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Abstract 

We decompose the variance risk premium into upside and downside variance risk premia. 

These components reflect market compensation for changes in good and bad 

uncertainties. Their difference is a measure of the skewness risk premium (SRP), which 

captures asymmetric views on favorable versus undesirable risks. Empirically, we 

establish that the downside variance risk premium (DVRP) is the main component of the 

variance risk premium. We find a positive and significant link between the DVRP and the 

equity premium, and a negative and significant relation between the SRP and the equity 

premium. A simple equilibrium consumption-based asset pricing model supports our 

decomposition. 

 

JEL classification: G, G1, G12 

Bank classification: Asset pricing 

Résumé 

Nous décomposons la prime de risque de la variance en primes de risque à la hausse et à 

la baisse. Ces composantes reflètent la rémunération, par le marché, des risques liés aux 

variations de la « bonne » et de la « mauvaise » incertitude. La différence entre les deux 

représente une mesure de la prime de risque d’asymétrie, laquelle rend compte de 

l’asymétrie des opinions au sujet des risques favorables ou défavorables. Nous 

déterminons de façon empirique que la prime de risque de la variance à la baisse est le 

principal élément de la prime de risque de la variance. Nous constatons qu’il existe une 

relation positive significative entre la prime de risque de la variance à la baisse et la 

prime de risque sur actions, et une relation négative significative entre la prime de risque 

d’asymétrie et la prime de risque sur actions. Un modèle simple d’équilibre des actifs 

fondé sur la consommation étaye notre décomposition. 

Classification JEL : G, G1, G12 

Classification de la Banque : Évaluation des actifs 
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Non-Technical Summary 
The proper assessment of risk is of paramount importance to investment decisions, given the basic trade-
off between risk and reward. The variance risk premium (VRP) is a measure of risk compensation used 
by investors and policy-makers to gauge investors’ sentiments on uncertainty. The VRP is the difference 
between the forward-looking market variance implied by option prices and the actual variance realized 
over time. Since option-implied (risk-neutral) variance is, on average, higher than realized (physical) 
variance, the seller of a variance swap contract, where the fixed leg is the former quantity and the floating 
leg is the latter, demands compensation from the buyer for taking on the position. 
Yet, while the VRP can be a valuable tool to appraise the uncertainty around future variation (including 
extreme events), this measure does not take into consideration one important point: not all uncertainties 
are bad. Intuitively, investors like good uncertainty (since it increases the potential of substantial gains) 
but dislike bad uncertainty (since it increases the likelihood of severe losses). Thus, we believe that it is 
not enough to merely look at the VRP as a whole. To improve our understanding of the distribution of 
future stock returns, we need to further dissect this information and scrutinize both the upside and the 
downside pieces. Indeed, failure to decompose implies mixing two opposing views of the market and risks 
not getting the complete picture. 
For example, the VRP was found to be lower than expected during the 2008 crisis period characterized 
by extreme economic and financial uncertainty, fueled by the subprime market meltdown. Interestingly, 
the proposed decomposition tells us that a small positive VRP does not necessarily mean that the market 
is less concerned with future uncertainty.  Rather, it could reflect a small asymmetry in the market's 
assessment of good versus bad uncertainty. In other words, in highly uncertain times with large swings in 
returns, the magnitude of the positive-valued DVRP could be sizeable, yet just slightly higher than the 
absolute magnitude of its negative-valued upside counterpart. Overall, the VRP, which sums up the two 
components with opposing signs, will yield a small positive value. 
Thus, building on this intuition, we dissect the VRP in terms of upside (UVRP) and downside (DVRP) 
variance risk premia. The DVRP is the main component of the VRP, and the most important to assess, 
since investors tend to hedge against downward movements to avoid losing money. Conversely, 
investors often gravitate toward upside movements and are willing to pay to get exposure to it and the 
potential for higher profits. 
In the finance literature, this highlights the pivotal role of asymmetry in the assessment of risk (Chabi-Yo, 
2008), and echoes the directional jump analysis of Bandi and Reno (2015) and jump-tail risk concerns in 
Bollerslev and Todorov (2011). Thus, the DVRP should be positive (reflecting the compensation required 
by an agent to bear the downside risk), whereas the UVRP should be negative (viewed as the discount 
given by an agent to secure a positive return on an investment). 
An interesting byproduct of this decomposition is the skewness risk premium, or SRP (simply defined as 
SRP = UVRP-DVRP), which will be negatively valued by construction. Kozhan, Neuberger, and 
Schneider (2014) show that compensation for variance and skewness risks are tightly linked. 
In addition, this work explores the link between the DVRP and the equity risk premium, or ERP. Current 
asset pricing research considers that, over shorter time horizons, the VRP provides superior forecasts for 
the ERP; these periods are less than a year, typically one quarter, ahead (Bollerslev, Tauchen, and Zhou, 
2009). To further this exploration, the study also considers the link between the SRP and the ERP at 
various prediction steps. 
We also rationalize these observations within a general equilibrium model by introducing some 
asymmetry into Bollerslev, Tauchen, and Zhou’s (2009) specification, in the spirit of Segal, Shaliastovich, 
and Yaron (2015). 
This knowledge would greatly benefit researchers in the fields of finance and financial econometrics. It is 
also a procedure that central banks and regulatory bodies monitoring the financial system can implement 
to accurately predict the ERP or gauge the level of risk aversion in the market. And what will these 
findings on dissecting the VRP mean for practitioners in the industry? Borrowing from a Wall Street 
adage, we believe that ’’when the DVRP is high, it’s time to buy, when the DVRP is low, it’s time to go.’’ 
Beyond its theoretical and empirical appeal, the proposed decomposition of the VRP offers an easy-to-
compute risk assessment tool of real-life good and bad uncertainties, as perceived by investors. 



1 Introduction

The proper assessment of risk is of paramount importance to investment decisions, given the fun-

damental risk and return trade-off. The variance risk premium (henceforth, V RP ) formalized

and studied by Bollerslev, Tauchen, and Zhou (2009) (henceforth, BTZ) as the difference between

option-implied and realized variances is a measure of risk compensation that reflects investors’ ap-

praisal of changes in future volatility. We propose a new decomposition of the V RP in terms of

upside and downside variance risk premia (V RPU and V RPD, respectively).1 We subsequently

uncover a common component shared by the V RP and the skewness risk premium (henceforth,

SRP ), which is the V RPD. We show that this component is the basis for many empirical regular-

ities in aggregate market returns uncovered by recent studies and document novel theoretical and

empirical findings.

Intuitively, this work is motivated by a simple observation: Investors like good uncertainty

as it increases the potential of substantial gains, but dislike bad uncertainty, as it increases the

likelihood of severe losses.2 Given that investors tend to hedge against downward movements to

avoid losses, the V RPD is expected to be generally positive-valued and the main driver of the V RP .

Conversely, investors often find upside movements desirable. They are willing to pay for exposure

to such movements and the potential for higher profits. Thus, we expect a mostly negative-valued

V RPU . Theoretically, we support our empirical findings with a simple endowment equilibrium asset

pricing model, where the representative agent is endowed with Epstein and Zin (1989) preferences,

and where the consumption growth process is affected by distinct upside and downside shocks.

Our model shares some features with Bansal and Yaron (2004), BTZ, and Segal, Shaliastovich,

and Yaron (2015), among others. The model-implied equity, upside variance, downside variance,

and skewness risk premia (derived in closed form) support the empirical findings presented in the

paper.

1We define the down(up)side variance as the realized variance of the stock market returns for negative (positive)
returns. The down(up)side variance risk premium is the difference between option-implied and realized down(up)side
variance. Decomposing variance in this way was pioneered by Barndorff-Nielsen, Kinnebrock, and Shephard (2010).
We define the difference between upside and downside variances as the relative upside variance. Feunou, Jahan-Parvar,
and Tédongap (2014) show that relative upside variance is a measure of skewness. Based on their work, we use the
difference between option-implied and realized relative upside variances as a measure of the skewness risk premium.

2Similar to Segal, Shaliastovich, and Yaron (2015) and Bekaert, Engstrom, and Ermolov (2014), we define “good
uncertainty” and “bad uncertainty” as volatility associated with positive or negative shocks to fundamentals such as
consumption of dividend growth.
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This study highlights the importance of asymmetry in the assessment of risk. As mentioned

previously, we find V RPD to be positive (reflecting the compensation required by an investor to bear

the downside risk), whereas V RPU is negative (as it is the discount given by an investor to secure

exposure to such shocks). Thus, the (total) variance risk premium that sums these two components

mixes together market participants’ (asymmetric) views about good and bad uncertainties. As a

result, a positive (total) variance risk premium reflects the fact that investors are willing to pay

more in order to hedge against changes in bad uncertainty than for exposure to variations in good

uncertainty. Hence, focusing on the (total) variance risk premium does not provide a realistic view

of the trade-off between good and bad uncertainties, as a small positive V RP quantity does not

necessarily imply a lower level of risk and/or risk aversion. Rather it is an indication of a smaller

difference between what agents are willing to pay for downside variation hedging versus upside

variation exposure. Together, these premia point to a negatively valued SRP measured through

the difference between V RPU and V RPD. Empirically, we show that our decomposition of V RP

characterizes the role of the SRP in asset pricing. We find that, on average, and similar to results

in Kozhan, Neuberger, and Schneider (2014), more than 80% of the V RP is compensation for

bearing changes in downside risk.

Our findings imply that, while the V RPD explains the empirical regularities reported by BTZ

(including the hump-shaped R2 and slope parameter patterns), the V RPU ’s contribution to the

results reported by BTZ is, at best, marginal. Next, we document the contribution of the SRP to

the predictability of returns that takes effect beyond the one-quarter-ahead window documented

by BTZ. We find that the prediction power of V RPD and SRP increases over the term structure

of equity returns. In addition, through extensive robustness testing, we establish that our findings

are robust to the inclusion of a wide variety of common equity risk premium predictors. This

leads to the conclusion that the in-sample predictability of aggregate returns by downside risk and

skewness measures introduced here is independent from other common pricing ratios, such as the

price-dividend ratio, price-earnings ratio, or default spread. Thus, we are able to close the horizon

gap between short-term models such as BTZ and long-horizon predictive models such as Fama and

French (1988), Campbell and Shiller (1988), Cochrane (1991), and Lettau and Ludvigson (2001).

Based on the revealed in-sample predictive power of our proposed measures, and in order to address
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data-mining concerns raised by Goyal and Welch (2008), we conduct out-of-sample forecast ability

comparisons and show that, in comparison with V RPD and SRP , other common predictors do not

have a superior forecast ability.

1.1 Related literature

This paper is related to the mounting literature on the properties of the V RP , as discussed in

early works by Bakshi and Kapadia (2003), Vilkov (2008), and Carr and Wu (2009), among oth-

ers. Theoretical attempts to rationalize the observed dynamics of the V RP have led to both

reduced-form and general equilibrium models in the literature. Within the reduced-form frame-

work, Todorov (2010) focuses on the temporal dependence of continuous versus discontinuous V RP

components driven by a semiparametric stochastic volatility model. He documents that both com-

ponents exhibit nontrivial dynamics driven by ex ante volatility changes over time, coupled with

unanticipated extreme swings in the market. In a general equilibrium setting, BTZ design a simple

model in which time-varying volatility-of-volatility of consumption growth is the key determinant

of the V RP . Drechsler and Yaron (2011) provide an equilibrium specification that features long-

run risks and discontinuities in the stochastic volatility process governing the level of uncertainty

about the cash-flow process. They extend the model of Bansal and Yaron (2004) by introducing

a compound Poisson jump process in the state variable specification, thus departing from BTZ’s

assumption of Gaussian economic shocks. Our theoretical framework also extends BTZ’s model,

as we specify asymmetric predictable consumption growth components and differences of centered

Gamma shocks to fundamentals.

Another strand of the literature explores the explanatory ability of the V RP . Along the time-

series dimension, BTZ, Drechsler and Yaron (2011), and Kelly and Jiang (2014), among others,

show that the V RP can help forecast the temporal variation in the aggregate stock market returns

with high (low) premia predicting high (low) future returns, especially in within-the-year time

scale. Ang, Hodrick, Xing, and Zhang (2006), and Cremers, Halling, and Weinbaum (2015), among

others, find that the price of variance risk successfully explains a large set of expected stock returns

in the cross-section of assets.

Drawing on existing decompositions of the quadratic variation of stock returns, other studies

investigate the sources of variation in the V RP . Bollerslev and Todorov (2011) assess the impor-
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tance of the premium related to extreme rare events by decomposing the V RP in terms of the

diffusive and jump risk compensations. The authors show that the contribution of the jump tail

risk premium is sizeable, and propose a new index to assess the compensation for concerns about

disastrous outcomes – when returns (r) fall below a given threshold (−κ). Namely, they disentangle

the V RP into components pertaining to smooth (continuous) moves (V RP (|r| ≤ κ)) and rough

(discontinuous) negative (V RP (r < −κ)) and positive (V RP (r > κ)) moves. In the Bollerslev and

Todorov (2011) setting, however, κ is a strictly positive threshold that separates small (diffusion)

from large (jump) variations. Because of the lack of liquidity for deep out-of-the money options,

implementation of the jump tail risk premium approach for large values of κ is challenging. Actu-

ally, this procedure necessitates an additional extreme value theory (EVT) approximation step to

extrapolate tail densities, especially under the risk-neutral measure. In comparison, our decompo-

sition (based on a threshold of κ = 0) is much simpler to implement and interpret, as it does not

require any explicit model for describing the tail behavior of the distributions underlying various

premia.

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) propose a different decomposition of the re-

alized variance in terms of upside and downside semi-variances obtained by summing high-frequency

positive and negative squared returns, respectively. Other authors have used the same decompo-

sition of the realized variance with either a focus on realized variance predictability (Patton and

Sheppard, 2015), or on equity risk premium predictability (Guo, Wang, and Zhou, 2015). All these

papers focus exclusively on realized measures and do not use options prices to infer the risk-neutral

counterparts and deduce the corresponding premia. In comparison, our work clearly evaluates the

premia associated with upside and downside semi-variances, both realized and risk-neutral.

The SRP captures the wedge between the objective and the risk-neutral expectation of a

realized skewness measure. Our realized measure of asymmetry is simply the difference between

the upside and the downside semi-variance, which turns out to be the so-called signed jump variation

introduced in Patton and Sheppard (2015). Patton and Sheppard (2015) demonstrate that signed

jumps improve the prediction of future realized variance. An alternative approach to computing

the skewness risk premium is to construct the premium from cubic swap contracts, as proposed

by Kozhan, Neuberger, and Schneider (2014). In line with our results, Kozhan, Neuberger, and
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Schneider (2014) find a strong link between the V RP and the SRP . We go further by showing

that the SRP can help predict future stock market returns. More importantly, our construction

of the SRP only requires the existence of the second moment of stock returns, while the Kozhan,

Neuberger, and Schneider (2014) approach requires the existence of the third moment. In an earlier

study, Neuberger (2012) studies the properties of realized measures of skewness. In comparison

with Neuberger’s realized skewness measure, our proposed skewness measure only depends on

the existence of the first two moments. Moreover, Nueberger’s realized skewness does not time-

aggregate. In contrast, our proposed skewness measure time-aggregates well, since it depends on

(semi-)variance measures.

In this paper, we substantiate our claim that the difference between the upside and downside

V RP is a nonparametric measure of the SRP . Bollerslev and Todorov (2011) define (up to a sign)

a similar metric, which they refer to as the Investors’ Fears Index (defined as FI(κ) ≡ V RP (r <

−κ)−V RP (r > κ)). Bollerslev, Todorov, and Xu (2015) show that the Investors’ Fears Index can

help predict future stock market returns. We conduct a similar analysis using our SRP measure.

However, we believe that our approach provides a straightforward interpretation of the premium

originating from the asymmetric market views on good versus bad risks and is much easier to

implement.

Other papers aim at decomposing the variance of macroeconomic variables. Segal, Shalias-

tovich, and Yaron (2015) study the impact of changes in good versus bad uncertainty on aggregate

consumption growth and asset values. These authors demonstrate that these different types of un-

certainties have opposite effects, with good (bad) economic risk implying a rise (decline) in future

consumption growth. They characterize the role of asymmetric uncertainties in the determination

of the economic activity level, whereas we empirically document and theoretically derive equilibrium

compensations for fluctuations in good and bad risks.

Our study comprises two natural and linked components. First, we study the inherent asymme-

try in responses of market participants to negative and positive market outcomes. To accomplish

this goal, we draw on the vast existing literature on realized and risk-neutral volatility measures

and their properties to construct nonparametric measures of up and down realized and risk-neutral

semi-variances. We then show empirically how the stylized facts documented in the V RP literature

5



are driven almost entirely by the contribution of V RPD. As in Chang, Christoffersen, and Jacobs

(2013), our approach avoids the traditional trade-off problem with estimates of higher moments

from historical returns data needing long windows to increase precision but short windows to ob-

tain conditional – instead of unconditional – estimates. Second, we show that, using the relative

upside variance, a nonparametric measure of skewness, we can enhance the predictive power of the

variance risk premium to horizons beyond one quarter ahead.

Thus, we need reliable measures for realized and risk-neutral variance and skewness. A sizeable

portion of empirical finance and financial econometrics literature is devoted to measures of volatility.

Canonical papers focused on the properties and construction of realized volatility include Andersen,

Bollerslev, Diebold, and Ebens (2001a); Andersen, Bollerslev, Diebold, and Labys (2001b); and

Andersen, Bollerslev, Diebold, and Labys (2003), among others. The construction of realized

downside and upside volatilities (also known as realized semi-variances) is addressed in Barndorff-

Nielsen, Kinnebrock, and Shephard (2010). We follow the consensus in the literature about the

construction of these measures. Similarly, based on pioneering studies such as Carr and Madan

(1998, 1999, 2001) and Bakshi, Kapadia, and Madan (2003), we have a clear view on how to

construct risk-neutral measures of volatility. The construction of option-implied downside and

upside volatilities is addressed in Andersen, Bondarenko, and Gonzalez-Perez (2015). Again, we

follow the existing literature in this respect.

Traditional measures of skewness have well-documented empirical problems. Kim and White

(2004) demonstrate the limitations of estimating the traditional third moment. Harvey and Sid-

dique (1999, 2000) explore time variation in conditional skewness by imposing autoregressive struc-

tures. More recently, Ghysels, Plazzi, and Valkanov (2011) use Bowley’s skewness measures. They

overcome many problems associated with the centered third moment, such as the excessive sensitiv-

ity to outliers documented in Kim and White (2004), by using an alternative and robust measure.

Amaya, Christoffersen, Jacobs, and Vasquez (2015) and Chang, Christoffersen, and Jacobs (2013)

use measures similar to Neuberger’s 2012 realized skewness in predicting the cross-section of returns

at a weekly frequency. In addition, as Dennis and Mayhew (2009) show, traditional option-based

estimates of skewness are noisy and, as a result, unreliable. Our proposed risk-neutral skewness

measure, in contrast, is well-behaved and easy to build and interpret.

6



Our study is also related to the recent macro-finance literature on the importance of higher-

order risk attitudes, such as prudence – a precautionary behavior that characterizes the aversion

towards downside risk – in the determination of equilibrium asset prices, as emphasized by Chabi-

Yo (2008), among others. We refer to Eeckhoudt and Schlesinger (2008) and Chabi-Yo (2012) for

a discussion on necessary and sufficient conditions for an increase in savings induced by changes in

higher-order risk attitudes.3

The rest of the paper proceeds as follows. In Section 2, we present our decomposition of the

VRP and the method for construction of risk-neutral and realized semi-variances, as well as the

relative upside variance, which is our measure of skewness. In Section 3, we present a simple

equilibrium consumption-based asset pricing model that supports our empirical results. Section 4

details the data used in this study and the empirical construction of predictive variables used in our

analysis. We present and discuss our main empirical results in Section 5. Specifically, we intuitively

describe the components of variance risk and skewness risk premia, discuss their predictive ability,

explore their robustness, investigate their out-of-sample forecasting performance, and link them to

macroeconomic factors and policy news in Sections 5.1, 5.2, 5.3, 5.4, and 5.5, respectively. Section

6 concludes.

2 Decomposition of the variance risk premium

In what follows, we decompose equity price changes into positive and negative returns with respect

to a suitably chosen threshold. In this study, we set this threshold to zero, but it can assume

other values, given the questions to be answered. We sequentially build measures for upside and

downside variances and for skewness. When taken to data, these measures are constructed non-

parametrically.

We posit that stock prices or equity market indices such as the S&P 500, S, are defined over the

physical probability space characterized by (Ω,P,F), where {Ft}∞t=0 ∈ F are progressive filters on

F . The risk-neutral probability measure Q is related to the physical measure P through Girsanov’s

3Dionne, Li, and Okou (2015) restate a standard consumption-based capital asset pricing model (using the concept
of expectation dependence) to show that consumption second-degree expectation dependence risk – a proxy for
downside risk that accounts for nearly 80% of the equity premium – is a fundamental source of the macroeconomic
risk driving asset prices.

7



change of measure relation dQ
dP |FT = ZT , T < ∞. At time t, we denote total equity returns as

Ret = (St +Dt − St−1)/St−1, where Dt is the dividend paid out in period [t− 1, t]. In high-enough

sampling frequencies, Dt is effectively equal to zero. Then, we denote the log of prices by st = lnSt,

log-returns by rt = st − st−1, and excess log-returns by ret = rt − rft , where rft is the risk-free rate

observed at time t−1. We obtain cumulative excess returns by summing one-period excess returns,

ret→t+k =
∑k

j=0 r
e
t+j , where k is our prediction/forecast horizon.

We build the variance risk premium components following the steps in BTZ as the difference be-

tween option-implied and realized variances. Alternatively, these two components could be viewed

as variances under risk-neutral and physical measures, respectively. In our approach, this construc-

tion requires three distinct steps: building the upside and downside realized variances, computing

their expectations under the physical measure, and then doing the same under the risk-neutral

measure.

2.1 Construction of the realized variance components

Following Andersen et al. (2003, 2001a), we construct the realized variance of returns on any given

trading day t as RVt =
∑nt

j=1 r
2
j,t, where r2

j,t is the jth intraday squared log-return and nt is the

number of intraday returns recorded on that day. We add the squared overnight log-return (the

difference in log price between when the market opens at t and when it closes at t − 1), and we

scale the RVt series to ensure that the sample average realized variance equals the sample variance

of daily log-returns. For a given threshold κ, we decompose the realized variance into upside and

downside realized variances following Barndorff-Nielsen, Kinnebrock, and Shephard (2010):

RV U
t (κ) =

nt∑
j=1

r2
j,tI[rj,t>κ], (1)

RV D
t (κ) =

nt∑
j=1

r2
j,tI[rj,t≤κ]. (2)

We add the squared overnight “positive” log-return (exceeding the threshold κ) to the upside

realized variance RV U
t , and the squared overnight “negative” log-return (falling below the threshold

κ) to the downside realized variance RV D
t . Because the daily realized variance sums the upside

8



and the downside realized variances, we apply the same scale to the two components of the realized

variance. Specifically, we multiply both components by the ratio of the sample variance of daily

log-returns over the sample average of the (pre-scaled) realized variance.

For a given horizon h, we obtain the cumulative realized quantities by summing the one-day

realized quantities over h periods:

RV U
t,h(κ) =

h∑
j=1

RV U
t+j(κ),

RV D
t,h(κ) =

h∑
j=1

RV D
t+j(κ),

RVt,h =

h∑
j=1

RVt+j(κ). (3)

By construction, the cumulative realized variance adds up the cumulative realized upside and

downside variances:

RVt,h ≡ RV U
t,h(κ) +RV D

t,h(κ). (4)

2.2 Disentangling upside from downside variation: A theoretical overview

This section briefly reviews the main theoretical results that allow us to separate daily positive

from negative quadratic variation using intraday data. In the sequel, the threshold κ is set to 0.

We largely rely on Barndorff-Nielsen, Kinnebrock, and Shephard (2010), who assume that the stock

price follows a jump-diffusion of the form

dst = µtdt+ σtdWt + ∆st,

where dWt is an increment of standard Brownian motion and ∆st ≡ st − st− refers to the jump

component. The instantaneous variance can be defined as σ̃2
t = σ2

t + (∆st)
2. Under this general

assumption on the instantaneous return process, Barndorff-Nielsen, Kinnebrock, and Shephard

(2010) use infill asymptotics – asymptotics as the time distance between any two records shrinks
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toward 0 – to demonstrate that

RV U
t,h(0)

p→ 1

2

∫ t+h

t
σ2
υdυ +

∑
t≤υ≤t+h

(∆sυ)2 I[∆sυ>0],

RV D
t,h(0)

p→ 1

2

∫ t+h

t
σ2
υdυ +

∑
t≤υ≤t+h

(∆sυ)2 I[∆sυ≤0].

Hence, RV D
t,h(0) and RV U

t,h(0) provide a new source of information, which focuses on squared

negative and positive jumps, as pointed out by Patton and Sheppard (2015).

2.3 Construction of the variance risk premium components

Next, we characterize the V RP of BTZ through premia accrued to bearing upside and downside

variance risks, following these steps:

V RPt,h = EQ
t [RVt,h]− EP

t [RVt,h],

=
(
EQ
t [RV U

t,h(κ)]− EP
t [RV U

t,h(κ)]
)

+
(
EQ
t [RV D

t,h(κ)]− EP
t [RV D

t,h(κ)]
)
,

V RPt,h ≡ V RPUt,h(κ) + V RPDt,h(κ). (5)

Eq. (5) represents the decomposition of the VRP of BTZ into upside and downside variance risk

premia – V RPUt,h(κ) and V RPDt,h(κ), respectively – that lies at the heart of our analysis.

2.3.1 Construction of P-expectation

The goal here is to evaluate EP
t [RV U

t,h(κ)] and EP
t [RV D

t,h(κ)]. To this end, we consider three

specifications:

• Random Walk

EP
t [RV

U/D
t,h (κ)] = RV

U/D
t−h,h(κ),

where U/D stands for “U or D”; this is the model used in BTZ.

• U/D-HAR

EP
t [RV

U/D
t+1 (κ)] = ωU/D + β

U/D
d RV

U/D
t (κ) + βU/Dw RV

U/D
t,5 (κ) + βU/Dm RV

U/D
t,20 (κ).
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• M-HAR

EP
t [MRVt+1(κ)] = ω + βdMRVt(κ) + βwMRVt,5(κ) + βmMRVt,20(κ),

where MRVt,h(κ) ≡ (RV U
t,h(κ), RV D

t,h(κ))′.

Both U/D-HAR and M-HAR specifications mimic Corsi (2009)’s HAR-RV model. To get gen-

uine expected values for realized measures that are not contaminated by forward bias or the use

of contemporaneous data, we perform an out-of-sample forecasting exercise to predict the three

realized variances, at different horizons, corresponding to 1, 2, 3, 6, 9, 12, 18, and 24 months ahead.

In our subsequent analysis, we find that these alternative specifications provide similar results,

probably because of the persistence in volatility. Hence, for simplicity and to save space, we only

report the results based on the random walk model.

2.3.2 Construction of Q-expectation

To build the risk-neutral expectation of RVt,h, we follow the methodology of Andersen and

Bondarenko (2007):

EQ
t [RV U

t,h(κ)] ≈ EQ
t

[ ∫ t+h

t
σ̃2
υI[ln(Fυ/Ft)>κF ]dυ

]
,

= EQ
t

[ ∫ t+h

t
σ̃2
υI[Fυ>Ft exp(κF )]dυ

]
,

where κF is a threshold used to compute risk-neutral expectations of semi-variances.4 Thus,

EQ
t [RV U

t,h(κ)] ≈ 2

∫ ∞
Ft exp(κF )

M0(S)

S2 dS, (6)

M0(S) = min(Pt(S), Ct(S)),

where, Pt(S), Ct(S), and S are prices of European put and call options (with maturity h), and

the strike price of the underlying asset, respectively. Ft is the price of a future contract at time t,

4Note that κF should be set to (κ− rft )h to get consistent thresholds when computing realized and option-implied
quantities.
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defined as Ft = St exp(rft h). Similarly for EQ
t [RV D

t,h(κ)], we get

EQ
t [RV D

t,h(κ)] ≈ 2

∫ Ft exp(κF )

0

M0(S)

S2 dS. (7)

We simplify our notation by renaming EQ
t [RV U

t,h(κ)] and EQ
t [RV D

t,h(κ)] as

IV U
t,h = EQ

t [RV U
t,h(κ)], (8)

IV D
t,h = EQ

t [RV D
t,h(κ)]. (9)

We refer to IV
U/D
t,h as the “risk-neutral semi-variance” or “implied semi-variance” of returns. These

quantities are conditioned on the threshold value κ, which we suppress to simplify notation. As

evident in this section, our measures of realized and implied volatility are model-free.

2.4 Construction of the skewness risk premium

The difference between realized upside and downside variance can be perceived as a measure of

(realized) skewness. To build this measure of skewness, denoted as RSVt,h, we simply subtract

downside variance from upside semi-variance:

RSVt,h(κ) = RV U
t,h(κ)−RV D

t,h(κ). (10)

Thus, if RSVt,h(κ) < 0 the distribution is left-skewed and when RSVt,h(κ) > 0 it is right-skewed.

A theoretical justification for using RSVt,h as a measure of skewness can be found in Feunou,

Jahan-Parvar, and Tédongap (2014). Here, we elaborate the intuition behind our findings. Relying

on the theoretical results of section 2.2, we get

RSVt,h(0)
p→

∑
t<υ≤t+h

(∆sυ)2 (I[∆sυ>0] − I[∆sυ≤0]

)
.

Now, assuming that jump sizes are i.i.d. and uncorrelated with the jump occurrence, the ex-
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pectation of the realized skewness – which can be referred to as the conditional skewness – is

EP
t [RSVt,h(0)] ≈ EP

[
(∆s)2

] ∑
t<υ≤t+h

(P[∆sυ > 0]− P[∆sυ ≤ 0]) .

Thus, EP
t [RSVt,h(0)] captures – up to a multiplicative constant – the difference between positive

and negative jump intensities. In other words, this realized skewness measure reflects the relative

occurrence of positive versus negative jumps. The occurrences of directional jumps receive different

weights according their sizes, which echoes the volatility jump risk analysis of Bandi and Renò

(2015). Intuitively, the larger the jump size, the bigger its weight in the computation of RSVt,h(0).

In addition, we construct a measure of skewness risk premium (SRP ), which closely resembles

the variance risk premium. The SRP is defined as the difference between risk-neutral and objective

expectations of the realized skewness. It can be shown that this measure of the skewness risk

premium is the spread between the upside and downside components of the variance risk premium:

SRPt,h = EQ
t [RSVt,h]− EP

t [RSVt,h],

SRPt,h = V RPUt,h(κ)− V RPDt,h(κ). (11)

If RSVt,h < 0, we view SRPt,h as a skewness premium – the compensation for an agent who bears

downside risk. Alternatively, if RSVt,h > 0, we view SRPt,h as a skewness discount – the amount

that the agent is willing to pay to secure a positive return on an investment. Since this measure of

the skewness risk premium is nonparametric and model-free, it is easier to implement and interpret

than competing parametric or semiparametric counterparts.

3 A simple equilibrium model

We provide an equilibrium consumption-based asset pricing model that supports the proposed

decomposition of the V RP in terms of upside and downside components. Our main objective

is to highlight the roles that upside and downside variances play in pricing a risky asset in an

otherwise standard asset pricing model. In particular, we show that the model, under standard

and mild assumptions, yields closed-form solutions for V RP components and SRP that align well
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with empirical regularities. To save space, we only report the main results. An online appendix

reports our derivations in great detail.

The intuition behind our asset pricing model is simple. We interpret the V RP as the premium

a market participant is willing to pay to hedge against variation in future realized variances. It

is expected to be positive, since risk-averse investors dislike large swings in volatility, especially

in “bad times” – when returns turn negative. This intuition is rationalized within the general

equilibrium model of BTZ, where it is shown that the variance risk premium is, in general, positive

and proportional to the volatility-of-volatility.

That said, several studies, including Segal, Shaliastovich, and Yaron (2015) and Feunou, Jahan-

Parvar, and Tédongap (2013), show that there are distinct good and bad uncertainties. On the

one hand, market participants like good uncertainty (when returns are positive), as it signals the

potential for earning higher gains. In other words, risk-averse agents like upside variations and are

willing to pay to be exposed to fluctuations in the upside variance. This argument should induce

a negative expected value for V RPU . On the other hand, investors dislike bad uncertainty (when

returns are negative), as it increases the likelihood of large losses. Since risk-averse agents dislike

downside variations, they are willing to pay a premium to hedge against fluctuations in future

downside variances. Therefore, V RPD is expected to be positive most of the time. Empirical

evidence – for example, results reported by Guo, Wang, and Zhou (2015) – support our intuition.

Upside and downside variance risk premia tend to have opposite signs. Thus, the (total) variance

risk premium that sums these two components mingles market participants’ asymmetric views

about good and bad uncertainties. It follows that a positive (total) variance risk premium reflects

investors’ willingness to pay more in order to hedge against changes in bad uncertainty than for

exposure to variations in good uncertainty. In other words, investors are more concerned with

exposure to downside risk (and hence losses) than to upside risk (and potential large gains). Hence,

focusing on the (total) variance risk premium does not provide a crisp vision of the trade-off between

good and bad uncertainties.

Building on the same intuition, the sign of the SRP stems from the expected behavior of the

two components of the V RP . The SRP is obtained by subtracting V RPD from V RPU . Given that

(on average) V RPU appears negative, whereas V RPD tends to be positive, the SRP is expected
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to be negative.

In summary, we expect negative-valued V RPU and SRP , and positive-valued V RP and V RPD.

In what follows, we show that our simple equilibrium asset pricing model delivers the expected signs

for these premia.

3.1 Preferences

We consider an endowment economy in discrete time. The representative agent’s preferences over

the future consumption stream are characterized by Kreps and Porteus (1978) intertemporal pref-

erences, as formulated by Epstein and Zin (1989) and Weil (1989)

Ut =

[
(1− δ)C

1−γ
θ

t + δ
(
EtU1−γ

t+1

) 1
θ

] θ
1−γ

, (12)

where Ct is the consumption bundle at time t, δ is the subjective discount factor, γ is the coefficient

of risk aversion, and ψ is the elasticity of intertemporal substitution (IES). Parameter θ is defined

as θ ≡ 1−γ
1− 1

ψ

. If θ = 1, then γ = 1/ψ and Kreps and Porteus preferences collapse to expected power

utility, which implies an agent who is indifferent to the timing of the resolution of the uncertainty

of the consumption path. With γ > 1/ψ, the agent prefers early resolution of uncertainty. For

γ < 1/ψ, the agent prefers late resolution of uncertainty. Epstein and Zin (1989) show that the

logarithm of the stochastic discount factor (SDF) implied by these preferences is given by

lnMt+1 = mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (13)

where ∆ct+1 = ln
(
Ct+1

Ct

)
is the log growth rate of aggregate consumption, and rc,t is the log return

of the asset that delivers aggregate consumption as dividends. This asset represents the returns on

a wealth portfolio. The Euler equation states that

Et [exp (mt+1 + ri,t+1)] = 1, (14)

where rc,t represents the log returns for the consumption-generating asset (rc,t). The risk-free rate,

which represents the returns on an asset that delivers a unit of consumption in the next period
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with certainty, is defined as

rft = ln

[
1

Et(Mt+1)

]
. (15)

3.2 Consumption dynamics under the physical measure

Our specification of consumption dynamics incorporates elements from Bansal and Yaron (2004),

Bekaert, Engstrom, and Ermolov (2014), and especially BTZ and Segal, Shaliastovich, and Yaron

(2015).

Fundamentally, we follow Bansal and Yaron (2004) in assuming that consumption growth has

a predictable component. We differ from Bansal and Yaron in assuming that the predictable

component is proportional to consumption growth’s upside and downside volatility components.

Thus, we are closer to Segal, Shaliastovich, and Yaron (2015) who maintain this structure in their

formulation of the long-run risk component. As a result, we have

∆ct+1 = µ0 + µ1Vu,t + µ2Vd,t + σc (εu,t+1 − εd,t+1) , (16)

where µ1, µ2 ∈ R, εu,t+1 and εd,t+1 are two mean-zero shocks that affect both the realized and

expected consumption growth.5 εu,t+1 represents upside shocks to consumption growth, and εd,t+1

stands for downside shocks. Following Bekaert, Engstrom, and Ermolov (2014) and Segal, Shalias-

tovich, and Yaron (2015), we assume that these shocks follow a demeaned Gamma distribution and

model them as

εi,t+1 = ε̃i,t+1 − Vi,t, i = {u, d}, (17)

where ε̃i,t+1 ∼ Γ(Vi,t, 1). These distributional assumptions imply that volatilities of upside and

downside shocks are time-varying and driven by shape parameters Vu,t and Vd,t. In particular, we

have that

V art[εi,t+1] = Vi,t, i = {u, d}. (18)

Naturally, the total conditional variance of consumption growth when εu,t+1 and εd,t+1 are condi-

5This assumption is for the sake of brevity. Violating this assumption adds to algebraic complexity but does not
affect our analytical findings.
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tionally independent is simply σ2
c (Vu,t + Vd,t).

As a result the sign and size of µ1 and µ2 matter in this context. With µ1 = µ2, we have a

stochastic volatility component in the conditional mean of the consumption growth process, similar

to the classic GARCH-in-Mean structure for modeling risk-return trade-off in equity returns. With

both slope parameters equal to zero, the model yields the BTZ unpredictable consumption growth.6

If |µ1| = |µ2|, with µ1 > 0 and µ2 < 0, we have Skewness-in-Mean, similar in spirit to the Feunou,

Jahan-Parvar, and Tédongap (2013) formulation for equity returns. With µ1 6= µ2, we have free

parameters that have an impact on loadings of risk factors on risky asset returns and the stochastic

discount factor. Intuitively, we expect µ1 > 0: A rise in upside volatility at time t implies higher

consumption growth at time t + 1, all else being equal. By the same logic, we intuitively expect

a negative-valued µ2, implying an expected fall in consumption growth following an uptick in

downside volatility – following bad economic outcomes, households curb their consumption. In

what follows, we buttress our intuition with theory and derive the analytical bounds on these

parameters that ensure consistency with our intuitions.

We observe that

lnEt exp (νεi,t+1) = f(ν)Vi,t, (19)

where f(ν) = −(ln(1− ν) + ν). Both Bekaert, Engstrom, and Ermolov (2014) and Segal, Shalias-

tovich, and Yaron (2015) use this compact functional form for the Gamma distribution cumulant.

It simply follows that f(ν) > 0, f ′′(ν) > 0, and f(ν) > f(−ν) for all ν > 0.

We assume that Vi,t follows a time-varying, square root process with time-varying volatility-

of-volatility, similar to the specification of the volatility process in Bollerslev, Tauchen, and Zhou

6A consumption-based asset pricing model with a representative agent endowed with Epstein and Zin (1989)
preferences and an unpredictable consumption growth process does not support the existence of distinct upside and
downside variance risk premia with the expected signs. In particular, we have found that such a setting always yields
a positive upside variance risk premium.
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(2009):

Vu,t+1 = αu + βuVu,t +
√
qu,tz

u
t+1, (20)

qu,t+1 = γu,0 + γu,1qu,t + ϕu
√
qu,tz

1
t+1, (21)

Vd,t+1 = αd + βdVd,t +
√
qd,tz

d
t+1, (22)

qd,t+1 = γd,0 + γd,1qd,t + ϕd
√
qd,tz

2
t+1, (23)

where zit are standard normal innovations, and i = {u, d, 1, 2}. The parameters must satisfy the

following restrictions: αu > 0, αd > 0, γu,0 > 0, γd,0 > 0, |βu| < 1, |βd| < 1, |γu,1| < 1, |γd,1| <

1, ϕu > 0, ϕd > 0. In addition, we assume that {zut } ,
{
zdt
}
,
{
z1
t

}
, and

{
z2
t

}
are i.i.d. ∼ N(0, 1) and

jointly independent from {εu,t} and {εd,t}.

The assumptions above yield time-varying uncertainty and asymmetry in consumption growth.

Through volatility-of-volatility processes qu,t and qd,t, the setup induces additional temporal varia-

tion in consumption growth. Temporal variation in the volatility-of-volatility process is necessary

for generating a sizeable variance risk premium. Asymmetry is needed to generate upside and

downside variance risk premia, as we show in what follows.

We solve the model following the methodology proposed by Bansal and Yaron (2004), Boller-

slev, Tauchen, and Zhou (2009), Segal, Shaliastovich, and Yaron (2015), and many others. We

consider that the logarithm of the wealth-consumption ratio wt or the price-consumption ratio

(pct = ln
(
Pt
Ct

)
) for the asset that pays the consumption endowment {Ct+i}∞i=1 is affine with respect

to state variables Vi,t and qi,t.

We then posit that the consumption-generating returns are approximately linear with respect

to the log price-consumption ratio, as popularized by Campbell and Shiller (1988). That is,

rc,t+1 = κ0 + κ1wt+1 − wt + ∆ct+1,

wt = A0 +A1Vu,t +A2Vd,t +A3qu,t +A4qd,t,

where κ0 and κ1 are log-linearization coefficients, and A0, A1, A2, A3, and A4 are factor-loading

coefficients to be determined. We solve for the consumption-generating asset returns, rc,t, using
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the Euler equation (14). Following standard arguments, we find the equilibrium values of coefficients

A0 to A4:

A1 = −
f

[
σc(1− γ)

]
+ (1− γ)µ1

θ(κ1βu − 1)
, (24)

A2 = −
f

[
− σc(1− γ)

]
+ (1− γ)µ2

θ(κ1βd − 1)
, (25)

A3 =
(1− κ1γu,1)−

√
(1− κ1γu,1)2 − θ2ϕ2

uκ
4
1A

2
1

θκ2
1ϕ

2
u

, (26)

A4 =
(1− κ1γd,1)−

√
(1− κ1γd,1)2 − θ2ϕ2

dκ
4
1A

2
2

θκ2
1ϕ

2
d

, (27)

A0 =
ln δ +

(
1− 1

ψ

)
µ0 + κ0 + κ1

(
αuA1 + αdA2 + γu,0A3 + γd,0A4

)
1− κ1

. (28)

It is easy to see that while A3 and A4 are negative-valued, the signs of A1 and A2 depend on

the signs and sizes of µ1 and µ2. We report the conditions that ensure A1 > 0 and A2 < 0 after

introducing the dynamics of the model under the risk-neutral measure.

Standard algebraic manipulations yield the following representations for the conditional equity

premium and innovations of the conditional equity premium:

rc,t+1 = ln δ +
µ0

ψ
+

[
µ1

ψ
− f [σc(1− γ)]

θ

]
Vu,t +

[
µ2

ψ
− f [−σc(1− γ)]

θ

]
Vd,t

+σc(εu,t+1 − εd,t+1) + (κ1γu,1 − 1)A3qu,t + (κ1γd,1 − 1)A4qd,t (29)

+κ1

[(
A1z

u
t+1 + ϕuA3z

1
t+1

)√
qu,t +

(
A2z

d
t+1 + ϕdA4z

2
t+1

)√
qd,t

]
,

rc,t+1 − Et(rc,t+1) = σc(εu,t+1 − εd,t+1)

+κ1

[(
A1z

u
t+1 + ϕuA3z

1
t+1

)√
qu,t +

(
A2z

d
t+1 + ϕdA4z

2
t+1

)√
qd,t

]
. (30)

It is immediately obvious that there is significant correspondence between our characterization

of risky returns and equation (10) of BTZ. The differences are driven by the different distribu-

tional assumptions regarding consumption growth shocks and the fact that we model upside and

downside uncertainty explicitly rather than targeting aggregate uncertainty, as in BTZ. Notice that[
−f [σc(1−γ)]

θ

]
<
[
−f [−σc(1−γ)]

θ

]
, and both terms are positive-valued. Thus, the impact of Vu,t and
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Vd,t on expected returns depends on µ1 and µ2. We subsequently provide a crisp characterization

of the equity premium to complete the analysis.

Because of differences in distributional assumptions, we do not follow BTZ’s or Bansal and

Yaron’s methods for deriving equity premium and various variance risk premia. The dynamics

specified so far are all under the physical measure, P. We need to compute the dynamics under the

risk-neutral measure, Q, to derive the formulae for upside and downside variance risk premia and

skewness risk premium.

3.3 Risk-neutral dynamics and the premia

We derive the risk-neutral distribution of all the shocks, εu,t+1, εd,t+1, zut+1, z
d
t+1, z

1
t+1, and z2

t+1.

Namely, we construct the characteristic functions of the shocks and exploit their salient properties

to derive the expectations under the risk-neutral measure. Thus, our computations yield exact

equity and risk premia measures, in contrast to the approximate values reported, for example, in

equation (15) of Bollerslev, Tauchen, and Zhou (2009) or in Drechsler and Yaron (2011). Details

of these derivations are available in the online Appendix.

The risk-neutral expectations of the upside and downside consumption shocks are

EQ
t [εu,t+1] = f ′(−γσc)Vu,t = − γσc

1 + γσc
Vu,t,

EQ
t [εd,t+1] = f ′(γσc)Vd,t =

γσc
1− γσc

Vd,t.

Using a similar methodology, we characterize the risk-neutral distributions of Gaussian shocks

zut+1, z
d
t+1, z

1
t+1, and z2

t+1 as:

zut+1 ∼ QN
(
(θ − 1)κ1A1

√
qu,t, 1

)
zdt+1 ∼ QN

(
(θ − 1)κ1A2

√
qd,t, 1

)
z1
t+1 ∼ QN

(
(θ − 1)κ1A3ϕu

√
qu,t, 1

)
z2
t+1 ∼ QN

(
(θ − 1)κ1A4ϕd

√
qd,t, 1

)
.
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Any premium – whether equity, variance risk, or skewness risk– can be defined as the difference

between the physical and risk-neutral expectations of processes. Hence, we commence computing

the premia of interest, starting with the equity risk premium:

ERPt ≡ Et [rc,t+1]− EQ
t [rc,t+1]

= κ1

(
Et [wt+1]− EQ

t [wt+1]
)

+ Et [∆ct+1]− EQ
t [∆ct+1] . (31)

It is clear from equation (31) that we need to compute both Et [∆ct+1] − EQ
t [∆ct+1] and

Et [wt+1]− EQ
t [wt+1]. It can be shown that

Et [∆ct+1]− EQ
t [∆ct+1] = γσ2

c

(
1

1 + γσc
Vu,t +

1

1− γσc
Vd,t

)
.

Similarly,

Et [wt+1]− EQ
t [wt+1] = A1

(
Et [Vu,t]− EQ

t [Vu,t]
)

+A2

(
Et [Vd,t]− EQ

t [Vd,t]
)

+A3

(
Et [qu,t]− EQ

t [qu,t]
)

+A4

(
Et [qd,t]− EQ

t [qd,t]
)
.

To compute Et [wt+1]−EQ
t [wt+1], we need the premium for each risk factor (Vu,t, Vd,t, qu,t and qd,t).

Straightforward algebra yields

Et [Vu,t]− EQ
t [Vu,t] = (1− θ)κ1A1qu,t,

Et [Vd,t]− EQ
t [Vd,t] = (1− θ)κ1A2qd,t,

Et [qu,t]− EQ
t [qu,t] = (1− θ)κ1A3ϕ

2
uqu,t,

Et [qd,t]− EQ
t [qd,t] = (1− θ)κ1A4ϕ

2
dqd,t.

Thus, it easily follows that the equity risk premium in our model is

ERPt ≡
γσ2

c

1 + γσc
Vu,t +

γσ2
c

1− γσc
Vd,t + (1− θ)κ2

1

(
A2

1 +A2
3ϕ

2
u

)
qu,t + (1− θ)κ2

1

(
A2

2 +A2
4ϕ

2
d

)
qd,t. (32)

This expression for the equity risk premium clearly shows that our model implies unequal loadings

for upside and downside volatility factors. The slope coefficients for volatility-of-volatility factors
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are also, in general, unequal. We require that σc <
1
γ to maintain finite factor loadings.

We proceed and derive the closed form expressions for the upside and downside variance risk

premia. From equation (30), we know that

σ2
r,t ≡ V art [rc,t+1]

= V art

[
σc(εu,t+1 − εd,t+1) + κ1

[
(A1z

u
t+1 + ϕuA3z
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√
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2
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]]
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1 +A2
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2
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)
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2 +A2
4ϕ

2
d

)
qd,t,

where upside and downside variances are defined as

(
σur,t
)2
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3ϕ

2
u

)
qu,t, (33)(

σdr,t

)2
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cVd,t + κ2
1

(
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2 +A2
4ϕ

2
d

)
qd,t. (34)

Using the definition of the variance risk premium, we compute the upside variance risk premium as

V RPUt ≡ EQ
t

[(
σur,t+1

)2]− Et
[(
σur,t+1

)2]
,

= (θ − 1)
(
σ2
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2
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)
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Similarly, we derive the following expression for the downside variance risk premium:

V RPDt ≡ EQ
t

[(
σdr,t+1

)2
]
− Et

[(
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]
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(
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2
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As discussed before, we expect that V RPUt < 0 and V RPDt > 0; hence, it follows that

σ2
cκ1A1 + κ3

1

(
A2

1 +A2
3ϕ

2
u

)
A3ϕ

2
u > 0, (37)

σ2
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2
d

)
A4ϕ

2
d < 0. (38)

Since A4 < 0, A2 < 0 is a sufficient condition for σ2
cκ1A2 + κ3

1

(
A2

2 +A2
4ϕ

2
d

)
A4ϕ

2
d < 0. Moreover,

A2 < 0⇔ µ2 <

f

[
−σc(1−γ)

]
γ−1 . In particular, µ2 ≤ 0⇒ A2 < 0⇒ V RP dt > 0. Since A3 < 0, A1 > 0
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is a necessary condition for σ2
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Both AU1 and AL1 are positive. In addition, it is easy to see that

AL1 < A1 < AU1 ⇔ AL1 < −
f

[
σc(1− γ)

]
+ (1− γ)µ1

θ(κ1βu − 1)
< AU1 ,

AL1 < A1 < AU1 ⇔ µL1 < µ1 < µU1 ,

with

µL1 =

f

[
σc(1− γ)

]
+ θ(κ1βu − 1)AL1

γ − 1
> 0,

µU1 =

f

[
σc(1− γ)

]
+ θ(κ1βu − 1)AU1

γ − 1
> 0,

which implies that

µ1 > 0.

Consequently, confirming our earlier intuition, we find that for the upside variance risk premium

to be negative, expected consumption growth must increase with the upside variance. Similarly, a

non-positive relation between expected consumption growth and the downside variance is sufficient

to induce a positive downside variance risk premium.

Next, we derive the closed-form expression for the skewness risk premium. Following Feunou,

Jahan-Parvar, and Tédongap (2013, 2014), we define the skewness as

skr,t =
(
σur,t
)2 − (σdr,t)2

.
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As a result, we calculate the skewness risk premium as

SRPt ≡ V RP ut − V RP dt
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Based on our theoretical findings so far, it is easy to see that given θ < 0 and conditions (37) and

(38) – which we just verified – the skewness risk premium is negative-valued, in compliance with our

earlier conjecture. Finally, since equation (32) implies that the equity risk premium loads positively

on both qu,t and qd,t, and because V RPUt < 0 is negatively proportional to qu,t and V RPDt > 0 is

positively proportional to qd,t, the equity risk premium loads positively on the downside variance

risk premium and negatively on the upside variance risk premium. At this point, we have fully

characterized the equity risk premium, upside and downside variance risk premia, the skewness risk

premium, and, by extension, risky asset returns.

In summary, we show that first, our intuitions are naturally aligned with a simple consumption-

based asset pricing model. Second, the assumptions needed to support these intuitions are mild – we

require distinct and time-varying upside and downside shocks to the consumption growth process,

a predictable component in conditional consumption growth proportional to these up and down

shock variances, and an affine loading on risk factors. These are commonly maintained assumptions

in the variance risk premium literature. Given these assumptions, we show that the upside variance

risk premium is smaller in absolute terms than the downside variance risk premium, that upside

and downside variance risk premia have opposite signs, and that the skewness risk premium is a

negative-valued quantity. We now evaluate whether these predictions hold empirically.

4 Data

In this study, we adapt BTZ’s methodology and use modified measures introduced in Section 2.3.

As shown previously, these measures also lead to the construction of SRP as a byproduct. We thus

need suitable data to construct excess returns, realized semi-variances (RV U/D), and risk-neutral

semi-variances (IV U/D). In what follows, we discuss the raw data and methods we use to construct
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our empirical measures. Throughout the study, we set κ = 0.

4.1 Excess returns

We follow the literature in constructing market returns. Our empirical analysis is based on the S&P

500 composite index as a proxy for the aggregate market portfolio. Since our study requires reliable

high-frequency data and option-implied volatilities, our sample includes data from September 1996

to December 2010. We compute the excess returns by subtracting 3-month treasury bill rates from

log-differences in the S&P 500 composite index, sampled at the end of each month.

We present the summary statistics of equity returns in Panel A of Table 1. We report annualized

mean, median, and standard deviations of returns in percentages. The table also reports monthly

skewness, excess kurtosis, and the first-order autoregressive coefficient (AR(1)) for the S&P 500

monthly excess returns.

4.2 High-frequency data and realized variance components

We use daily close-to-close S&P 500 returns, realized variances data computed from five-minute

intraday S&P 500 prices and 3-month treasury bill rates for the period from September 1996 to

December 2010, which yields a total of 3,608 daily observations. The data are available through

the Institute of Financial Markets.

To construct the daily RV U/Ds series, we use intraday S&P 500 data. We sum the five-minute

squared negative returns for the downside realized variance (RV D) and the five-minute squared

positive returns for the upside realized variance (RV U ). We next add the daily squared overnight

negative returns to the downside semi-variance, and the daily squared overnight positive returns

to the upside realized variance. The overnight returns are computed for 4:00 pm to 9:30 am. The

total realized variance is obtained by adding the downside and the upside realized variances. For

the three series, we use a multiplicative scaling of the average total realized variance series to match

the unconditional variance of S&P 500 returns.7

Our analysis is based on expectations of volatility under both physical and risk-neutral measures.

Following our discussion in Section 2.3.1, to obtain expectations of realized volatility that are not

7Hansen and Lunde (2006) discuss various approaches to adjusting open-to-close RV s.
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contaminated by forward bias or the use of contemporaneous data, we perform an out-of-sample

forecasting exercise to predict the three realized variances. Forecast horizons range between 1 and

24 months ahead. Our reported results are based on the random walk forecasts of the realized

volatility and its components.8

4.3 Options data and risk-neutral variances

Since our study hinges on decomposition of the variance process into upside and downside semi-

variances, we cannot follow BTZ by using V IX as a measure of risk-neutral volatility. As a result,

we construct our own measures of risk-neutral upside and downside variances (IV U/D). We use

two sources of data to construct upside and downside IV measures. First, we obtain daily data of

European-style put and call options on the S&P 500 index from OptionMetrics Ivy DB. We then

match these options data with return series on the underlying S&P 500 index and risk-free rates

downloaded from Center for Research in Security Prices (CRSP) files.

For each day in the sample period, beginning in September 1996 and ending in December 2010,

we sort call and put options data by maturity and strike price. We construct option prices by

averaging the bid and ask quotes for each contract. To obtain consistent risk-neutral moments, we

preprocess the data by applying the same filters as in Chang, Christoffersen, and Jacobs (2013).9

We only consider out-of-the-money (OTM) contracts. Such contracts are the most traded, and thus

the most liquid, options. Thus, we discard call options with moneyness levels – the ratios of strike

prices to the underlying asset price – lower than 97% (S/S < 0.97). Similarly, we discard put options

with moneyness levels greater than 103% (S/S > 1.03). Raw option data contain discontinuous

strike prices. Therefore, on each day and for any given maturity, we interpolate implied volatilities

over a finely discretized moneyness domain (S/S), using a cubic spline to obtain a dense set of

implied volatilities. We restrict the interpolation procedure to days that have at least two OTM

call prices and two OTM put prices available.

For out-of-range moneyness levels (below or above the observed moneyness levels in the market),

we extrapolate the implied volatility of the lowest or highest available strike price. We perform

8We explored the empirical implications of using risk premium measures constructed from HAR and M-HAR
forecasts of the realized volatility and components. HAR forecasts are based on the Corsi (2009) method. These
HAR results are similar to the random walk. To save space, we do not report them.

9That is, we discard options with zero bids, those with average quotes less than $3/8, and those whose quotes
violate common no-arbitrage restrictions.
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this interpolation-extrapolation procedure to obtain a fine grid of 1,000 implied volatilities for

moneyness levels between 0.01% and 300%. We then map these implied volatilities into call and

put prices. Call prices are constructed for moneyness levels larger than 100% (S/S > 1), whereas

put prices are generated from moneyness levels smaller than 100% (S/S < 1). We approximate the

integrals using a recursive adaptive Lobatto quadrature. Finally, for any given future horizon of

interest (1 to 24 months), we employ a linear interpolation to compute the corresponding moments,

and rely on Eq. (6) and (7) to compute the upside and downside risk-neutral variance measures.

We obtain 3,860 daily observations of upside/downside risk-neutral variances for maturities from 1

to 24 months.

An important issue in the construction of risk-neutral measures is the respective density of

put and call contracts, especially for deep OTM contracts. Explicitly, precise computation of

risk-neutral volatility components hinges on comparable numbers of OTM put and call contracts

in longer-horizon maturities (18 to 24 months). Our data set provides a rich environment that

supports this data construction exercise. As is clear from Table 2, while there are more OTM

put contracts than OTM call contracts by any of the three measures used – moneyness, maturity,

or VIX level – the respective numbers of contracts are comparable. In addition, Figure 1 shows

that the growth of these contracts has continued unabated. We conclude that our construction

of risk-neutral volatility components is not subject to bias because of the sparsity of data in deep

OTM contracts.

Our computations are based on decompiling the variance risk premium based on realized returns

to be above or below a cutoff point, κ = 0. However, as mentioned earlier, κ is not directly applicable

to the risk-neutral probability space. Thus, we make the appropriate transformation to use our

cutoff point by letting rf represent the instantaneous risk-free rate, and denote time to maturity by

h. Then, for the market price index at time t, we define the applicable cutoff point as b = Ft exp (κ)

using the forward price Ft = St exp
(
rfh
)
. We then use b to compute the risk-neutral upside and

downside variances, which can thus be viewed as a model-free corridor of risk-neutral volatilities as

discussed in Andersen, Bondarenko, and Gonzalez-Perez (2015), Andersen and Bondarenko (2007),

and Carr and Madan (1999), among others.

Panel B of Table 1 reports the summary statistics of risk-neutral volatility measures. As ex-
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pected, these series are persistent – AR(1) parameters are all above 0.60 – and demonstrate signif-

icant skewness and excess kurtosis. It is also clear that the main factor behind volatility behavior

is the downside variance.

Figure 2 provides a stark demonstration of this point. It is immediately obvious that the

contribution of upside variance to risk-neutral volatility is considerably less than that of downside

variance. In fact, for most maturities, the median upside variance is about 50 to 80% smaller

than the median downside variance. As time to maturity increases – a good measure for future

expectations – the size of the median IV U decreases. Notice that the size of this quantity is never

as large as the median IV D. The size of median IV D increases uniformly over time to maturity, is

close to median risk-neutral volatility values at each corresponding point in time to maturity, and

demonstrates the same pattern of median risk-neutral volatility.

Thus, compared to its upside counterpart, the downside risk-neutral variance is clearly the

main component of the risk-neutral volatility. We buttress this claim in the remainder of the paper

through empirical analysis.

5 Empirical Results

In this section, we provide economic intuition and empirical support for our proposed decomposition

of the variance risk premium. First, based on a sound financial rationale, we intuitively describe the

expected behavior of the components of the variance risk premium and the skewness risk premium.

We also present some empirical facts about the size and variability of these components. Since

our approach is nonparametric, these facts stand as guidelines for realistic models (reduced-form

and general equilibrium). Second, we provide an extensive investigation of the predictability of the

equity premium, based on the variance premium and its components as well as the skewness risk

premium. We empirically demonstrate the contribution of downside risk and skewness risk premia

and characterize the sources of V RP predictability documented by BTZ. Third, we provide a

comprehensive robustness study. Fourth, we document the out-of-sample forecast ability properties

of our proposed predictors – downside variance risk and skewness risk premia. Subsequently, we

establish that decomposing the variance risk premium into upside and downside variance risk

premia reveals that, while V RP components are positively correlated with several macroeconomic
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and financial indicators, the level of spanning across these components differs. Finally, we track the

reaction of variance risk premium components to macroeconomic and financial announcements. In

particular, we are interested in uncovering the relationship between announcements that reduce or

resolve uncertainty surrounding monetary or fiscal policy.

5.1 Description of the variance risk premium components

As mentioned earlier, we view the V RP as the premium a market participant is willing to pay to

hedge against variations in future realized volatilities. It is expected to be positive, as rationalized

within the general equilibrium model of BTZ, where it is shown to be in general positive and

proportional to the volatility-of-volatility. We confirm these findings by reporting the summary

statistics for the V RP in Table 1. We also plot the time series of the V RP , its components, and

the SRP in Figure 3. We present measures based on random walk and univariate HAR forecasts

of realized volatility and its components under the physical measure. Construction of quantities

based on multivariate HAR (M-HAR) are virtually identical to those obtained from univariate

HAR.10 As mentioned earlier, we only report findings based on random walk forecasts of realized

volatility. This approach allows us to save space, since the results obtained from the random walk or

HAR methods are quite similar. The series plotted in Figure 3 demonstrate that while HAR-based

quantities are more volatile than time series based on the random walk, the difference is mainly

due to the magnitude of fluctuations, but not in the fluctuations themselves. This observation may

explain the similarities in empirical findings. As expected, from 1996 to 2010, we can see that the

variance risk premium is positive most of the time and remains high in uncertain episodes.

Similarly, we argued in Section 3 that we intuitively expect negative-valued V RPU and positive-

valued V RPD. We also showed that, under mild assumptions, these expectations about V RP

components are supported by our theoretical model. Table 1 clearly illustrates these intuitions, as

the average V RPU is about −2.60%. Moreover, Figure 3 confirms that V RPU is usually negative

through our sample period. The same table reports average V RPD of roughly 5.21%, and in Figure

3, we observe that V RPD is usually positive.

Building on the same intuition and methodology, we show that the sign of the SRP , which

10HAR and M-HAR forecasts of realized volatility and its components are based on the methodology of Corsi
(2009).
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stems from the expected behavior of the two components of the V RP , is negative. Indeed, Table

1 reports that the average skewness risk premium is −7.8%. In Figure 3, we clearly observe that

SRP is generally negative-valued.

Table 1 also reveals highly persistent, negatively skewed, and fat-tailed empirical distributions

for (down/upside) variance and skewness risk premia. Nonetheless, upside variance and skewness

risk premia appear more left-skewed and leptokurtic as compared to (total) variance and downside

variance risk premia.

5.2 Predictability of the equity premium

BTZ derive a theoretical model where the V RP emerges as the main driver of time variation in the

equity premium. They show both theoretically and empirically that a higher V RP predicts higher

future excess returns. Intuitively, the variance risk premium proxies the premium associated with

the volatility-of-volatility, which not only reflects how future random returns vary but also assesses

fluctuations in the tail thickness of future returns distribution.

Because the V RP sums downside and upside variance risk premia, BTZ’s framework entails

imposing the same coefficient on both (upside and downside) components of the V RP when they

are jointly included in a predictive regression of excess returns. However, such a constraint seems

very restrictive, given the asymmetric views of investors on good uncertainty – proneness to upward

variability – versus bad uncertainty – aversion to downward variability. Sections 3 and 5.1 document

that both V RPD and V RPU have intrinsically different features.

It is important to point out that by highlighting the disparities between upside and downside

variance risk premia, and similar to Bollerslev and Todorov (2011) and Bollerslev, Todorov, and

Xu (2015), our study intends to push the findings of BTZ further. BTZ’s study is undertaken to

rationalize the importance of the variance risk premium in explaining the dynamics of the equity

premium. Our goal is to build on BTZ’s framework, showing that introducing asymmetry in the

V RP analysis provides additional flexibility to the trade-off between return and second-moment

risk premia. Ultimately, our approach is intended to strengthen the concept behind the variance

risk premium of BTZ.

Our results are based on a simple linear regression of k-step-ahead cumulative S&P 500 excess
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returns on values of a set of predictors that include the V RP , V RPU , V RPD, and SRP . Following

the results of Ang and Bekaert (2007), reported Student’s t-statistics are based on heteroscedasticity

and serial correlation consistent standard errors that explicitly take account of the overlap in the

regressions, as advocated by Hodrick (1992). The model used for our analysis is simply

ret→t+k = β0 + β1xt(h) + εt→t+k, (40)

where ret→t+k is the cumulative excess returns between time t and t+k, xt(h) is one of the predictors

discussed in Sections 2.3 and 2.4 at time t, h is the construction horizon of xt(h), and εt→t+k is a

zero-mean error term. We focus our discussion on the significance of the estimated slope coefficients

(β1s), determined by the robust Student-t statistics. We report the predictive ability of regressions,

measured by the corresponding adjusted R2s. For highly persistent predictor variables, the R2s for

the overlapping multi-period return regressions must be interpreted with caution, as noted by BTZ

and Jacquier and Okou (2014), among others.

We decompose the contribution of our predictors to show that (1) predictability results docu-

mented by BTZ are driven by the downside variance risk premium, (2) predictability results are

mainly driven by risk-neutral expectations – thus, risk-neutral measures contribute more than re-

alized measures – and (3) the contribution of the skewness risk premium increases as a function of

both the predictability horizon (k) and the aggregation or maturity horizon (h).

Our empirical findings, presented in Tables 3 to 6, support all three claims. In Panel A of Table

3, we show that the two main regularities uncovered by BTZ, the hump-shaped increase in robust

Student-t statistics and adjusted R2s reaching their maximum at k = 3 (one quarter ahead), are

present in the data. Both regularities are visible in the upper-left-hand-side plots in Figures 4 and

5. These effects, however, weaken as the aggregation horizon (h) increases from one month to three

months or more; the predictability pattern weakens and then largely disappears for h > 6.

Panel B of Table 3 reports the predictability results based on using V RPD as the predictor.

A visual representation of these results is available in the upper-right-hand-side plots in Figures 4

and 5. It is immediately obvious that both regularities observed in the VRP predictive regressions

are preserved. We observe the hump-shaped pattern for Student’s t-statistics and the adjusted R2s

reaching their maximum between k = 3 or k = 6 months. Moreover, these results are more robust
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to the aggregation horizon of the predictor. We notice that, in contrast to the V RP results – where

predictability is only present for monthly or quarterly constructed risk premia – the V RPD results

are largely robust to aggregation horizons; the slope parameters are statistically different from

zero even for annually constructed downside variance risk premia (h = 12). Moreover, the V RPD

results yield higher adjusted R2s compared with the V RP regressions at similar prediction horizons,

an observation that we interpret as the superior ability of the V RPD to explain the variation in

aggregate excess returns. Last, but not least, we notice a gradual shift in prediction results from

the familiar one-quarter-ahead peak of predictability documented by BTZ to 9-to-12-months-ahead

peaks, once we increase the aggregation horizon h. Based on these results, we infer that the V RPD

is the likely candidate to explain the predictive power of V RP , documented by BTZ.

Our results for predictability based on the V RPU , reported in Panel C of Table 3 and the

two lower left-hand-side plots in Figures 4 and 5, are weak. The hump-shaped pattern in both

robust Student’s t-statistics and in adjusted R2s, while present, is significantly weaker than the

results reported by BTZ. Once we increase the aggregation horizon, h, these results are lost. We

conclude that bearing upside variance risk does not appear to be an important contributor to the

equity premium and, hence, is not a good predictor of this quantity. In addition, we interpret these

findings as a low contribution of the V RPU to overall V RP .

We observe a new set of interesting regularities when we use the SRP as our predictor. These

results are reported in Panel D of Table 3 and the bottom-right-hand-side plots in Figures 4 and

5. It is immediately clear that the SRP displays a stronger predictive power at longer horizons

than the V RP . For monthly excess returns, the SRP slope coefficient is statistically different from

zero at prediction horizons of 6 months ahead or longer. At k = 6, the adjusted R2 of the SRP is

comparable in size with that of the V RP (2.30% against 3.65%, respectively) and is strictly greater

thereafter. At k = 6, the adjusted R2 for the monthly excess return regression based on the SRP is

smaller than that of the V RPD. However, their sizes are comparable at k = 9 and k = 12 months

ahead. Both trends strengthen as we consider higher aggregation levels for excess returns. At the

semi-annual construction level (h = 6), the SRP already has more predictive power than both the

V RP and V RPD at a quarter-ahead prediction horizon. The increase in adjusted R2s of the SRP

is not monotonic in the construction horizon level. We can detect a maximum at a roughly three-
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quarters-ahead prediction window for semi-annual and annually constructed SRP . This observation

implies that the SRP is the intermediate link between one-quarter-ahead predictability using the

V RP uncovered by BTZ and the long-term predictors such as the price-dividend ratio, dividend

yield, or consumption-wealth ratio of Lettau and Ludvigson (2001). Given the generally unfavorable

findings of Goyal and Welch (2008) regarding long-term predictors of equity premium, our findings

regarding the predictive power of the SRP are particularly encouraging. As shown in Section

5.4, the SRP and V RPD pass the out-of-sample challenge posed by Goyal and Welch (2008).

We conclude that the predictability of cumulative excess returns by the SRP increases in both

prediction horizon, k, and aggregation horizon, h, for the SRP .

At this point, it is natural to inquire about including both V RP components in a predictive

regression. We present the empirical evidence from this estimation in Panel A of Table 6. After

inclusion of the V RPU and V RPD in the same regression, the statistical significance of the V RPU ’s

slope parameters are broadly lost. We also notice a sign change in Student’s t-statistics associated

with the estimated slope parameters of the V RPU and V RPD. This observation is not surprising.

As we show in our equilibrium model, and also intuitively, risk-averse investors like variability in

positive outcomes of returns but dislike it in negative outcomes. Hence, in a joint regression, we

expect the coefficient of V RPD to be positive and that of V RPU to be negative. This observation,

as documented in Feunou, Jahan-Parvar, and Tédongap (2013), lends additional credibility to the

role of the SRP as a predictor of aggregated excess returns.11

We claim that the patterns discussed earlier, and, hence, the predictive power of the V RP ,

V RPD, and SRP are rooted in expectations. That is, the driving force behind our results, as well

as those of BTZ, are expected risk-neutral measures of the volatility components. To show the

empirical findings supporting our claim, we run predictive regressions using equation (40). Instead

of using the “premia” employed so far, we use realized and risk-neutral measures of variances, up-

and downside variances, and skewness for xt, based on our discussions in Section 2, respectively.

Our empirical findings using risk-neutral volatility measures are available in Table 4. In Panel

A, we report the results of running a predictive regression when the predictor is the risk-neutral

11Briefly, based on arguments similar to those advanced by Feunou, Jahan-Parvar, and Tédongap (2013), we expect
estimated parameters of the V RPU and V RPD to have opposite signs, and be statistically “close.” As such, they
imply that the SRP is the predictor we should have included instead of these V RP components.
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variance obtained from direct application of the Andersen and Bondarenko (2007) method. It is

clear that the estimated slope parameters are statistically different from zero for k ≥ 3 at most

construction horizons, h. The reported adjusted R2s also imply that the predictive regressions have

explanatory power for aggregate excess return variations at k ≥ 3. The same patterns are discernible

for risk-neutral downside and upside variances (Panels B and C) and risk-neutral skewness (Panel

D). Adjusted R2s reported are lower than those reported in Table 3, and these measures of variation

yield statistically significant slope parameters at longer prediction horizons than what we observe

for the V RP and its components. Taken together, these observations imply that using the premium

(rather than the risk-neutral variation) yields better predictions.

However, in comparison with realized (physical) variation measures, risk-neutral measures yield

better results. The analysis using realized variation measures is available in Table 5. It is obvious

that, by themselves, the realized measures do not yield reasonable predictability, an observation

corroborated by the empirical findings of Bekaert, Engstrom, and Ermolov (2014). The majority

of the estimated slope parameters are statistically indistinguishable from zero, and the adjusted

R2s are low. Inclusion of both risk-neutral or realized variance components does not change our

findings dramatically, as demonstrated in Panels B and C of Table 6.

We observe in Panel D of Table 5 and in Panel C of Table 6 statistical significance and notable

adjusted R2s for realized skewness in long prediction horizons (k ≥ 6) and for construction horizons

(h ≥ 6). By itself (as opposed to the SRP studied earlier), the realized skewness lacks predictive

power in low construction or prediction horizons. Based on our results presented in Table 3, we

argue that the SRP (and not the realized skewness) is a more suitable predictor, as it overcomes

these two shortcomings.

A visual representation of the prediction power of risk-neutral and physical variation components

is available in Figure 6. Given the weak performance of realized measures, it is easy to conclude

that realized variation plays a secondary role to risk-neutral variation measures in driving the

predictability results documented by BTZ or in this study. However, we need both elements in

the construction of the variance or skewness risk premia, since realized or risk-neutral measures

individually possess inferior prediction power.
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5.3 Robustness

We perform extensive robustness exercises to document the prediction power of the V RPD and

SRP for aggregate excess returns in the presence of traditional predictor variables. The goal is

to highlight the contribution of our proposed variables in a wider empirical context. Simply put,

we observe that the predictive power does not disappear when we include other pricing variables,

implying that the V RPD and SRP are not simply proxies for other well-known pricing ratios.

Following BTZ and Feunou et al. (2014), among many others, we include equity pricing measures

such as the log price-dividend ratio (log(pt/dt)), lagged log price-dividend ratio (log(pt−1/dt)), and

log price-earnings ratio (log(pt/et)); yield and spread measures such as term spread (tmst), the

difference between 10-year U.S. Treasury Bond yields and 3-month U.S. Treasury Bill yields; default

spread (dfst), defined as the difference between BBB and AAA corporate bond yields; CPI inflation

(inflt); and, finally, Kelly and Pruitt (2013) partial least-squares-based, cross-sectional in-sample

and out-of-sample predictors (kpist and kpost, respectively).

We consider two periods for our analysis: our full sample – September 1996 to December 2010

– and a pre-Great Recession sample, September 1996 to December 2007. The latter ends at the

same point in time as the BTZ sample. We report our empirical findings in Tables 7 to 10. These

results are based on semi-annually aggregated excess returns and estimated for the one-month-

ahead prediction horizon.12 In this robustness study, we scale the cumulative excess returns; we

use ret→t+6/6 as the predicted value and regress it on a one-month lagged predictive variable.

Full-sample simple predictive regression results are available in Table 7. Among V RP com-

ponents, only the downside variance risk premium (dvrpt) and the skewness risk premium (srpt)

have slope parameters that are statistically different from zero and have adjusted R2s comparable

in magnitude with other pricing variables. Once we use dvrpt along with other pricing variables,

we observe the following regularities in Table 8, which reports the joint multivariate regression

results. First, the estimated slope parameter for dvrpt is statistically different from zero in all

cases, except when we include srpt. This result is not surprising, since srpt and dvrpt are linearly

dependent. Second, these regressions yield adjusted R2s that range between 3.10% (for dvrpt and

12A complete set of robustness checks, including monthly, quarterly, and annually aggregated excess returns results,
are available in an online Appendix.
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tmst, in line with findings of BTZ that report weak predictability for tmst) to 25.71% (for dvrpt

and inflt).
13 The downside variance risk premium in conjunction with the variance risk premium

or upside variance risk premium remains statistically significant and yields adjusted R2s that are

in the 7% neighborhood.

We obtain adjusted R2s that are decidedly lower than those reported by BTZ for quarterly and

annually aggregated multivariate regressions. These differences are driven by the inclusion of the

Great Recession period data in our full sample. To illustrate this point, we repeat our estimation

with the data set ending in December 2007. Simple predictive regression results based on this

data are available in Table 9. We immediately observe that the exclusion of the Great Recession

period data improves even the univariate predictive regression adjusted R2s across the board.

The estimated slope parameters are also closer to BTZ estimates and are generally statistically

significant.

In Table 10, we report multivariate regression results, based on 1996 – 2007 data. We notice

that once dvrpt is included in the regression model, the variance risk premium, upside variance risk

premium, and skewness risk premium are no longer statistically significant. Other pricing variables

– except for term spread, default spread, and inflation – yield slope parameters that are statistically

significant. Thus, inflation seems to lack prediction power in this sub-sample. We do not observe

statistically insignificant slope parameters for the downside variance risk premium except when we

include vrpt. Across the board, adjusted R2s are high in this sub-sample.

5.4 Out-of-sample analysis

Our goal in this section is to compare the forecast ability of downside variance and skewness risk

premia with common financial and macroeconomic variables used in equity premium predictability

exercises.

To further assess the ability of downside variance risk and skewness risk premia to forecast

excess returns, we follow the literature on predictive accuracy tests. We assume a benchmark model

13The dynamics of inflation during the Great Recession period mimic the behavior of our variance risk premia.
Gilchrist et al. (2014) meticulously study the behavior of this variable in the 2007 – 2009 period. According to their
study, both full and matched PPI inflation in their model display an aggregate drop in 2008 and 2009, while the
reaction of financially sound and weak firms are asymmetric, with the former lowering prices and the latter raising
prices in this period. Thus, the predictive power of this variable, given the inherent asymmetric responses, is not
surprising.
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(referred to as B) and a competitor model (referred to as C) in order to compare their predictive

power for a given sample {y}Tt=1. To generate k-period out-of-sample predictions yt+k|t for yt+k,

we split the total sample of T observations into in-sample and out-of-sample portions, where the

first 1, . . . , tR in-sample observations are used to obtain the initial set of regression estimates. The

out-of-sample observations span the last portion of the total sample t = tR + 1, . . . , T and are used

for forecast evaluation. The models are recursively estimated with the last in-sample observation

ranging from t = tR to t = T −k, at each t forecasting t+k. That is, we use time t data to forecast

the k-step-ahead value. In our analysis, we use half of the total sample for the initial in-sample

estimation, that is tR = bT2 c, where bχc denotes the largest integer that is less than or equal to

χ. In order to generate subsequent sets of forecasts, we employ a recursive scheme (expanding

window), even though the in-sample period can be fixed or rolling. The forecast errors from the

two models are

eBt+k|t = yt+k − yBt+k|t,

eCt+k|t = yt+k − yCt+k|t,

where t = tR, . . . , T − k. Thus, we obtain two sets of t = T − tR − k + 1 recursive forecast errors.

The accuracy of each forecast is measured by a loss function L(•). Among the popular loss

functions are the squared error loss L(et+k|t) = (et+k|t)
2 and the absolute error loss L(et+k|t) =

|et+k|t|. Let dBCt = L(et+k|t)
B − L(et+k|t)

C be the error loss differential between the benchmark

and competitor models, and denote the expectation operator by E(•). To gauge whether a model

yields better forecasts than an alternative specification, a two-sided test may be run, where the

null hypothesis is that the “two models have the same forecast accuracy” against the alternative

hypothesis that the “two models have different forecast accuracy.” Formally:

H0 : E(dBCt ) = 0 vs. HA : E(dBCt ) 6= 0.

Alternatively, a one-sided test may be considered, where the null hypothesis is that “model C does

not improve the forecast accuracy compared to model B” against the alternative hypothesis that
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“model C improves the forecast accuracy compared to model B.” Formally:

H0 : E(dBCt ) ≤ 0 vs. HA : E(dBCt ) > 0.

In the context of our study, we apply forecast accuracy tests to non-nested models. The in-

novation of our analysis is to introduce two new predictors, the V RPD and SRP . We compare

the benchmark model B, which includes our proposed predictors, and the competitor C, which

contains a traditional predictive variable such as the price-dividend ratio, dividend yield, or price-

earnings ratio. Failure to reject the null leads us to conclude that the classical predictor does not

yield more accurate forecasts than our proposed predictor. Diebold and Mariano (1995) and West

(1996) provide further inference results on this class of forecast accuracy tests.

Following the influential study of Inoue and Kilian (2004), we first investigate the in-sample

fit of the data by our proposed predictors – the V RPD and SRP – and traditional predictors

studied in the literature. Inoue and Kilian (2004) convincingly argue that to make a dependable

out-of-sample inference, we need reasonable in-sample fit. The second column of Table 11 reports

adjusted R2s for monthly, quarterly, and semi-annually aggregated excess returns regressed on our

proposed and traditional predictors. These are in-sample results and no forecasting is performed.

We notice that, first, for all predictors, adjusted R2s improve with the prediction horizon. Second,

we notice that for all predictors except Kelly and Pruitt’s 2013 out-of-sample cross-sectional book-

to-market index, adjusted R2s are reasonably high. The Kelly-Pruitt index is by construction an

out-of-sample predictor. Thus, the seemingly poor in-sample performance is not a cause for concern

for us.

Once we establish the in-sample prediction power, we move to investigate out-of-sample forecast

ability. Not surprisingly, out-of-sample adjusted R2s – reported in the third column of Table 11 –

are much smaller than their in-sample counterparts, with the exception of the Kelly-Pruitt index.

This observation may be due to inclusion of data from the 2007 – 2009 Great Recession period in the

out-of-sample exercise. As documented in Section 5.3, most predictors lose significant prediction

power once data from this period is included in the analysis.

Our task is to investigate the relative forecast performance of our proposed downside and
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skewness risk premia measures against other well-known predictors. To this end, we implement

the Diebold and Mariano (1995) (henceforth, DM) tests of prediction accuracy. The results of

performing out-of-sample forecast accuracy tests are available in the fourth and sixth columns of

Table 11, where we report DM test statistics, and in the fifth and seventh columns of the same

table, where we report the associated p-values. We cannot reject the null of equal or superior

forecast accuracy when the benchmark is the downside variance (or skewness) risk premium and

the alternative model contains one of the traditional predictors, since p-values are greater than the

conventional 5% test size. We note the following important considerations. First, these results

are based on the DM forecast accuracy test for non-nested models. Our findings are robust for

all the horizons we consider in our analysis (1, 3, and 6 months). Second, the null hypothesis

states that the mean squared forecast error of the alternative model is larger than or equal to that

of the benchmark model. This is a one-sided test, and negative DM statistics indicate that the

alternative model performed worse than the benchmark model. Third, we interpret the p-values

cautiously, following Boyer, Jacquier, and van Norden (2012). They point out that p-values are

hard to interpret because of the Lindley-Smith paradox, and, in addition, they need to be adjusted.

To be precise, we produce multiple p-values in this analysis. Using unadjusted p-values in such

an environment overstates the evidence against the null. Thus, following Boyer, Jacquier, and van

Norden (2012), we apply a Bonferroni adjustment to the generated p-values. Our reported findings

are, therefore, suitably conservative and reliable. Conventional competing variables such as the

variance risk premium, price-dividend ratio, and price-earnings ratio have lower forecast accuracy

than our proposed measures.

In summary, the predictive power of the downside variance risk premium and skewness risk

premium are not a figment of a good in-sample fit of the data. In comparison with other pricing

ratios and variables, our proposed measures have at least similar (and often superior) out-of-sample

accuracy.

5.5 Links to macroeconomic variables, financial indicators, and events

Following Ludvigson and Ng (2009), we survey the correlations of variance, upside variance, down-

side variance, and skewness risk premia with 124 financial and economic indicators. We carry out

this exercise to document the contemporaneous correlation of variance and skewness risk premia
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with well-known macroeconomic and financial variables. The V RP and its components are pre-

dictors of risk in financial markets; that is, an increase in V RP or V RPD implies expectations of

elevated risk levels in the future and, hence, compensation for bearing that risk. Fama and French

(1989) document the counter-cyclical behavior of the equity premium: Investors demand a higher

equity premium in bad times. It follows that V RP should be mildly pro-cyclical and positively

correlated with cyclical macroeconomic and financial variables. The relationship between SRP

and macroeconomic and financial factors is an empirically open issue that we address in this study.

Finally, we are interested in the spanning of V RP , its components, and SRP by macroeconomic

and financial factors. Briefly, low levels of spanning imply that the information content in the risk

premium measures is nearly orthogonal to the information content of common financial or economic

quantities.

The analysis and results here are based on a contemporaneous univariate regression, where the

dependent variable is one of the variance or skewness risk premium measures, and the independent

variable is one of the financial or economic variables.14 Table 12 reports the 10 variables that

yield the highest R2s (wide-ranging above the 10% threshold) for each (semi-)variance risk pre-

mium component, and their respective slope parameter Student-t statistics that suggest significant

relationships at conventional levels.

The estimated slope parameters for V RP and its components imply positive correlations with

the mainly pro-cyclical macroeconomic variables listed in the table. Overall, payroll measures and

industrial production indices exhibit strong contemporaneous links with V RP and its components.

For instance, total payroll in the private sector yields an adjusted R2 of over 50% for V RPU , 40%

for V RP , and about 25% for V RPD.

Slope parameters for the regression model containing SRP as the predicted variable and macroe-

conomic and financial variables as predictors imply a negative contemporaneous correlation. The

sources of predictability for the SRP – while much weaker – are diverse. The top variables with

significant correlation with SRP differ from those in the other three panels of Table 12. For ex-

ample, total payroll in the private sector does not have much explanatory power for the SRP ; it

yields an adjusted R2 equal to 11.63% and is the 9th variable in the list. Since payroll measures

14The complete list of these variables and supplementary results regarding our analysis are available in an online
Appendix.
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are pro-cyclical, these findings imply counter-cyclical behavior for the SRP .

Together, these regularities lead us to conclude that the common financial and macroeconomic

indicators do not fully span the V RP components or SRP , since none explain more than 53% of

the variation in these premia contemporaneously. Moreover, these indicators seem to have the least

success spanning downside variance and skewness risk premia. This observation sheds further light

on the success of these two variables in predicting equity premia – they contain relevant information

beyond that of a large set of common macroeconomic and financial variables.

To deepen our analysis, we follow Amengual and Xiu (2014) and investigate the impact of

decisions and announcements that reduce or resolve uncertainty. We use the same set of events

compiled by Amengual and Xiu (2014) to study the impact of important FOMC announcements,

speeches by Federal Reserve officials and the Presidents of the United States, as well as economic

and political news. The events are summarized in Table 13.

Table 14 gives the changes in variance, upside variance, downside variance, and skewness risk

premia as well as their end-of-the-day levels on event dates. The most striking outcome from this

exercise is the observation that across the board and for all variance risk components and skewness

risk premia, policy announcements that resolve financial or monetary uncertainty also reduce the

premia. The impact on the SRP , however, is mixed: Announcements can increase or decrease the

size of this premium. This observation, by construction, hinges on the size of the reduction imputed

by the announcement on V RPU and V RPD. That said, in 16 out of 22 events studied, the impact

of events on the SRP is negative.

To track the major changes in (up/down) variance and skewness risk premia in the temporal

neighborhood of an event, we perform targeted searches in suitably chosen date intervals – in this

case, a trading week before and after the event date. Most large movements are very close to the

event date, consistent with the results in Table 14. These observations suggest that resolution of

policy uncertainty or reduction of political tensions has a negative impact on premia demanded by

the market participants to bear variance or skewness risk.
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6 Conclusion

In this study, we have decomposed the celebrated variance risk premium of Bollerslev, Tauchen, and

Zhou (2009) – arguably one of the most successful short-term predictors of excess equity returns –

to show that its prediction power stems from the downside variance risk premium embedded in this

measure. Market participants seem more concerned with market downturns and demand a premium

for bearing that risk. By contrast, they seem to like upward uncertainty in the market. We support

this intuition through a simple equilibrium consumption-based asset pricing model. We develop

a model where consumption growth features separate upside and downside time-varying shock

processes, with feedback from volatilities to future growth. We show that under mild requirements

about consumption growth and upside and downside volatility processes, we can characterize the

equity premium, upside and downside variance risk premia, and the skewness risk premium that

support the main stylized facts observed in our empirical investigation. In particular, we observe

unequal weights for upside and downside variances in the equity premium, and opposite signs for

upside and downside variance risk premia.

Empirically, we demonstrate that the downside variance risk premium – the difference be-

tween option-implied, risk-neutral expectations of market downside variance and historical, realized

downside variances – demonstrates significant prediction power (that is at least as powerful as the

variance risk premium, and often stronger) for excess returns. We also show that the difference

between upside and downside variance risk premia – our proposed measure of the skewness risk

premium – is both a priced factor in equity markets and a powerful predictor of excess returns.

The skewness risk premium performs well for intermediate prediction steps beyond the reach of

short-run predictors such as downside variance risk or variance risk premia and long-term predic-

tors such as price-dividend or price-earning ratios alike. The skewness risk premium constructed

from one month’s worth of data predicts excess returns from eight months to a year ahead. The

same measure constructed from one quarter’s worth of data predicts monthly excess returns from

four months to one year ahead. We show that our findings demonstrate remarkable robustness to

the inclusion of common pricing variables. Downside variance risk and skewness risk premia have

similar or better out-of-sample forecast ability in comparison with common predictors. Finally,

while these premia are connected to macroeconomic and financial indicators, they contain useful
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additional information. They also markedly react to decisions or announcements that modify the

uncertainty anticipated by market participants.
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Table 1: Summary Statistics

Mean (%) Median (%) Std. Dev. (%) Skewness Kurtosis AR(1)

Panel A: Excess Returns

Equity 1.9771 14.5157 20.9463 -0.1531 10.5559 -0.0819
Equity (1996-2007) 3.0724 12.5824 17.6474 -0.1379 5.9656 -0.0165

Panel B: Risk-Neutral

Variance 19.3544 18.7174 6.6110 1.5650 7.6100 0.9466
Downside Variance 16.9766 16.2104 5.8727 1.6746 8.0637 0.9548
Upside Variance 9.2570 9.1825 3.1295 1.1479 6.0030 0.8991
Skewness -7.7196 -7.0090 3.0039 -2.0380 9.6242 0.7323

Panel C: Realized

Variance 16.7137 15.3429 5.5216 3.6748 25.6985 0.9667
Downside Variance 11.7677 10.8670 3.9857 3.9042 29.4323 0.9603
Upside Variance 11.8550 10.8683 3.8639 3.6288 25.3706 0.9609
Skewness 0.0872 0.1315 1.0911 -6.3619 170.4998 0.6319

Panel D: Risk Premium

Variance 2.6407 2.3932 4.2538 -0.3083 6.8325 0.9265
Downside Variance 5.2089 4.8693 3.8159 0.2019 4.6310 0.9444
Upside Variance -2.5979 -2.5730 2.5876 -2.2178 22.7198 0.8877
Skewness -7.8068 -6.9942 3.0606 -2.0696 10.6270 0.9345

This table reports the summary statistics for the quantities investigated in this study. Mean, median, and standard deviation
values are annualized and in percentages. We report excess kurtosis values. AR(1) represents the values for the first auto-
correlation coefficient. The full sample is from September 1996 to December 2010. We also consider a sub-sample ending in
December 2007.
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Table 2: S&P 500 Index Options Data

OTM Put OTM Call
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Panel A: By Moneyness

Number of contracts 223,579 57,188 71,879 57,522 26,154 100,121 536,443
Average price 15.08 39.44 39.67 38.47 21.97 15.50 23.90
Average implied volatility 25.68 17.05 15.88 15.58 14.30 16.31 20.06
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Panel B: By Maturity

Number of contracts 115,392 140,080 83,937 36,163 22,302 138,569 536,443
Average price 10.45 14.90 20.17 24.88 26.20 45.82 23.90
Average implied volatility 19.40 20.20 20.06 21.11 20.48 20.13 20.06
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Panel C: By VIX Level

Number of contracts 74,048 115,970 164,832 88,146 37,008 56,439 536,443
Average price 17.90 20.70 24.89 26.84 26.80 28.93 23.90
Average implied volatility 11.63 15.92 19.42 22.20 25.31 34.72 20.06

This table sorts S&P 500 index options data by moneyness, maturity, and VIX level. Out-of-the-money (OTM) call and put
options from OptionMetrics from September 3, 1996 to December 30, 2010 are used. The moneyness is measured by the ratio
of the strike price (S) to underlying asset price (S). DTM is the time to maturity in number of calendar days. The average
price and the average implied volatility are expressed in dollars and percentages, respectively.
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Table 3: Predictive Content of Premium Measure

h 1 3 6 12

t-Stat R̄2 t-Stat R̄2 t-Stat R̄2 t-Stat R̄2

k Panel A: Variance Risk Premium

1 2.43 2.61 2.51 2.83 1.02 0.02 0.68 -0.30
2 2.84 3.76 3.42 5.58 1.50 0.68 1.04 0.05
3 4.11 8.13 3.58 6.18 1.78 1.19 1.56 0.78
6 2.78 3.65 2.24 2.22 1.57 0.82 2.09 1.87
9 1.98 1.65 1.94 1.57 1.47 0.66 1.98 1.64
12 1.96 1.64 1.43 0.61 1.53 0.77 1.73 1.14

k Panel B: Downside Variance Risk Premium

1 2.57 2.99 2.68 3.30 1.27 0.34 0.95 -0.06
2 3.22 4.92 4.08 7.95 2.07 1.78 1.54 0.74
3 4.76 10.72 4.46 9.50 2.61 3.12 2.32 2.37
6 3.72 6.75 3.42 5.70 2.84 3.85 3.21 4.98
9 2.96 4.27 3.14 4.86 2.82 3.86 2.99 4.35
12 3.04 4.60 2.65 3.39 2.81 3.86 2.80 3.84

k Panel C: Upside Variance Risk Premium

1 2.08 1.79 1.91 1.44 0.44 -0.44 -0.04 -0.55
2 2.15 1.96 2.15 1.96 0.39 -0.47 -0.18 -0.54
3 3.05 4.41 2.07 1.79 0.26 -0.52 -0.27 -0.52
6 1.57 0.82 0.61 -0.36 -0.40 -0.48 -0.27 -0.53
9 0.83 -0.18 0.36 -0.50 -0.52 -0.42 -0.14 -0.57
12 0.74 -0.27 -0.05 -0.59 -0.33 -0.52 -0.41 -0.49

k Panel D: Skewness Risk Premium

1 -0.10 -0.55 0.41 -0.46 0.96 -0.04 1.25 0.30
2 0.61 -0.35 1.67 0.98 1.98 1.59 2.16 1.98
3 1.03 0.04 2.24 2.18 2.81 3.70 3.29 5.17
6 2.27 2.30 3.33 5.38 4.05 8.00 4.45 9.59
9 2.57 3.13 3.39 5.70 4.20 8.73 3.98 10.59
12 2.83 3.95 3.43 5.93 3.88 7.60 4.07 8.34

This table reports predictive regression results for prediction horizons (k) between 1 and 12 months ahead, and aggregation
levels (h) between 1 and 12 months, based on a predictive regression model of the form rt→t+k = β0 +β1xt(h)+εt→t+k. In this
regression model, rt→t+k is the cumulative excess returns between t and t+ k; xt(h) is the proposed variance or skewness risk
premia component that takes the values from variance risk, upside variance risk, downside variance risk, or skewness risk premia
measures; and εt→t+k is a zero-mean error term. The reported Student’s t-statistics for slope parameters are constructed from
heteroscedasticity and serial correlation consistent standard errors that explicitly take account of the overlap in the regressions,
following Hodrick (1992). R̄2 represents adjusted R2s.
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Table 4: Predictive Content of Risk-Neutral Measure

h 1 3 6 12

t-Stat R̄2 t-Stat R̄2 t-Stat R̄2 t-Stat R̄2

k Panel A: Risk-Neutral Variance

1 0.28 -0.51 0.50 -0.41 0.69 -0.29 0.75 -0.24
2 1.14 0.17 1.24 0.30 1.35 0.44 1.39 0.51
3 1.30 0.38 1.52 0.72 1.83 1.28 2.13 1.92
6 2.10 1.88 2.33 2.43 2.76 3.57 3.21 4.95
9 2.32 2.44 2.55 3.05 2.95 4.22 3.15 4.85
12 2.21 2.20 2.45 2.82 2.89 4.11 3.30 5.45

k Panel B: Risk-Neutral Downside Variance

1 0.27 -0.51 0.57 -0.37 0.77 -0.23 0.87 -0.14
2 1.22 0.27 1.39 0.51 1.49 0.66 1.54 0.74
3 1.42 0.56 1.70 1.04 2.03 1.70 2.35 2.44
6 2.23 2.17 2.52 2.91 2.97 4.21 3.42 5.67
9 2.43 2.71 2.68 3.42 3.10 4.70 3.26 5.22
12 2.32 2.48 2.55 3.09 2.99 4.42 3.42 5.84

k Panel C: Risk-Neutral Upside Variance

1 0.29 -0.50 0.27 -0.51 0.36 -0.48 0.20 -0.53
2 0.93 -0.07 0.76 -0.23 0.78 -0.21 0.60 -0.35
3 0.99 -0.02 0.94 -0.06 1.04 0.05 1.00 0.00
6 1.74 1.12 1.72 1.09 1.92 1.48 2.05 1.77
9 2.01 1.71 2.09 1.89 2.31 2.42 2.38 2.59
12 1.90 1.49 2.09 1.92 2.45 2.83 2.57 3.17

k Panel D: Risk-Neutral Skewness

1 0.22 -0.52 0.87 -0.14 1.10 0.11 1.27 0.34
2 1.51 0.70 2.02 1.67 2.06 1.76 2.08 1.79
3 1.93 1.48 2.47 2.74 2.85 3.80 3.13 4.65
6 2.70 3.42 3.28 5.21 3.80 7.02 4.11 8.18
9 2.76 3.64 3.17 4.92 3.64 6.54 3.56 6.26
12 2.67 3.44 2.88 4.07 3.27 5.35 3.66 6.73

This table reports predictive regression results for risk-neutral variance and skewness measures. The predictive regression model,
prediction horizons, aggregation levels, and notation are the same as in the results reported in Table 3. The difference is in the
definition of xt(h): Instead of risk premia, we use risk-neutral measures for variance, upside variance, downside variance, and
skewness. The reported Student’s t-statistics for slope parameters are constructed from heteroscedasticity and serial correlation
consistent standard errors that explicitly take account of the overlap in the regressions, following Hodrick (1992). R̄2 represents
adjusted R2s.
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Table 5: Predictive Content of Realized (Physical) Measure

h 1 3 6 12

t-Stat R̄2 t-Stat R̄2 t-Stat R̄2 t-Stat R̄2

k Panel A: Realized Variance

1 -1.10 0.12 -0.99 -0.01 -0.10 -0.55 0.09 -0.55
2 -0.67 -0.30 -0.86 -0.15 0.18 -0.54 0.40 -0.47
3 -1.18 0.22 -0.75 -0.25 0.36 -0.48 0.62 -0.34
6 0.01 -0.57 0.48 -0.44 1.13 0.15 1.07 0.09
9 0.55 -0.40 0.78 -0.22 1.33 0.44 1.12 0.15
12 0.49 -0.45 0.98 -0.02 1.27 0.35 1.40 0.56

k Panel B: Realized Downside Variance

1 -1.05 0.06 -0.90 -0.10 -0.08 -0.55 0.09 -0.55
2 -0.53 -0.40 -0.76 -0.23 0.21 -0.53 0.39 -0.47
3 -1.04 0.05 -0.68 -0.30 0.39 -0.48 0.59 -0.36
6 0.05 -0.57 0.48 -0.44 1.08 0.10 0.99 -0.01
9 0.54 -0.41 0.75 -0.25 1.21 0.27 1.01 0.01
12 0.44 -0.48 0.89 -0.12 1.14 0.18 1.30 0.40

k Panel C: Realized Upside Variance

1 -1.15 0.18 -1.09 0.10 -0.13 -0.54 0.10 -0.55
2 -0.82 -0.18 -0.95 -0.05 0.14 -0.54 0.41 -0.46
3 -1.33 0.43 -0.82 -0.18 0.34 -0.49 0.66 -0.32
6 -0.05 -0.57 0.48 -0.44 1.17 0.21 1.16 0.19
9 0.39 -0.41 0.81 -0.19 1.44 0.61 1.23 0.29
12 0.54 -0.42 1.08 0.09 1.39 0.54 1.51 0.74

k Panel D: Realized Skewness

1 0.44 -0.45 1.58 0.81 0.63 -0.33 -0.06 -0.55
2 1.51 0.70 1.67 0.99 0.96 -0.05 -0.26 -0.52
3 1.45 0.61 1.19 0.23 0.71 -0.28 -0.89 -0.12
6 0.54 -0.40 0.11 -0.56 -1.01 0.01 -2.64 3.25
9 0.07 -0.58 -0.54 -0.41 -3.01 4.41 -3.67 6.67
12 -0.55 -0.41 -1.82 1.33 -3.37 5.70 -3.36 5.67

This table reports predictive regression results for realized variance and skewness measures. The predictive regression model,
prediction horizons, aggregation levels, and notation are the same as in the results reported in Table 3. The difference is in
the definition of xt(h): Instead of risk premia, we use realized (historical) measures for variance, upside variance, downside
variance, and skewness. The reported Student’s t-statistics for slope parameters are constructed from heteroscedasticity and
serial correlation consistent standard errors that explicitly take account of the overlap in the regressions, following Hodrick
(1992). R̄2 represents adjusted R2s.
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Table 6: Joint Regression Results

h 1 3 6 12

t-Stat R̄2 t-Stat R̄2 t-Stat R̄2 t-Stat R̄2

k Up Down Up Down Up Down Up Down

Panel A: Risk Premium

1 -0.01 1.49 2.45 -0.12 1.86 2.77 -0.58 1.32 -0.03 -0.85 1.27 -0.21
2 -0.78 2.49 4.72 -1.28 3.66 8.28 -1.38 2.46 2.26 -1.54 2.17 1.49
3 -1.28 3.79 11.04 -1.81 4.32 10.63 -2.06 3.33 4.84 -2.34 3.31 4.77
6 -2.46 4.19 9.36 -3.00 4.56 9.80 -3.31 4.39 8.98 -3.14 4.54 9.54
9 -2.75 3.99 7.76 -3.10 4.45 9.36 -3.46 4.49 9.50 -2.74 4.09 7.83
12 -3.06 4.29 9.06 -3.18 4.18 8.30 -3.13 4.24 8.61 -2.97 4.10 8.06

Panel B: Risk-Neutral Measures

1 0.08 -0.01 -1.06 -1.13 1.24 -0.22 -1.30 1.46 0.15 -1.48 1.70 0.51
2 -1.00 1.27 0.27 -2.42 2.69 3.10 -2.27 2.61 2.90 -2.00 2.45 2.35
3 -1.59 1.89 1.39 -2.92 3.26 5.01 -3.22 3.68 6.55 -2.87 3.59 6.21
6 -1.64 2.14 3.09 -2.93 3.47 6.89 -3.25 3.99 9.12 -2.61 3.79 8.66
9 -1.32 1.88 3.12 -2.02 2.62 5.09 -2.25 3.05 6.88 -1.42 2.62 5.78
12 -1.35 1.89 2.94 -1.49 2.07 3.77 -1.39 2.18 4.93 -1.28 2.55 6.20

Panel C: Realized (Physical) Measures

1 -0.63 0.42 -0.28 -1.82 1.72 1.17 -0.69 0.68 -0.84 0.11 -0.10 -1.10
2 -1.62 1.50 0.51 -1.92 1.83 1.24 -0.93 0.95 -0.60 0.48 -0.46 -0.90
3 -1.68 1.46 1.05 -1.41 1.34 0.25 -0.62 0.64 -0.82 1.27 -1.24 -0.02
6 -0.54 0.54 -0.97 -0.01 0.06 -1.01 1.39 -1.31 0.61 3.54 -3.49 6.14
9 0.01 0.08 -0.99 0.72 -0.64 -0.54 3.61 -3.52 6.77 4.82 -4.76 11.39
12 0.63 -0.55 -0.83 2.07 -1.98 1.77 3.99 -3.91 8.24 4.66 -4.59 11.22

This table reports predictive regression results when multiple variance components (risk premia, risk-neutral, and realized
measures) are included in the regression model. The prediction horizons, aggregation levels, and notation are the same as in the
results reported in Table 3. The difference is in the regression model. Both upside and downside variance components are in the
model: rt→t+k = β0 +β1x1,t(h)+β2x2,t(h)+εt→t+k. x1,t(h) pertains to upside measures and x2,t(h) represents the downside
measures used in the analysis. The reported Student’s t-statistics for slope parameters are constructed from heteroscedasticity
and serial correlation consistent standard errors that explicitly take account of the overlap in the regressions, following Hodrick
(1992). R̄2 represents adjusted R2s.
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Table 11: Out-of-Sample Analysis

dvrp vs. xt srp vs. xt
Adj. R2(%) for IS Adj. R2(%) for OOS DM p− value DM p− value

Panel A: One Month

dvrpt 4.6723 0.6347 -0.0426 0.5170
srpt 3.4862 -0.6055 0.0426 0.4830
vrpt 3.7175 -0.1087 -0.0271 0.5108 -0.0374 0.5149
log(pt/dt) 6.3871 -1.1465 -0.3716 0.6449 -0.4769 0.6833
log(pt−1/dt) 6.7059 -1.1123 -0.2414 0.5954 -0.3453 0.6351
log(pt/et) 4.2430 -0.9384 0.2572 0.3985 0.2930 0.3848
kpost -1.0697 2.0261 1.3282 0.0921 1.7998 0.0359

Panel B: Three Months

dvrpt 24.6956 5.5674 0.0895 0.4644
srpt 21.3847 -0.8775 -0.0895 0.5356
vrpt 19.8333 4.6494 0.3654 0.3574 0.2742 0.3919
log(pt/dt) 16.8502 -1.0456 0.5398 0.2947 0.6162 0.2689
log(pt−1/dt) 18.4235 -0.5345 0.5425 0.2937 0.6304 0.2642
log(pt/et) 11.2493 0.2510 0.9778 0.1641 1.0725 0.1417
kpost -0.6580 0.6473 1.7537 0.0397 1.8782 0.0302

Panel C: Six Months

dvrpt 35.4498 0.1580 -1.2144 0.8877
srpt 20.0010 2.3028 1.2144 0.1123
vrpt 31.7578 2.7778 -0.4553 0.6756 -1.0558 0.8545
log(pt/dt) 28.2580 0.4752 0.3393 0.3672 -1.2086 0.8866
log(pt−1/dt) 32.1452 1.2361 0.2877 0.3868 -1.2333 0.8913
log(pt/et) 17.2860 1.0359 0.8114 0.2086 -0.6382 0.7383
kpost 2.9373 12.1162 1.7801 0.0375 1.2382 0.1078

This table presents the out-of-sample performance of predictors to forecast monthly (ret→t+1 in the top panel), quarterly
(ret→t+3/3 in the middle panel) and semi-annually (ret→t+6/6 in the bottom panel) scaled cumulative excess returns, with

observations spanning September 1996 to December 2010. The first two columns present the adjusted R2 (%) for the in-
sample (IS) and out-of-sample (OOS) observations – that is, the first and last half fractions of the data. The columns headed
“dvrp vs. xt” test the null hypothesis that “an alternative predictor (xt) does not yield a better forecast than the downside
variance risk premium (dvrp).” The columns headed “srp vs. xt” test the null hypothesis that “an alternative predictor (xt)
does not yield a better forecast than the skewness risk premium (srp).” The reported test statistics and p-values are computed
from the Diebold and Mariano (1995) model comparison procedure. Note that the Bonferroni adjustment is required when
multiple p-values are produced, to avoid overstating the evidence against the null. Thus, to maintain an overall significance
level of 5% (resp. 10%), one should adjust each individual test size to 0.0083 = 5%/6 (resp. 0.0167 = 10%/6) since 6 tests are
performed for a given horizon.
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Table 13: Policy News Potentially Associated with Volatility Changes–Both Dates

Date ∆Variance ∆Return News

08/18/98 -0.373 (-0.365) 0.013 President Clinton admits to “wrong” relationship with Ms. Lewinsky and FOMC’s decision to leave interest rates unchanged
09/01/98 -0.722 (-0.664) 0.035 Fed adds money to the banking system with Repo
09/08/98 -0.526 (-0.455) 0.021 Fed Chairman Greenspan’s statement that a rate cut might be forthcoming
09/14/98 -0.185 President Clinton advocated a coordinated global policy for economic growth in NYC
09/23/98 -0.344 (-0.280) 0.027 Fed Chairman Greenspan testimony before the Committee on the Budget, U.S. Senate
10/20/98 -0.253 -0.007 3 big US banks delivered better-than-expected earnings and bullish mood after Fed rate cut previous week
08/11/99 -0.266 (-0.276) 0.008 Fed Beige Book release shows that US economic growth remains strong
01/07/00 -0.500 0.031 Unemployment report shows the lowest unemployment rate in the past 30 years
03/16/00 -0.266 0.037 Release of Inflation Remains Tame Enough to Keep the Federal Reserve from tightening credit
04/17/00 -0.373 (-0.296) 0.032 Treasury Secretary Lawrence H. Summers Statement that fundamentals of the economy are in place
10/19/00 -0.241 0.018 Feds Greenspan Gives Keynote Speech at Cato Institute and jobless claims drop by 7,000 in the latest week
01/03/01 -0.282 (-0.179) 0.052 Fed’s Announcement of a Surprise, Inter-Meeting Rate Cut
05/17/05 -0.275 (-0.303) 0.01 John Snow calls on China to take an intermediate step in revaluing its currency
05/19/05 -0.297 Fed Chairman A. Greenspan Steps up Criticism of Fannie Mae and Freddie Mac
06/15/06 -0.549 (-0.625) 0.017 Fed Chairman B. Bernanke’s speech on inflation expectations within historical ranges
06/29/06 -0.295 (-0.325) 0.016 FOMC Statement to raise its target for the Federal Funds Rate by 25 bps
07/19/06 -0.272 Fed Chairman B. Bernanke warned that the Fed must guard against rising prices taking hold
02/28/07 -0.396 Fed Chairman B. Bernanke told a house panel that markets seem to be working well
03/06/07 -0.217 Henry Paulson in Tokyo said the global economy was as strong as he has ever seen
06/27/07 -0.271 FOMC announcement generated market rebound the previous date
08/21/07 -0.188 Senator Dodd said the Fed to deal with the turmoil after meeting with Paulson and Bernanke
09/18/07 -0.415 (-0.353) 0.024 FOMC decided to lower its target for the Federal Funds Rate by 50 bps
03/18/08 -0.216 Fed cuts the Federal Funds Rate by three-quarters of a percentage point
10/14/08 -0.489 (-0.304) -0.048 FOMC decided to lower its target for the Federal Funds Rate by 50 bps
10/20/08 -0.426 (-0.413) 0.033 Fed Chairman B. Bernanke Testimony on the Budget, U.S. House of Representatives
10/28/08 -0.313 (-0.230) 0.075 Fed to Cut the Rate Following the Two-Day FOMC Meeting is Expected by the Market
11/13/08 -0.328 (-0.240) 0.062 President Bush’s Speech on Financial Crisis
12/19/08 -0.244 President Bush Declared that TARP Funds to be Spent on Programs Paulson Deemed Necessary
02/24/09 -0.261 President Obama’s First Speech as the President to Joint Session of U.S. Congress
05/10/10 -0.647 (-0.601) 0.003 European Policy-Makers Unveiled an Unprecedented Emergency Loan Plan
03/21/11 -0.277 Japanese nuclear reactors cooled down and situations in Libya tamed by unilateral forces
08/09/11 -0.433 (-0.370) 0.046 FOMC Statement Explicitly Stating a Duration for an Exceptionally Low Target Rate
10/27/11 -0.245 (-0.205) 0.034 European Union leaders made a bond deal to fix the Greek debt crisis
01/02/13 -0.432 (-0.427) 0.025 President Obama and Senator McConnell’s encouraging comments on the “Fiscal Cliff” issue

This table from Amengual and Xiu (2014) presents in the last column the events that may lead to the largest volatility drops in the sample. The first column is the date of the event. The second shows
changes in estimated spot variance, whereas the third column is the returns of the index on the corresponding days.
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Table 14: Reaction of Variance and Skewness Risk Premia to Financial and Macroeconomic Announcements

VRP V RPU V RPD SRP

Booth Date ∆V ar ∆r Change Level Change Level Change Level Change Level

08/18/1998 -0.373 0.013 -0.0146 0.0964 -0.0059 -0.0045 -0.0132 0.1188 -0.0073 0.1234
09/01/1998 -0.722 0.035 -0.0292 0.1432 -0.0206 0.0066 -0.0210 0.1666 -0.0004 0.1600
09/08/1998 -0.526 0.021 -0.0404 0.1190 -0.0189 -0.0123 -0.0348 0.1498 -0.0159 0.1621
09/23/1998 -0.344 0.027 -0.0131 0.0980 -0.0105 -0.0241 -0.0088 0.1337 0.0017 0.1578
10/20/1998 -0.253 -0.007 -0.0160 0.0444 -0.0143 -0.0453 -0.0100 0.0875 0.0043 0.1328
08/11/1999 -0.266 0.008 -0.0169 0.0540 -0.0123 -0.0223 -0.0124 0.0815 -0.0001 0.1038
01/07/2000 -0.5 0.031 -0.0305 0.0137 -0.0028 -0.0341 -0.0328 0.0429 -0.0300 0.0770
03/16/2000 -0.266 0.037 -0.0174 -0.0209 -0.0118 -0.0553 -0.0130 0.0164 -0.0012 0.0717
04/17/2000 -0.373 0.032 -0.0183 0.0023 -0.0134 -0.0527 -0.0132 0.0426 0.0003 0.0953
10/19/2000 -0.241 0.018 -0.0190 0.0027 -0.0088 -0.0412 -0.0164 0.0340 -0.0076 0.0752
01/03/2001 -0.282 0.052 -0.0229 -0.0137 -0.0242 -0.0616 -0.0110 0.0285 0.0131 0.0900
05/17/2005 -0.275 0.01 -0.0063 0.0178 -0.0023 -0.0202 -0.0059 0.0372 -0.0036 0.0575
06/15/2006 -0.549 0.017 -0.0251 0.0201 -0.0141 -0.0260 -0.0209 0.0423 -0.0068 0.0683
06/29/2006 -0.295 0.016 -0.0154 0.0035 -0.0100 -0.0332 -0.0121 0.0275 -0.0021 0.0607
09/18/2007 -0.415 0.024 -0.0272 0.0059 -0.0100 -0.0357 -0.0252 0.0344 -0.0152 0.0701
10/14/2008 -0.489 -0.048 -0.0040 0.0054 -0.0106 -0.0730 0.0032 0.0641 0.0138 0.1371
10/20/2008 -0.426 0.033 -0.0628 -0.0012 -0.0280 -0.0943 -0.0558 0.0688 -0.0278 0.1631
10/28/2008 -0.313 0.075 -0.0518 0.0380 -0.0311 -0.1027 -0.0402 0.1187 -0.0091 0.2214
11/13/2008 -0.328 0.062 -0.0412 0.0071 -0.0253 -0.1270 -0.0322 0.0986 -0.0069 0.2256
05/10/2010 -0.647 0.003 -0.0631 0.0764 -0.0386 -0.0215 -0.0488 0.1058 -0.0102 0.1273
08/09/2011 -0.433 0.046 -0.0628 0.0754 -0.0365 -0.0143 -0.0504 0.0997 -0.0139 0.1140
10/27/2011 -0.245 0.034 -0.0240 -0.0447 -0.0184 -0.0953 -0.0165 0.0115 0.0019 0.1068

This table reports the reaction of the variance risk premium (V RP ), upside variance risk premium (V RPU ), downside variance risk premium (V RPD), and skewness risk
premium (SRP ) to the macroeconomic and financial news documented in Table 13. The table reports changes in conditional volatility (∆V ar) and S&P 500 returns (∆r) on
the event day, as well as changes and levels of V RP , V RPU , V RPD, and SRP on the event date. A negative sign in the change of a risk premium signifies a decline on the
arrival of a particular macroeconomic or financial announcement. A positive sign implies the opposite.
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Figure 1: S&P 500 Put and Call Contracts per Day
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This graph show the number of outstanding put and call contracts written on the S&P 500 index per day for the 1996–2010
period. In addition, it plots the sum of put and call contract numbers. Source: OptionMetrics Ivy DB accessed via WRDS.
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Figure 2: The Term Structure of Risk-Neutral Variance
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Figure 3: Time Series for Variance and Skewness Risk Premia

These figures plot the paths of annualized monthly values (×103) for the variance risk premium, upside variance risk premium,
downside variance risk premium, and skewness risk premium, extracted from U.S. financial markets data for September 1996 to
December 2011. Solid lines represent premia constructed from random walk forecasts of the realized volatility and components.
Dotted lines represent values constructed from univariate HAR forecasts of the realized volatility. HAR methodology follows
Corsi (2009). The shaded areas represent NBER recessions.
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Figure 4: Student’s t-Statistics for Predictive Regressions
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These figures plot the t-statistics for slope parameters of predictive regressions – Equation (40) – constructed following Hodrick
(1992) from heteroscedasticity and serial correlation consistent standard errors that explicitly take account of the overlap in
the regressions. The predictors here are variance risk, upside variance risk, downside variance risk, and skewness risk premia.
In these figures, k is the prediction horizon, ranging between 1 and 12 months ahead. To simplify the figures, only three
aggregation levels – h – are shown.
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Figure 5: Adjusted R2 for Predictive Regressions
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These figures plot the adjusted R2s of predictive regressions – Equation (40). The predictors here are variance risk, upside
variance risk, downside variance risk, and skewness risk premia. In these figures, k is the prediction horizon, ranging between
1 and 12 months ahead. To simplify the figures, only three aggregation levels – h – are shown.
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Figure 6: Comparison of Adjusted R2s for Risk-Neutral and Physical Variance Components
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These figures plot the adjusted R2s for predictive regressions – Equation (40). The predictors here are risk-neutral and realized
variance, upside variance, downside variance, and skewness. In these figures, k is the prediction horizon, ranging between 1 and
12 months ahead. To simplify the figures, only three aggregation levels – h – are shown.
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