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Abstract 

We propose a tractable, model-based stress-testing framework where the solvency risks, 

funding liquidity risks and market risks of banks are intertwined. We highlight how 

coordination failure between a bank’s creditors and adverse selection in the secondary 

market for the bank’s assets interact, leading to a vicious cycle that can drive otherwise 

solvent banks to illiquidity. Investors’ pessimism over the quality of a bank’s assets 

reduces the bank’s recourse to liquidity, which exacerbates the incidence of runs by 

creditors. This, in turn, makes investors more pessimistic, driving down other banks’ 

recourse to liquidity. We illustrate these dynamics in a calibrated stress-testing exercise. 

 

JEL classification: G01, G21, G28, C72, E58 

Bank classification: Financial stability; Financial system regulation and policies 

Résumé 

Les auteurs proposent un cadre d’analyse maniable pour la réalisation de tests de 

résistance, fondé sur un modèle dans lequel les risques de solvabilité, les risques de 

liquidité de financement et les risques de marché des banques sont interreliés. Ils 

montrent de quelle manière l’interaction entre la non-coordination des créanciers d’une 

banque et l’antisélection de ses actifs sur le marché secondaire mène à la formation d’un 

cercle vicieux pouvant conduire des banques autrement solvables à une situation 

d’illiquidité. Le pessimisme des investisseurs à l’égard de la qualité des actifs d’une 

banque limite les possibilités dont elle dispose pour avoir accès à des liquidités, ce qui 

exacerbe l’effet des désengagements massifs par les créanciers. S’ensuit un renforcement 

du pessimisme des investisseurs qui restreint les possibilités de recours aux liquidités 

d’autres banques. Les auteurs illustrent cette dynamique à l’aide d’un test de résistance 

calibré. 

 

Classification JEL : G01, G21, G28, C72, E58 

Classification de la Banque : Stabilité financière;  Réglementation et politiques relatives 

au système financier 

 

 



Non-Technical Summary

Stress-testing is an invaluable tool to identify vulnerabilities within financial systems.

Alternatively, stress tests can be repurposed to support crisis management and res-

olution. A criticism of many stress-testing models, however, is that they are largely

partial equilibrium and do not feature adverse feedback effects between market risk

and funding liquidity risk, which were at the heart of the recent global financial crisis.

In this paper, we present a new, model-based stress-testing framework where the

solvency risks, funding liquidity risks and market risks of banks are intertwined. We

highlight how coordination failure between a bank’s creditors and adverse selection in

the secondary market for the bank’s assets interact, leading to a vicious cycle that can

drive otherwise solvent banks to illiquidity. Investors’ pessimism over the quality of a

bank’s assets hampers the bank’s recourse to liquidity, which influences the incidence

of bank runs. This, in turn, makes investors more pessimistic, driving down other

banks’ recourse to liquidity even further.

Under the global games framework, bank runs are endogenous in our dynamic

stress-testing model. A run on a bank is driven by the bank’s credit and market

losses, its funding composition and maturity profile, and concerns that creditors may

have over its future solvency. In each iteration of the model, creditors of solvent banks

are given the opportunity to withdraw and continue lending. Investors update their

belief about the quality of the assets at the end of each iteration.

We demonstrate these dynamics in the context of a calibrated stress-testing

exercise inspired by Canada’s 2013 Financial Sector Assessment Program (FSAP),

which was administered by the International Monetary Fund (IMF).
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1 Introduction

The global financial crisis was put in motion by the announcement of the French

bank BNP Paribas on August 9, 2007, that it had suspended withdrawals from three

of its investment funds that were exposed to U.S. subprime mortgages. This news

triggered anxiety among market participants regarding other banks’ exposures to

subprime mortgages, which was exacerbated by the opacity of banks’ balance sheets.

As the crisis persisted, funding conditions deteriorated for all banks, culminating in

the worst economic downturn since the Great Depression.

Policies to shore up confidence in banks and prevent future crises have been

developed along several dimensions.1 Concurrently, stress testing has emerged as an

invaluable tool for assessing risks to the banking system. Such macro stress tests,

according to Borio et al. (2012), may be used to identify vulnerabilities within financial

systems. Alternatively, they can also be repurposed to support crisis management

and resolution. A criticism of many macro stress-testing models, however, is that they

are largely partial equilibrium and do not feature adverse feedback effects between

market risk and funding liquidity risk, which were at the heart of the recent crisis.

In this paper we present a new, model-based stress-testing framework where

banks’ solvency risks, funding liquidity risks and market risks are intertwined. We

highlight how coordination failure between a bank’s creditors and adverse selection

relating to the value of the bank’s assets interact, leading to a vicious cycle that can

drive otherwise solvent banks to illiquidity. Investors’ pessimism over the quality of a
1For solvency risk, banks are required to hold more, and better quality capital to guard against

adverse credit shocks. For liquidity risk, minimum liquid asset buffers and a matching of asset and
liability maturities across balance sheets are codified under the Liquidity Coverage Ratio (LCR)
and Net Stable Funding Ratio requirements for banks. These rules are at the core of the Basel
III regulatory standard, which was negotiated and agreed by the Basel Committee on Banking
Supervision in the aftermath of the crisis.
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bank’s assets hampers the bank’s recourse to liquidity, which influences the incidence

of bank runs. This, in turn, makes investors more pessimistic, driving down other

banks’ recourse to liquidity.

A bank’s funding liquidity risk is endogenous in our stress-testing framework.

The risk is driven by the bank’s credit and market losses, its funding composition

and maturity profile, and concerns that creditors may have over its future solvency.

Using the global games framework of Morris and Shin (2003), we derive a unique

solvency threshold for each bank: whenever losses are greater than a certain threshold,

creditors run, and the bank fails. Market risk is also endogenous in our model and

depends on the pervasiveness of adverse selection, which is driven by two components:

the quality of banks’ assets and the prior beliefs that investors vying to buy assets have

about the quality of the assets. Pessimistic investors are more likely than optimistic

investors to believe that assets are of low quality.

Investors offer banks a pooling price for their assets, due to asymmetric infor-

mation, and the more pessimistic the investors, the lower the pooling price. This,

in turn, reduces a bank’s recourse to liquidity and its ability to service withdrawals

and maturing liabilities. As banks begin to fail due to funding liquidity risk, investors

Bayesian update their beliefs about the quality of the assets. If it is more likely that a

bank will fail because its assets are of low quality than that the bank will survive be-

cause its assets are of high quality, investors become more pessimistic. This can lead

to a vicious cycle of information contagion, and illiquidity spirals between investors’

pessimism and banks’ funding liquidity risks emerge.

The model also exhibits virtuous information contagion and liquidity cycles.

Suppose that investors are reasonably optimistic to start with, and that most banks

survive following credit shocks. If it is more likely for a bank to survive because its
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assets are high quality than for the bank to fail because its assets are low quality,

then investors become more optimistic. This, in turn, improves other banks’ recourse

to liquidity and thereby mitigates their funding liquidity risk. Indeed, the public

disclosure of the results of the Supervisory Capital Assessment Program in 2009 by

banking supervisors in the U.S. credibly demonstrated the resilience of banks and

restored confidence in the banking system (Bernanke, 2013).

The influence of changes to the prices of good- and bad-quality assets may be

mapped to the price spread. An increase in the spread leads to an increase in the

vicious illiquidity channel. A larger spread is associated with greater uncertainty in

the quality of the assets. When investors update their beliefs, they are more inclined

to assume that the likelihood that some banks failed because their assets were low

quality is greater than the likelihood that other banks survived because their assets

were high quality.

With a view towards stress testing, we theoretically demonstrate that our iter-

ative model set-up converges to a unique solution after a finite number of iterations.

Using a simple inductive argument, we show that in a stress-testing environment in-

volving N ≥ 2 banks, the cycles of investors updating their beliefs and bank creditors

running will end after, at most, N iterations.

Stress-test simulations of the model are conducted by integrating the mech-

anisms within the Bank of Canada’s MacroFinancial Risk Assessment Framework

(MFRAF). This macro stress-testing tool kit is routinely used by the Bank of Canada

to assess vulnerabilities within the Canadian banking sector. MFRAF, together with

the information contagion channel, was used in the Bank of Canada’s 2013 Finan-

cial Sector Assessment Program (FSAP) administered by the International Monetary

Fund (see Anand et al., 2014). For this paper, we calibrate our model using balance-
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sheet data for Canadian domestic systemically important banks. An extreme, but

plausible stress scenario is used, which relates macroeconomic stresses across various

economic sectors into credit and market losses on banks’ loan and securities portfo-

lios. We decompose the aggregate losses to the banking sector as those stemming from

solvency risk, funding liquidity risk and information contagion. Numerical compara-

tive static exercises are also conducted to demonstrate the sensitivity of the model to

investors’ beliefs and the price spread.

The rest of the paper is organized as follows. Some related literature is presented

in Section 2. We present the basic model in Section 3. The feedback mechanism

between funding and market liquidity is presented in Section 4. We illustrate the use

of the mechanism for stress testing in Section 5. A final section concludes.

2 Related literature

Our paper bridges the gap between the theoretical literature on information contagion

and the literature on stress-testing models.2 Acharya and Yorulmazer (2008) consider

a model with two banks, each with risk-averse depositors, where the returns on assets

across the two banks have a common factor. The failure of one bank conveys adverse

information about the common factor. This, in turn, increases the borrowing costs

of the surviving bank. In order to maximize the joint probability of survival, both

banks herd and undertake correlated investments. In contrast, we characterize the

information contagion dynamics for a given asset structure of the banking sector and

costs of funding.
2Contagion is generally divided into two types of propagation mechanisms: balance-sheet effects

(see Kiyotaki and Moore, 2002 for an example) and information effects, whereby poor results at one
institution lead creditors at other institutions to revise their prior beliefs.
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Our paper is closely related to Chen (1999), who provides a model of conta-

gious bank runs. Uninformed depositors of surviving banks conclude that informed

depositors have withdrawn their funds from failed banks, which signals poor prospects

for the banking industry. In our model, all depositors are imperfectly informed and

contagion is a consequence of the feedback between the investors’ beliefs about the

quality of a bank’s assets and the coordination friction between the bank’s depositors.

In a more recent contribution, Li and Ma (2013) developed a similar model to

ours, where mutually reinforcing bank runs and fire sales arise due to an adverse

selection problem. The authors derive a joint equilibrium for the pooling price of

assets and the failure conditions for banks. In contrast, we design an iterative model

where the market prices and failure conditions are determined sequentially. This

structure is more conducive to implementation within macro stress-testing models.

Notwithstanding their growing popularity, most macro stress-testing models do

not capture the myriad of complex interactions between banks, and between banks

and markets. Elsinger et al. (2006) propose one of the first models for stress testing

systemic risk that quantifies contagion effects through interbank linkages and common

assets. We omit interbank linkages for simplicity. Alessandri et al. (2009) provide a

framework that incorporates credit risk and funding liquidity risk that materializes

once banks’ balance sheets deteriorate beyond certain exogenous thresholds. Gauthier

et al. (2014) build on this framework and provide analytical underpinnings for the

link between solvency risk and funding liquidity risk. Other models, such as Cifuentes

et al. (2005) and Gauthier et al. (2012), introduce asset fire sales, where banks sell

assets in a market with inelastic demand, resulting in falling prices and forcing other

banks to sell assets as well.
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3 Basic model

The model extends over three dates, t = 0, 1, 2 and is populated by N ∈ N leveraged

financial institutions – hereafter called banks – and a large pool of risk-neutral cred-

itors and investors. Each creditor is endowed with a unit of funding at t = 0 and is

indifferent between consuming at t = 1 and t = 2. The representative investor, in

contrast, is deep-pocketed and consumes only at t = 2.

As in Rochet and Vives (2004), at t = 0, bank i has Ei worth of internal

financing, i.e., equity, and attracts additional debt from a mass Di of creditors. Each

creditor contributes a unit of funding, and in return receives a demandable debt

contract that promises to repay 1 + ri at the final date, where ri > 0. The contract

permits creditors to demand repayment at t = 1 without any penalty.3

With the funds Di + Ei, bank i invests an amount Mi in liquid assets, such as

treasury bills, and the remainder, Ii ≡ Di +Ei−Mi, in risky assets, such as loans or

securities. Risky assets mature at t = 2 and yield Yi > Ii.4 Table 1 depicts bank i’s

balance sheet at the end of t = 0.

Assets Liabilities

Risky assets Ii Di Demandable debt

Liquid assets Mi Ei Equity

Table 1: Balance sheet of bank i at t = 0

The risky assets of all banks are drawn from the same pool, which is either

“high” quality or “low” quality. Assets from the high-quality pool (henceforth simply
3We take contracts as given and do not investigate their optimal design.
4To focus our attention on the ex post contagion dynamics, we abstract from the optimal portfolio

structure in the paper.

7



referred to as high-quality assets) are worth ψH ∈ (0, 1] to the investor, while low

quality assets are worth only ψL < ψH . The quality of risky assets is determined at

random at the start of t = 1. While banks observe the quality of assets, the investor

and creditors do not. Instead, the investor has a common knowledge prior belief,

w ∈ [0, 1), that risky assets are high quality. The pooling price at which the investor

offers to purchase assets at t = 1 is

ψ = wψH +
(
1 − w

)
ψL . (1)

Banks suffer negative shocks to their balance sheets at t = 1 and t = 2. These

shocks may be thought of as the materialization of credit risks on loans or market

losses on trading assets. The shocks to bank i’s assets at t = 1 and t = 2 are denoted

by Si ∈ [Si, Si] and Li ∈ [Li, Li], respectively.5 The t = 1 shock is distributed accord-

ing to the probability distribution fi(S), with the cumulative distribution function

given by Fi(S). The t = 2 shock is distributed according to the probability dis-

tribution function gi(L), where the cumulative distribution function is denoted by

Gi(L).

Assets Liabilities

Yi − Si − Li Di(1 + ri)

Mi max
{
Ei − Si − Li −Di(1 + ri), 0

}
Table 2: Balance sheet of bank i at t = 2

Bank i is insolvent at t = 2 if its capital is insufficient to cover the losses; i.e.,

Si + Li > Ei. If Si > Ei, then bank i is insolvent at t = 1. For Si ≤ Ei, bank i

is solvent at t = 1 but can become illiquid if the fraction of creditors who demand
5In what follows, we assume that the support for the shock at t = 2 is entirely contained in the

support for the shock at t = 1.
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repayment i.e., “withdraw,” is too large for the bank to service. A bank that is illiquid

at t = 1 is assumed to be insolvent at t = 2. Table 2 depicts bank i’s balance sheet

at t = 2 when it is solvent.

Denoting the fraction of creditors who withdraw at t = 1 by `i ∈ [0, 1], bank i

is illiquid whenever

`i > λi
(
Si ; ψ

)
≡

Mi + ψ
[
Yi − Si

]
Di

. (2)

The fraction λi
(
Si ; ψ

)
is the ratio of bank i’s recourse to liquidity at t = 1 to its

debts. The recourse to liquidity is the sum of the liquid assets and the proceeds

from selling the remaining illiquid assets to the investor at the pooling price. Table

3 provides the timeline of events.

t = 0 t = 1 t = 2

1. Debt issuance 1. Interim shock 1. Investment matures

2. Investments 2. Debt withdrawals 2. Final shock

3. Debts honored

Table 3: Timeline of events

3.1 Rollover decisions

We model the decisions of bank i’s creditors to withdraw or not to withdraw their

debt at t = 1 as a binary-action simultaneous move game. Table 4 provides the

payoffs for an individual creditor.

If the creditor withdraws, then the bank returns the unit of funds, which is

9



Solvent (at t = 2) Insolvent (at t = 2) or Illiquid (at t = 1)

Not to withdraw 1 + ri 0

Withdraw 1 1

Table 4: Payoffs for a creditor from rolling over its claims or withdrawing

immediately consumed. The creditor receives this payoff regardless of the outcome

for the bank.6 On the other hand, if the creditor decides to not withdraw, then the

payoff depends on the outcome for the bank. If the bank is solvent at t = 2, then the

bank repays the creditor the principal plus the interest ri. However, if the bank is

insolvent, or turns illiquid at t = 1, the creditor gets nothing.

Following the realization of Si at t = 1, the bank is insolvent at t = 2 for

realizations Li that yield Ei − Si − Li < 0. Thus, conditional on the loss Si, the

probability that the bank will be insolvent at t = 2 is

Ni(Si) = Prob
(
Ei − Si − Li < 0

)
=


1 if Si > Ei − Li

1−Gi(Ei − Si) if Si ∈
[
Ei − Li, Ei − Li

]
0 if Si < Ei − Li

.

(3)

If Si > Ei − Li, then, for all realizations of the loss Li, the bank is always insolvent

at t = 2. Hence, it is a dominant strategy for all creditors to withdraw. On the

other hand, if Si < Ei − Li, the bank is always solvent at t = 2, and it is dominant

for all creditors to not withdraw their claims against bank i. In the intermediate

range, there is a non-zero probability of insolvency at t = 2 for bank i. With common

knowledge over the loss Si, the model exhibits multiple equilibria in pure strategies,
6This simplifying assumption allows us to preserve the global strategic complementarities as-

sumption needed to solve the coordination game.
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where either all creditors withdraw their claims, or no creditor withdraws. Figure 1

depicts this tripartite classification of the support for the shock Si.

Bank i is never
insolvent at t=2

Dominant action
for creditors 
to not withdraw

Bank i is always
insolvent at t=2

Dominant action
for creditors 
to withdrawBank i is insolvent

at t=2 with a non-
zero probability

Ei-Li Ei-Li

Si0

1

NiHSiL

Figure 1: Tripartite classification of the shock Si for bank i.

3.2 Global games refinement

To resolve the multiplicity of equilibria, we employ the global games refinement (Mor-

ris and Shin, 2003), where the model is embedded in an incomplete information set-

ting. Each creditor, k ∈ [0, Di], of bank i observes a noisy signal, xk = Si + εk, on the

realized losses, where εk is uniformly distributed over the interval [−ε, ε].7 We pos-

tulate that all creditors follow threshold strategies; i.e., there exists an x∗i , such that

if creditor k receives a signal xk > x∗i , then the creditor withdraws its claims against

bank i. However, for xk < x∗i , the creditor does not withdraw. From the signal xk,

creditor k infers the distribution of other creditors’ signals, and thus the likelihood

that they have decided to withdraw. The following proposition summarizes.
7The support for the Si shock distribution satisfies, Si < Ei − Li − ε, and Si > Ei − Li + ε.
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Proposition 1. Critical illiquidity threshold. In the limit of vanishing private

noise, ε → 0, there exists a unique equilibrium in threshold strategies characterized

by an illiquidity threshold, S∗i , and a signal threshold, S∗i , for each bank i. Creditor

j withdraws the claim against bank i if and only if xj > x∗i , and bank i is illiquid if

and only if S1
i > S∗i , where x∗i → S∗i . The illiquidity threshold is implicitly defined

by the indifference condition for the expected payoff to a creditor between rolling over

and withdrawing:

Gi

(
Ei − S∗i

)
λi
(
S∗i ; ψ

)
=

1

1 + ri
. (4)

The illiquidity threshold is increasing in the bank’s equity, Ei, liquid assets, Mi, and

returns, ri, but is decreasing in its debt level, Di. The threshold is increasing in the

investor’s belief, w, and the prices, ψH and ψL.

Proof. See Appendix A.

The comparative statics for the critical thresholds are intuitive. First, as the

bank’s equity, Ei, increases, it has more resources to withstand the shocks on the

interim and final dates. The bank’s probability of turning insolvent at t = 2 is

reduced, and hence, the creditors are more willing to not withdraw. Second, as

the level of liquid assets, Mi, increases, the bank’s recourse to liquidity is greater,

and the bank is more able to meet withdrawals at the interim date. The creditors

are more willing to not withdraw their debts. Third, as the promised return, ri,

increases, creditors are better off not withdrawing their debts and waiting until t = 2,

than withdrawing at t = 1 and obtaining only unity. Fourth, as the debt level, Di,

increases, the bank has less recourse to liquidity to meet all withdrawals. This, in

turn, prompts creditors to withdraw earlier.

Finally, increases in investors’ belief, w, and prices, ψH and ψL, all lead to
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increases in the pooling price, which in turn improves the bank’s recourse to liquidity.

As the bank has more liquidity to meet withdrawals, the creditors are willing to roll

over their claims to the bank.

4 Contagion and self-fulfilling illiquidity

A bank’s recourse to liquidity depends on the investor’s belief about the quality of the

bank’s assets. If the investor is pessimistic to start with, this may precipitate some

banks turning illiquid at t = 1. On observing these outcomes, the investor updates

its belief and turns more pessimistic, which reduces other banks’ recourse to liquidity.

In a dynamic setting, this may lead to more banks turning illiquid, thereby making

the investor more pessimistic.

This vicious cycle of self-fulfilling illiquidity between the investor updating the

belief and the actions of bank creditors terminates once there is no additional in-

formation to be gained by the investor from observing the outcomes for banks. We

explore this dynamic by first concentrating on two banks (i and j), where we divide

t = 1 into two periods – round 1 and round 2.

Round 1: Investors have a prior belief w1 > 0 that the banks’ assets are of a high

quality. The pooling price is ψ1
= w1ψH +

(
1 − w1

)
ψL. As in the basic set-up,

creditors of banks i and j receive noisy signals on the shocks Si and Sj, respectively.

Formally, each creditor, bk ∈ Db, of bank b ∈ {i, j} receives a signal, x1bk = Sb + ε1bk .

The noise term, ε1bk , is independently and identically drawn from the interval [−ε1, ε1].

We focus on the global games solution in round 1, in the limit of vanishing

private noise (ε1 → 0). Following the logic of Proposition 1, there exist unique
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illiquidity thresholds S1∗
i and S1∗

j for banks i and j, respectively. Bank b ∈ {i, j} is

illiquid at the end of round 1 if Sb > S1∗
b . There are four possible outcomes: (i) bank

i is illiquid, but bank j is liquid; (ii) bank i is liquid, but bank j is illiquid; (iii) both

bank i and bank j are illiquid; and (iv) both bank i and bank j are liquid.

Round 2: If both banks are illiquid at the end of round 1, then there is no further

activity in round 2. Thus, without loss of generality, we focus on just two cases: (i)

bank i is liquid, but bank j is illiquid; and (ii) both bank i and bank j are liquid. We

introduce the indicator variable η1b ∈ {0, 1}, which indicates whether bank b is liquid

(η1b = 0) or illiquid (η1b = 1) at the end of round 1. On observing the outcomes, the

investor updates its belief about the quality of the assets using Bayes’ rule:

w2 =
Prob

(
η1i , η

1
j |ψ = ψH

)
w1

Prob
(
η1i , η

1
j |ψ = ψH

)
w1 + Prob

(
η1i , η

1
j |ψ = ψL

)(
1 − w1

) . (5)

Since the event η1i is independent of the event η1j , the joint probability Prob
(
η1i , η

1
j |ψ =

ψH

)
= Prob

(
η1i |ψ = ψH

)
Prob

(
η1j |ψ = ψH

)
. The probability that bank b ∈ {i, j}

is illiquid (η1b = 1), conditional on ψ = ψH , is

Prob
(
η1b = 1 |ψ = ψH

)
= Prob

(
Sb > S∗bH

)
, (6)

where the critical threshold S∗bH is given by the solution to

Gb

(
Eb − S∗bH

)
λb
(
S∗bH ; ψH

)
=

1

1 + rb
. (7)

An analogous definition holds for S∗bL. Once the new belief has been computed, a new

pooling price, ψ2
= w2 ψH +

(
1−w2

)
ψL, is offered. Creditors of the remaining liquid

bank(s) have the opportunity to revise their decision. They receive a new noisy signal
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on the shock to their bank and decide whether to withdraw or not. Formally, creditor

bk of bank b ∈ {i, j} receives a signal, x2bk = Sb + ε2bk , where ε
2
bk

is independently and

identically drawn from [−ε2, ε2]. The new noise term, ε2bk , is independent of the noise

term from the previous round. We employ the global games solution in round 2 in the

limit of vanishing private noise (ε2 → 0). We thus define new illiquidity thresholds,

S2∗
i and S2∗

j , for banks i and j, respectively. Whether or not the new thresholds are

higher or lower than those from round 1 depends on how the investor’s beliefs are

updated. Table 5 provides the timeline for the game.

t = 0 t = 1 (round 1) t = 1 (round 2) t = 2

1. Debt issuance 1. Interim shock 1. Belief updated 1. Investment matures

2. Investments 2. Private signals 2. New pooling price 2. Final shock

3. Debt withdrawals 3. New private signals 3. Debts honored

4. Debt withdrawals

Table 5: Timeline of events where the investor updates the belief

Proposition 2. Virtuous liquidity. If both banks are liquid at the end of round 1,

then w2 > w1. Consequently, both banks remain liquid at the end of round 2.

Proof. See Appendix B.

Suppose that at the start of round 1, the investor has a high prior belief that

assets are good quality; i.e., w1 is large. This, in turn, results in both banks remaining

liquid at the end of round 1. The investor observes these outcomes at the start of

round two and updates the belief upwards, since all banks are more likely to remain

15



liquid when assets are of good quality; i.e., w2 > w1. The banks’ recourse to liquidity

improves, which further increases the critical thresholds. The banks thus continue to

remain liquid and solvent.

Proposition 3. Vicious illiquidity. Suppose bank i is liquid and bank j is illiquid

at the end of round 1. The investor become more pessimistic, w2 < w1, whenever:

Prob
(
η1i = 0 |ψ = ψH

)
Prob

(
η1i = 0 |ψ = ψL

) <
Prob

(
η1j = 1 |ψ = ψL

)
Prob

(
η1j = 1 |ψ = ψH

) . (8)

If the downward revision of the belief is large enough, then bank i will also become

illiquid at the end of round 2.

Proof. See Appendix C.

Suppose the investor enters round 1 with a pessimistic view regarding the quality

of the banks’ assets; i.e., w1 is low, which results in bank j turning illiquid. When

updating its belief at the start of round 2, the investor computes and compares four

different conditional probabilities. If the inequality in Equation (8) is satisfied, the

investor concludes that it is less likely for bank i to remain liquid when assets are

good quality than it is for bank j to turn illiquid when assets are bad quality. The

failure of bank j has a greater weight in the investor’s Bayesian update, leading to a

downward revision of the belief and a more pessimistic view on asset quality.

To investigate the effects of changes in the prices of good- and bad-quality

assets, we make the following assumptions. Both banks are identical in all aspects,

except in their reliance on short-term funding; i.e., Dj > Di. The shock distribution

f = fi = fj satisfies f ′ < 0, such that small shocks are more likely than large shocks.
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Finally, the ex ante probability that bank j will turn illiquid when assets are high

quality is bounded above, 1− F (S∗jH) < F̄ , where F̄ is defined in Appendix D.

Proposition 4. Price and spread effects. For a given initial belief, w1, and low-

quality price, ψL, an increase in the high-quality price, ψH , increases the price spread,

∆ψ = ψH −ψL. This, in turn, strengthens the pessimism condition and increases the

range of parameters where the investor’s belief is revised downwards.

On the other hand, for a given high-quality price, ψH , an increase in the low-

quality price, ψL, leads to a decrease in the price spread. This weakens the pessimism

condition and reduces the range of parameters where the investor’s belief is revised

downwards.

Proof. See Appendix D.

As the price spread increases, the probability that bank i remains liquid when

assets are good quality, relative to the probability that bank i remains liquid when

the assets are bad quality, also increases. At the same time, the probability that bank

j turns illiquid when assets are bad quality, relative to the probability that bank j

turns illiquid when assets are good quality, also increases. When the increase in the

relative probability that bank j turns illiquid when assets are bad quality is greater

than the increase in the relative probability that bank i remains liquid when assets are

good quality, the net effect is to increase the range of parameters where the pessimism

condition holds. The opposite effect holds when the price spread decreases.

With the updated beliefs, there are two possible outcomes at the end of round 2:

bank i remains liquid or turns illiquid. If bank i remains liquid, there is no additional

information for investors to gather, and their beliefs remain unchanged. On the
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other hand, if bank i turns illiquid, investors will become more pessimistic. In both

cases, there are no further actions possible in subsequent rounds. Generalizing to an

arbitrary number, N , of banks, the following proposition summarizes the result.

Proposition 5. Convergence. In a game involving N ≥ 2 banks, the cycles of

Bayesian updating by investors and withdrawal by creditors terminates after, at most,

N rounds.

Proof. See Appendix E.

The result of Proposition 5 ensures that any algorithm that implements our

model will be well behaved and converge after a finite number of rounds. This is vital

for implementing our model for stress-testing purposes, which we explore in the next

section.

5 Stress testing and simulations

Our analysis thus far provides a theoretical underpinning for the links between sol-

vency risk, funding liquidity risk and contagion. We now illustrate these links by inte-

grating our model into the Bank of Canada stress-testing model: the MacroFinancial

Risk Assessment Framework (MFRAF). Figure 2 provides a high-level overview of

MFRAF. This integrated framework has recently been implemented by the Bank of

Canada and is used to assess the resilience of the Canadian banking sector.8

8In particular, results from the 2013 Financial Sector Assessment Program, an exercise adminis-
tered by the International Monetary Fund, have been published by Anand et al. (2014). We provide
only a very brief discussion here – for further details, see Gauthier et al. (2012) and Gauthier et al.
(2014).
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Solvency risk module

Macroeconomic and 
financial shocks materialize.

Banks suffer losses due to 
credit risk and market risk.

Liquidity risk module

Creditors have concerns 
over banks’ funding 

strategies and solvency.

Creditors withdraw their 
claims on banks.

Systemic risk module

Contagion between 
investors’ beliefs and 
creditors’ withdrawals

and interbank spillovers.

System-wide losses 
distribution.

Figure 2: Schematic description of the modular structure of MFRAF

The framework involves three independent but interdependent modules. First,

banks are subjected to shocks, leading to asset losses over a one-year horizon. These

shocks, which can originate in the real economy (adverse macroeconomic shocks)

or in financial markets, weaken banks’ capital positions and threaten their future

solvency. Banks can be affected differently, depending on their initial balance-sheet

vulnerabilities (asset quality, leverage, funding strategies, etc.). Second, as initial

losses materialize at the interim date, concerns about their future solvency mount,

causing creditors to withdraw their loans, thereby generating funding liquidity risk.

In the third step, the illiquidity of one bank can lead to other banks’ illiquidity due

to information contagion through investors’ beliefs.9

5.1 Calibration

We illustrate MFRAF in a banking system consisting of six banks that represent

the Canadian domestic systemically important banks (D-SIBs). The macroeconomic
9MFRAF also incorporates network externalities caused by defaults by counterparties. A de-

faulting bank (or a bank with a serious capital shortfall) will not be able to fulfill its obligations in
the interbank market, causing counterparty credit losses in the system and leading to the potential
default of other banks. These effects amplify the impact of initial shocks, but in this paper, we
ignore these externalities and instead focus on the information contagion channel.
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stress scenario loosely draws on the baseline scenario considered in Canada’s 2013

FSAP (see Anand et al. (2014) and IMF (2014) for details). Our calibration uses

confidential data on banks’ balance sheets. For this reason, we only present aggregate

results of the calibration that have been publicly reported.

The scenario considered a peak-to-trough real GDP decline of -5.9 percent.

The peak increase in the unemployment rate was also 5.9 percent, and house prices

declined by 33 percent. These macroeconomic trends were mapped into default rates

for loans on banks’ balance sheets. Different rates were derived for different economic

sectors.10 The average default rate across all sectors was 6.2 percent. Over the period

1988–2012, the historical average default rate was only 4.4 percent.

The stress horizon in our simulation is one year. Banks’ annual losses were

determined as follows. We simulate default rate distributions for different sectors

using two components. The first is the average default rate for each sectors, which

is given by our macroeconomic mapping. The second component is the correlation

matrix of defaults across different sectors, which is derived from historical data. Next,

information on banks’ exposures to the different sectors is obtained from regulatory

filings. Finally, data on loss-given-default rates are obtained from banks. IMF (2014)

reports that the peak of the weighted-average loss-given-default rate over the stress

horizon was around 33 percent. Annual losses for each bank is the product of the

default rates, exposures to the various sectors and the loss-given-default rates. In our

stress test, we assume that one-half of the annual losses are realized at the interim

date. The remainder are realized at the final date.

Banks’ balance sheets are calibrated using data from the first quarter of 2013.
10The domestic sectors include accommodations, agriculture, construction, manufacturing, whole-

sale, Canadian governments, financial institutions, small business loans, residential mortgages (unin-
sured), HELOCs (uninsured) and consumer loans.
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The average common equity Tier 1 (CET1) capital ratio of banks is 8.9 percent. Ad-

ditional data on the liquid assets, illiquid assets and risk-weighted assets are obtained

from banks’ regulatory filings. To estimate the amount of funding that is subject to

rollover risk at the interim date in our model, we consider both short- and long-term

liabilities, regardless of their original contract maturities. We obtain data on banks’

maturity mismatches from the Office of the Superintendent of Financial Institutions.

We use a subset of this data, which covers debts that are coming to maturity within

a six-month horizon. All these liabilities are subject to withdrawal at the interim

date in our model. On average, these liabilities represent 35 percent of total liabilities

across all six banks. The returns on banks’ liabilities are calculated as weighted aver-

ages of the returns across different instruments and maturities. The values of good-

and bad-quality assets to investors in the model are equal to the weighted averages of

the assets’ liquidation values during times of stress. We draw on the views of market

experts to determine the liquidation values. We thus set ψH = 0.3 and ψL = 0.2.

The system-wide loss distribution is determined as follows. Insolvent banks’

losses are equal to their credit shocks plus a bankruptcy cost, which is equal to

10 percent of their risk-weighted assets. Banks that fail due to illiquidity suffer an

additional bankruptcy cost equal to the spread between ψH and the average pooling

price offered by investors, multiplied by the bank’s illiquid assets. The losses are

proportional to the level of adverse selection.

To concentrate on how balance-sheet characteristics influence liquidity risk, we

make the following simplifying assumptions. The loss distributions are identical for

all banks and equal to the loss distribution for the average bank. All banks have

the same CET1 capital, liquid assets, illiquid assets and promised returns. Banks,

however, differ in terms of the liabilities subject to withdrawal at the interim date.
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5.2 Stress-test results

The results of our stress test are provided in Table 6. The probability that the

capital ratios of banks would breach the minimum regulatory requirement of 7 percent

following a credit shock is 47 percent for all banks. In crisis times, uncertainty

about banks’ assets increases, and creditors become highly sensitive to breaches of

the minimum capital requirements. Therefore, a bank that breaches the minimum

regulatory requirement is assumed to be insolvent from the perspective of creditors.11

Risks

Bank Solvency Liquidity Contagion Total

1 47.0 22.9 0.0 69.9

2 47.0 0.0 0.0 47.0

3 47.0 23.0 0.6 70.6

4 47.0 0.0 19.2 66.2

5 47.0 0.0 0.0 47.0

6 47.0 22.2 0.8 70.0

Table 6: Decomposition of risks

A bank’s balance sheet liquidity (BSL) is the ratio of its recourse to liquidity –

the sum of liquid assets and the sale of illiquid assets at the initial pooling price – to

it liabilities subject to rollover risk.12 Assuming that the investor holds a prior belief,
11Of course, using a standard criterion of negative net worth would yield lower solvency and

liquidity risks.
12The BSL measure is different from the LCR and should not be viewed as a proxy for the LCR.

The denominator for the BSL represents liabilities subject to withdrawal at the interim date in the
model and is calculated as all liabilities with a maturity date falling within six months of the start of
the exercise. The LCR, on the other hand, considers cash outflows over a one-month horizon only.
The two measures also differ in their assumptions on the proportion of liabilities that are subject to
withdrawal, and on the haircuts to illiquid assets.
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w1 = 1/2, the average BSL is λ = 1.08, with three banks (banks 2, 4 and 5) having a

BSL ratio larger than one. For moderate shocks, these banks never suffer illiquidity

in round 1, whereas banks 1, 3 and 6 have non-zero probabilities of turning illiquid

in round 1.

We also compute for each bank the probability of turning illiquid when the

investors revise their beliefs. At the end of round 1, the investors observe the failure

of banks 1, 3 and 6 and turn very pessimistic. This, in turn, reduces bank 4’s

recourse to liquidity, which reduces its BSL ratio to less than one. Consequently, the

probability that bank 4 will turn illiquid after round 1 is non-zero and equal to 19.2

percent.
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Figure 3: Aggregate loss distribution

Figure 3 shows the impact of the three types of risk on the distribution of the

aggregated losses as a percentage of total assets for the banking system. When only

the direct impact of the initial shocks is considered (the red line, labeled “Solvency”),
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maximum system-wide losses do not exceed 2 percent of total assets, and average

losses amount to less than 0.5 percent of total assets. The tail is, however, signif-

icantly fattened by adding funding liquidity risk to credit risk (blue line, labeled

“Liquidity”). The likelihood of the banking system suffering losses larger than 2 per-

cent of its total assets is non-zero. Including contagion effects (the light-blue shaded

area, labeled “Contagion”) worsens the system loss distribution (losses can now reach

up to 6 percent of the system’s assets). These results demonstrate that the failure

to account for contagion risk could significantly underestimate the extent of systemic

risk: banks considered liquid when analyzed in isolation may become illiquid due to

information contagion.

Table 7 presents the results for a second set of simulations where we increase the

stock of liabilities subject to withdrawal for banks 2 and 5, such that their BSL ratios

are equal to that of bank 4. Banks 2 and 5 continue to remain immune to liquidity

risk in round 1. However, following the investors’ revisions, the pooling price falls and

their BSL ratios fall below 1. This, in turn, increases the probability of both banks

suffering from illiquidity due to contagion.

5.3 Beliefs and prices in stress testing

As a final exercise, we investigate how changes in the prior belief, w1 and the price

spread, ψH − ψL, influence liquidity risk and contagion in our stress-testing exercise.

The top panel of Figure 4 plots the total liquidity risk probability as a function of

the investors’ initial beliefs. As the investors become more optimistic that assets are

of high quality, the liquidity risk probability diminishes. The three different curves

in the plot represent changes to the low-quality price, ψL. For the 10 percent (20
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Risks

Bank Solvency Liquidity Contagion Total

1 47.0 22.9 0.0 69.9

2 47.0 0.0 22.6 69.6

3 47.0 23.0 0.6 70.6

4 47.0 0.0 19.2 66.2

5 47.0 0.0 19.7 46.7

6 47.0 22.2 0.8 70.0

Table 7: Decomposition of risks with lower BSLs for banks 2 and 5

percent) curve, the price ψL is reduced by 10 percent (20 percent) relative to the

baseline case, which is represented by the 0 percent curve. A decrease in the low-

quality price leads to an increase in the price spread. As the figure demonstrates,

liquidity risk is higher when the price spread is high as well.

The middle panel of Figure 4 depicts the liquidity risk after the first round of

the information contagion dynamics. As the prior belief increases, the first-round

liquidity risk decreases more rapidly than the total risk. However, at the same time,

as the bottom panel of Figure 4 demonstrates, this decline in the first-round liquidity

risk is supplemented by an increase in the contagion risk. When the price spread is

large, the first-round liquidity risk is higher for larger values of the belief. As the

belief continues to increase, this liquidity risk is replaced by contagion risk, to keep

the total liquidity risk figure unchanged. This numerical finding is consistent with

the result in Proposition 4.
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Figure 4: Decomposition of liquidity risk and contagion

6 Conclusion

In this paper, we propose a tractable model-based stress-testing framework that in-

tegrates solvency risk, funding liquidity risk and market risk. The key dynamic un-

derlying our model is a two-way feedback interaction between the adverse selection of

investors seeking to purchase assets and coordination failure between the creditors of

banks that leads to endogenous runs. The investors’ initial belief is crucial for the un-

folding of systemic risk. In particular, if investors are pessimistic, this reduces banks’

recourse to liquidity – from selling illiquid assets – which makes them more suscep-

tible to runs. This, in turn, makes investors more pessimistic. We illustrate these

dynamics in a stress-testing exercise using an extreme but plausible macroeconomic
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stress scenario.

The global financial crisis highlighted the mutually reinforcing roles of funding

and market liquidity when banks’ balance sheets lack transparency. Tools such as

ours that can be used to better assess the interactions between different risks in the

financial system can help limit the recurrence of such events.
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A Proof of Proposition 1

We establish the existence of a unique Bayesian equilibrium for each bank, b, in

threshold strategies. Morris and Shin (2003) show that only threshold strategies

survive the iterated deletion of strictly dominated strategies.

Each creditor, bk, uses a threshold strategy, whereby debt is rolled over if and

only if the private signal suggests that the credit shock is small, xbk < x∗b . Hence, for

a given realization of the shock S, the proportion of creditors who do not roll over

debt is

`b(Sb, x
∗
b) = Prob

(
xbk > x∗b |S

)
= Prob

(
εbk > x∗b − Sb

)
= 1− x∗b − Sb − ε

2ε
. (9)

The critical mass condition states that bank b is illiquid when the credit shock

reaches a threshold S∗b , such that

`b(S
∗
b , x

∗
b) =

Mb + ψ
[
Yb − S∗b

]
Db

. (10)

A creditor who receives the signal x∗ is indifferent between rolling over its debt

and not. Thus, the indifferent condition is

Gb

(
Eb − S∗b

)
λb
(
S∗b ; ψ

) (
1 + rb

)
= 1 . (11)

Equation (10) defines the critical signal, while Equation (11) defines the critical

threshold for bank b. In the limit ε→ 0, it is easy to verify that x∗b → S∗b .
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B Proof of Proposition 2

The belief at the end of round 1 is

w2 =
(

Prob
(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 0 |ψ = ψH

)
w1
)

/ (
Prob

(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 0 |ψ = ψH

)
w1

+ Prob
(
ηi = 0 |ψ = ψL

)
Prob

(
ηj = 0 |ψ = ψL

) (
1 − w1

))
. (12)

To show that w2 > w1, we must have that

Prob
(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 0 |ψ = ψH

)
≥ Prob

(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 0 |ψ = ψH

)
w1

+ Prob
(
ηi = 0 |ψ = ψL

)
Prob

(
ηj = 0 |ψ = ψL

) (
1 − w1

)
, (13)

which, on rearranging, yields

Prob
(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 0 |ψ = ψH

)
> Prob

(
ηi = 0 |ψ = ψL

)
Prob

(
ηj = 0 |ψ = ψL

)
, (14)

which is always true.
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C Proof of Proposition 3

The belief at the end of round 1 is

w2 =
(

Prob
(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 1 |ψ = ψH

)
w1
)

/ (
Prob

(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 1 |ψ = ψH

)
w1

+ Prob
(
ηi = 0 |ψ = ψL

)
Prob

(
ηj = 1 |ψ = ψL

) (
1 − w1

))
. (15)

Consequently, for w2 < w1, we must have that

Prob
(
ηi = 0 |ψ = ψH

)
Prob

(
ηj = 1 |ψ = ψH

)
(16)

< Prob
(
ηi = 0 |ψ = ψL

)
Prob

(
ηj = 1 |ψ = ψL

)
, (17)

which is identical to the condition in Equation (8).

D Proof of Proposition 4

Let us define

ρ0 =
F (p∗i,H)

F (p∗i,L)
, (18)

which is the left-hand side of the pessimism condition, and

ρ1 =
1 − F (p∗j,L)

1 − F (p∗j,H)
, (19)

which is the right-hand side. The derivative of ρ0 with respect to ψH is

dρ0
dψH

=
f(p∗i,H)

F (p∗i,L)

dp∗i,H
dψH

> 0 , (20)
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while the derivative of ρ1 with respect to ψH is

dρ1
dψH

=
1 − F (p∗j,L)(

1 − F (p∗j,H)
)2fj(p∗j,H)

dp∗j,H
dψH

> 0 . (21)

If follows from the implicit function theorem that
dp∗j,L
dψH

>
dp∗j,H
dψH

. Moreover, since

f ′ < 0, it follows that f(p∗j,H) > f(p∗i,H). Finally, we have that dρ1
dψH

> dρ0
dψH

as long as

1 − F (p∗j,L)(
1 − F (p∗j,H)

)2 > 1

F (p∗i,L)
. (22)

Turning to the effects of a change in ψL:

dρ0
dψL

= −
F (p∗i,H)

F (p∗i,L)2
f(p∗i,L)

dp∗i,L
dψL

< 0 , (23)

and
dρ1
dψL

=
−1

1− F (p∗j,H)
f(p∗j,L)

dp∗j,L
dψL

< 0 . (24)

Comparing the two derivatives, as before, we have that f(p∗j,L) > f(p∗i,L), and that
dp∗j,L
dψL

>
dp∗i,L
dψL

. We thus obtain dρ1
dψL

< dρ0
dψL

whenever

1

1− F (p∗j,H)
>
F (p∗i,H)

F (p∗i,L)2
. (25)

Combining Equations (22) and (25), we obtain the sufficient condition for our result

that

1 − F (p∗j,H) < F̄ ≡ min

{
F (p∗i,L)2

F (p∗i,H)
,

√
F (p∗i,L)

(
1 − F (p∗j,L)

)}
. (26)
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E Proof of Proposition 5

Base case: In the case N = 2 at the end of round 1, either both banks have turned

illiquid, only one bank has turned illiquid or both remain liquid. In the first case,

investors update their beliefs and become pessimistic, but there are no further actions

to take. In the third case, Proposition 2 implies that investors become optimistic when

they update their beliefs, and no banks suffer from illiquidity. Finally, if only one

bank defaults, then investors may become more pessimistic when they update their

beliefs. In the worst case, this will lead to the second bank turning illiquid in round

2, after which there are no further actions, and the game terminates.

Induction Hypothesis: In the case of N > 2 banks, the game terminates after,

at most, N rounds.

Inductive Step: In the case of N + 1 banks, suppose that at the end of N rounds,

there are N + 1−k banks liquid and k banks illiquid, where k ≤ N + 1. If k = N + 1,

then all banks are illiquid, and the game ends. If k = N , then for the lone liquid

bank, in round N + 1, investors update their beliefs and post a new pooling price.

The creditors of the bank subsequently decide whether or not to withdraw. If they do

not withdraw, then the bank remains liquid, and there is no further information to

be gained for the investors, and the game terminates. If, however, they all withdraw,

then the bank turns illiquid. While investors update their beliefs, there are no further

actions to take and, hence, the game also terminates. For k < N , it follows that in

round N + 1− k there were no new banks turning illiquid, and, hence, beliefs did not

update, implying that the game terminated.
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