap between 

𝑁𝐸𝐸𝐷𝑖𝑡 and 𝐶𝐴𝑃𝑖𝑡. Second, the outcome variable 𝐸𝑋𝑃𝑖𝑡, local expenditure, 

is directly affected by 𝐶𝐴𝑃it, not only by the treatment variable, 𝑋𝑖𝑡, 𝑈𝑖𝑡, and 

𝐹𝐸𝑖. Figure 5 shows a causal diagram for equation (14)~(19), where the 

definitions of the two types of arrows follows Figure 3. 

 This DGP is identical to the first DGP if 𝐶𝐴𝑃 is always zero, but in 

general 𝐶𝐴𝑃 adds another source of nonlinear relation between 𝑉 and 𝐸𝑋𝑃 

if 𝜋2 ≠ 0. In my baseline analysis, I set (𝜋1,𝜋2) = (1,1) and keep other 

parameters unchanged from the first DGP, namely 

𝜏 = 1 , (𝜂1, 𝜂2,𝜃1,𝜃2, 𝜆1, 𝜆2) = (1,1,1,1,1,1)  and (𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) =
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(1,0,1,0,1,0). 𝑁𝑒𝑒𝑑0 and 𝐶𝑎𝑝0 are set at 5. Although this DGP looks more 

complicated than the first one, the key identification strategy is the same; 

because 𝐺𝑟𝑎𝑛𝑡  is an endogenous treatment variable and a deterministic 

kinked function of 𝑉, I can exploit an RK design to identify the effect of 

𝐺𝑟𝑎𝑛𝑡 on 𝐸𝑋𝑃 at 𝑣 = 0. 

 

Figure 5. Causal diagram of the stylized fiscal equalization scheme 

 
Note: A solid arrow shows causality and an outlined arrow 

represents a deterministic relation. 

 

 The other simulation settings are also the same as in the first DGP. I test 

all combinations of the polynomial degrees 𝑝̅ = 1,2,3 and 4 and bandwidth 

sizes ℎ =  ∞, 1 and 0.5 in (3). The sample size is 10,000 where the number 

of cross-sections 𝑁 is 500 and the time period 𝑇 is 20. The number of 

simulations is 1,000. I present the means and the standard deviations of 𝛽̂1 

and the rejection rates of the null hypotheses of 𝛽1 = 1  (test size) and 

𝛽1 = 0 (test power). Test levels are set at a conventional 5 percent and 

heteroskedasticity-robust standard errors are used for pooled regressions and 

X, U, FE

Need   
Cap

V      Grant    Exp
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clustered robust standard errors (clustering on individuals) are used for fixed 

effects regressions. 

 In online Appendix B I provide results corresponding to those given in 

online Appendix A: simulation results of OLS estimation and RK estimation 

with the third and fourth order polynomials. Simulation results with a larger 

sample size and different parameter values are also provided. 

 Figure 6 presents the scatter plots of 𝐸𝑋𝑃 and 𝐺𝑅𝐴𝑁𝑇 against 𝑉 with 

this DGP. The figure shows that the slope change of linear fits is clearly 

greater than the slope change of 𝐺𝑅𝐴𝑁𝑇 at the kink point, implying a bias in 

a RK estimate with a linear polynomial. 

 

Figure 6. One example of scatter plots and linear fits with the stylized fiscal equalization

 
Note: Vertical dashed lines indicate ±0.5, which represents the smallest bandwidth in 

simulations. 
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4.2 Results 

The results of the second set of Monte Carlo simulations are presented in 

Table 2. The “no covariates” case in Rows 1~3 shows that RK estimates with a 

linear polynomial are severely biased even in the smallest bandwidth 

|𝑉| < 0.5. RK estimates with a quadratic polynomial also present biased 

estimates in the no-bandwidth case and very imprecise estimates with low 

power in the cases of bandwidth |𝑉| < 1 and |𝑉| < 0.5 (Rows 1~3).  

 Once the covariates of 𝐶𝐴𝑃  and 𝐶𝐴𝑃2  are introduced, however, 

estimation bias and standard deviations are significantly reduced. Particularly 

in local regressions with |𝑉| < 1 and |𝑉| < 0.5, the size of test is always 

around 5 percent, although the standard deviations are high and the power of 

test is still very low in a quadratic polynomial (Rows 4~6).  

 The introduction of additional covariates of 𝑋 and 𝑋2 seems to improve 

RK estimations by subtly reducing bias and standard deviations, but there is 

no significant improvement in size and power (Rows 7~9). There is also no 

considerable improvement in RK estimations when a fixed effects model 

which also includes full observed covariates is used (Rows 10~12). I also 

implement simulations with a fixed effects model that includes both observed 

and unobserved covariates to see how the RK design works when all relevant 

covariates can be included in the regressors. The results show an overall 

improvement, with RK estimation without a bandwidth in particular working 

very well while local RK regressions with a quadratic polynomial still result in 

high standard deviation and low power (Row 13~15).  
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Table 2. Monte Carlo simulations with the stylized fiscal equalization scheme 

 
Notes: The number of simulations is 1,000. Standard deviations (S.D.) of estimates are in 
parenthesis. The null hypothesis is tested with a 5 % significance level. 
Heteroskedasticity-robust standard errors are used for pooled regressions and clustered 
robust standard errors (clustering on individuals) are used for fixed effects regressions. 
Fixed-effects estimation with a bandwidth uses unbalanced panel data because 
observations are dropped when they exceed the bandwidth. The average number of 
cross-sections is: N=438.6 when |V| < 1 and N=397.5 when |V| < 0.5. 

Mean Size Power Mean Size Power
(S.D.) H 0:β=1 H 0:β=0 (S.D.) H 0:β=1 H 0:β=0

6.758 5.647
(0.255) (0.653) 
2.022 1.062

(1.507) (6.051) 
1.399 0.242

(4.209) (16.34)

1.072 1.174
(0.040) (0.092) 
1.022 0.953

(0.229) (0.877) 
0.973 0.913

(0.615) (2.468) 

1.100 1.156
(0.039) (0.087) 
1.016 0.956

(0.211) (0.804) 
0.974 0.906

(0.567) (2.268) 

1.118 1.135
(0.030) (0.074) 
1.012 0.959

(0.198) (0.778) 
0.962 0.967

(0.612) (2.505) 

1.000 1.000
(0.026) (0.062) 
0.996 0.963

(0.162) (0.639) 
0.964 0.951

(0.509) (2.083) 

5.5 100

3.5 31.5

5.6 7.7

5.3 100

4.7 100

4.9 46.8

6.1 99.9

4.5 33.9

46.3 100

5.2 22.3

5.4 8.4

6.0 8.5

97.5 100

100

5.9 100

5.7 40.1

49.8

10,000

2,244

1,145

10.0

100

4.7

54.7

5.1

5.2

82.910,000

2,244

1,145

10,000

2,244

1,145

10,000

2,244

1,145

10,000

2,244

1,145

With CAP,  CAP 2, X,  X 2, fixed effects

With CAP,  CAP 2, X ,  X 2 ,U,  U 2, fixed effects

No

|V |<1

|V |<0.5

No

|V |<1

|V |<0.5

(12)

No

|V |<1

|V |<0.5

No

|V |<1

|V |<0.5

No

|V |<1

|V |<0.5

(13)

(14)

(15)

(4)

(5)

(6)

(10)

(11)

(9)

(1)

(2)

(3)

No covaraites

With CAP, CAP 2

With CAP,  CAP 2, X,  X 2

100

24.8

6.0

100

99.7

35.0

52.6 100

4.7 19.8

5.3 7.6

100

4.8 5.3

4.1 4.2

Band-
width

Obs.
(Mean)

(I) (II)
First order polynomial Second order polynomial

(7)

(8)

100

100

5.8 22.6
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 Finally, online Appendix B provides additional simulation results. Their 

implications are similar to those of Appendix A. Table B1 presents precisely 

biased OLS estimates and Table B2 provides biased or imprecise RK estimates. 

Table B3 implies that a larger sample results in more precise estimates with 

larger power. Table B4, which provides simulation results with a different 

parameter setting, shows that quadratic RK estimation seems to work better 

under these conditions, but the main implications of the results remain the 

same.  

 Overall, it is hard to fully demonstrate the validity of RK estimation at 

least in this specific DGP when we do not include any relevant covariates in 

the regressors. The simulation results suggest that RK estimation without 

covariates could generate biased estimates, particularly when a linear 

regression is used, because its functional form does not take into account a 

confounding nonlinear relation between an assignment variable and an 

outcome variable. This bias could be mitigated or even removed by using a 

quadratic regression and/or a smaller bandwidth, but the resulting highly 

imprecise and often statistically insignificant estimates make it difficult to 

obtain a robust conclusion about the causal effect of interest. The inclusion of 

covariates and the introduction of a fixed effects model may significantly 

improve RK estimations (i.e. 𝐶𝐴𝑃 in this DGP), but their contributions may 

also be modest (i.e. 𝑋 and fixed effects in this DGP). 
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4.3 Implications for empirical RK design 

My main findings from the first and second Monte Carlo experiments can be 

summarized as follows. Although RK estimation can mitigate a classic 

endogeneity bias, it may generate other problems such as biases caused by 

confounding nonlinearity, imprecise estimation, and low power. While the 

introduction of observed covariates and a fixed effects model may improve the 

performance of the RK design to some extent, it may not be sufficient to 

resolve these issues. In addition, fixed effects regressions in a real-world 

sample may introduce another problem in the form of insufficient sampling 

variability when within-group variation is small.  

 Despite these problems that may undermine the internal validity of 

estimation as well as inherently limited external validity as a local “treatment 

on the treated” parameter, it can be argued that the RK design still has some 

advantages over standard OLS regression as a method of causal inference. 

First, the RK design can potentially avoid the endogeneity bias that stems 

from many unobserved or unrecognized correlations by exploiting an explicit 

source of identification and somewhat testable identifying assumptions. 

Second, the availability of robustness checks using different model 

specifications and bandwidth choices is also an attractive feature. In the 

following section, I examine the usefulness of the RK design by using a 

sample of Japanese municipality panel data and exploiting a kinked formula in 

the Japanese fiscal equalization scheme. 
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5. An empirical application  

In this section, I apply the RK design to a real-world situation. I exploit the 

kinked formula of Japanese fiscal equalization grants to identify the effect of 

these grants on local expenditures. The first subsection briefly explains the 

related theoretical and empirical literature in economics. In the second 

subsection I provide a description of the institutional setting I exploit and 

discuss why this is suitable for investigating the plausibility of the RK design. 

The third and fourth subsection present my data and results respectively. 

 

5.1 Background 

The effects of intergovernmental grants on local public expenditures have 

been extensively studied in the context of the “flypaper effect”. Following 

seminal theoretical studies such as Scott (1952) and Wilde (1968, 1971), 

Bradford and Oates (1971a, b) show that general lump-sum grants and local 

private income have an exactly equivalent effect on local spending and local 

taxation under the assumption of representative voters. This is called the 

“Bradford-Oates equivalence theorem”. However, many empirical studies 

have demonstrated that local spending is much more stimulated by grants than 

by private income. This has been called the “flypaper effect”, and various 

theoretical and empirical studies have been published which try to fill the gap 

between the equivalence theorem and the flypaper effect.9  

 Recent empirical studies along these lines have increasingly taken 
                                                   
9 Relatively recent reviews of the flypaper effect are available in Hines and Thaler (1995), 
Bailey and Connolly (1998), Oates (1999), Gamkhar & Shah (2007) and Inman (2008).  
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accounting for the endogeneity of grants seriously. Many previous empirical 

studies implicitly or explicitly assume that the variation of grants is generated 

exogenously and a model specification error and an omitted variable bias do 

not seriously harm their estimation of the flypaper effect. However, this 

assumption does not hold true if the institutional and political circumstances of 

grants are seriously taken into consideration. For example, Dahlberg et al. 

(2008) list four possible sources of endogeneity in intergovernmental grants: 

(1) political negotiations between central and local politicians, (2) central 

politicians’ preferences for specific economic and political characteristics of 

local governments associated with their spending priorities, (3) 

socio-economic characteristics of municipalities simultaneously influencing 

spending, taxation and grant allocation, and (4) unobserved characteristics 

correlated with both local spending and grant allocation.10  

 As an empirical application of a RK design, I study the effects of Japanese 

fiscal equalization grants on the total expenditures of local municipalities by 

exploiting the kinked assignment rule of these grants. The RK approach seems 

                                                   
10 Besley and Case (2000) discusses endogenous policy decisions. When it comes to the 
endogeneity of grants, an earlier study, Holtz-Eakin (1986), carefully discusses this 
problem and uses “a large variety of instrumental variables estimators” to check the 
validity of its estimation. An increasing number of studies use exogenous variations 
caused by grant-related institutional settings or policy reforms to identify the impacts of 
endogenous grants on local expenditure, revenue, employment, and other socio-economic 
outcomes. The most popular approach is the instrumental variables approach, the 
approach employed in Knight (2002), Gordon (2004), Conley and Dupor (2011), Feyrer 
and Sacerdote (2011), Suárez Serrato and Wingender (2011), Chodorow-Reich et al. 
(2012) and Wilson (2012). As has already been mentioned, Dahlberg et al. (2008), 
Lundqvist et al.(forthcoming) and Bravo (2011) use the RK design. Lundqvist 
(forthcoming) adopts Difference-in-Difference estimation as a primary identification 
strategy as well as the instrucmental variables approach. Litschig and Morrison (2013) 
exploit a Regression Discontinuity design. 
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particularly advantageous in this case because it may be able to disentangle the 

complicated endogenous causality inherent in the “fiscal equalization” 

procedure, something that cannot be easily dealt with by other approaches like 

fixed effects regression or the instrumental variables approach.11  

 

5.2 Institutional setting 

As is mentioned in the last section, the Japanese fiscal equalization scheme 

distributes general grants to local governments (prefectures and 

municipalities) in order to compensate for the “need-capacity gap” of each 

local government and ensure a certain standard of local services for all citizens. 

This fiscal equalization grant is called a Local Allocation Tax (LAT) grant.12 

The detailed allocation mechanism of LAT grants is fairly complicated, but the 

basic framework can be explained as follows.13 First, the national-level total 

amount of LAT grants is determined based on the amount of central tax 

revenues and political and bureaucratic processes in the central government.14 

                                                   
11 Two papers closely related to this empirical analysis are Dahlberg et al. (2008) and 
Lundqvist et al. (forthcoming). Although Dahlberg et al. (2008) do not use the term 
“regression kink design”, they exploit a kinked relation between one part of general 
grants and out-migration rates in Sweden in order to identify the effects of grants on local 
taxes and spending using an instrumental variables approach. Lundqvist et al. 
(forthcoming) also utilize the same kinked relation as Dahlberg et al. (2008) and adopt a 
“fuzzy” version of the RK design in order to estimate the effects of grants on local public 
sector employment. 
12 The confusing name “Local Allocation Tax” comes from the fact that the total amount 
of the grants is, in principle, a given proportion of revenues from five national taxes. See 
also note 14. 
13 Strictly speaking what I refer to as LAT grants in this paper are the “ordinary” LAT 
grants which consist of 94% of the total LAT grants. The other 6% of the LAT grants are 
called “special” LAT grants and are distributed for specific purposes with more ad hoc 
rules. 
14 According to the legal framework in which they are described, the total amount of the 
LAT grants is stipulated to be a fraction of the revenues from five major national taxes. In 
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Second, the LAT grant is distributed to individual local bodies based on the 

following kinked assignment rule:  

 

𝐺𝑅𝐴𝑁𝑇𝑖𝑡 = �𝑉𝑖𝑡   𝑖𝑓 𝑉𝑖𝑡 > 0
0     𝑖𝑓 𝑉𝑖𝑡 ≤ 0

� (20) 

 

where 𝐺𝑅𝐴𝑁𝑇𝑖𝑡 is the amount of the LAT grant for municipality i in year t. 

𝑉𝑖𝑡 is the “revenue-capacity gap” of the municipality and defined as follows: 

 

𝑉𝑖𝑡 = 𝑁𝐸𝐸𝐷𝑖𝑡 − 𝐶𝐴𝑃𝑖𝑡 (21) 

 

where 𝑁𝐸𝐸𝐷 indicates the expenditure needed to cover the total cost of the 

standard levels of local public services. This necessary expenditure is 

officially referred to as “Standard Fiscal Need” and is calculated annually by 

the central government. 𝐶𝐴𝑃 is the revenue capacity index which reflects the 

potential revenues that each municipality can collect on its own under a 

standard local tax system. 𝐶𝐴𝑃 is officially referred to as Standard Fiscal 

Revenue and is also calculated annually by the central government.15  

 In brief, LAT grants ensure that each municipality can provide a level of 

local public services that meets a certain minimum standard, the expenditures 

required for which being measured as 𝑁𝐸𝐸𝐷𝑖𝑡 for each 𝑖 and each 𝑡, by 

                                                                                                                                     
reality, however, the total amount is also influenced by other socio-economic and political 
factors. 
15  See online Appendix E and F for more detailed definitions and institutional 
descriptions of 𝑁𝐸𝐸𝐷 (or Standard Fiscal Need) and 𝐶𝐴𝑃 (or Standard Fiscal Revenue). 
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filling the positive “revenue-capacity gap” between 𝑁𝐸𝐸𝐷𝑖𝑡  and 𝐶𝐴𝑃𝑖𝑡 .16 

On the other hand, if the “need-capacity gap” is negative, a municipality is 

considered rich enough to cover their expenditure needs on their own and no 

grant is provided.  

 The assumed DGP under this scheme is similar to the DGP in the second 

set of Monte Carlo simulations described above. One difference is that 

observed and unobserved variables (𝑋, 𝑈 and 𝐹𝐸 in Figure 5) should affect 

both 𝑁𝐸𝐸𝐷 and 𝐶𝐴𝑃, whereas the DGP in the second set of Monte Carlo 

simulations is constructed such that these variables affect only 𝑁𝐸𝐸𝐷. This 

difference, however, does not affect my empirical strategy of employing a RK 

design that exploits the deterministic kink in the assignment variable 𝑉. 

 Because the objective of this paper is to investigate the performance of a 

RK design with a confounding nonlinearity, it is preferable to use a clean 

dataset that does not contain unnecessary noise and to establish have some 

expected bounds of the treatment effect. From this standpoint, there are at least 

four advantages in studying the kinked assignment of Japanese fiscal 

equalization grants.  

 First, the problem of potential endogenous sorting can be almost 

completely ignored. Because my assignment variable is the indicator of a 

fiscal gap between the expenditure needs and revenue capacity of a 

municipality which is calculated by the central government, local governments 
                                                   
16 There may be some doubt about whether the LAT grant can be interpreted as a pure 
general and lump-sum grant because the amount of the grant is strongly affected by fiscal 
needs for specific public services. See online Appendix F for an interpretation of the 
lump-sum characteristic of the LAT grant around the kink point.  
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cannot, in a precise manner at least, manipulate their positions regarding (or 

int terms of) this variable. Second, the variation of the grant is expected to be 

economically meaningful even around the kink point because the size of the 

equalization grant is relatively large. Third, because it is a well-known fact 

that Japanese municipalities have relatively homogeneous revenue systems, it 

is highly expected that an increase in the grant will lead to a statistically 

significant increase in total expenditure. For example, if municipalities have a 

totally uniform revenue system and the LAT grant does not draw any 

additional revenue sources such as matching grants, the effect of the LAT 

grant on total expenditure should be one-to-one. Although this seems to be an 

extreme case, a one-to-one effect ratio is at least a good benchmark when 

examining the effect on total expenditure. In addition, as a robustness check it 

is possible to estimate the effect of the LAT grant on total revenue from other 

sources: If the effect on total expenditure is expected to be one-to-one, the 

effect on total revenue minus the LAT grant should be zero. Fourth, possessing 

rich 20-year panel data allows for RK estimates with fixed-effect models for 

robustness checks. 

 

5.3 Data and preliminary investigation 

In estimations, I use the panel data for cities (shi) covering fiscal years 

1980~1999. 17  I exclude from the sample the cities which experienced 

                                                   
17 Japanese municipalities consist of cities (shi), towns (cho), villages (son) and special 
districts in Tokyo (ku). Because the duties of municipalities differ depending on their type, 
the levels of expenditure per capita are also affected by the type of municipality in 
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amalgamation during the sample period because merged municipalities follow 

a special fiscal equalization scheme, but a large part of the cities remain in the 

sample. All of the fiscal data are from Reports on the Municipal Public 

Finance (Shichoson-betsu Kessan Jokyo Shirabe), which are published 

annually by the Ministry of Internal Affairs and Communications (MIC). 

When it comes to observed pre-determined covariates, I use revenue 

capacity18, population, population density, population ratios of the elderly 

cohort and the young cohort, and the sectoral ratios of employment. All the 

covariates, except for revenue capacity, are from Census data. Because Census 

data is only available for every 5th year, I impute annual data by linear 

interpolation.  

 Table 3 shows the summary statistics of the variables that I use for the 

empirical application in this section. All the fiscal variables are expressed as 

per capita values and deflated by Consumer Price Index (CPI: the reference 

year is 2005) published by MIC. On average, the size of the LAT grant is 

about 16% of total expenditure. The sum of revenue capacity and the LAT 

grant is smaller than total expenditure because there are other important fiscal 

revenues, including earmarked grants from the central and prefectural 

governments and prefectures and debt financing. 

                                                                                                                                     
question. I therefore use only city (shi) data, excluding other types of municipalities. I 
also drop the 13 largest “designated“ cities (seirei shitei toshi) from the sample because 
they have some extra duties compared with normal cities. See onine Appendix G for 
further details about my data arrangement. 
18 The revenue capacity variable is similar to 𝐶𝐴𝑃(or Standard Fiscal Revenue), but 
some modifications have been made in order to reflect real revenue capacity of 
municipalities. See online Appendix E. 
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 Table 3. Summary statistics 

 
Notes: All fiscal variables are divided by population, meaning that they are per-capita 
values. The fiscal variables are also deflated by CPI (the reference year is 2005). There 
are some missing values for the LAT grant. 
Sources: Reports on the Municipal Public Finance, Census, and CPI 
*See online Appendix E for a precise definition of revenue capacity as a pre-determined 
covariate. 
**The primary Sector consists of agriculture, forestry, fisheries and mining.  
***The tertiary sector includes all the sectors that are not included in the primary sector 
and secondary sectors (construction and mining).  

 

 Before proceeding to econometric analysis, I conduct several preliminary 

analyses in order to examine the validity of my identification strategy. First, 

Figure 7 shows the scatter plots of the LAT grant and total expenditure against 

the need-capacity gap for municipalities (only cities). This graph indicates that 

the LAT grant has a clear deterministic kink at the threshold and the size of the 

grant is not negligible for many LAT-receiving municipalities. The linear fits 

of total expenditure based on RK estimation with a first-order polynomial 

show that the size of an estimated kink decreases when the bandwidth is 

shifted from |𝑉𝑖,𝑡| < 50  to |𝑉𝑖,𝑡| < 20 , implying the existence of some 

Obs Mean Std. Dev. Min Max
Outcome (Thousand yen)

Total expenditure 12666 308.98 96.58 155.25 1506.90
Total revenue (excluding the LAT grant) 12623 269.06 71.56 125.33 1167.13

Treatment  (Thousand yen)
LAT grant 12623 48.17 46.84 0.00 408.26

Assingment  (Thousand yen)
Need-capacity gap 12666 45.59 50.29 -111.15 408.50

Covariates
Revenue capacity (modified, thousand yen)* 12666 117.92 40.05 24.02 320.32
Population 12666 102890 103892 6178 810482
Population density (pop/km2) 12666 1653.98 2306.80 20.35 14131.37
Population ratio (age 0-15, %) 12666 19.35 3.41 9.11 32.47
Population ratio (age 65-, %) 12666 13.10 4.54 3.67 32.42
Sectoral ratio (primary industry, %) ** 12666 8.90 7.96 0.10 46.78
Sectoral ratio (tertiary industry, %) *** 12666 57.06 10.01 26.63 85.05

Variable
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confounding nonlinear relation between the assignment variable and 

expenditure per capita. 

 

Figure 7. Total expenditure and LAT grant against need-capacity gap 

 
Note: All of the variables are per-capita variables. Linear fits of expenditure per 
capita are obtained by RK estimation with a first-order polynomial based on (3). 
Sources: Reports on the Municipal Public Finance, Census, and CPI 

 

 Second, a key identifying assumption for a valid RK design is that the 

density of the assignment variable is continuously differentiable at the 

threshold. Since the LAT grant is calculated by centrally-determined uniform 

formulas, there is little possibility that municipalities or the central 

government can precisely manipulate the need-capacity gap around the 

threshold. It may be suspected, however, that some institutional settings or 

unknown factors systematically affect the determination of whether or not a 

given municipality near the threshold becomes an LAT-grant receiver. I 

therefore conduct a density test analogous to that proposed by McCrary (2008) 
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and presented by CLP (2009) and CLPW(2012) in the context of an RK design. 

Both estimation results and graphical analysis indicate that the density of the 

need-capacity gap is smooth at the threshold (these results are given in online 

Appendix C.1).  

 Third, according to CLP (2009) and CLPW (2012), an important 

implication under the required conditions for a valid RK design is that any 

pre-determined covariate should have a conditional distribution which evolves 

smoothly around the threshold. In other words, there should be no kink at the 

threshold for any pre-determined covariate against the assignment variable.  

 However, the argument presented in Section 2 and the Monte Carlo 

simulations described in Sections 3 and 4 imply that a smooth nonlinear 

relation between a covariate and an assignment variable around the kink point 

could be estimated as a kink using RK estimation. It may thus be hard to assert 

that there are no kinks whatsoever at the threshold for any covariate. The 

figures in online Appendix C.2, however, at least indicate that no such kinks 

are visually apparent in the graphical representation of the data.  

 

5.4 Results 

Table 4 presents the results of RK estimates generated by applying linear and 

quadratic polynomials to the empirical model (3).19 In order to check whether 

estimates differ significantly from the “benchmark” value of one, p-values 

with the null hypothesis of 𝛽1 = 1 are also presented.  
                                                   
19 OLS estimates and RK estimates with third and fourth order polynomials are presented 
in online Appendix D. 
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 First, I examine RK estimation with a linear polynomial (Column I). 

When no covariate is introduced, estimates are almost always larger than one 

and significantly different from zero, while estimates get smaller when the 

bandwidth is smaller (Row 1~6). With the smallest bandwidth of |𝑉| < 10, 

the estimate sharply decreases with a very high standard error (Row 6). 

However, once the covariate of revenue capacity is introduced, estimates tend 

to be around 1 with most bandwidths (Row 7~24), while they are again 

sharply reduced and feature high standard errors with |V| < 10  (Row 

12,18,24). As expected, p-values with the null of 𝛽1 = 1 are often around 

zero with no covariates, but they become much larger when the covariates and 

a fixed-effect model are introduced and the bandwidth is larger than |𝑉| < 10.     

 Second, in RK estimation with a quadratic polynomial (Column II), 

estimates fluctuate to a much greater degree. When the bandwidth is equal to 

or larger than |V| < 40, however, estimates are mostly around 0.8~1.5 and 

p-values with the null of 𝛽1 = 1 are often around 0.5 or higher. Although 

these are much less conclusive results than those obtained using a linear 

polynomial, they also indicate the effect of the grant on total expenditure is not 

too far from one-to-one.   

 These estimation results are also more or less compatible with the 

implications of the Monte Carlo simulations. First of all, the introduction of 

covariates can reduce the biases of RK estimates, particularly RK estimates 

with a linear polynomial. In my empirical analysis, once the covariates of 

revenue capacity and its quadratic term are introduced, RK estimates with a 
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linear regression decrease considerably, while the introduction of additional 

covariates and a fixed-effect model have only a modest effect on these 

estimates. This implies that the introduction of revenue capacity may eliminate 

the largest part of the confounding nonlinearity around the threshold. Second, 

RK estimates with a quadratic regression fluctuate a lot and are statistically 

insignificant when the bandwidth is smaller than |𝑉|=40. This is again 

compatible with the Monte Carlo results which indicated that the standard 

deviation of RK estimates is often too high and power too low if a quadratic 

regression is used with a smaller bandwidth.  

 In Tables D1 and D2 of online Appendix D, I also present the results of 

OLS estimates and RK estimates with higher order polynomials. The OLS 

estimates, which are obtained by simply regressing the total expenditure on the 

grant, change considerably if I introduce covariates or fixed effects, implying 

severe endogeneity. It is difficult to draw useful conclusions about the 

magnitude of the treatment effect on the basis of these OLS estimates alone. 

The RK estimates with a third and fourth order polynomial are very unstable 

and mostly statistically insignificant. This could be because RK estimates with 

higher order polynomials tend to be very imprecise. Table D3 provides RK 

estimates for total revenue minus the LAT grant and shows that no effect is 

observed once the covariate of revenue capacity is controlled for. 

 Overall, relatively reliable RK estimation with a lower order polynomial 

suggests that the effect of the grant on total expenditure is around 1, and, as I 

have already discussed, this result appears reasonable on the basis of our 
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institutional knowledge of Japanese local public finance. When it comes to the 

validity of the various RK estimations examined, the empirical results and the 

Monte Carlo simulations suggest that an RK design employing a local linear 

or quadratic regression with a modestly small bandwidth and additional 

covariates provides arguably the most reliable estimate. 

Table 4. RK estimates for total expenditure 

  
Note: Standard errors are clustered by the municipality level. ***: P<0.01, **:p<0.05, 
*:p<0.1. Covariates are listed in Table 4 and both linear and quadratic terms of these 
covariates are introduced into regressors. Fixed-effect estimation with a defined 
bandwidth uses unbalanced panel data because observations are dropped when they 
exceed the bandwidth. 

Estimate S.E. p(H 0 :β 1 =1) Estimate S.E. p(H 0 :β 1 =1)

(1) No 12,666 3.697*** (0.261) 0.000 2.813*** (0.358) 0.000
(2) |V|<50 7,750 2.329*** (0.261) 0.000 1.469** (0.634) 0.460
(3) |V|<40 6,430 2.254*** (0.311) 0.000 0.919 (0.764) 0.915
(4) |V|<30 5,013 1.992*** (0.354) 0.005 0.339 (0.954) 0.489
(5) |V|<20 3,451 1.796*** (0.461) 0.085 -1.236 (1.687) 0.186
(6) |V|<10 1,741 0.286 (0.997) 0.475 -3.116 (3.818) 0.282

(7) No 12,666 0.735*** (0.154) 0.087 1.096*** (0.308) 0.756
(8) |V|<50 7,750 1.081*** (0.193) 0.675 1.371*** (0.430) 0.389
(9) |V|<40 6,430 1.216*** (0.238) 0.364 0.876* (0.524) 0.813
(10) |V|<30 5,013 1.260*** (0.260) 0.317 0.064 (0.675) 0.166
(11) |V|<20 3,451 1.100*** (0.355) 0.779 -1.069 (1.149) 0.073
(12) |V|<10 1,741 -0.123 (0.677) 0.099 -2.404 (2.522) 0.179

(13) No 12,666 0.965*** (0.175) 0.842 1.492*** (0.277) 0.076
(14) |V|<50 7,750 1.126*** (0.198) 0.526 1.272*** (0.403) 0.501
(15) |V|<40 6,430 1.174*** (0.242) 0.473 0.980** (0.479) 0.967
(16) |V|<30 5,013 1.266*** (0.256) 0.301 0.060 (0.657) 0.153
(17) |V|<20 3,451 1.054*** (0.337) 0.874 -1.064 (1.068) 0.054
(18) |V|<10 1,741 -0.071 (0.617) 0.084 -0.724 (2.535) 0.497

(19) No 12,666 0.966*** (0.263) 0.896 1.031*** (0.313) 0.922
(20) |V|<50 7,750 1.006*** (0.272) 0.982 0.799** (0.372) 0.589
(21) |V|<40 6,430 0.972*** (0.305) 0.927 0.360 (0.376) 0.089
(22) |V|<30 5,013 0.890*** (0.280) 0.695 -0.021 (0.525) 0.053
(23) |V|<20 3,451 0.896*** (0.272) 0.701 -0.244 (0.731) 0.090
(24) |V|<10 1,741 0.228 (0.369) 0.038 0.292 (1.383) 0.609

No covaraites

With covaraites of revenue capacity

With full covaraites

With full covariates and fixed effects

Band-
width

Obs.
(I) (II)

Linear polynomial Quadratic polynomial
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6. Conclusion 

Regression Kink (RK) designs, which have several attractive features similar 

to those of Regression Discontinuity (RD) designs, are potentially quite useful, 

but the weakness of this approach has been largely ignored in the emerging 

literature. In order to investigate the validity of RK designs, I first examined 

the finite sample properties of RK estimation in the presence of a confounding 

smooth nonlinearity around the kink point, using Monte Carlo simulations. 

Then I applied an RK design to the study of the causal effects of fiscal 

equalization grants on the spending of local governments. 

 The results of the Monte Carlo Simulations suggested that RK estimation 

often resulted in biased estimates when there was a confounding nonlinear 

relation between an assignment variable and an outcome variable. Introduction 

of a higher order polynomial or a smaller bandwidth could mitigate this bias, 

but this procedure often resulted in an imprecise estimate and low power that 

might significantly undermine the results obtained. The simulations also 

provided evidence that the introduction of observed covariates and a fixed 

effects model can improve RK estimation, but the improvement may be 

insufficient if a strong confounding nonlinear relation is generated by 

unobserved time-varying covariates. 

 When it comes to the real-world application, I first found seemingly very 

large biases in the estimated effect of the equalization grant on local 

expenditure when I did not include any additional covariate in my RK 

estimation. After introducing the covariate of revenue capacity to regressors, 
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however, relatively robust estimates of one-to-one effect were obtained when a 

linear polynomial was used for RK estimation. RK estimates with a quadratic 

polynomial were less robust, but they also imply that the effect of the grant on 

local expenditure is not far from one.  

 In conclusion, my Monte Carlo simulations and real-world applications 

provide mixed answers concerning the usefulness of an RK design with a 

finite sample. On the one hand, it can be argued that RK analysis is more 

reliable than a simple pooled or fixed-effect OLS regression when it comes to 

causal interpretation because an RK design has an explicit identification 

strategy and transparent tools for validity and robustness checks. On the other 

hand, if unobserved covariates generate a confounding nonlinearity around the 

kink point and the sample size around this point is relatively small, a biased or 

imprecise estimate may be obtained. In empirical studies employing an RK 

design, this possible weakness should be explicitly addressed by careful 

robustness checks. The construction of formal criteria for a sufficiently 

credible RK design is an important area for further study.  
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Online Appendix 
 

Appendix A. Additional simulation results with the baseline setting 
Table A1. Simulation results for OLS estimates 

  
Note: Simulation settings are the same as the baseline setting in Chapter 3. 

 

Table A2. Simulation results for RK estimates with third & forth order polynomials 

 
Note: Simulation settings are the same as the baseline setting in Chapter 3. Fixed-effect estimation 
with a bandwidth uses unbalanced panel data because observations are dropped when they exceed 
the bandwidth. The average number of cross-sections is: N=421.6 when |𝑉| < 1 and N=385.5 
when |𝑉| < 0.5. 

Size Power
H 0:β=1 H 0:β=0

10,000 1.313 0.011 100 100

10,000 1.275 0.060 99.5 100

10,000 1.251 0.057 99.2 100

10,000 1.214 0.044 99.6 100

10,000 1.001 0.037 3.8 100
With covaraites  V, V 2 , X, X 2 , U, U 2 , fixed effects

With covaraites  V, V 2 , X, X 2 , fixed effects

Obs. Mean S.D.

No covaraites

With covaraites V, V 2

With covaraites V, V 2 , X, X 2

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

No 10,000 1.361 0.232 37.1 100 1.311 0.415 12.7 89.4
|V |<1 2,458 1.015 2.008 4.2 8.1 1.011 4.002 5.0 6.4

|V |<0.5 1,273 1.115 5.479 4.6 4.5 0.504 11.30 5.0 5.1

No 10,000 1.319 0.214 34.6 100 1.255 0.381 11.9 90.4
|V |<1 2,458 0.981 1.853 5.8 8.5 0.991 3.762 5.8 6.0

|V |<0.5 1,273 1.057 5.152 6.0 4.9 0.673 10.60 5.9 6.5

No 10,000 1.248 0.192 25.8 100 1.195 0.347 9.2 93.6
|V |<1 2,458 0.984 1.842 4.6 8.8 0.968 3.657 4.8 6.4

|V |<0.5 1,273 0.967 5.619 4.9 6.2 0.564 10.75 4.7 4.5

No 10,000 1.000 0.162 5.6 100 0.983 0.290 5.8 92.0
|V |<1 2,458 0.956 1.568 5.3 10.5 1.026 3.098 6.3 7.0

|V |<0.5 1,273 0.989 4.743 5.6 6.1 0.812 9.348 4.7 5.4

S.D.

No covaraites

With covaraites X, X 2

Fixed effects model with covaraites X, X 2

Fixed effects model with covaraites X, X 2 ,U, U 2

Band-
width

Obs.
(Mean)

(I) (II)
Third order polynomial Fourth order polynomial

Mean S.D. Mean
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Table A3. Simulation results for RL estimates with a larger sample 

  
Note: The sample size is 100,000 (𝑁 = 5000 and 𝑇 = 20). The other settings are the same as the 
baseline setting in Chapter 3. Fixed effects estimation with a bandwidth uses unbalanced panel data 
because observations are dropped when they exceed the bandwidth. The average number of 
cross-sections is: N=4220 when |V| < 1 and N=3857 when |V| < 0.5. 
 

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

(1) No 100,000 1.154 0.017 100 100 1.297 0.040 100 100
(2) |V |<1 24,613 1.087 0.065 27.0 100 1.014 0.254 5.0 97.2
(3) |V |<0.5 12,744 1.057 0.176 5.8 100 0.994 0.713 5.1 28.6

(4) No 100,000 1.189 0.016 100.0 100 1.280 0.038 100 100
(5) |V |<1 24,613 1.069 0.060 21.6 100 1.011 0.233 4.9 98.8
(6) |V |<0.5 12,744 1.046 0.159 5.8 100 0.992 0.642 4.9 33.5

(7) No 100,000 1.212 0.012 100 100 1.251 0.032 100 100
(8) |V |<1 24,613 1.046 0.059 11.8 100 1.014 0.231 5.3 99.4
(9) |V |<0.5 12,744 1.037 0.171 4.8 100 1.010 0.700 5.5 31.4

(10) No 100,000 1.000 0.011 4.8 100 1.000 0.026 4.5 100
(11) |V |<1 24,613 1.004 0.050 4.7 100 1.014 0.193 4.7 99.9
(12) |V |<0.5 12,744 1.013 0.146 4.8 100 1.017 0.603 5.3 40.7

No covaraites

With covaraites X, X 2

Fixed effects model with covaraites X, X 2

Fixed effects model with covaraites X, X 2 ,U, U 2

Band-
width

Obs.
(Mean)

(I) (II)
Linear polynomial Quadratic polynomial

Mean S.D. Mean S.D.
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Figure A. Scatter plots with a different parameter setting 

 
Note: Parameters are set as (𝜂1, 𝜂2,𝜃1,𝜃2, 𝜆1,𝜆2) = (1,0,1,0,1,0)  in (9) and 
(𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) = (1,1,1,1,1,1)  in (11). The other settings are the same as the 
baseline setting in Chapter 3. 

 
Table A4. Simulation results for RK estimates with a different parameter setting 

  
Note: The number of simulations is 1000. As in Figure A1, Parameters are set as 
(𝜂1,𝜂2, 𝜃1,𝜃2, 𝜆1,𝜆2) = (1,0,1,0,1,0) in (7) and (𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) = (1,1,1,1,1,1) in (9). The 
other settings are the same as the baseline setting in Chapter 3. Fixed-effect estimation with a 
bandwidth uses unbalanced panel data because observations are dropped when they exceed the 
bandwidth. The average number of cross-sections is: N=499.3 when |V| < 1 and N=489.8 when 
|V| < 0.5. 
 

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

(1) No 10,000 2.646 0.075 100.0 100 1.001 0.142 5.7 100
(2) |V |<1 3,827 1.367 0.280 26.8 100 1.005 1.109 5.4 15.0
(3) |V |<0.5 1,973 1.181 0.788 7.2 35.2 1.089 2.961 4.0 6.3

(4) No 10,000 2.161 0.081 100.0 100 1.005 0.131 6.5 100
(5) |V |<1 3,827 1.220 0.241 16.4 100 1.012 0.936 5.2 21.2
(6) |V |<0.5 1,973 1.103 0.648 5.8 40.7 1.145 2.541 4.7 8.1

(7) No 10,000 1.618 0.043 100.0 100 0.996 0.107 5.4 100
(8) |V |<1 3,827 1.106 0.202 8.9 100 1.006 0.817 5.6 27.9
(9) |V |<0.5 1,973 1.051 0.607 6.0 43.9 1.177 2.279 5.2 7.3

(10) No 10,000 1.000 0.018 4.5 100 1.000 0.048 4.2 100
(11) |V |<1 3,827 0.999 0.122 4.9 100 0.980 0.489 5.6 53.4
(12) |V |<0.5 1,973 0.980 0.365 6.3 77.3 1.061 1.433 4.7 11.0

No covaraites

With covaraites X, X 2

With covaraites X, X 2 , fixed effects

With covaraites X, X 2 ,U, U 2 , fixed effects

Band-
width

Obs.
(Mean)

(I) (II)
Linear polynomial Quadratic polynomial

Mean S.D. Mean S.D.
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Appendix B. Additional simulation results with the stylized fiscal 
equalization 
 

Table B1. Simulation results for OLS estimates 

  
Note: Simulation settings are the same as the baseline setting in Chapter 4. 

 

Size Power
H 0:β=1 H 0:β=0

10,000 0.349 0.056 100 100

10,000 5.128 0.331 100 100

10,000 1.165 0.049 95.7 100

10,000 1.143 0.047 93.0 100

10,000 1.115 0.036 89.0 100

10,000 1.001 0.030 4.6 100

With CAP, CAP 2 , Z, Z 2 ,X, X 2

With CAP, CAP 2 , Z, Z 2 , X, X 2 , U, U 2 , fixed effects

With CAP, CAP 2 , Z, Z 2 ,X, X 2 , fixed effects

Obs. Mean S.D.

No covaraites

With CAP, CAP 2

With CAP, CAP 2 , Z, Z 2
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Table B2. Simulation results for RK estimates with a third and fourth order polynomial 

 
Notes: Simulation settings are the same as the baseline setting in Chapter 4. Fixed-effect estimation 
with a bandwidth uses unbalanced panel data because observations are dropped when they exceed 
the bandwidth. The average number of cross-sections is: N=438.6 when |V| < 1 and N=397.5 when 
|V| < 0.5. 

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

(1) No 10,000 4.434 1.316 79 95 2.819 2.134 14.0 28.3
(2) |V |<1 2,244 0.0553 14.84 4.3 4.6 -0.0206 30.06 5.4 5.6
(3) |V |<0.5 1,145 1.316 42.46 4.7 4.9 3.901 84.83 5.3 5.8

(4) No 10,000 1.184 0.179 22.2 100 1.104 0.297 6.9 96.1
(5) |V |<1 2,244 0.897 2.171 4.3 7.7 0.840 4.383 5.4 5.0
(6) |V |<0.5 1,145 0.921 5.996 4.0 4.1 0.541 11.80 4.7 5.0

(7) No 10,000 1.156 0.164 20.7 100 1.083 0.269 6.2 98.0
(8) |V |<1 2,244 0.896 2.012 4.6 8.0 0.832 3.991 5.4 5.0
(9) |V |<0.5 1,145 0.867 5.507 4.6 4.9 0.730 10.67 4.5 4.1

(10) No 10,000 1.109 0.145 13.9 100 1.056 0.244 4.3 98.8
(11) |V |<1 2,244 0.942 2.008 5.2 8.1 0.953 3.975 5.9 5.9
(12) |V |<0.5 1,145 0.965 6.053 5.5 6.1 0.787 12.33 5.9 5.5

(13) No 10,000 0.999 0.120 5.0 100 0.997 0.204 4.8 100
(14) |V |<1 2,244 0.943 1.608 4.4 7.9 0.994 3.352 5.7 7.4
(15) |V |<0.5 1,145 0.985 5.065 4.6 6.1 0.589 10.40 5.5 5.5

With CAP,  CAP 2, X ,  X 2 ,U,  U 2, fixed effects

Band-
width

Obs.
(Mean)

(I) (II)
Third order polynomial Fourth order polinomial

Mean S.D. Mean S.D.

No covaraites

With CAP, CAP 2

With CAP,  CAP 2, X,  X 2

With CAP,  CAP 2, X,  X 2, fixed effects
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Table B3. Simulation results for RK estimates with a larger sample size 

  
Note: The sample size is 100,000 (N = 5000 and T = 20). The other settings are the same as the 
baseline setting in Chapter 4. Fixed-effect estimation with a bandwidth uses unbalanced panel data 
because observations are dropped when they exceed the bandwidth. The average number of 
cross-sections is: N=4391 when |V| < 1 and N=3983 when |V| < 0.5. 
 

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

(1) No 100,000 6.751 0.079 100 100 5.640 0.219 100 100
(2) |V |<1 22,483 2.033 0.484 54.5 98.8 0.915 1.894 5.4 7.4
(3) |V |<0.5 11,473 1.433 1.319 5.9 18.8 1.001 5.619 6.2 7.3

(4) No 100,000 1.074 0.013 100 100 1.177 0.030 100 100
(5) |V |<1 22,483 1.032 0.071 7.6 100 1.015 0.283 5.4 95.4
(6) |V |<0.5 11,473 1.017 0.194 4.9 99.9 1.016 0.779 5.6 25.2

(7) No 100,000 1.101 0.012 100 100 1.160 0.029 100 100
(8) |V |<1 22,483 1.027 0.065 7.5 100 1.014 0.256 5.3 97.6
(9) |V |<0.5 11,473 1.018 0.177 5.2 100 1.024 0.708 5.7 30.5

(10) No 100,000 1.119 0.009 100 100 1.135 0.023 100 100
(11) |V |<1 22,483 1.018 0.066 6.4 100 1.008 0.254 5.0 98.4
(12) |V |<0.5 11,473 1.013 0.193 5.2 99.9 0.993 0.757 4.3 24.9

(13) No 100,000 1.000 0.008 3.7 100 0.999 0.020 6.7 100
(14) |V |<1 22,483 1.000 0.054 4.5 100 1.006 0.213 5.2 99.6
(15) |V |<0.5 11,473 1.004 0.164 5.6 100 0.996 0.636 4.7 32.4

With CAP,  CAP 2 , X ,  X 2 ,U,  U 2 , fixed effects

Band-
width

Obs.
(Mean)

(I) (II)
First order polynomial Second order polynomial

Mean S.D. Mean S.D.

No covaraites

With CAP, CAP 2

With CAP,  CAP 2 , X,  X 2

With CAP,  CAP 2 , X,  X 2 , fixed effects
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Figure B. Scatter plots with a different parameter setting 

 
Note: Parameters are set as (𝜂1, 𝜂2,𝜃1,𝜃2, 𝜆1, 𝜆2) = (1,0,1,0,1,0)  in (14) and 
(𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) = (1,1,1,1,1,1) in (21). The other settings are the same as the setting in 
Chapter 4. 
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Table B4. Simulation results for RK estimates with a different parameter setting  

 
Note: Parameters are set as (𝜂1, 𝜂2,𝜃1,𝜃2, 𝜆1,𝜆2) = (1,0,1,0,1,0)  in (12) and 
(𝜌1,𝜌2 ,𝜎1,𝜎2,𝜙1,𝜙2) = (1,1,1,1,1,1) in (19). The other settings are the same as the setting in 
Chapter 4. Fixed-effect estimation with a bandwidth uses unbalanced panel data because 
observations are dropped when they exceed the bandwidth. The average number of cross-sections is: 
N=499.5 when |V| < 1 and N=487.0 when |V| < 0.5. 

Size Power Size Power
H 0:β=1 H 0:β=0 H 0:β=1 H 0:β=0

(1) No 10,000 2.570 0.180 100 100 0.985 0.479 5.6 58
(2) |V |<1 3,451 1.291 1.335 6.9 18.4 0.859 5.125 5.9 5.7
(3) |V |<0.5 1,768 1.087 3.575 4.9 5.1 0.657 14.88 5.6 5.4

(4) No 10,000 2.220 0.066 100.0 100 1.003 0.128 6.0 100
(5) |V |<1 3,451 1.221 0.298 12.2 99.1 0.961 1.153 4.7 14.3
(6) |V |<0.5 1,768 1.095 0.811 5.0 26.9 1.029 3.278 5.3 6.0

(7) No 10,000 1.842 0.068 100.0 100 1.001 0.116 6.3 100
(8) |V |<1 3,451 1.132 0.254 9.1 100 0.967 0.960 4.5 15.4
(9) |V |<0.5 1,768 1.059 0.680 4.5 33.2 1.068 2.792 5.6 7.1

(10) No 10,000 1.438 0.038 100.0 100 0.998 0.094 6.1 100
(11) |V |<1 3,451 1.065 0.214 6.3 99.9 0.966 0.819 4.5 20.4
(12) |V |<0.5 1,768 1.029 0.645 4.5 37.6 1.003 2.529 5.4 6.2

(13) No 10,000 1.000 0.017 5.6 100 1.001 0.044 5.3 100
(14) |V |<1 3,451 0.999 0.122 4.1 100 0.991 0.505 4.8 48.6
(15) |V |<0.5 1,768 1.004 0.397 5.4 71.6 1.068 1.522 4.7 10.2

With CAP,  CAP 2, X ,  X 2 ,U,  U 2, fixed effects

Band-
width

Obs.
(Mean)

(I) (II)
First order polynomial Second order polynomial

Mean S.D. Mean S.D.

No covaraites

With CAP, CAP 2

With CAP,  CAP 2, X,  X 2

With CAP,  CAP 2, X,  X 2, fixed effects
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Appendix C. RK estimation validity check  
 
C.1 Smooth density of the assignment variable 
Following a density test applied to a RD design in McCrary (2008), CLP (2009) and 
CLPW (2012) present a density test applied to a RK design using collapsed data with 
equal-sized bins based on an assignment variable. Two required variables in this 
collapsed data set are the number of observations in each bin and the midpoint values of 
the assignment variable in each bin. I use bins with width 2 and bandwidth [-50,+50], 
which is a benchmark bandwidth for local regressions in this paper. Table C shows that 
in each sample a RK estimate is statistically insignificant if the order of polynomial is 
equal to or larger than two. The value of Akaike Information Criteria (AIC) is smallest 
when the order of polynomial is two. Figure C1 graphically illustrates that there seems 
to be no kink at the threshold.  
 

Table C. RK estimates for need-capacity gap (bin size=2, |V|<50) 

 
Notes: Heteroscedasticity-robust standard errors are in parenthesis.  
***: P<0.01, *:p<0.05, *:p<0.1.  

 
Figure C1. Density of need-capacity gap (bin size=2, bandwidth |V|<50) 

 
Notes: Bin size is 2 and fitted curves are based on RK estimation with local 
polynomial regressions. Fitted curves are generated based on the estimation 
with equation (3). 

(1) (2) (3) (4)
Variables One Two Three Four
RK esitmates -2.161*** -0.869 -0.357 0.325

(0.672) (1.172) (2.944) (5.030)
Observations 50 50 50 50
R-squared 0.901 0.980 0.981 0.981
AIC 494.1 419.3 420.3 423.3

Order of Polynomical
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C.2 Bin-mean plots and cubic fits of outcomes and covariates against V 
 

Figure C2-1. Outcome variables against need-capacity gap (bin size=2, bandwidth |V|<50)  

 
Note: Cubic fits are based on the estimation with equation (3). 
 

Figure C2-2. Covariates against need-capacity gap  (bin size=2, bandwidth |V|<50) 
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Figure C2-2. Covariates against need-capacity gap, cont. (bin size=2, bandwidth |V|<50)   

 
Note: Cubic fits are based on the estimation with equation (3). 
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Appendix D. Additional results from the empirical application 
 

Table D1. OLS estimates for total expenditure 

 
Notes: Standard errors are clustered by the municipality level. ***: P<0.01, **:p<0.05, *:p<0.1 

 

Table D2. RK estimates for total expenditure with higher order polynomials 

  
Notes: Standard errors are clustered by the municipality level. ***: P<0.01, **:p<0.05, *:p<0.1. 
Covariates are listed in Table 4 and both linear and quadratic terms of these covariates are introduced 
into regressors. 

(1) No 12,623 1.321*** (0.084) 0.000 No
(2) No 12,623 2.278*** (0.085) 0.000 Revenue capacity
(3) No 12,623 2.328*** (0.098) 0.000 Full covairates
(4) No 12,623 1.582*** (0.100) 0.000 Full covairates & FE

Band-
width

Estimate S.E. p(H 0 :β 1 =1) CovariatesObs.

Estimate S.E. p(H 0 :β 1 =1) Estimate S.E. p(H 0 :β 1 =1)

(1) No 12,666 2.503*** (0.562) 0.008 1.224 (0.830) 0.787
(2) |V|<50 7,750 -0.157 (1.264) 0.361 -2.186 (2.086) 0.127
(3) |V|<40 6,430 -0.809 (1.519) 0.234 -1.777 (2.935) 0.345
(4) |V|<30 5,013 -0.929 (2.218) 0.385 -3.383 (4.098) 0.285
(5) |V|<20 3,451 -0.736 (3.322) 0.602 -9.437 (6.694) 0.120
(6) |V|<10 1,741 1.095 (8.818) 0.991 2.056 (17.969) 0.953

(7) No 12,666 2.057*** (0.433) 0.015 0.621 (0.603) 0.530
(8) |V|<50 7,750 -0.287 (0.910) 0.158 -2.333* (1.402) 0.018
(9) |V|<40 6,430 -1.081 (1.016) 0.041 -2.119 (2.116) 0.141
(10) |V|<30 5,013 -0.992 (1.533) 0.195 -3.590 (2.822) 0.105
(11) |V|<20 3,451 -2.223 (2.273) 0.157 -5.038 (4.390) 0.170
(12) |V|<10 1,741 1.613 (6.415) 0.924 1.153 (12.324) 0.990

(13) No 12,666 2.180*** (0.424) 0.006 0.420 (0.542) 0.286
(14) |V|<50 7,750 -0.039 (0.859) 0.227 -2.236* (1.325) 0.015
(15) |V|<40 6,430 -1.065 (0.995) 0.039 -2.025 (2.007) 0.133
(16) |V|<30 5,013 -0.919 (1.437) 0.183 -2.527 (2.751) 0.201
(17) |V|<20 3,451 -1.119 (2.291) 0.356 -2.381 (4.276) 0.430
(18) |V|<10 1,741 4.422 (6.375) 0.592 5.742 (12.126) 0.696

(19) No 12,666 1.180*** (0.373) 0.629 0.352 (0.456) 0.156
(20) |V|<50 7,750 -0.495 (0.603) 0.014 -1.293 (1.124) 0.042
(21) |V|<40 6,430 -0.582 (0.828) 0.057 -1.297 (1.683) 0.173
(22) |V|<30 5,013 -0.014 (1.002) 0.312 -3.003 (2.077) 0.055
(23) |V|<20 3,451 -0.477 (1.653) 0.372 -1.787 (2.491) 0.264
(24) |V|<10 1,741 4.829 (3.346) 0.254 16.252** (6.521) 0.020

No covaraites

With covaraites of revenue capacity

With full covaraites

With full covariates and fixed effects

Band-
width

Obs.
(I) (II)

Third-order polynomial Fourth-order polynomial
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Table D3. RK estimates for total revenue excluding the LAT grant 

  
Notes: Standard errors are clustered by the municipality level. ***: P<0.01, **:p<0.05, *:p<0.1. 
Covariates are listed in Table 4 and both linear and quadratic terms of these covariates are introduced 
into regressors. 

 

Estimate S.E. Estimate S.E.

(1) No 12,623 2.831*** (0.258) 1.924*** (0.358)
(2) |V|<50 7,711 1.404*** (0.256) 0.679 (0.628)
(3) |V|<40 6,396 1.365*** (0.308) 0.061 (0.776)
(4) |V|<30 4,981 1.079*** (0.348) -0.387 (0.965)
(5) |V|<20 3,423 0.897* (0.467) -2.004 (1.717)
(6) |V|<10 1,725 -0.458 (1.002) -4.305 (3.873)

(7) No 12,623 -0.110 (0.159) 0.261 (0.316)
(8) |V|<50 7,711 0.209 (0.197) 0.557 (0.427)
(9) |V|<40 6,396 0.347 (0.243) 0.039 (0.531)

(10) |V|<30 4,981 0.371 (0.270) -0.750 (0.682)
(11) |V|<20 3,423 0.182 (0.364) -1.853 (1.175)
(12) |V|<10 1,725 -0.850 (0.694) -3.780 (2.652)

(13) No 12,623 0.087 (0.179) 0.624** (0.283)
(14) |V|<50 7,711 0.208 (0.204) 0.406 (0.410)
(15) |V|<40 6,396 0.268 (0.251) 0.068 (0.495)
(16) |V|<30 4,981 0.337 (0.272) -0.777 (0.670)
(17) |V|<20 3,423 0.110 (0.352) -1.811 (1.107)
(18) |V|<10 1,725 -0.800 (0.648) -1.747 (2.701)

(19) No 12,623 0.060 (0.291) 0.139 (0.333)
(20) |V|<50 7,711 0.084 (0.303) -0.080 (0.389)
(21) |V|<40 6,396 0.061 (0.338) -0.597 (0.389)
(22) |V|<30 4,981 -0.027 (0.308) -1.068** (0.533)
(23) |V|<20 3,423 -0.030 (0.280) -1.327* (0.791)
(24) |V|<10 1,725 -0.677* (0.383) -0.851 (1.448)

No covaraites

With covaraites of revenue capacity

With full covaraites

With full covariates and fixed effects

Band-
width

Obs.
(I) (II)

Linear polynomial Quadratic polynomial
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Appendix E. Description of fiscal variables 
 
Expenditure need: 𝑵𝑬𝑬𝑫 
This index measures the cost of a “standard” level of local public services for a 
municipality. It is officially referred to as “Standard Fiscal Need” (Kijun Zaisei Juyo 
Gaku) and calculated annually by the Ministry of Internal Affairs and Communications. 
Standard Fiscal Need is calculated as follows: 

 
𝑁𝐸𝐸𝐷𝑖 = ∑ (𝑀𝑒𝑠𝑎𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑈𝑛𝑖𝑡𝑖𝑘 × 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡𝑘 × 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑖𝑘)𝑘 , 

 
where k expresses kth public service. Measurement unit is in most cases the number or 
size of the beneficiaries of a particular service. Unit cost is a kind of net standard cost 
per measurement unit for each service item. Adjustment coefficient is a modification 
ratio that reflects the socio-economic diversity of a local body and modifies the unit cost 
in order to make it fit the local body’s socio-economic circumstances. 
 
Revenue capacity: 𝑪𝑨𝑷 
CAP is an index that measures the fiscal revenue capacity of a municipality before fiscal 
equalization. It is officially referred to as “Standard Fiscal Revenue” (Kijun Zaisei 
Syunyu Gaku) and calculated annually by the Ministry of Internal Affairs and 
Communications. CAP is calculated as follows: 
 

𝐶𝐴𝑃𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠𝑖 ×
3
4

+ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒, 𝑒𝑡𝑐.𝑖 

 
where Standard tax revenues are estimated based on standard tax rates, standard tax 
collection rates, and estimated tax bases which are calculated using relevant statistics or 
past tax revenues. Transfer Tax Revenue, etc. represents the sum of revenues from the 
Local Transfer Tax and the Special Grant for Traffic Safety Measures. In brief, 𝐶𝐴𝑃 
captures the potential amount of local general revenues before fiscal equalization, which 
canno be manipulated by municipalities in the short run. 
 There are two main reasons that Standard Tax Revenue is multiplied by 3/4.20 First, 
the remaining 1/4 of Standard Tax Revenue is excluded from the fiscal equalization 
process and left for municipalities so that they can cover some remaining fiscal needs 
that are not taken into account by the Standard Fiscal Needs (SFN) calculation. Second, 
this portion of tax revenue is excluded from the fiscal equalization process so that 
municipalities have some incentive to increase their local tax revenues by enhancing 
local economic growth. In other words, if the exact amount of Standard Tax 

                                                   
20 See also online Appendix F, where I describe the stylized features of the Japanese fiscal 
equalization grants with some equations and graphs. 
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Revenue were taken into account in 𝐶𝐴𝑃, LAT-receiving local bodies would 
have less incentive to enhance local economic growth because the increase in 
Standard Tax Revenue caused by this economic growth would be completely 
cancelled out by the decrease in the LAT grant. 
 
Revenue capacity (modified for a pre-determined covariate) 
As is explained above, 𝐶𝐴𝑃 itself does not represent “real” pre-equalization revenue 
capacity as it takes into account some policy objectives of the fiscal equalization 
scheme such as providing economic incentives to municipalities. We can, however, 
easily recover real pre-equalization revenue capacity by simply replacing 3/4 for 1 in 
the above definition of 𝐶𝐴𝑃. 
 When I use pre-equalization revenue capacity as a control variable in Section 5, I 
use this modified version of revenue capacity that reflects the real pre-equalization 
revenue capacity of municipalities. However, because available statistics are only 𝐶𝐴𝑃 
and Local Transfer Tax, I have to assume that revenue from Special Grant for Traffic 
Safety Measures is negligible. This assumption should not be a major problem because 
the amount of the Special Grant for Traffic Safety Measures is in general much smaller 
than the sum of Standard Tax Revenues and Local Transfer tax. 
 I therefore estimate this “real” 𝐶𝐴𝑃 as follows:  
 

𝑅𝑒𝑎𝑙𝐶𝐴𝑃𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠𝑖 × 1 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒, 𝑒𝑡𝑐.𝑖 

= (𝐶𝐴𝑃𝑖 −  𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑒𝑢, 𝑒𝑡𝑐.𝑖 ) ×
4
3

+ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑒𝑢, 𝑒𝑡𝑐.𝑖  

≈ (𝐶𝐴𝑃𝑖 −  𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖) ×
4
3

+ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 
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Appendix F. Stylized description of Japanese fiscal equalization 
 
In this appendix, I explain the stylized features of the Japanese fiscal equalization 
scheme and describe how the kink based on the LAT grants is generated in more detail. 
In order to make this description as concise as possible, throughout this appendix I 
redefine 𝐶𝐴𝑃 as follows: 
 

𝐶𝐴𝑃𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 ×
3
4

 . 

 
In other words, compared with the actual definition in Appendix E, 𝐶𝐴𝑃 is simplified 
by dropping the second term (local transfer tax and some miscellaneous revenues), 
which is actually much smaller than the first term (standard local tax revenue) in the 
majority of municipalities.  
 Then, further assuming that there are no additional revenues other than local tax 
revenues and LAT grants, the relation between pre-equalization standard revenue 
(denoted as PreRev) and post-equalization standard revenue (denoted as PostRev) can 
be expressed as follows21: 
 

� 𝑃𝑜𝑠𝑡𝑅𝑒𝑣𝑖 =  𝑃𝑟𝑒𝑅𝑒𝑣𝑖 , 𝑖𝑓 𝑉𝑖 ≤ 0
𝑃𝑜𝑠𝑡𝑅𝑒𝑣𝑖 =  𝑃𝑟𝑒𝑅𝑒𝑣𝑖 + 𝐺𝑅𝐴𝑁𝑇𝑖,    𝑖𝑓 𝑉𝑖 > 0.

� 

 
By inserting 𝑃𝑟𝑒𝑅𝑒𝑣𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 , 𝑉𝑖 = 𝑁𝐸𝐸𝐷𝑖 − 𝐶𝐴𝑃𝑖 , 𝐺𝑅𝐴𝑁𝑇𝑖 =
𝑉𝑖 = 𝑁𝐸𝐸𝐷𝑖 − 𝐶𝐴𝑃𝑖(𝑖𝑓 𝑉𝑖 > 0, and the above definitions of 𝐶𝐴𝑃𝑖 into these equations, 
they can be rewritten as  
 

�
𝑃𝑜𝑠𝑡𝑅𝑒𝑣𝑖 = 𝐶𝐴𝑃𝑖 +  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖  ×

1
4

, 𝑖𝑓 𝐶𝐴𝑃𝑖 ≥ 𝑁𝐸𝐸𝐷𝑖

𝑃𝑜𝑠𝑡𝑅𝑒𝑣𝑖 = 𝑁𝐸𝐸𝐷𝑖 + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 ×
1
4

,       𝑖𝑓 𝐶𝐴𝑃𝑖 < 𝑁𝐸𝐸𝐷𝑖 .
� (I) 

 
 These two equations represent an essential function of the Japanese fiscal 
equalization scheme. First, if 𝐶𝐴𝑃 is larger than 𝑁𝐸𝐸𝐷, no LAT grant is distributed 
and post-equalization standard revenue is identical to the sum of CAP and Standard Tax 
Revenue×1/4. Second, when 𝐶𝐴𝑃 is smaller than 𝑁𝐸𝐸𝐷, the LAT grant ensures that 
municipalities receive the sum of 𝑁𝐸𝐸𝐷 and Standard Tax Revenue×1/4. In both cases, 
this additional amount, Standard Tax Revenue×1/4, exists due to the fact that 𝐶𝐴𝑃 is 

                                                   
21  I use the phrase “standard” revenue to emphasize that this is not the actual revenue of local 
municipalities but the estimated revenue that the central government evaluates under some “standard” 
local taxation setting.  
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calculated by Standard Tax Revenue×3/4 and the other 1/4 of Standard Tax Revenue is 
excluded from the fiscal equalization formula. Because of this excluded part of 
Standard Local Tax Revenue, which is officially referred to as “reserved revenues”, a 
richer municipality is always richer even after fiscal equalization. Figure F presents 
actual scatter plots and local polynomial smoothing of 𝑃𝑟𝑒𝑅𝑒𝑣, 𝑃𝑜𝑠𝑡𝑅𝑒𝑣, and 𝑁𝑒𝑒𝑑 
against the assignment variable 𝑉. It graphically illustrates how the LAT grant phases 
in at the cutoff point 𝑉 = 0.  
 

Figure F: Scatter plots of 𝑃𝑟𝑒𝑅𝑒𝑣, 𝑃𝑜𝑠𝑡𝑅𝑒𝑣, and 𝑁𝑒𝑒𝑑 

 
Notes: The same sample that is described in Section 5.3 is used for this scatter plot. The local 
polynomials are obtained using the lpoly command in STATA 12 with the default setting. 
Sources: Reports on the Municipal Public Finance, Census, and CPI 
 
 Notice that in this graph 𝑃𝑜𝑠𝑡𝑅𝑒𝑣  is well above 𝑁𝑒𝑒𝑑  around 𝑉 = 0. This 
implies that municipalities just after 𝑉 > 0 have ample additional fiscal resources in 
excess of 𝑁𝐸𝐸𝐷. These additional fiscal resource come from the term Standard Local 
Tax Revenue×1/4 in the second equation of (I). This fact benefits our empirical analysis 
because LAT grants, which phase in after 𝑉 > 0, can be plausibly considered as 
“general” and “lump-sum” around the threshold, without any difficulties caused by 
complicated institutional settings of these grants. I conclude this appendix by examining 
this issue in greater detail.   
 In this paper, I implicitly assume that LAT grants are “general” and “lump-sum” 
and local bodies have full discretion in their decision-making on spending and taxation. 
In other words, I presuppose that an estimated coefficient can be straightforwardly 
interpreted as the effect of general lump-sum grants on local spending under the full 
discretion of local municipalities.  
 But it could be misleading to simply assume that LAT grants are completely 
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“general” and “lump-sum” as the Bradford-Oates equivalence theorem and some 
previous empirical studies have done. The LAT grant is nominally a general grant that a 
local body can spend on whatever it wants, but at the same time the LAT grant is the 
grant that guarantees every single municipality a sufficient amount of revenues to cover 
centrally-determined “standard costs” for local public services, which is referred to as 
Standard Fiscal Needs and denoted as 𝑁𝐸𝐸𝐷 in this paper. It is sometimes pointed out 
that the central government takes advantage of LAT grants to control local spending by 
arbitrarily adjusting 𝑁𝐸𝐸𝐷. In addition to these possibly “centralized” aspects of LAT 
grants, the provision of local public services is often strongly regulated by the central 
government through various centralized legal frameworks.  
 In sum, although local bodies do not have to strictly follow these 
centrally-determined standards, they quite often cannot control their expenditures on 
some local public services because the basic legal and provisional frameworks of these 
local services are centrally determined. Hayashi (2000, 2006) provides critical reviews 
of empirical studies on flypaper effects in Japan and points out that these previous 
studies do not consider these institutional settings of the Japanese general grant and 
naively treat it as a “general” and “lump-sum” grant as studies of similar schemes in the 
U.S. do.   
 In fact, this obligatory and centralized feature of local public services is part of the 
institutional basis of LAT grants: since the central government forces all local bodies to 
provide particular levels of local public services, fiscal resources for these services have 
to be guaranteed by the intergovernmental fiscal transfer which reflects the expected 
costs of these services. This feature of the LAT grant is officially referred to as a 
function of “fiscal resource guarantee”. 
 According to Figure F1, however, I would argue that LAT grants can be considered 
to be “general” and “lump-sum” around the threshold 𝑉 = 0  regardless of the 
centralized features of these grants and local administration. In other words, around the 
threshold, 𝑃𝑜𝑠𝑡𝑅𝑒𝑣 is well above 𝑁𝐸𝐸𝐷 and therefore the relatively “obligatory” 
local public services that are reflected in the calculation of 𝑁𝐸𝐸𝐷 can be financed 
even without the LAT grant. It is thus possible to assume that the marginal increase in 
the LAT grant around the threshold affects local bodies’ expenditure in exactly the same 
way that standard “general” and “lump-sum” grants do.     
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Appendix G. Description of data arrangement 
 
Japan is a unitary state which has three-tiers of administrative authorities: the central 
government, 47 prefectures, and 1750 municipalities (as of 2010). Municipalities are 
classified into four categories: cities (shi), towns (cho), villages (son) and special 
districts (ku). Cities are generally larger than towns and villages and in principle the 
minimum population required to become a city is 50,000. Even if the population of a 
city becomes less than 50,000, however, it does not have to become a town or village. 
The 23 special districts are all located in Tokyo prefecture and have similar duties to 
other municipalities but follow a different vertical fiscal equalization scheme managed 
by the prefecture. Cities and towns/villages have similar duties under the LAT grant 
fiscal equalization scheme, but cities have more responsibilities in some areas.  
 In this paper I only use the datasets for cities, but not all cities are included in my 
analysis. First, I exclude so-called “designated“ cities, which consisted of the 12 largest 
cities in Japan during the sample period. I drop these cities from the sample because 
their response to the marginal increase in their LAT grants might be institutionally 
different from other cities as a result of the fact that some of the duties normally 
assigned to prefectures are delegated to them and their administrative responsibility is 
thus larger than that of normal cities. Second, I also remove the cities that experienced 
amalgamation between 1975 and 1999 because the calculation of the LAT grants for 
these merged cities was affected by special measures. Because this special measure was 
in effect for 5 years after amalgamation, municipalities which merged before 1975 were 
not affected by this measure after 1980. Finally, there are some LAT-receiving 
municipalities whose need-capacity gap is apparently different from the amount of their 
LAT grant, possibly due to measurement errors or typos. Therefore, I drop 18 
observations in which |Need-capacity gap – LAT grant per capita| is larger than 10,000 
yen .  
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