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Abstract

This paper introduces new weighting schemes for model averaging when one is interested
in combining discrete forecasts from competing Markov-switching models. In particular,
we extend two existing classes of combination schemes — Bayesian (static) model
averaging and dynamic model averaging — so as to explicitly reflect the objective of
forecasting a discrete outcome. Both simulation and empirical exercises show that our
new combination schemes outperform competing combination schemes in terms of
forecasting accuracy. In the empirical application, we estimate and forecast U.S. business
cycle turning points with state-level employment data. We find that forecasts obtained
with our best combination scheme provide timely updates of the U.S. business cycles.

JEL classification: C53, E32, E37
Bank classification: Business fluctuations and cycles; Econometric and statistical
methods

Résumé

Les auteurs présentent de nouvelles méthodes de pondération pour la combinaison de
prévisions de variables discreétes issues de différents modeles de Markov a changement de
régime. Plus particulierement, ils étendent deux classes existantes de méthodes de
combinaison — combinaison de prévisions établies au moyen de modeles bayésiens
(statiques) et combinaison dynamique de prévisions — de maniére a correspondre
explicitement a I’objectif assigne a I’exercice de prévision d’une variable discréte. Les
simulations et I’application empirique montrent qu’en ce qui a trait & I’exactitude des
prévisions, les nouvelles méthodes de combinaison surclassent les méthodes de
combinaison concurrentes. S’agissant de I’application empirique, les auteurs estiment et
prévoient les points de retournement du cycle de I’économie américaine a I’aide de
données sur I’emploi provenant des Etats. lls constatent que les prévisions obtenues a
partir de leur meilleure méthode de combinaison fournissent des renseignements en
temps opportun sur les cycles économiques aux Etats-Unis.

Classification JEL : C53, E32, E37
Classification de la Banque : Cycles et fluctuations économiques; Méthodes
économetriques et statistiques



Non-Technical Summary

Combining forecasts from different models is typically perceived as a useful way to
mitigate time instability in the forecasting performance of individual models, and thereby
ultimately improve the overall forecasting performance. Moreover, regime-switching mod-
els are widely used to model non-linear relations in macroeconomics and finance. A key
advantage of regime-switching models is their ability to estimate both discrete and continu-
ous outcomes. For example, one may be interested not only in forecasting the level of GDP
growth, but also in evaluating whether an economy is heading into recession. It is therefore
of natural interest to study how to combine information from competing regime-switching
models in a forecasting environment.

A key contribution of this paper is to suggest new combination schemes in the context
of regime-switching models, and compare them with existing weighting schemes. In detail,
we consider both constant and time-varying weights when calculating the models’ weights
(i.e., Bayesian model averaging and dynamic model averaging, respectively). Rather than
calculating weights exclusively based on how likely they are to best fit the data, we suggest
using weights that rely on how well a model describes the underlying regimes. Another
contribution of this paper is that it describes how to perform dynamic model averaging when
estimating regime-switching models. One key conclusion of this paper is that combination
schemes based on their past performance in evaluating regimes perform best when one is
estimating and forecasting discrete outcomes.

We first perform a Monte Carlo experiment that relies on simulated data to study in
a controlled experiment the different combination schemes outlined in this paper. Second,
our empirical application concentrates on predicting national U.S. recessions with state-
level employment data using, alternatively, industrial production and employment as a
measure of national economic activity. We show that our preferred specifications provide
timely updates of the U.S. business cycles. This holds true over an extended evaluation
sample for the forecasting exercise that permits us to alleviate concerns about spurious
forecasting results, and also over a sample that considers real-time data so as to mimic
as closely as possible the information set available at the time the forecasts were made.
Overall, we trust that the methods outlined in this paper can be implemented in a large
class of applications in applied macroeconomics and finance.



1 Introduction

Combining forecasts has frequently been found to produce better forecasts on aver-
age than forecasts obtained from the best ex-ante individual forecasting model. This is
especially true when there is substantial time instability in the forecasting ability of predic-
tors and when parameter estimation error is sizable (see, e.g., Timmermann (2006)). While
there is a large literature on model averaging for linear models, little work has been done to
study model-averaging schemes for Markov-switching models. This is a highly relevant issue
to study, since Markov-switching models are widely used in macroeconomics and finance.
For example, starting from Hamilton (1989), there is a large literature on the estimation
and prediction of recessions using regime-switching models. In this paper, we introduce new
weighting schemes to combine discrete forecasts from competing Markov-switching models.
We show their relevance based on Monte Carlo experiments and an empirical application
to predict U.S. recessions with a large set of Markov-switching models.

In the context of linear regressions, an approach increasingly used in empirical studies
is Bayesian model averaging (BMA), proposed by Raftery et al. (1998) and Hoeting et al.
(1999). This approach is often referred to as static model averaging in that the estimated
models’ weights are constant over time. Recently, Raftery et al. (2010) proposed the
dynamic model averaging (DMA) approach, where the models’ weights evolve over time.
DMA has been applied to a variety of situations, most notably to forecasting inflation in
the context of time-varying parameter (TVP) regression models (see Koop and Korobilis
(2012)). In a multivariate context, DMA has been applied to linear vector autoregressive
(VAR) models (Koop (2014)) and large TVP-VAR models (Koop and Korobilis (2013))
to forecast inflation, real output and interest rates. An alternative approach for model
combination is provided in Elliott and Timmermann (2005), who suggest using weights
that can vary according to Markov chains. Geweke and Amisano (2011) instead focus on
constructing optimal weights by considering linear pools where the objective is to maximize
the historical log of the predictive score. Del Negro et al. (2013) provide a dynamic version
of the linear pools approach.

Despite the extensive literature on model averaging to formulate continuous forecasts,
little has been done regarding the study of model-averaging schemes in the context of
discrete forecasts. To the best of our knowledge, there are very few related works in this
research area. Among the notable exceptions are Billio et al. (2012), who compare the
performance of combination schemes for linear and regime-switching models, and Billio
et al. (2013), who propose a time-varying combination approach for multivariate predictive
densities. Moreover, Berge (2013) compares model selection schemes based on boosting
algorithms with a BMA weighting scheme for predicting U.S. recessions based on logistic
regressions using a set of economic and financial indicators.

Since the seminal work of Hamilton (1989), a number of extensions to regime-switching
models have been proposed to estimate turning points for the U.S. economy. In this context,
dynamic factor models subject to regime changes are one of the most successful approaches.
Relevant contributions include Kim (1994), Kim and Yoo (1995), and Kim and Nelson
(1998). Moreover, Chauvet (1998) finds that this type of model performs well at dating



business cycle turning points in an out-of-sample experiment. Kholodilin and Yao (2005)
use leading indicators in a dynamic factor model to predict turning points. Recent works
have focused on analyzing the performance of regime-switching models to forecast turning
points using real-time data (Chauvet and Hamilton (2006) and Chauvet and Piger (2008))
and allowing for mixed frequency data (Camacho et al. (2012), Guérin and Marcellino
(2013) and Camacho et al. (2014)). Alternative approaches used to infer turning points rely
on VAR models with regime-switching parameters. Relevant works include Hamilton and
Perez-Quiros (1996) and Cakmakli et al. (2013), who use information on leading economic
indexes to predict cycles for gross national product and industrial production, respectively.
Nalewaik (2012) emphasizes the predictive content of gross domestic income to forecast
U.S. recessions in real time. Finally, Hamilton (2011) provides a comprehensive survey
of the literature on predicting turning points in real time with regime-switching models.
He concludes that forecasting gains are likely to be made when averaging inferences from
competing models.

This paper contributes to the literature along two dimensions. First, we show how to
perform DMA with Markov-switching models. This extension provides a flexible framework
that evaluates, at every period of time, the performance of different Markov-switching mod-
els to infer the regimes of a target variable. Second, we introduce new weighting schemes
for model averaging when the variable to forecast is a discrete outcome. Specifically, we
propose models” weights that depend on the past predictive ability of a given model to
estimate discrete outcomes. It is intuitive to do so in that a model that performs well for
continuous forecasts may not necessarily be helpful for discrete forecasts. Hence, standard
weighting schemes that exclusively rely on the likelihood as a measure of model fit may not
necessarily be appropriate when forecasting discrete outcomes. When presenting our new
models’ weights, we consider two classes of combination schemes, static weights (BMA)
and time-varying weights (DMA).

We compare the predictive ability of the likelihood-based combination schemes (i.e., the
standard approach adopted in the literature) with the predictive ability of our proposed
combination schemes. This comparison is performed with simulated data, based on Monte
Carlo experiments, and with an empirical application. The empirical application concen-
trates on predicting U.S. national recessions using state-level employment data. There
are several reasons for choosing this application. First, previous studies suggest that em-
ployment of specific U.S. states may lead the national business cycle phases in particular
episodes (Owyang et al. (2005)). As a result, it is natural to think of the best way to
combine information from the different U.S. states to predict a national aggregate. Second,
Owyang et al. (2005), Hamilton and Owyang (2012), and Leiva-Leon (2014) use state-level
data to study the synchronization of business cycles across U.S. states, finding a signifi-
cant heterogeneity in their cyclical fluctuations, which suggests the need for appropriate
combination schemes when analyzing U.S. national and state-level data. Third, Owyang
et al. (2014) use state-level data to forecast U.S. recessions with probit models, showing
that enlarging a set of preselected national variables with state-level data on employment
growth substantially improves nowcasts and short-term forecasts of the U.S. business cycle
phases.!

'We follow Owyang et al. (2014) in that we also use state-level employment data to predict national



Our main results can be summarized as follows. First, in both our Monte Carlo and
empirical experiments, we find that it is relevant to take into account the models’ ability
to estimate regimes when calculating models’ weights if one is interested in regime clas-
sification. Indeed, our combination schemes based on the predictive ability to fit discrete
outcomes typically outperform combination schemes based on the likelihood only. This
is especially true in an out-of-sample context. Second, on average, the best combination
scheme in terms of predictive accuracy is obtained with the DMA framework where the
weights depend on the past predictive ability to estimate discrete outcomes. Third, the
use of regional data improves the forecasting performance compared with models using
exclusively national data. Fourth, out-of-sample forecasts obtained with the best combi-
nation scheme outperform the anxious index from the Survey of Professional Forecasters
for short-term forecasts, which emphasizes the relevance of our framework. In addition, in
a purely real-time environment, we also find that our best combination scheme provides
timely estimates of the latest U.S. recession.

The paper is organized as follows. Section 2 describes the underlying models we use in
the forecasting combination exercise. Section 3 presents the different combination schemes,
and details the extensions to the standard combination schemes we implement. In Section 4,
a small-sample Monte Carlo experiment is conducted to evaluate in a controlled experiment
the combination schemes outlined in the previous section. Section 5 introduces the data,
and details the results. Section 6 concludes.

2 Econometric Framework

For simplicity, in the sequel we adopt a notation that is consistent with our empirical
application, but note that the framework we present is general enough to accommodate a
large class of applications in macroeconomics and finance.

2.1 Univariate model

We first consider a univariate regime-switching model defined as follows:
Ye = pig + pySE + Bt vy, (1)

where y; is the dependent variable and z¥ denotes a given regressor k. The error term,
denoted by vF, is assumed to be normally distributed, that is, v¥ ~ N(0,0%). Note also that
equation (1) could easily accommodate a set of regressors X* instead of a single predictor
2%, SFis a standard Markov chain defined by the following constant transition probability:

piy = P(Si = jlS¢ = 1), (2)

U.S. recessions. However, we focus on regime-switching models rather than probit models that include the
NBER dating of business cycle regimes as a dependent variable, the latter approach being problematic in
a forecasting context given the substantial publication delay in the announcements of the NBER business
cycle turning points.



M
> vl =i, je{1, .., M}, (3)
j=1

where M is the number of regimes.

In relation to the empirical application, described in Section 5, y; is the U.S. national em-
ployment, while the z¥’s represent employment at the state level, both in growth rates. Note
that this specification differs from the baseline specification in Owyang et al. (2005), since
they estimate a univariate regime-switching model on state-level data only to study the
synchronization of economic activity across U.S. states. Moreover, Hamilton and Owyang
(2012) examine the synchronization of U.S. states’ business cycles using a panel data model
under the assumption that a small number of clusters can explain the dynamics of U.S.
states’ business cycles. It is also worth mentioning the work of Owyang et al. (2014) that
estimate a probit model to forecast U.S. recessions using a large number of covariates,
including both national and state-level data. These authors then use Bayesian model av-
eraging to select the most relevant predictors for forecasting U.S. recessions. Finally, a
common feature of these works is to strive for parsimonious specifications to study busi-
ness cycle dynamics, which is even more relevant in a forecasting context. This is guiding
our modeling choice in equation (1) to study the relevance of state-level data to predict
U.S. recessions.

In addition, we also use as a benchmark model a univariate regime-switching model
with no exogenous predictor, defined as

Yy = o + p1S; + Uy, (4)

where u; ~ N(0, 0?).

2.2 Bivariate model

We next consider a bivariate model where both the state-level data and the national
data are stacked in the vector of dependent variables:

2 =TD(SY, 5F) + ¢, ()

where 2, = (yi, 2F), and T'(SY, SF) = (uf + p4SY, uk + 1 (SF)). y; is the U.S. national
indicator, and zf is the total (non-farm) employment data for state k, both in growth

rates. SY and S¥ are two independent Markov chains, and €* is normally distributed, that
is, € ~ N(0,%;) where X, is defined as

vy yx
Ek = (0-13355 Ogm) .
Ok Ok
A few additional comments are required. First, we use a different Markov chain (S} and

SF) for each equation of the bivariate model, assuming that they are independently gener-
ated. This implies that regime changes at the national and state level do not necessarily



coincide (but are not restricted to differ either). Second, we do not include autoregressive
dynamics in the model, which is often found to be important for continuous forecasts of
economic activity (e.g., GDP growth), since we are interested in estimating business cycle
turning points where modeling persistence in the data is likely to deteriorate the ability of
the model to detect regime switches. In that respect, we follow for example Granger and
Terasvirta (1999).

3 Combination Schemes

In the empirical application, univariate and bivariate specifications each generate 50
estimates for the probability of recession (i.e., one for each U.S. state). This information
is summarized using two different classes of combination schemes: Bayesian (static) model
averaging and dynamic model averaging. This section details the extensions we introduce
to these two combination schemes so as to explicitly reflect the objective of estimating and
forecasting a discrete outcome when using Markov-switching models.

3.1 Bayesian model averaging

3.1.1 Likelihood approach

Suppose that we have K different models, M, for k£ = 1, ..., K, which all seek to explain
y;- The model My, depends upon the regression parameters of the econometric specification
(univariate or bivariate), collected in the vector ©,. Hence, the posterior distribution for
the parameters calculated from model M, can be written as

J (Y| Ok, My) f(Or | My,)
f(yt|Mk)

f(Olye, M) = (6)

Analogously, as suggested by Koop (2003), if one is interested in comparing different
models, we can use Bayes’ rule to derive a probability statement about what we do not
know (i.e., whether model My, is appropriate or not to explain y;) conditional on what we
do know (i.e., the data, y;). This implies that the posterior model probability can be used
to assess the degree of support for model k:

(?/t\Mk)f(Mk)
f(yt)

where f(y;) = Z]K:1 f(ye|M;) f(M;), f(My) is the prior probability that model & is true and
f(y¢] My) is the marginal likelihood for model k. Following Newton and Raftery (1994), the

F(Mly) = L (7)



marginal likelihood is calculated from the harmonic mean estimator, which is a simulation-
consistent estimate that uses samples from the posterior density.? The harmonic mean
estimator of the marginal likelihood is

N

Pl My) = (%Z%) , (®)

n=1 f(yt ’Mlgn)

where f(y:| M. ,5") ) is the posterior density available from simulation n, and N is the total
number of simulations. Initially, one could assume that all models are equally likely, that
is f(My) = +. Alternatively, one could use the employment share of each U.S. state to set
the prior probability for each model. In the case of equal prior probability for each model,
the weights for model k are simply given as

f(yt|Mk)
Mily,) = Ve )
J(Midy) > e f(ul M) ¥

3.1.2 Combined approach

Given that our models are designed to predict NBER recessions rather than predicting
the national activity indicator y;, an alternative weighting scheme could be implemented to
reflect this objective. Indeed, we can rely on Bayes’ rule to derive a probability statement
about the most appropriate model M, to explain the regimes S; conditional on the data
and the estimated probability of being in a given regime derived from the Hamilton filter
for Markov-switching models, P(S;|y;).> Therefore, the posterior model probability can be
expressed as

f (e, Se| My) f (M)

F(Milye, Sp) oS (10)
S (Selys, M) f (ye| My) f (M) (11)
f(Stlye) f(ye) 7

where f(S¢|y:) P(y:) = Zszl F(Stlye, M;) f(ye| M) f (M), f(My) is the prior probability that
model k is true, f(y;|My) is the marginal likelihood for model k, and f(S;|y;, M) indicates
the model’s ability to fit the business cycle regimes. We use the inverse quadratic prob-
ability score (QPS) to evaluate f(Si|y:, My), since the QPS is the most common measure

ZNote that alternative approaches could be used to calculate the marginal likelihood (see, e.g., Chib
(1995) or Fruhwirth-Schnatter (2004)). However, these alternative methods are typically computationally
demanding in that they require a substantial increase in the number of simulations, which is not suitable in
our empirical application, since we have to estimate many models in a recursive out-of-sample forecasting
experiment.

3For ease of exposition, here, we present the case of only one single Markov chain driving the changes
in the parameters of the model. The derivations can be relatively easily extended to the case of multiple
Markov chains, but this would come at the cost of a much more demanding notation.



to evaluate discrete outcomes in the business cycle literature.* The QPS associated with
model k is defined as follows:
T

QPSy — % SO(P(SE = 0l) — NBER,), (12)
t=1

where P(SF = 0J1);) is the probability of being in recession, given information up to ¢, 9;,
and NBFER; is a dummy variable that takes a value of 1 if the U.S. economy is in recession
at time t according to the NBER business cycle dating committee, and 0 otherwise. QPS
is bounded between 0 and 2, and perfect predictions yield a QPS of 0. Hence, the lower
the QPS, the better the ability of the model to fit the U.S. business cycle. Accordingly,
the posterior model probability for model k reads as

M F(4)QPS;!
S FulMy) (M) QPST!
One could use the U.S. employment share of each state as the prior probability for each

model or equal prior weights. In the case of equal prior probability for each model, the
posterior probability is

f(Mk|yt7 St)

(13)

F(Mylys, S0) = ZZZ—U (14)
where f( |M )
_ J Y| Mg

3.1.3 QPS approach

Notice that the posterior model probability in Equation (10) focuses on a joint fit of
data, y;, and business cycle phases, S;. However, since we are only interested in assessing
the ability of model M, to explain the business cycle phases, S;, we avoid conditioning on
y; and, following the reasoning in Section 3.1.2, propose the following expression for the
posterior probability model:

J(Se| M) f (M)

MilS) = —1 16
FOIIS) = 8 (s 0 10)
— I{(Mk:)QPSlc_l —. (17>

Zj:l f(Mj>QPSj !

In the case of equal prior probability for each model, the posterior probability is given
by the normalized inverse QPS:

-1
QPS;
K 1
> o1 QPS;
4Note that alternative criteria could be used to evaluate the models’ ability to classify regimes. For
example, the logarithmic probability score or the area under the receiver operating characteristics (see,

e.g., Berge and Jorda (2011)) could be used. However, to streamline the paper we exclusively use the QPS,
which is the most commonly used criteria by which to evaluate discrete outcomes.

F(Mlys) = (18)




3.2 Dynamic model averaging
3.2.1 DMA for Markov-switching models

Dynamic model averaging originates from the work of Raftery et al. (2010), and has
been first implemented in econometrics by Koop and Korobilis (2012) and Koop and Koro-
bilis (2013). To calculate the time-varying weights associated with each Markov-switching
model, we suggest the following algorithm that combines the Hamilton filter with the pre-
diction and updating equations used in the DMA approach from Raftery et al. (2010).

At any given period ¢, we compute the following steps for all the models under consid-
eration:

Step 1: Using the corresponding transition probabilities p(SF|SF |), compute the pre-
dicted regime probabilities for any given model k given past information 1; 1, P(SF|M; =

k>wt—1):5

P(Sy, S [e-1) = p(Sy|SE 1) P(St [r-1) (19)
p(SEIMy = kb 1) = D P(SF, SE ). (20)
SKy

Then, the predictive likelihood is calculated from the predicted probabilities:

Fe(uls) =D ) fulwlSE Sy 1) P(SE, S [ibia). (21)

sk S

Step 2: Let my_1, = P(M; = k|¢—1) be the predictive probability associated with
the k-th Markov-switching model at time ¢ given the information up to ¢ — 1. Starting
with an equal-weight initial-model probability P(M,), we follow the updating criterion of
Raftery et al. (2010), which is based on a measure of model fit for y,, that is, the predictive

likelihood:
Wt\t—l,kfk(tht—l)
Z]K:l Wt\t—l,jfj (%Wt—l)

(22)

Ttk —

Step 3: Use the predictive likelihood, fx(v:|¥i—1), to compute the updated regime
probabilities for any given model k, P(S¥|M; = k, 1), as follows:

Sk Sk |,
P(st 5t o) = PSSty

fk(tht—l)
_ fk(yt|Sf>Sf_1a¢t—1)P(Sfa Sf—th—l) (23>
Jre(yethe—1) ’
P(SF|My = k) = > P(SE, S |vn), (24)
SF 4

which are used in Step 1 of the next iteration.

®The Hamilton filter is initialized with the ergodic probabilities P(Sp).

10



Step 4: Compute the predicted probability associated with the k-th model, 7,11}, by
relying on Raftery et al. (2010) and using the forgetting factor a, as follows:

(0%
Ttk
K o

2 jm1 Tl

which are used in Step 2 of the next iteration. The forgetting factor « is the coefficient
that governs the amount of persistence in the models’ weights, and it is set to a fixed value
slightly less than one. The higher the «a, the higher the weight attached to past predictive
performance is.%

(25)

Tt1)t,k —

We repeat the steps above for each model at each period of time ¢ = 1, ...,T. The output
of the algorithm consists of the regime probabilities for each model, P(SF|M; = k, ), and
the model probabilities for each time period, 7y, = P(M; = k|¢;). Therefore, we compute
the expected regime probabilities by averaging them across models:

P(Silth) = > P(SFIM; = k, 1) P(M; = k). (26)

K
k=1

The average probability P(S;|1;) is used to assess the performance of the Markov-switching
DMA combination scheme. Notice that DMA also differs from BMA in that no simulation
is required to calculate the time-varying models’ weights.

3.2.2 Combined approach

In line with Section 3.1.2, we also allow for the possibility that both the marginal
likelihood and the cumulative QPS could indicate the model’s ability to predict business
cycle phases. Therefore, the updating equation is replaced by

Tt t—1,k Tt —1,k

Ttk = ’ (27)
S i T,
where )
— M, (28)
Qe
and Q¢ is the cumulative QPS at time ¢ for model %, defined as
2 t
Qi = ;<Z P(S% = 0|1,) — NBER,)?. (29)
=1

The model prediction equation remains the same as in equation (25).

SFollowing Raftery et al. (2010), we first set a = 0.99, which implies that forecasting performance from
two years ago receives about 78.5 per cent weight compared with last period’s forecasting performance. We
also report results with o = 0.95 so as to give lower weights to past forecasting performance (in this case,
information from two years ago receives about 29 per cent weight compared with last period’s information).

11



3.2.3 QPS approach

Again, since we are only interested in predicting business cycle phases instead of forecast-
ing the national activity variable, we modify the Raftery et al. (2010) approach. Specifically,
in line with Section 3.1.3, in the updating equation, we replace the marginal likelihood,
which measures how well the model fits the data, with a measure of goodness-of-fit for
business cycle regimes. Hence, the updating equation reads as

-1
Wt\t—l,kQﬂt,k
K 1
Zj:l 7Tt|t—1:th|t,j

(30)

Ttk —

4 Simulation Study

We conduct a Monte Carlo experiment to study in a controlled set-up the validity of
the different model-averaging schemes detailed in the previous section. In doing so, we
choose a data-generating process (DGP) that closely mimics the empirical application of
the paper, albeit for computational reasons the sample size and the number of predictors
are restricted. Equations (31) to (33) detail the DGP. First, the dependent variable y; is
generated according to the following equation:

ye = po + 1S + €, (31)
where e/ ~ N(0,07), and (uf, uf) = (=1,2).
The x,’s variables are instead generated from the following equation:
Ty = pp + W5 S; + ogel, for k= {1,.., K}, (32)
where ef ~ N(0,03).7

The intercepts for the zy,’s variables are given by

Wi = 4 e, for j ={0,1}, (33)

where €, ; ~ U(—1,1), so that the intercepts for the z;’s variables are closely related to the
intercepts of the variable ;.

While the intercepts’ values pg and pf are kept constant, we use four different values
for the variance of the innovations (02 = {0.5,1,1.5,2}). Moreover, S; is a standard
first-order Markov chain with two regimes and constant transition probabilities given by
(Poo, p11)=(0.8,0.9). In this way, the first regime is associated with a negative growth rate
and it is less persistent than the second regime, a common feature of business cycle series
that typically exhibit different regimes’ duration. Finally, the series are generated with
length 7" = 200 and the number of x; variables is set to K = 20. The total number of

"Note that the variance of the innovations is the same for both the y; and the x;’s (i.e., o5 = 0y) SO as
to avoid large differences in volatility across series.
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replications is set to 1000. For each replication, the total number of simulations to estimate
the model’s parameters is 3000, discarding the first 1000 simulations to account for start-up
effects.

Table 1 reports, for the different model-averaging schemes and under the different sce-
narios considered (i.e., BMA, DMA and an equal-weight scheme), the average in-sample
QPS obtained across the 1000 replications.® For ease of computation, we also assume that
a single Markov chain S, drives the changes for both the y, and z,’s variables.’

The results show that, first, in both univariate and bivariate cases, the lowest QPS’
are obtained when using the QPS-based model-averaging scheme. This holds true for both
DMA and BMA in the univariate case, and the differences are the most noticeable in the
BMA context. Second, in the context of DMA, the combined weighting scheme that relies
on both the QPS and the marginal likelihood is a very close second-best weighting scheme,
which further emphasizes the value of the QPS to calculate models’ weights. Third, as
the volatility of the series increases (i.e., for higher values of o), the differences in terms
of QPS across the weighting schemes tend to soften. This is relatively intuitive in that,
given the DGP’s we consider, as the volatility of the series increases, regime shifts in the
series become less apparent, and it is therefore more difficult to make inference on the
regimes, which translates into higher QPS, and lower value added resulting from weighting
schemes based on QPS. Overall, this simulation exercise underlines the relevance of our
model-averaged scheme based on past predictive performance to classify the regimes (i.e.,
QPS-based). The next section evaluates the relevance of this framework from an empirical
point of view, forecasting national U.S. recessions based on a set of regional indicators.

5 Empirical Results

5.1 Data

We use alternatively industrial production and employment data as a measure of na-
tional economic activity. These two indicators are available on a monthly basis, and are
frequently considered as important measures of economic activity in the United States.
The state-level data we use are the employees on non-farm payrolls data series published
at a monthly frequency for each U.S. state by the U.S. Bureau of Labor Statistics (note
that state-level data are not available for monthly industrial production). These data are
available on a not seasonally adjusted basis since at least January 1960 for all U.S. states.
In contrast, data on a seasonally adjusted basis are available since January 1990, and real-
time data vintages are available only since June 2007 from the “Alfred” real-time database

8We consider only in-sample Monte Carlo experiments owing to the too-demanding computational task
that would be required for a fully recursive out-of-sample exercise.

9This is not too detrimental, since our primary objective is to estimate turning points at the national
or aggregate level; hence we do not lose much in assuming a single Markov chain driving the parameter
changes in the bivariate case.
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Table 1: Monte Carlo simulation results

o 0.5 1 1.5 2
Panel A: Univariate model

Dynamic Model Likelihood-based 0.447 0.360 0.351 0.358
Averaging QPS-based  0.027 0.161 0.257 0.311
Combined 0.027 0.164 0.261 0.314

Bayesian Model Likelihood-based 0.131 0.347 0.370 0.376
Averaging QPS-based 0.055 0.223 0.297 0.335
Combined 0.114 0.340 0.368 0.374
Equal weight 0.443 0.433 0.458 0.476
Panel B: Bivariate model
Dynamic Model Likelihood-based 0.034 0.164 0.268 0.325
Averaging QPS-based  0.016 0.137 0.248 0.310
Combined 0.016 0.144 0.252 0.314
Bayesian Model Likelihood-based 0.016 0.147 0.266 0.324
Averaging QPS-based 0.016 0.160 0.273 0.329
Combined 0.016 0.147 0.266 0.324

Equal weight 0.271 0.366 0.442 0.472

Note: This table reports the QPS averaged over 1000 replications using the different combination schemes outlined in Section
3. Bold entries in each panel indicate the lowest QPS for a selected DGP. See text for full details about the design of the

Monte Carlo experiment.

14



of the Federal Reserve Bank of St. Louis.!® All data are taken as 100 times the change in
the log-level of the series to obtain monthly percent changes. To facilitate inference on the
regimes, and obtain a long enough evaluation sample to assess the accuracy of the forecasts,
we use data starting from 1960, and the data are appropriately seasonally adjusted. Hence,
the full estimation sample extends from February 1960 to April 2014.

5.2 In-sample results

The in-sample results are based on the data vintage from May 2014 with the last ob-
servation for April 2014. For brevity, we report only the results for each of the individual
models with national employment data as a dependent variable.!! All models are esti-
mated discarding the first 2000 replications to account for start-up effects, running 5000
additional simulations to calculate the posterior distribution of parameters (see Appendix
A for additional details).'? To assess the ability of regime-switching models to predict U.S.
recessions, we use the in-sample quadratic probability score (QPS!®), defined as

T
2
IS _ k _ 2

QPS{® = = ;<P<St = 0l¢:) - NBER,)’, (34)
where T is the size of the full sample, P(SF = 0|¢;) is the probability of being in a low
mean regime (i.e., the recession regime), and NBFER; is a dummy variable that takes on a
value of 1 if the U.S. economy is in recession according to the NBER business cycle dating
committee and 0 otherwise.

Table 2 reports the in-sample parameter estimates for all individual models in the
univariate case, as well as their quadratic probability scores. First, all univariate models
exhibit a classical cycle for employment in that average growth in the low mean regime
(i.e., po) is always negative, whereas average growth in the high mean regime (i.e., 1+ f11)
is always positive. There are also little differences for the intercept estimates across all
models. However, differences are noticeable for the slope parameter 5. For example,
perhaps unsurprisingly, the lowest slope parameter is for the model using employment data
for Alaska. In contrast, the highest slope parameter is for the model with employment
data for the state of Ohio. In addition, models with employment data for the states of New
York, Pennsylvania, New Jersey or California also yield large slope parameters, suggesting
the importance of the employment data from these states to explain the national U.S.
employment data. Finally, the model with employment data for the state of Virginia

0Data are available on http://alfred.stlouisfed.org/, and are typically available with a roughly
three-week delay for the state-level data, about a 1-week delay for national employment, and a 2-week
delay for industrial production.

1 The main conclusions are relatively unchanged when using industrial production as a dependent vari-
able. Detailed results are available upon request.

12Note that we use equal prior probability for each model. However, we also used prior weights for each
model corresponding to the fraction of employment of a given state in total national employment, which
led to qualitatively similar results, suggesting that the results are robust to different specifications for the
model prior probability of inclusion.
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yields the lowest (in-sample) QPS, whereas the model with the highest QPS is the one
using employment data for the state of Ohio. This suggests that the most relevant model
for explaining aggregate U.S. employment growth is not necessarily the most relevant for
estimating U.S. business cycle regimes.

Table 3 and Table 4 report the results for the bivariate models. First, as expected, the
intercepts for the equation on U.S. employment vary little across models and are roughly
in line with the parameter estimates from the univariate models. Second, for four states
(Alaska, Arizona, North Dakota and New Mexico), the intercepts for the state employment
growth are positive in both regimes, that is, the bivariate model estimates growth cycle
rather than classical cycle for the dynamics of state employment. Third, the lowest in-
sample QPS is obtained from the model using New Jersey employment data, followed by
the model with Maryland employment data.

Table 5 reports the in-sample QPS with the different combination schemes outlined
in Section 3 using alternatively employment and industrial production data as a measure
of national economic activity. First, models with industrial production yield lower QPS
compared with models with employment data. Second, in the univariate case, the best
specification is obtained by the MS-AR model with industrial production followed by the
model with industrial production and weights obtained from DMA using a combination of
predictive likelihood and QPS. Third, for bivariate models, models with industrial produc-
tion also tend to yield lower QPS. In particular, the equal-weight specification produced
the lowest QPS followed by the DMA combination scheme based on the QPS. Fourth, for
DMA combination schemes, a lower value for the forgetting factor a tends to yield lower
QPS. Figure 1 reports the probability of recession from selected models, which shows that
these models can track very well the recessions defined by the NBER business cycle dating
committee. One can also see that models using employment data as a measure of national
economic activity identified the last three recessions as being longer than the NBER re-
cession estimates. This is not surprising given that these recessions were associated with
jobless recoveries.

To better understand the results from Table 5, Figures 2, 3 and 4 show the weights
attached to each individual model with the dynamic model averaging (DMA) scheme in
the univariate case. Figure 2 reports the results from the standard DMA scheme where
the weights are based exclusively on the predictive likelihood. In the case of employment
as a dependent variable (Panel A of Figure 1), Ohio gets a probability of inclusion close
to one for nearly the entire sample, except in the 1990s, where the states of New Jersey
and New York also exhibit a non-negligible probability of inclusion (and also Florida at the
end of the sample). In the case of industrial production, the weights given to individual
models are more even across the different models, except at the end of the sample, where
the states of Virginia and Florida get a predominant weight. Figure 3 (i.e., where the DMA
weights are based exclusively on past QPS) and Figure 4 (i.e., where the weights are based
on a combination of past QPS and predictive likelihood) show a substantial time variation
in the weights attached to individual models. In both Figure 3 and Figure 4, the weight
attached to the model using Maryland employment data is high in the early part of the
sample, whereas it is the model using data for the state of Virginia that gets the highest
weight at the end of the sample (or the state of Idaho when using industrial production
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as a dependent variable, see panel B of Figures 3 and 4). Figure 5 reports the weights
obtained from Bayesian model averaging (BMA) schemes in the univariate case. Panel A
of Figure 5 shows that the model with Ohio employment data gets a weight of one with
standard Bayesian model averaging, which is not surprising given that Table 1 showed that
the model with Ohio employment data exhibited the highest correlation with the national
employment data.!> When explaining national industrial production, it is the employment
data from the state of Michigan that gets a weight near 1 (see panel B). In contrast, BMA
weights based on QPS yield larger weights to heavily populated states (e.g., California or
New York).

13The fact that BMA tends to give a weight of 1 to a single model is not very surprising. Geweke and
Amisano (2011) suggest using the historical log predictive score to mitigate this issue. We also implemented
this approach, but obtained results relatively close to BMA in that a single model obtained the largest
weight, with only a few other models obtaining a non-negligible weight.
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Table 2: In-sample parameter estimates - Univariate models

State

Alabama

Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

Indiana

Towa,

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Ko
-0.099
[-0.119,-0.079]
-0.152
[-0.175,-0.128]
-0.140
[-0.162,-0.117]

-0.138
.158,-0.118]
-0.111
.135,-0.087]
-0.177
[-0.202,-0.150]
-0.124
157,-0.095]
-0.137
.161,-0.113]
-0.124
[-0.146,-0.103]
-0.112
[-0.143,-0.087]
-0.150
[-0.173,-0.127]
-0.145
[-0.166,-0.123]
-0.064
[-0.087,-0.043]
-0.073
[-0.092,-0.055]
-0.122
[-0.142,-0.102]
-0.130
[-0.152,-0.108]
-0.129
147,-0.109]
-0.138
161,-0.115]
-0.129
.155,-0.104]
-0.159
.181,-0.136]
-0.134
.189,-0.087]
-0.103
.121,-0.083]
-0.107
[-0.126,-0.088]
-0.121
[-0.142,-0.100]

-0.120
[-0.138,-0.101]

w1
0.266
[0.244,0.287]
0.370
[0.346,0.393]
0.282
[0.258,0.307]
0.310
[0.290,0.332]
0.240
[0.213,0.266]
0.324
[0.299,0.349]
0.306
[0.276,0.335]
0.339
[0.315,0.363]
0.243
[0.222,0.265]
0.234
[0.210,0.262]
0.352
[0.329,0.375]
0.335
[0.313,0.357]
0.238
[0.217,0.261]
0.237
[0.217,0.257]
0.301
[0.280,0.322]
0.325
[0.303,0.347]
0.306
[0.286,0.326]
0.342
[0.319,0.365]
0.317
[0.292,0.342]
0.329
[0.305,0.351]
0.305
[0.267,0.351]
0.300
[0.279,0.319]
0.256
[0.236,0.277]
0.288
[0.266,0.310]

0.299
[0.280,0.319]

B
0.263
[0.241,0.285]
0.000
[-0.011,0.010]
0.181
[0.174,0.201]
0.193
[0.174,0.211]
0.349
[0.317,0.380]
0.223
[0.199,0.248]
0.222
[0.198,0.245]
0.073
[0.061,0.085]
0.290
[0.267,0.313]
0.290
[0.295,0.341]
0.078
[0.060,0.095]
0.100
[0.083,0.118]
0.335
[0.309,0.360]
0.287
[0.269,0.306]
0.222
[0.199,0.245]
0.123
[0.105,0.141]
0.184
[0.168,0.200]
0.087
[0.069,0.104]
0.164
[0.141,0.186]
0.206
[0.184,0.227]
0.268
[0.234,0.298]
0.131
[0.120,0.142]
0.305
[0.280,0.329]
0.223
[0.204,0.242]
0.230
[0.209,0.251]

QPS

0.191

0.169

0.169

0.190

0.145

0.124

0.126

0.171

0.215

0.152

0.165

0.179

0.200

0.220

0.175

0.172

0.166

0.180

0.165

0.131

0.121

0.201

0.179

0.185

0.187

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia

‘Washington

‘Wisconsin

‘West Virginia

Wyoming

wo
-0.149
[-0.170,-0.128]
-0.145
[-0.168,-0.122]
-0.152
[-0.175,-0.129]
-0.137
[-0.169,-0.112]
-0.145
[-0.170,-0.124]
-0.141
[-0.164,-0.118]
-0.098
[-0.131,-0.071]
-0.115
[-0.139,-0.090]
-0.149
[-0.171,-0.126]
-0.023
[-0.042,-0.004]
-0.134
[-0.162,-0.109]
-0.119
[-0.142,-0.095]
-0.072
[-0.092,-0.054]
-0.113
[-0.137,-0.090]
-0.109
[-0.131,-0.087)
-0.150
[-0.171,-0.128]
-0.109
[-0.131,-0.089]
-0.124
[-0.152,-0.098]
-0.143
[-0.167,-0.120]
-0.135
[-0.158,-0.112]
-0.171
[-0.207,-0.137]
-0.128
[-0.150,-0.108]
-0.112
[-0.133,-0.090]
-0.142
[-0.165,-0.119]

-0.145
[-0.168,-0.122]

B1
0.352
[0.330,0.374]
0.324
[0.300,0.347]
0.325
[0.301,0.350]
0.300
[0.275,0.328]
0.300
[0.279,0.324]
0.322
[0.297,0.345]
0.270
[0.246,0.300]
0.243
[0.218,0.267]
0.353
[0.330,0.376]
0.168
[0.150,0.187]
0.324
[0.299,0.350]
0.293
[0.268,0.318]
0.246
[0.227,0.267]
0.307
[0.284,0.330]
0.266
[0.242,0.288]
0.344
[0.323,0.366]
0.261
[0.241,0.283]
0.257
[0.232,0.284]
0.316
[0.291,0.340]
0.323
[0.299,0.346]
0.301
[0.272,0.330]
0.295
[0.272,0.317]
0.278
[0.255,0.301]
0.358
[0.335,0.381]
0.355
[0.332,0.319]

B
0.082
[0.065,0.098]
0.209
[0.183,0.235]
0.090
[0.073,0.106]
0.215
[0.193,0.238]
0.364
[0.339,0.388]
0.166
[0.143,0.191]
0.418
[0.383,0.452]
0.325
[0.300,0.349]
0.071
[0.049,0.093]
0.452
[0.430,0.472]
0.144
[0.122,0.168]
0.159
[0.136,0.182]
0.384
[0.357,0.411]
0.172
[0.153,0.191]
0.230
[0.209,0.252]
0.123
[0.102,0.144]
0.274
[0.255,0.293]
0.315
[0.284,0.345]
0.148
[0.125,0.171]
0.134
[0.115,0.154]
0.309
[0.282,0.337]
0.190
[0.166,0.215]
0.258
[0.232,0.282]
0.035
[0.027,0.043]
0.048
[0.034,0.061]

QPS

0.179

0.167

0.160

0.172

0.127

0.179

0.202

0.154

0.176

0.247

0.166

0.177

0.218

0.177

0.177

0.179

0.198

0.187

0.167

0.172

0.097

0.176

0.183

0.176

0.176

Note: po is the mean growth rate in recession for aggregate U.S. employment, po + w1 is the mean growth rate in expansions

for aggregate U.S. employment, § is the parameter entering before the state-level employment data in equation (1).

parameter estimates are reported as the median over 5000 replications. The estimation sample extends from February 1960

to April 2014. QPS is the quadratic probability score for individual models as defined in equation (34), and the 90 per cent

coverage intervals are reported in brackets.
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Table 3: In-sample Parameter estimates - Bivariate models

State o M1 QPS 1o H1 QPS
Alabama -0.097 0.306  0.192 Montana -0.134 0.349  0.178
[-0.128,-0.059] [0.262,0.340] [-0.155,-0.112] [0.327,0.371]
-0.128 0.317 -1.870 2.040
[-0.911,-0.042] [0.228,1.055] [-2.234,-1.541] [1.711,2.403]
Alaska -0.150 0.368  0.169 Nebraska -0.114 0.326  0.161
[-0.173,-0.125] [0.344,0.392] [-0.143,-0.089] [0.301,0.354]
0.161 2.115 -0.838 0.995
[0.125,0.197] [1.933,2.302] [-1.178,-0.017] [0.209,1.330]
Arizona -0.101 0.308 0.189 Nevada -0.134 0.349  0.178
[-0.126,-0.077] [0.284,0.334] [-0.158,-0.111] [0.325,0.373]
0.133 0.403 -0.125 0.640
[0.085,0.176]  [0.356,0.449) [-0.261,-0.016] [0.543,0.756]
Arkansas -0.104 0.310  0.186 New Hampshire  -0.131 0.340  0.182
[-0.126,-0.082] [0.288,0.332] [-0.157,-0.103] [0.311,0.369]
-1.641 1.829 -0.227 0.479
[-1.975,-1.214] [1.394,2.164] [-0.330,-0.142] [0.400,0.568]
California -0.118 0.326  0.181 New Jersey -0.096 0.289  0.129
[-0.144,-0.090] [0.299,0.353] [-0.124,-0.070] [0.264,0.319]
-0.099 0.362 -0.795 0.908
[-0.133,-0.066] [0.326,0.396] [-0.966,-0.296] [0.434,1.076]
Colorado -0.121 0.332  0.179 New Mexico -0.122 0.334  0.168
[-0.145,-0.097] [0.309,0.356] [-0.146,-0.096] [0.310,0.359]
-0.056 0.374 0.096 0.232
[-0.100,-0.015] [0.333,0.418] [0.018,0.140] [0.186,0.280]
Connecticut -0.125 0.337  0.169 New York -0.112 0.314  0.178
[-0.153,-0.097] [0.309,0.365] [-0.147,-0.077] [0.281,0.347]
-0.184 0.341 -0.113 0.220
[-0.239,-0.130] [0.286,0.397] [-0.163,-0.073] [0.180,0.268]
Delaware -0.127 0.341 0.167 North Carolina -0.136 0.341  0.185
[-0.153,-0.102] [0.317,0.366] [-0.161,-0.110] [0.313,0.366]
-1.910 2.088 -0.231 0.484
[-2.405,-1.485] [1.665,2.581] [-0.280,-0.179] [0.430,0.535]
Florida -0.087 0.304  0.238 North Dakota -0.133 0.352  0.182
[-0.119,-0.060] [0.277,0.334] [-0.157,-0.110] [0.329,0.376]
-0.064 0.436 0.121 0.563
[-0.111,-0.020] [0.390,0.483] [0.100,0.142] [0.481,0.640]
Georgia -0.117 0.322  0.203 Ohio 0.013 0.166  0.252
[-0.142,-0.091] [0.295,0.348] [-0.008,0.034] [0.147,0.185]
-0.172 0.448 -1.473 1.552
[-0.226,-0.119] [0.393,0.504] [-1.734,-1.203] [1.284,1.814]
Hawaii -0.135 0.351  0.163 Oklahoma -0.133 0.348  0.167
[-0.159,-0.110] [0.327,0.375] [-0.160,-0.105] [0.321,0.373]
-2.015 2.209 -0.218 0.453
[-2.521,-1.575] [1.770,2.709] [-0.273,-0.161] [0.397,0.510]
Idaho -0.143 0.359 0.171 Oregon -0.155 0.368  0.162
[-0.165,-0.120] [0.335,0.382] [-0.181,-0.130] [0.343,0.394]
-0.316 0.598 -0.316 0.598
[-0.465,-0.165] [0.481,0.753] [-0.386,-0.255] [0.536,0.666]

Note: This table reports results from the estimation of equation (5). po is the mean growth rate in recession, po + p1
is the mean growth rate in expansions. For each state, the first row indicates the results for employment at the national
level, whereas the second row indicates results for employment at the state level. The parameter estimates are reported as
the median over 5000 replications. The estimation sample extends from February 1960 to April 2014. QPS is the quadratic
probability score for individual models as defined in equation (34), and 90 per cent coverage intervals are reported in brackets.
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Table 4: In-sample Parameter estimates - Bivariate models (cont’d)

State

Illinois

Indiana

Towa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Ho
-0.106
[-0.132,-0.081]

-0.156
[-0.196,-0.116]

-0.050
[-0.078,-0.027]

-0.508
[-0.755,-0.342]

-0.086
[-0.108,-0.064]

-1.353
[-1.539,-1.184]

-0.108
[-0.132,-0.084]

-3.517
[-3.976,-3.045]

-0.088
[-0.108,-0.067]

-1.178
[-1.438,-0.969]

-0.117
[-0.142,-0.093)]

-4.004
[-4.342,-3.664]

-0.108
[-0.135,-0.082]

-2.373
[-2.787,-1.934]

-0.126
[-0.150,-0.102]

-0.959
[-1.278,-0.191]

-0.107
[-0.135,-0.080]

-0.264
[-0.317,-0.213)]

-0.086
[-0.107,-0.065]

-3.291
[-3.666,-2.895]

-0.114
[-0.138,-0.088]

-0.096
[-0.140,-0.053]

-0.077
[-0.136,-0.077]

-0.068
[-1.692,0.044]

-0.095
[-0.116,-0.074]

-1.038
[-1.347,-0.866]

H1
0.317
[0.291,0.344]

0.304
[0.263,0.346]

0.249
[0.226,0.278]

0.640
[0.485,0.880]

0.289
[0.268,0.311]

1.494
[1.322,1.679]

0.318
[0.295,0.342]

3.661
[3.191,4.119]

0.292
[0.271,0.313]

1.359
[1.153,1.615]

0.332
[0.309,0.356]

4.157
[3.816,4.495]

0.316
[0.291,0.342]

2.498
[2.057,2.913]

0.330
[0.307,0.356]

1.135
[0.387,1.452]

0.319
[0.293,0.347]

0.410
[0.359,0.463]

0.292
[0.270,0.313]

3.403
[3.007,3.773]

0.324
[0.300,0.350]

0.325
[0.280,0.371]

0.313
[0.279,0.345]

0.304
[0.225,1.856]

0.299
[0.277,0.321]

1.160
[0.991,1.466]

QPS
0.196

0.206

0.166

0.166

0.162

0.180

0.163

0.137

0.194

0.197

0.186

0.188

0.178

Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia

Washington

‘Wisconsin

West Virginia

Wyoming

Ho
-0.095
[-0.125,-0.066]

-0.156
[-0.237,-0.106]

-0.108
[-0.131,-0.084]

-1.101
[-1.509,-0.836]

-0.136
[-0.159,-0.113)]

-0.237
[-0.318,-0.175]

-0.135
[-0.159,-0.112]

-0.017
[-0.125,0.066]

-0.108
[-0.133,-0.084]

-0.105
[-0.164,-0.048]

-0.112
[-0.138,-0.086]

-0.050
[-0.086,-0.014]

-0.139
[-0.163,-0.114]

-0.127
[-0.189,-0.068]

-0.111
[-0.134,-0.086]

-1.623
[-2.087,-1.178]

-0.119
[-0.144,-0.094]

-0.039
[-0.098,0.017]

-0.132
[-0.157,-0.108]

-0.112
[-0.162,-0.064]

-0.133
[-0.158,-0.109]

-0.178
[-0.230,-0.127]

-0.133
[-0.158,-0.109]

-6.175
[-6.708,-5.640]

-0.143
[-0.167,-0.117]

-0.751
[-0.958,0.574]

H1
0.301
[0.269,0.332]

0.263
[0.212,0.328]

0.315
[0.291,0.339]

1.199
[0.941,1.601]

0.348
[0.323,0.371]

0.499
[0.434,0.576]

0.352
[0.328,0.375]

0.248
[0.175,0.341]

0.317
[0.291,0.344]

0.334
[0.274,0.394]

0.329
[0.304,0.354]

0.365
[0.330,0.401]

0.353
[0.328,0.377]

0.459
[0.404,0.517]

0.320
[0.296,0.385]

1.791
[1.344,2.253]

0.330
[0.303,0.356]

0.295
[0.240,0.350]

0.345
[0.321,0.369]

0.412
[0.364,0.461]

0.345
[0.320,0.371]

0.371
[0.318,0.425]

0.351
[0.320,0.371]

6.286
[5.748,6.815]

0.360
[0.336,0.385]

0.981
[0.811,1.183]

QPS
0.191

0.175

0.183

0.178

0.166

0.201

0.167

0.174

0.184

0.167

0.186

0.177

0.171

Note: See Table 3.
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Table 5: In-sample Quadratic Probability Score

QPS
Univariate Bivariate
model model

Employment data

Dynamic Model Likelihood-based  0.226 0.226

Averaging QPS-based 0.159 0.174
(v =0.99) Combined 0.136 0.173
Dynamic Model Likelihood-based  0.154 0.187
Averaging QPS-based 0.139 0.166
(v =0.95) Combined 0.122 0.182
Bayesian Model Likelihood-based  0.236 0.178
Averaging QPS-based 0.134 0.168
Combined 0.236 0.178
MS-AR model 0.170
Equal weight 0.155 0.155

Industrial Production

Dynamic Model Likelihood-based  0.102 0.182

Averaging QPS-based 0.101 0.104
(v =0.99) Combined 0.099 0.126
Dynamic Model Likelihood-based  0.120 0.172
Averaging QPS-based 0.100 0.098
(v =0.95) Combined 0.095 0.119
Bayesian Model Likelihood-based — 0.121 0.194
Averaging QPS-based 0.099 0.104
Combined 0.121 0.194
MS-AR model 0.073
Equal weight 0.119 0.062

Note: This table reports the in-sample quadratic probability score (QPS) for estimating U.S. business cycle
turning points from univariate and bivariate models using different model-averaging schemes. « is the value
of the forgetting factor when using dynamic model-averaging schemes. The full estimation sample extends
from February 1960 to April 2014. We discarded the first 2000 replications to account for start-up effects,
and used the last 5000 replications to calculate all statistics.
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5.3 Out-of-sample results
5.3.1 Full evaluation sample

The first estimation sample extends from February 1960 to December 1978, and it is
recursively expanded until September 2013, that is, the evaluation sample covers the period
ranging from January 1979 to March 2014 (i.e., the last forecast six months ahead refers
to the month of March 2014). As such, our evaluation sample includes five recessions that
cover 13.2 per cent of the sample. Such a long evaluation permits us to mitigate the risks of
spurious forecasting results. The models are re-estimated every month as new information
becomes available.

We formulate forecasts for horizon h = {0,1,2,3,6}, that is, from the current month
(h = 0) up to six months ahead (h = 6). We use the quadratic probability score (QPS) to
evaluate the accuracy in predicting turning points. The out-of-sample QPS (QPS°%9) is
defined as follows:

T

2

QPSP® = T-T,+1 > (P(Sf,, = 0lth) = NBER; 1), (35)
t=Top

where T — T, + 1 is the size of the evaluation sample, P(S¥,, = 0|¢;) is the probability
of being in the first regime (i.e., the recession regime) in period t + h, and NBER,, is
a dummy variable that takes on a value of 1 if the U.S. economy is in recession in period
t + h and 0 otherwise. The predicted probabilities of being in regime j from model £,
P(SF., = jlir), are calculated as follows:

M
P(St = dlee) = Y ol P(SEn = jlie), (36)
i=1

where M denotes the maximum number of regimes (two in this case) and pfj is the transition
probability of going from regime i to regime j from model k (i.e., pf; = P(Sf, = j|SF =),
calculated as the median of the parameter estimates over the 5000 simulations performed
to calculate the posterior distributions of these parameters. The predicted probabilities
from each model are then averaged at each point in time of the evaluation sample using
the combination schemes outlined in section 3.

In comparing models, we also report results obtained from using the anxious index
from the Survey of Professional Forecasters (SPF) of the Philadelphia Federal Reserve
Bank. This index corresponds to the probability of a decline in real GDP. This is a very
relevant benchmark, since survey forecasts have been found to perform very well compared
with model-based predictions (see, e.g., Faust and Wright (2009)). The SPF is available
only on a quarterly basis, but we disaggregate it at the monthly frequency assuming that
its monthly value is constant over the three months of the quarter. Moreover, we also
evaluate the statistical significance of our results using the Diebold-Mariano-West test to
assess equal out-of-sample predictive accuracy (see Diebold and Mariano (1995) and West
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(1996)), using the likelihood-based weighting scheme as a benchmark model. In this way,
we can evaluate from a statistical point of view the relevance of our weighting scheme
based on the QPS compared with the traditional approach that relies exclusively on the
likelihood.

Table 6 reports the results for the univariate models and Table 7 displays the results for
the bivariate models. First, for univariate models, the combination scheme with industrial
production using DMA weights based on the QPS obtains the best forecasting results for
forecast horizons h = {0, 1,2}, and the SPF anxious index obtained the best results for
forecast horizons h = {3,6}. Second, for bivariate models, the best results are obtained
by the model using industrial production and DMA weights based on the QPS for forecast
horizons h = {0, 1,2}, and a combination of the predictive likelihood and QPS for forecast
horizons h = {3,6}. Third, the QPS-based combination schemes nearly always outper-
form the combination schemes based on the likelihood only, and typically in a statistically
significant way:.

Figure 6 reports the one-month-ahead predicted probability of being in a recession from
selected specifications. It shows that QPS-based DMA combination schemes perform well
in that they capture very well all U.S. recessions. ' However, an important caveat of the
out-of-sample analysis so far is that we used only revised data. In the next subsection,
we move to a fully real-time forecasting setting, concentrating on the prediction of the
2008-2009 recession.

5.3.2 A closer look at the Great Recession

Revisions to macroeconomic data are substantial (see e.g. Croushore and Stark (2001)).
Using data available at the time the forecasts were made is therefore critical to evaluate
realistically the models’ forecasting ability. Real-time employment data are available for all
50 states starting from the June 2007 vintage with last observation for May 2007. Hence,
our first estimation sample extends from February 1960 to May 2007, and it is recursively
expanded until August 2013. As a result, the evaluation sample extends from May 2007
to August 2013, that is 76 months. Note also that we use a real-time data series for the
NBER recession dummy variable when calculating models’ weights so as to carefully reflect
the information available at the time the forecasts were calculated. In this purely real-time
experiment, since our evaluation sample covers only a limited period of time and only one
recession, we do not calculate QPS statistics, but instead report the probability of being in
a recession - defined as the last estimate available for the probability of being in a recession
averaged across the different Markov-switching models (i.e., P(S; = 0[¢);) where ¢ is the
last observation in the estimation sample) - and compare it with a number of alternatives.

Figure 7 reports the results for selected specifications using the QPS-based weighting
scheme along with the probability of recession derived from the SPF anxious index. In

14As a robustness check, we also calculated QPS exclusively over the recession periods identified by the
NBER (the results are not reported, for brevity). Over this restricted sample, the most accurate predictions
at short forecasting horizons are obtained by models using national employment and combining information
with DMA based on the QPS. As such, this broadly confirms the full sample estimates in that weighting
schemes based on the QPS provide valuable information.
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Table 6: Out-of-sample Quadratic Probability Score - Univariate models

Employment

Forecast horizon (months) 0 1 2 3 6
Dynamic Model Likelihood-based 0.315 0.307 0.302 0.300 0.292
Averaging QPS-based 0.184%**  0.197***  0.214%FF (0.227*** (.252%*
a=0.99 Combined 0.192%**  0.207***  (.222%*%* (.233*** (.251**
Dynamic Model Likelihood-based 0.222 0.236 0.246 0.252 0.259
Averaging QPS-based 0.176 0.193* 0.210*  0.223 0.247
a=0.95 Combined 0.185%**  0.206*** 0.222%* (.231*%* (0.248
Bayesian Model Likelihood-based 0.374 0.359 0.348 0.340 0.321
Averaging QPS-based 0.196%**  0.213%FF  (.229%F* (.240*** 0.256%**

Combined 0.374 0.359 0.348 0.340 0.321
Equal weight 0.209%%*  (0.223%F*  (0.237FF* (.248%** (.263%**

Industrial Production

Dynamic Model Likelihood-based 0.239 0.240 0.243 0.248 0.252
Averaging QPS-based 0.108*** 0.136*** 0.165*%* 0.188** 0.227
a=0.99 Combined 0.108***  0.135%%F  0.165** 0.187** 0.227
Dynamic Model Likelihood-based 0.216 0.221 0.228 0.235 0.243
Averaging QPS-based 0.101*** 0.133%** (0.164** 0.187*  0.227
a=0.95 Combined 0.110*%**  0.138*** 0.166** 0.189** 0.227
Bayesian Model Likelihood-based 0.209 0.219 0.230 0.236 0.247
Averaging QPS-based 0.148%**  0.171**  0.193** 0.209** 0.231

Combined 0.208* 0.218* 0.230 0.236 0.247
Equal weight 0.131%%*%  (0.158%FF  0.182** 0.201** 0.229
SPF Anxious Index 0.141 0.161 0.180 0.186 0.226
MS-AR (Employment) 0.210 0.222 0.237 0.249 0.268
MS-AR (IP) 0.102 0.138 0.169 0.193 0.231

Note: This table reports the quadratic probability score (QPS) for estimating U.S. business cycle turning
points from univariate models using different combination schemes (Bayesian model averaging (BMA),
dynamic model averaging (DMA), and an equal-weight scheme for the univariate and bivariate models
described in sections 2.1 and 2.2). The first estimation sample extends from February 1960 to December
1978, and it is recursively expanded until the end of the sample is reached (September 2013). Boldface
indicates the model with the lowest QPS for a given horizon. Statistically significant reductions in QPS
according to the Diebold-Mariano-West test are marked using ***(1% significance level), **(5% significance

level) and *(10% significance level).
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Table 7: Out-of-sample Quadratic Probability Score - Bivariate models

Employment

Forecast horizon (months) 0 1 2 3 6
Dynamic Model Likelihood-based 0.317 0.323 0.329 0.330 0.320
Averaging QPS-based 0.202%** (0.214%** (.231%** (.245%** (.269%**
alpha=0.99 Combined 0.256**  0.264** 0.271** 0.277** 0.279**
Dynamic Model Likelihood-based 0.289 0.299 0.309 0.316 0.312
Averaging QPS-based 0.210%** (0.222%F% (0. 237*F** (.251*** (.272%**
alpha=0.95 Combined 0.240%*  0.251%* (0.263*%* 0.271%** (0.280%**
Bayesian Model Likelihood-based 0.260 0.265 0.269 0.271 0.267
Averaging QPS-based 0.231 0.244 0.257 0.269 0.281

Combined 0.260 0.265 0.269 0.271 0.267
Equal weight 0.224 0.237 0.251 0.264 0.279

Industrial Production

Dynamic Model Likelihood-based 0.150 0.176 0.201 0.219 0.237
Averaging QPS-based 0.092*%* 0.129** 0.162* 0.188 0.227
alpha=0.99 Combined 0.096** 0.133** 0.164** 0.187* 0.224
Dynamic Model Likelihood-based 0.152 0.178 0.202 0.218 0.236
Averaging QPS-based 0.092** 0.130** 0.163* 0.188 0.227
alpha=0.95 Combined 0.099** 0.136** 0.167* 0.191 0.225
Bayesian Model Likelihood-based 0.114 0.149 0.180 0.201 0.229
Averaging QPS-based 0.115 0.150 0.180 0.202 0.230

Combined 0.113*%% 0.148%  0.179** 0.200** 0.229
Equal weight 0.109 0.144 0.175 0.198 0.228

Note: This table reports the quadratic probability score (QPS) for estimating U.S. business cycle turning
points from bivariate models using different combination schemes (Bayesian model averaging (BMA),
dynamic model averaging (DMA), and an equal-weight scheme for the univariate and bivariate models
described in sections 2.1 and 2.2. The first estimation sample extends from February 1960 to December
1978, and it is recursively expanded until the end of the sample is reached (September 2013). Boldface
indicates the model with the lowest QPS for a given horizon. Statistically significant reductions in QPS
according to the Diebold-Mariano-West test are marked using ***(1% significance level), **(5% significance

level) and *(10% significance level).
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detail, this figure shows that the recession probability derived from the models using the
employment data as a measure of national economic activity provides a timely update of
the beginning of the recession, in that the probability of recession is above 0.5 as early as
April 2008. However, this model detects only with a substantial lag the end of the recession,
owing to the very slow recovery in labor market conditions. In contrast, the probability of
recession calculated from the models using industrial production as a measure of national
economic activity provides an accurate signal for the end of recession, but provides a late
call for the beginning of the recession. Interestingly, the performance of the SPF anxious
index is somewhat inferior to these two models despite the fact that the SPF uses a much
larger information set than our model-based estimates. In particular, the anxious index
provides a call of recession later than the model using national employment data and detects
the end of the recession later than the model using national industrial production data.
Overall, this suggests that employment data were very helpful to detect the beginning of
the Great Recession, whereas industrial production data provided valuable information
about the end of that recession.

6 Conclusions

This paper provides an extension to the literature on model averaging when one is
interested in regime classification. In detail, we modify the standard Bayesian model aver-
aging (BMA) and dynamic model averaging (DMA) combination schemes so as to make the
weights depend on past performance in order to detect regime changes using the quadratic
probability score (QPS) to measure the models’ ability to classify regimes. The intuition for
doing so is relatively straightforward: a model that performs well for continuous forecasts
may not necessarily do so for discrete forecasts. Therefore, standard weighting schemes
based only on the models’ likelihood may not be appropriate in a context of regime classi-
fication.

In an empirical application to forecasting U.S. recessions using state-level employment
data, we show the relevance of this framework. In particular, the out-of-sample exercise
suggests that weighting schemes based on the QPS outperform weighting schemes based
exclusively on the likelihood. In addition, we find that weighting schemes based on the
QPS provide timely updates of the U.S. business cycle regimes, in that they precede the
NBER announcements of business cycle peaks and troughs, and compare favorably with
competing models. Also, in both our simulation experiment and empirical application,
DMA tends to outperform BMA, suggesting that it is important to allow for time variation
in the models’ weights.

There are a number of possible extensions of our analysis. First, one could use a broader
set of variables in the empirical analysis, using, for example, quarterly GDP growth as a
target variable and a broader set of covariates. Mixed-frequency data models could then be
used to tackle the mismatch of frequency between the target variable and the covariates.
However, doing so would raise complications in terms of computational time, since more
demanding Bayesian methods would be needed for the estimation of the models. This is
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likely to prove intractable in a forecasting exercise with a long enough evaluation sample.
Second, Wright (2013) emphasizes the importance of seasonal adjustment methods when
analyzing U.S. employment data. This is certainly an important avenue for further work;
however, the way seasonal adjustment should be performed remains unclear. We therefore
abstracted from this issue, and concentrated our analysis based on the traditional approach
of using pre-seasonally adjusted data before estimating models.
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7 Appendix

A Bayesian Parameter Estimation

We follow the multi-move Gibbs-sampling procedure in Kim and Nelson (1999) to esti-
mate the parameters and produce the inference on regimes for the univariate and bivariate
Markov-switching models. For brevity, we illustrate only the case of the bivariate model,
the univariate case being already fully described in Kim and Nelson (1999).

A.1 Priors

For the mean and variance parameters, the independent normal-Wishart prior distribu-
tion is used:!®

p(, X7 = p(p)p(E7),

where

p~N(p,V,), S ~W(S ),

and the associated hyperparameters are p = (-1,2,-1,2)", V,, =1, St=1v=0.

For the transition probabilities, Beta distributions are used as conjugate priors:
Proo ~ Beta(ug1,ur10), Pri1 ~ Beta(ugoo, uro1), for k=a,b

with hyperparameters u, 01 = 2, U0 = 8, ug,10 = 1 and ug1; = 9 for k = a, b.

A.2 Drawing S,r and S, given 1, 2, Paoos Pai1s Pboos Pbi1, and Jr

To make inference on the dynamics of the state variable Sky, for £ = a,b, we need to
compute draws from the conditional distributions:

T
9(Skr10,5r) = g(Serlir) [ [ 9(Skal Skasr, i)
t=1

To obtain the two terms in the right-hand side of the equation above, the following two
steps are employed:

Step 1: Run the Hamilton filter to obtain g(Sk+|g:) for t = 1,2,...,T, and save them.
The last iteration, i.e. for ¢ = T, provides the first term of the equation.

Step 2: The product in the second term can be obtained for t =T — 1,7 —2,...,1,
with the following result:

- Sk 1) _ Q(Sk,task,t—&-lwt)
" 9(Skt1|7)

o8 g<Sk,t+1|Sk,t)g(sk,t’gt)a

15Tn the case of the univariate model, we use the normal-gamma prior distribution.

g(
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where g(Sk++1|Sk+) corresponds to the transition probabilities of Sy, and ¢(Sk¢|7;) were
saved in Step 1. Then, it is possible to compute

. S Ske=1)g(Sk: = 1|y
PT[Sk,t = 1|Sk,t+1ayt] = 1g( k’t+l| i )g( bt ’yt.) )
ijo 9(Skt+1|Ske = 7)9( Skt = J|%)

and generate a random number from a U[0, 1] distribution. If that number is less than or

equal to Pr[Sk; = 1|Sk+41, ], then Sy, = 1, otherwise Sk = 0.

A.3 Drawing p, o, Pa,11, Pboo and py11 given ga,T and gb,T

The likelihood function of py o0, Pr11, for k = a, b, is given by

10

L(pk,oo,pk,llygk,T) = pz%]o(l - pi’&o)PZ}ﬁ(l - pk,11)>

where ny,;; refers to the transitions from state 7 to j, accounted for in gk;_p. Combining the
corresponding prior distribution with the likelihood, the posterior distribution reads as

& ug,00+nk,00—1 Uk 01+ Nk 01 —1, Uk, 117k, 11—1 U 10+nk 10—1
p(pk7007pk,11’5k,T) X pk’oo (1 — pk’oo) ,01 ,01 kal (1 — pk,ll) k,10 TNk, 10 ,

which indicates that draws of the transition probabilities will be taken from

Pr,00| Sk, ~ Beta(ug,oo + k00, Uk,01 + Nk01),  Drat|Skr ~ Beta(ugin 4 N1, Uk,10 + Mk,10)-

A.4 Drawing p given ¥, S, 7, Syr, and §r

The bivariate Markov-switching model can be compactly expressed as

Ha,0
Ya,t _ 1 Sa,t 0 0 Ha,1 + Eat Eant N 0 0-2 Oab
Yb,t 0 0 1 Sy 46,0 Ebt |’ Eb,t 0’| ow of
Ho,1
Yy = St:u—i_ftu gtNN(Oaz)u
stacking as B
Y1 €1 &1
_ S
P T I T
Yr S’T Er

The model remains written as a normal linear regression with an error covariance matrix

of a particular form:
y=Sp+¢& &£~N(0,I®%).
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Using the corresponding likelihood function, the conditional posterior distribution for

the intercepts reads as B 3 o
N‘Sa,Ta Sb,Ta 2717 gT ~ N(ﬁ? V,u)v

where

T —1
V, = (Kﬂl +) ng—lst>

t=1

When drawing g = (ta.0s fa,1, Hb0s Ub,1) , We impose the constraint that p,1 > 0 and g1 > 0
to ensure identification of the regimes in the model.

A.5 Drawing X given pu, ga,T, S’by, and yp

Conditional on the mean, state variables and the data, the conditional posterior distri-
bution for the variance-covariance matrix parameters reads as

1 & = - 1 _
E 1|Sa7T, Sb7T’M7 yT ~ W(S ,U),

~

MHIC

_|_

T =
S = S+ (yt—gtﬂ) (Z/t—gt/i),-

t=1

After ¥~! is generated, the elements in 3 are recovered.

The above steps are iterated 7000 times, discarding the first 2000 iterations to mitigate
the effect of the initial conditions.
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Figure 1: IN-SAMPLE PROBABILITY OF RECESSION
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Note: This figure reports the monthly in-sample probability of a recession extending from February
1960 to April 2014 obtained from averaging the results from individual models using different combination
schemes (BMA weights based on the QPS, and DMA weights based on the QPS).
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IN-SAMPLE MODEL WEIGHTS FROM DYNAMIC MODEL AVERAGING

Panel A. Employment
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Figure 5: IN-SAMPLE MODEL WEIGHTS FROM BAYESIAN MODEL AVERAGING

Panel A. Employment

0.14 1
- 09
0.12
- 08
01 L 0'7
- 0.6
0.08
- 0.5
0.06
- 04
0.04 - 03
- 0.2
0.02
0 |.'.I.I. AAnN .I.I. A .I.I. Il IIIII II ...I.I.I. III A m .I.I. .I.I... . Illll A .I.' 0
TERES0LBRETe=2502S59552895222222223888=0R3¢Er5555583¢%
B BMA (QPS-based) [left axis] 1 BMA (Likelihood-based) [right axis]
Panel B. Industrial Production
0.14 1
- 09
0.12
- 08
0.1 - 07
- 0.6
0.08
- 0.5
0.06
- 04
0.04 - 03
- 0.2
0.02
I - 01
0 .'.I.I. .I. .I. . .I.I. .I. .I. . .l IIIII I. .I.I.I... .I. AR .I.I. .I. .I.I. IIIII A Illl 0
2XE3008e§T 2220340552805 325252¢2258868%0qEX555553¢

M BMA (QPS-based) [left axis] m BMA (Likelihood-based) [right axis]

Note: This figure reports the weights obtained when averaging the results from univariate models using
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