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Abstract 

We propose double bootstrap methods to test the mean-variance efficiency hypothesis 
when multiple portfolio groupings of the test assets are considered jointly rather than 
individually. A direct test of the joint null hypothesis may not be possible with standard 
methods when the total number of test assets grows large relative to the number of 
available time-series observations, since the estimate of the disturbance covariance 
matrix eventually becomes singular. The suggested residual bootstrap procedures based 
on combining the individual group p-values avoid this problem while controlling the 
overall significance level. Simulation and empirical results illustrate the usefulness of the 
joint mean-variance efficiency tests. 

JEL classification: C12, C14, C15, G12 
Bank classification: Econometric and statistical methods; Asset pricing; Financial 
markets 

Résumé 

Nous proposons des méthodes de bootstrap double pour tester l’hypothèse d’efficience  
moyenne-variance lorsque plusieurs groupes de portefeuilles d’actifs à tester sont 
examinés conjointement plutôt qu’individuellement. Il ne sera peut-être pas possible de 
tester directement l’hypothèse nulle conjointe au moyen de méthodes conventionnelles à 
partir du moment où il y a un nombre élevé d’actifs à tester par rapport au nombre de 
séries chronologiques disponibles, étant donné que l’estimation de la matrice de 
covariance des perturbations en vient ultimement à être singulière. Les procédures de 
bootstrap résiduel proposées, qui reposent sur la combinaison des différentes valeurs p 
des groupes individuels, permettent d’éviter ce problème tout en contrôlant le niveau de 
signification global. La simulation et les résultats empiriques mettent en lumière l’utilité 
des tests conjoints de l’hypothèse d’efficience moyenne-variance. 

Classification JEL : C12, C14, C15, G12 
Classification de la Banque : Méthodes économétriques et statistiques; Évaluation des 
actifs; Marchés financiers 

 

 



1 Introduction

In the context of mean-variance analysis, a benchmark portfolio of assets is said to be efficient

with respect to a given set of test assets if it is not possible to combine it with the test

assets to obtain another portfolio with the same expected return as the benchmark portfolio,

but a lower variance. With multiple benchmark portfolios, the question becomes whether

some linear combination of them is efficient. The mean-variance efficiency hypothesis is a

testable implication of the validity of linear factor asset pricing models, such as the capital

asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), or more generally of the

arbitrage pricing theory of Ross (1976); see Sentana (2009) for a survey of the econometrics

of mean-variance efficiency tests.

A prominent way to assess the mean-variance efficiency hypothesis is with the test proce-

dure of Gibbons et al. (1989) (GRS). This test takes the form of either a likelihood ratio or a

system-wide F test conducted within a multivariate linear regression (MLR) model with as

many equations as there are test assets in the cross-section. The exact distributional theory

for the GRS test rests on the assumption that the MLR model disturbances are independent

and identically distributed (i.i.d.) each period according to a multivariate normal distribu-

tion. Beaulieu et al. (2007) (BDK) extend the GRS test by developing a simulation-based

procedure that allows for the possibility of non-Gaussian innovations. Another approach

that also relaxes the GRS normality assumption is the residual bootstrap procedure of Chou

and Zhou (2006) (CZ).

Any test procedure based on standard estimates of the MLR disturbance covariance

matrix (e.g., GRS, BDK, CZ) requires that the size of the cross-section be less than the

length of the time series in order to avoid singularities and hence be computable. A common

practice is therefore to use portfolios rather than individual securities, whereby the test assets

are sorted into portfolios according to some empirical characteristic such as the market value

of the companies’ equity and their book-to-market value. For instance, Gibbons et al. (1989)

examine beta-sorted portfolios, industry-sorted portfolios and size-sorted portfolios. Shanken

(1996) argues that creating portfolios also has the advantage of reducing the residual variance
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and allowing the key regression parameters to be estimated more precisely.

Lewellen et al. (2010) suggest further that empirical tests of asset pricing models can

be improved by expanding the set of test portfolios (beyond the commonly employed size

and book-to-market portfolios) and using additional portfolios sorted by industry, beta,

volatility, or factor loadings. They argue that a valid asset pricing model should be able

to price all portfolios simultaneously. In this paper, we consider the problem of testing the

mean-variance efficiency hypothesis when multiple portfolio sorts are grouped together and

considered jointly rather than individually.1 Observe that attempting a joint GRS, BDK or

CZ test by taking all the portfolio groupings and stacking them into an MLR model may

run into the singularity problem, since the expanded cross-section can exceed the length

of the available time series. This issue will be even more pressing whenever the analysis

is performed over short time periods, which is typically done to alleviate concerns about

parameter stability.

The problem then consists of combining the tests for each portfolio grouping in a way

that controls the overall level of the procedure. A difficulty in this situation is that even

though the distribution of the individual test statistics might be known (e.g., under the GRS

normality assumption), their joint distribution across portfolio groupings may be unknown or

difficult to establish. In order to ensure that the overall significance level is no greater than,

say, 5%, a smaller level must be used for each individual test. According to the well-known

Bonferroni inequality, the individual levels should be set to 5% divided by the number of

considered portfolio groupings. As this number grows, such Bonferroni-type adjustments can

become far too conservative and lacking in power; see Savin (1984) for a survey discussion

of these issues.

Westfall and Young (1993) explain in great detail that bootstrap methods can be used to

solve multiple testing problems. Following these authors, we extend the CZ procedure and

propose double bootstrap schemes à la Beran (1987, 1988) for controlling the overall signifi-

cance level of mean-variance efficiency tests with multiple portfolio groupings. Specifically,

the two methods we propose use statistics that combine the individual p-values from each

1For example, portfolios formed on size and book-to-market could be one grouping, while industry port-
folios could be another.
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portfolio grouping. The first method, which rests on the GRS normality assumption, takes

the p-values from the marginal F distributions and then treats their combination like any

other test statistic for the purpose of bootstrapping. The second (and more computationally

expensive) method is entirely non-parametric in that a first level of bootstrapping is used

to find the individual p-values in addition to the second level of bootstrapping for the com-

bination of these p-values. Such double bootstrap schemes have been proposed by Godfrey

(2005) to deal with multiple diagnostic tests in linear regression models; see also MacKinnon

(2009) for a survey of these methods. Dufour et al. (2014) propose similar resampling-based

methods for univariate regression models (with specified disturbance distributions) and apply

them to serial dependence and predictability tests.

The current paper is organized as follows. In Section 2 we establish the statistical frame-

work. We also describe the existing tests for a single portfolio grouping, including the

Gibbons et al. (1989) and Chou and Zhou (2006) test procedures. We then discuss the

problem of testing mean-variance efficiency with multiple portfolio groupings, and describe

the proposed bootstrap methods. In Section 3 we illustrate the new tests by first comparing

their relative performance in a simulation study and then by presenting the results of an

empirical application. In Section 4 we offer some concluding remarks.

2 Framework and test procedures

We consider an investment universe comprising a risk-free asset, K benchmark portfolios

and an additional set of N risky assets. At time t, the risk-free return is denoted rft, the

returns on the benchmark portfolios are stacked in the K × 1 vector rKt, and, similarly, the

returns on the other risky assets are stacked in the N × 1 vector rt. Correspondingly, the

time-t excess returns on the risky assets are denoted by zKt = rKt − rft and zt = rt − rft.

Consider the following MLR model:

zt = α+ βzKt + εt, (1)

where α = (α1, ..., αN)′ is an N × 1 vector of intercepts (or alphas), β is an N ×K matrix of
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linear regression coefficients (or betas), and εt is an N×1 vector of model disturbances. These

disturbances are such that E[εt | zKt] = 0 and E[εtε
′
t | zKt] = Σ, a non-singular covariance

matrix. Jobson and Korkie (1982) show that if the usual expected return-beta representation

E[zt] = βE[zKt] holds, then some linear combination of the K benchmark portfolios is on

the minimum-variance frontier. Therefore, a necessary condition for the efficiency of the K

benchmark portfolios with respect to the N test assets is H0 : α = 0 in the context of model

(1). A direct test of H0, however, may not be possible with standard methods when the size

of the cross-section, N , is too large relative to the length of the time series, T . Indeed, the

extant procedures described below to test mean-variance efficiency are based on the standard

estimate of the covariance matrix of regression disturbances. As N grows relative to a fixed

value of T, this matrix estimate eventually becomes singular and the usual tests can then no

longer be computed.

A common practice in the application of mean-variance efficiency tests is thus to base

them on portfolio groups in order to reduce the size of the cross-section of test assets.

Dividing the securities into N1 groups (such that N1 ≤ T − K − 1) solves the degrees-of-

freedom problem with the original set of N test assets. As Shanken (1996) explains, portfolio

diversification also has the potential effect of reducing the residual variances and increasing

the precision with which the MLR alphas are estimated.2

2.1 Single portfolio grouping

Let zt,1 denote the N1×1 vector of returns obtained from grouping the test assets. According

to model (1), these returns can be represented as

zt,1 = α1 + β1zKt + εt,1, (2)

2Shanken (1996) also discusses other motivations for the use of portfolio groupings. In particular, some
stocks come and go over time and using portfolios allows the use of longer time series than would otherwise
be possible. Forming portfolios also helps to prevent “survivorship biases,” which result from the exclusion
of failing stocks and thereby introduce an upward bias on the average sample return (Kothari et al., 1995).
Also, portfolios formed by periodically ranking on some economic characteristic may be more likely to have
constant betas compared to individual securities.
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where α1 and εt,1 are both N1× 1 vectors, and β1 is an N1×K matrix. The null hypothesis

of interest corresponding to this grouping then becomes

H0 : α1 = 0. (3)

Gibbons et al. (1989) propose a multivariate F test of H0 in (3). Their test assumes that

the vectors of disturbance terms εt,1, t = 1, ..., T , in (2) are i.i.d. according to a multivariate

normal distribution each period with mean zero and non-singular covariance matrix Σ1,

conditional on zK1, ..., zKT .

Under normality, the methods of maximum likelihood and ordinary least squares (OLS)

yield the same unconstrained estimates of α1 and β1:

α̂1 = z̄1 − β̂1z̄K ,

β̂1 =

[
T∑
t=1

(zt,1 − z̄1)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

where z̄1 = T−1
∑T

t=1 zt,1 and z̄K = T−1
∑T

t=1 zKt. With α̂1 and β̂1 in hand, the uncon-

strained estimate of the disturbance covariance matrix is found as

Σ̂1 =
1

T

T∑
t=1

(
zt,1 − α̂1 − β̂1zKt

)(
zt,1 − α̂1 − β̂1zKt

)′
. (4)

The GRS test statistic for H0 in (3) is

J1 =
(T −N1 −K)

N1

[
1 + z̄′KΩ̂−1z̄K

]−1

α̂′1Σ̂
−1
1 α̂1, (5)

where Ω̂ = T−1
∑T

t=1(zKt − z̄K)(zKt − z̄K)′. Under the null hypothesis H0, the statistic J1

follows a central F distribution with N1 degrees of freedom in the numerator and (T−N1−K)

degrees of freedom in the denominator. The statistic in (5) can also be written in the form

of a likelihood ratio test (Campbell et al., 1997, Ch. 5). In either form, the GRS test is

feasible only when N1 ≤ T −K − 1.
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Beaulieu et al. (2007) extend the GRS test by developing an exact procedure based

on likelihood ratios that allows for the possibility of non-Gaussian innovation distributions.

Their framework assumes that the innovation distribution is either known or at least specified

up to some unknown nuisance parameters. If normality is maintained, the BDK test becomes

the Monte Carlo equivalent of the GRS test. Indeed, the BDK test procedure is akin to a

parametric bootstrap with a finite-sample justification. When the assumed distribution

involves unknown parameters (e.g., Student-t with unknown degrees of freedom), the BDK

method proceeds by finding the maximal p-value over a confidence set for the intervening

nuisance parameters. This confidence set is first established by numerically inverting a

simulation-based goodness-of-fit test for the maintained distribution.

Chou and Zhou (2006) propose to use bootstrap methods to test mean-variance effi-

ciency, avoiding the need to specify any distribution at all.3 Of course, a non-parametric

bootstrap is only asymptotically justified, but Chou and Zhou (2006) show that it works

well even in small samples. The test statistic used in the CZ bootstrap procedure is the

Wald ratio W1 = α̂′1Σ̂
−1
1 α̂1, which appears in the numerator of the GRS statistic in (5). Let

c1 =
[
1 + z̄′KΩ̂−1z̄K

]−1

(T −N1 −K)/N1 and observe that a bootstrap test based on W1 is

equivalent to one based on J1 = c1W1, since the term c1 is constant under a fixed-regressor

resampling scheme. Specifically, the CZ residual bootstrap procedure for the i.i.d. case

considered here proceeds as follows:

1. Estimate the parameters of the MLR in (2) by OLS to obtain α̂1, β̂1, and ε̂t,1 =

zt,1 − α̂1 − β̂1zKt for t = 1, ..., T . Compute the Wald statistic as W1 = α̂′1Σ̂
−1
1 α̂1.

2. Estimate the MLR under the null hypothesis by setting the vector α1 in (2) equal to

zero and obtain

β̃1 =

[
T∑
t=1

zt,1z
′
Kt

][
T∑
t=1

zKtz
′
Kt

]−1

,

where the tilde is used to distinguish this beta from its unconstrained counterpart, β̂1.

3. For i = 1, ..., B1, repeat the following steps:

3 Hein and Westfall (2004) propose a similar residual bootstrap procedure to assess the significance of
economic events for abnormal returns in the context of an MLR model.
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(a) Generate bootstrap data according to z∗t,1,i = β̃1zKt + ε∗t,1,i for t = 1, ..., T, where

ε∗t,1,i is drawn with replacement from {ε̂t,1}Tt=1.

(b) Apply OLS to the MLR model using the bootstrap data, thereby obtaining

α̂∗1,i = z̄∗1,i − β̂
∗
1,iz̄K ,

β̂
∗
1,i =

[
T∑
t=1

(z∗t,1,i − z̄∗1,i)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

Σ̂∗1,i =
1

T

T∑
t=1

(
z∗t,1,i − α̂∗1,i − β̂

∗
1,izKt

)(
z∗t,1,i − α̂∗1,i − β̂

∗
1,izKt

)′
,

where z̄∗1,i = T−1
∑T

t=1 z∗t,1,i. Then compute the bootstrap Wald statistic as W ∗
1,i =

α̂∗′1,iΣ̂
∗−1
1,i α̂

∗
1,i.

The null hypothesis H0 in (3) should be rejected when the original statistic W1 is in the upper

tail. Using the simulated statistics W ∗
1,1, ...,W

∗
1,B1

, the bootstrap p-value is then simply

p̂∗ =
1

B1

B1∑
i=1

I[W ∗
1,i > W1], (6)

where I[A] is the indicator function of event A, which is equal to 1 when A occurs and 0

otherwise. The decision rule consists of rejecting the null hypothesis when p̂∗ is less than

the nominal test level.

Observe that the bootstrap procedure uses the H0-restricted estimate β̃1 when generating

the artificial samples. This ensures that the bootstrap data are compatible with the null

hypothesis. Also notice that the Chou and Zhou (2006) bootstrap method resamples the

unrestricted residuals ε̂1,1, ..., ε̂T,1. By construction, these residuals have mean zero, thereby

avoiding the need for centering. There is also an advantage in terms of power to using

unrestricted rather than restricted residuals (MacKinnon, 2009).

In practical applications of mean-variance efficiency tests, we need to choose an appro-

priate number N1 of test assets. It might seem natural to try to use as many as possible in
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order to increase the probability of rejecting H0 when it is false. Indeed, as the test asset

universe expands it becomes more likely that non-zero pricing errors will be detected. How-

ever, as we have already mentioned, the choice of N1 is restricted by T in order to keep the

estimate of the disturbance covariance matrix in (4) from becoming singular, and the choice

of T itself is often restricted owing to concerns about parameter stability. For instance, it is

quite common to see studies where T = 60 monthly returns and N1 is between 10 and 30.

The effect of increasing the number of test assets on test power is discussed in Gibbons

et al. (1989), Campbell et al. (1997, p. 206), Sentana (2009), and Gungor and Luger (2013).

When N1 increases, there are in fact three effects that come into play: (i) the increase in the

value of J1’s non-centrality parameter, which increases power, (ii) the increase in the number

of degrees of freedom of the numerator, which decreases power, and (iii) the decrease in the

number of degrees of freedom of the denominator due to the additional parameters that need

to be estimated, which also decreases power. The additional caveat for the CZ resampling

scheme is that the N1 × N1 matrix Σ̂∗1,i will be singular and W ∗
1,i will not be defined with

probability approaching 1 as N1/T becomes large. For example, a bootstrap replication can

sample the same N1-vector ε∗t,1,i too many times and in this case the rank of Σ̂∗1,i will be

deficient.

To illustrate the net effect of increasing N1 on the power of the GRS test and the CZ

bootstrap test, we simulated model (2) with K = 1, where the returns on the single factor

are random draws from the standard normal distribution. The elements of the independent

disturbance vector were also drawn from the standard normal distribution, thereby ensuring

the exactness of the GRS test. The elements of α1 are generated randomly by drawing from

a uniform distribution over [−a, a], where we consider a = 0.1, 0.2 and 0.3. These values are

well within the range of what we find with monthly stock returns. We set the sample size

as T = 60 and we let the number of test assets N1 range from 1 to 58.

Figure 1 shows the power of the GRS test (solid line) and the CZ bootstrap test computed

with B1 = 1000 (dashed line) as a function of N1, where for any given value of N1 the

higher power curves are associated with a greater range [−a, a]. In line with the discussion

in Gibbons et al. (1989), this figure clearly shows the power of the GRS test given this
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specification rising as N1 increases up to about one half of T , and then decreasing beyond

that point. The results in Campbell et al. (1997, Table 5.2) show several other alternatives

against which the power of the GRS test declines as N1 increases. It is important to note

that the choice of N1 and T is somewhat arbitrary in practice, since there are no general

results on how to devise an optimal multivariate test. Figure 1 also shows that the GRS

and CZ tests have similar power when N1 is between 1 and 5, but as more test assets are

included, the power of the CZ bootstrap test peaks around N1 = 10 and then falls to zero

much sooner than the GRS test.

In addition to choosingN1 and T , we must also select the assets used in the test procedure.

A common practice is to group returns according to the ranked value of certain observable

characteristics (e.g., industry, beta, size, book-to-market value, momentum) that are likely

to offer a big spread in expected return deviations and boost the chances of rejecting the

null hypothesis when the benchmark portfolios are not efficient. In the next section, we

present two methods for testing mean-variance efficiency when multiple portfolio groupings

are considered.4

2.2 Multiple portfolio groupings

Suppose there are G possible ways of dividing the test assets into groups, yielding the Ng×1

vectors zt,g, for g = 1, ..., G. These groups could differ in their number of included assets

and/or selection of assets. By extension of (2), the groupings can be represented by the

simultaneous equations

zt,g = αg + βgzKt + εt,g, g = 1, ..., G, (7)

where we now have αg and εt,g as Ng×1 vectors, and βg as an Ng×K matrix. Mean-variance

efficiency implies the truth of H0,g : αg = 0, for all g. The joint null hypothesis of interest

then becomes

H0 : the hypotheses H0,1, ..., H0,G are all true, (8)

4Expanding the set of test assets beyond the usual size and book-to-market portfolios is in fact the first
prescription offered by Lewellen et al. (2010) to improve (cross-sectional) asset pricing tests.
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which we wish to test in a way that keeps under control the overall probability of rejecting

mean-variance efficiency when it actually holds.

Define the matrices Zg = [z1,g, ..., zT,g]
′, g = 1, ..., G, and X = [ιT ,ZK ], where ιT is a

T -vector of ones and ZK = [ZK1, ...,ZKT ]′. The models in (7) can then be written in the

stacked MLR form:

Y = XB + U, (9)

where Y = [Z1, ...,ZG] is a T × (N1 + ... + NG) matrix, X is a T × (K + 1) matrix of

regressors, and U = [U1, ...,UG] is the T × (N1 + ... + NG) matrix of model disturbances

defined with Ug = [ε1,g, ..., εT,g]
′, g = 1, ..., G. The parameters are collected in B = [a,b]′, a

(K + 1)× (N1 + ...+NG) matrix, where a = [α′1, ...,α
′
G]′ and b = [β′1, ...,β

′
G]′. The system

OLS estimates and residuals are given as usual by

B̂ = (X′X)−1X′Y,

Û = Y −XB̂,

and it is well known that these are identical to what would be obtained if we applied OLS

to each group separately before stacking. The disturbance covariance matrix estimate is

computed as

Σ̂ = Û′Û/T,

but this matrix is singular when (N1 + ... + NG) > T − K − 1, meaning that parametric

methods (like the GRS and BDK tests) cannot be applied to (9) for testing H0 directly.

So even though non-parametric test procedures are generally less powerful than parametric

ones, taking a non-parametric route is the only option we have available for “large
∑
Ng,

small T” situations.5

Let us maintain for the moment the GRS assumption that the disturbance terms εt,g,

5This point can also be seen in Affleck-Graves and McDonald (1990), who deal with a large number of
test assets by using analogs to the GRS statistic computed with alternative covariance matrix estimators.
Specifically, they consider an estimator based on the maximum entropy method of Theil and Laitinen (1980)
and another one that restricts the covariance matrix to be diagonal. The distribution of the resulting
statistics is then obtained via a residual bootstrap method.
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t = 1, ..., T , in (7) are i.i.d. according to a multivariate normal distribution each period with

mean zero and non-singular covariance matrix Σg, conditional on the benchmark portfolio

excess returns zK1, ..., zKT . Under this assumption and the joint H0 in (8), the marginal

GRS statistics Jg, g = 1, ..., G, each follow an F distribution with Ng degrees of freedom

in the numerator and (T − Ng − K) degrees of freedom in the denominator. Denote the

corresponding marginal p-values by pg = 1 − FNg ,T−Ng−K(Jg), where FNg ,T−Ng−K is the

cumulative distribution function of the appropriate null distribution.

Following Dufour et al. (2014), we consider two methods of combining the individual

p-values. The first one rejects H0 when at least one of the individual p-values is sufficiently

small. Specifically, if we define

pmin = min{p1, ..., pG} and Smin = 1− pmin,

then we reject H0 when pmin is small, or, equivalently, when Smin is large. The intuition

here is that the null hypothesis should be rejected if at least one of the individual p-values

is significant. The second combination method we consider is based on the product of the

individual p-values:

p× =
G∏
g=1

pg and S× = 1− p×,

which may provide more information about departures from H0 compared to using only the

minimum p-value.6 To streamline the presentation, we next explain our inference methods

with Smin, and then we consider both Smin and S× in our simulation study and empirical

application.

We use bootstrap methods to estimate the distribution of Smin under H0. Such resampling

methods are necessary here in order to account for the dependence among the p-values. To

see why, observe that the individual p-values are such that

pg ∼ U [0, 1] under H0,g,

6We refer the reader to Folks (1984) for more on these and other test combination methods.
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but only for each p-value taken one at a time. So even though the p-values p1, ..., pG have

identical marginal distributions under H0, they need not be independent and may in fact

have a very complex dependence structure. As Westfall and Young (1993) explain, bootstrap

methods can be used to account for the correlation among the p-values and obtain a joint test

of multiple hypotheses. These methods also avoid the need for Bonferroni-type adjustments,

which quickly become far too conservative as G grows. See Godfrey (2005) and MacKinnon

(2009) for related discussion and applications.

2.2.1 Bootstrap method I

The first method we propose exploits the Gaussian distributional assumption underlying the

GRS test.7 It should be noted, however, that even though this may seem like a stringent

assumption, the GRS test is quite robust to typical departures from normality (Affleck-

Graves and McDonald, 1989). The bootstrap method proceeds according to the following

steps:

1. Estimate the parameters of the MLRs in (7) by OLS to obtain α̂g, β̂g, and ε̂t,g =

zt,g − α̂g − β̂gzKt, for t = 1, ..., T and g = 1, ..., G. Compute the GRS statistics as

Jg = cgWg = cgα̂
′
gΣ̂
−1
g α̂g, g = 1, ..., G,

where cg =
[
1 + z̄′KΩ̂−1z̄K

]−1

(T −Ng −K)/Ng.

2. Estimate the MLRs under the null hypothesis to obtain β̃g, g = 1, ..., G.

3. Compute Smin = 1− pmin, where pmin = min{p1, ..., pG} with pg = 1−FNg ,T−Ng−K(Jg).

4. For i = 1, ..., B1, repeat the following steps:

(a) Generate bootstrap data according to z∗t,g,i = β̃gzKt + ε∗t,g,i, for t = 1, ..., T and

g = 1, ..., G, where the time-t collection ε∗t,1,i, ..., ε
∗
t,G,i is drawn with replacement

from {ε̂t,1, ..., ε̂t,G}Tt=1.

7Method I thus includes the GRS test procedure as a special case (when G = 1).
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(b) For g = 1, ..., G, apply OLS to the corresponding MLR model using the bootstrap

data, thereby obtaining

α̂∗g,i = z̄∗g,i − β̂
∗
g,iz̄K ,

β̂
∗
g,i =

[
T∑
t=1

(z∗t,g,i − z̄∗g,i)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

Σ̂∗g,i =
1

T

T∑
t=1

(
z∗t,g,i − α̂∗g,i − β̂

∗
g,izKt

)(
z∗t,g,i − α̂∗g,i − β̂

∗
g,izKt

)′
,

where z̄∗g,i = T−1
∑T

t=1 z∗t,g,i. Then compute the bootstrap GRS statistic as J∗g,i =

cgα̂
∗′
g,iΣ̂

∗−1
g,i α̂

∗
g,i and the corresponding p-value p∗g,i = 1− FNg ,T−Ng−K(J∗g,i).

(c) Compute S∗min,i = 1− p∗min,i, where p∗min,i = min{p∗1,i, ..., p∗G,i}.

The bootstrap p-value of Smin is then simply given by

p̂∗ =
1

B1

B1∑
i=1

I[S∗min,i > Smin],

with small values suggesting that at least one of the hypotheses appearing in (8) may not

be true. The formal decision rule is to reject the joint null hypothesis if p̂∗ is less than the

nominal significance level. Note that the p-value transformation pg of the test statistic Jg to

a quantile of the U [0, 1] distribution corresponds to the prepivoting step in Beran (1988).

A very important remark about this method (and the next one) is that the bootstrap

samples are generated by randomly drawing the entire time-t collection ε∗t,1,i, ..., ε
∗
t,G,i from

{ε̂t,1, ..., ε̂t,G}Tt=1. Stated in terms of the T × (N1 + ... + NG) matrix of system residuals

associated with the stacked MLR in (9), the bootstrap proceeds by drawing entire rows

of Û. This kind of block resampling is the key for controlling the joint test size, since it

preserves the contemporaneous correlation structure among the residuals.
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2.2.2 Bootstrap method II

If we believe the MLR model innovations depart markedly from normality, then we can

hedge against the risk of a misleading inference by bootstrapping the individual p-values

in addition to bootstrapping their combination. This double bootstrap procedure works as

follows:

1. Estimate the parameters of the MLRs in (7) by OLS to obtain α̂g, β̂g, and ε̂t,g =

zt,g − α̂g − β̂gzKt, for t = 1, ..., T and g = 1, ..., G. Compute the Wald statistics as

Wg = α̂′gΣ̂
−1
g α̂g, g = 1, ..., G.

2. Estimate the MLRs under the null hypothesis to obtain β̃g, g = 1, ..., G.

3. For i = 1, ..., B1, repeat the following steps:

(a) Generate bootstrap data according to z∗t,g,i = β̃gzKt + ε∗t,g,i, for t = 1, ..., T and

g = 1, ..., G, where the time-t collection ε∗t,1,i, ..., ε
∗
t,G,i is drawn with replacement

from {ε̂t,1, ..., ε̂t,G}Tt=1.

(b) For g = 1, ..., G, apply OLS to the corresponding MLR model using the bootstrap

data, thereby obtaining

α̂∗g,i = z̄∗g,i − β̂
∗
g,iz̄K ,

β̂
∗
g,i =

[
T∑
t=1

(z∗t,g,i − z̄∗g,i)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

Σ̂∗g,i =
1

T

T∑
t=1

(
z∗t,g,i − α̂∗g,i − β̂

∗
g,izKt

)(
z∗t,g,i − α̂∗g,i − β̂

∗
g,izKt

)′
,

where z̄∗g,i = T−1
∑T

t=1 z∗t,g,i. Then compute the bootstrap Wald statistic as W ∗
g,i =

α̂∗′g,iΣ̂
∗−1
g,i α̂

∗
g,i.
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4. With the simulated statistics W ∗
g,1, ...,W

∗
g,B1

, compute the first-level bootstrap p-values

as

p̂∗g =
1

B1

B1∑
i=1

I[W ∗
g,i > Wg], g = 1, ..., G.

5. Compute Ŝ∗min = 1− p̂∗min, where p̂∗min = min{p̂∗1, ..., p̂∗G}.

6. For i = 1, ..., B1, do the following steps:

(a) For j = 1, ..., B2, do the following steps:

i. Generate second-level bootstrap data according to z∗∗t,g,j = β̃gzKt + ε∗∗t,g,j,

for t = 1, ..., T and g = 1, ..., G, where, as before, the time-t collection

ε∗∗t,1,j, ..., ε
∗∗
t,G,j is drawn with replacement from {ε̂t,1, ..., ε̂t,G}Tt=1.

ii. For g = 1, ..., G, apply OLS to the corresponding MLR model using the

second-level bootstrap data, thereby obtaining

α̂∗∗g,j = z̄∗∗g,j − β̂
∗∗
g,j z̄K ,

β̂
∗∗
g,j =

[
T∑
t=1

(z∗∗t,g,j − z̄∗∗g,j)(zKt − z̄K)′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)′

]−1

,

Σ̂∗∗g,j =
1

T

T∑
t=1

(
z∗∗t,g,j − α̂∗∗g,j − β̂

∗∗
g,jzKt

)(
z∗∗t,g,j − α̂∗∗g,j − β̂

∗∗
g,jzKt

)′
,

where z̄∗∗g,j = T−1
∑T

t=1 z∗∗t,g,j. Then compute the second-level bootstrap Wald

statistic as W ∗∗
g,j = α̂∗∗′g,jΣ̂

∗∗−1
g,j α̂∗∗g,j.

(b) With the simulated statistics W ∗∗
g,1, ...,W

∗∗
g,B2

, compute the second-level bootstrap

p-values as

p̂∗∗g,i =
1

B2

B2∑
j=1

I[W ∗∗
g,j > W ∗

g,i], g = 1, ..., G.

(c) Compute Ŝ∗∗min,i = 1− p̂∗∗min,i, where p̂∗∗min,i = min{p̂∗∗1,i, ..., p̂∗∗G,i}.
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The final test criterion of this double bootstrap method is

p̂∗∗ =
1

B1

B1∑
i=1

I[Ŝ∗∗min,i > Ŝ∗min],

which is just the proportion of simulated second-level combination statistics greater than

Ŝ∗min, the first-level combination statistic computed from the actual data. Note that here

the first- and second-level bootstrap samples are generated the same way, so the asymptotic

justification of this method is the same as for an ordinary (single) bootstrap test (cf. Beran,

1988).

Observe also that the double bootstrap is computationally expensive, since we need to

calculate a total of G(1 + B1 + B1B2) Wald test statistics. MacKinnon (2009) notes that

the computational cost of performing a double bootstrap test can be substantially reduced

by utilizing a stopping rule. Specifically, the replications can be stopped following the rules

(for double bootstrap tests and confidence intervals) developed by Nankervis (2003, 2005)

and the same results can be obtained as if all bootstrap calculations were used.

3 Illustrations

We illustrate the usefulness of the proposed bootstrap tests by applying them to the CAPM,

which is a commonly applied model, in theory and in practice, for analyzing the trade-off

between risk and expected return. Sharpe (1964) and Lintner (1965) show that if investors

hold mean-variance efficient portfolios, then, under certain additional conditions, the market

portfolio will itself be mean-variance efficient. The CAPM beta is the regression coefficient

of the asset return on the single factor and it measures the systematic risk or co-movement

with the returns on the market portfolio. Accordingly, assets with higher betas should in

equilibrium offer higher expected returns.

The mean-variance CAPM takes the MLR form in (1) with K = 1 and a broad market

index typically serves as a proxy for the market portfolio. Here we specify the market factor

as the excess returns on a value-weighted stock market index of all stocks listed on the
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NYSE, AMEX, and NASDAQ markets. The test assets are monthly excess returns on 25

size and book-to-market, 30 industry, 10 momentum, and 10 equity-price ratio portfolios (75

portfolios in total) over a 50-year period from January 1964 to December 2013 (600 months).

Finally, we use the one-month U.S. Treasury bill as the risk-free asset when forming excess

returns over the sample period.8 It is also quite common in the empirical finance literature

to test asset pricing models over subperiods owing to concerns about parameter stability

(Campbell et al., 1997, Ch. 5). We follow this practice here and also perform the mean-

variance efficiency tests over 5- and 10-year subperiods.

3.1 Simulation results

Before presenting the results of the empirical application, we first shed some light on the

performance of the (CZ and new) bootstrap inference methods using the GRS test procedure

as the benchmark for comparison purposes.

The artificial data are generated according to the single-factor version of (1) where zKt =

z1t is obtained by randomly sampling the actual market factor. We also use in the data-

generating process the actual estimates, β̂ and Σ̂, obtained from the 75 test asset portfolios

over the full sample period. Specifically, for a given value of N , we populate the N × 1

vector β by drawing randomly with replacement the elements of β̂, and the first N × N

submatrix of Σ̂ serves as Σ. The model disturbances are then generated as εt ∼ N(0,Σ),

thereby mimicking the cross-sectional covariance structure found among the actual sample

residuals. In this setting, the GRS procedure is the uniformly most powerful invariant test

(Affleck-Graves and McDonald, 1990). To examine the effects of non-normalities, we also

consider disturbances drawn from a multivariate t-distribution with covariance matrix Σ

and degrees of freedom equal to 20 and then 6. When investigating the relative power of

the tests, the mispricing values α1, ..., αN that make up α in (1) are randomly drawn from

a uniform distribution under two alternative scenarios: (i) αi ∼ U [−0.30, 0.30]; and (ii)

αi ∼ U [−0.35, 0.35]. We consider sample sizes T = 60, 120, which correspond to 5 and 10

years of monthly data, and we vary the number of test assets as N = 10, 30, 60, 75.

8The data are obtained from Ken French’s website at Dartmouth College.
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The application of the new test procedures requires a choice about how to group the test

assets. This choice obviously has no effect on the level of the tests, but, as Figure 1 shows,

it matters for their power. The empirical rejection rates are therefore reported for several

values of G and Ng to examine the effects of grouping. At the nominal 5% level, Tables

1–4 report the empirical size and power of the GRS, CZ, and new bootstrap (Methods I

and II) tests, the latter being performed with the Smin and S× combination statistics. The

simulation design in Table 4 matches our empirical application in terms of sample size T ,

number of test assets N = 75, and number of groupings G. The bootstrap methods are

implemented with B1 = 1000, B2 = 100, and the empirical rejection rates are based on

1000 replications of each data-generating configuration. The main findings of the simulation

study can be summarized as follows.

1. When the GRS test is applicable, its empirical size is seen to stay close to the stated

5% level, even when the model disturbances follow a t-distribution; see Affleck-Graves

and McDonald (1989) for further discussion about the robustness of the GRS test.

The empirical rejection rates of the CZ test quickly decline to zero and the test ceases

to be applicable as the ratio N/T increases, owing to the singularity of the estimated

disturbance covariance matrix in the bootstrap world. In line with Figure 1, we see

the CZ rejection rates in Tables 1–3 going to zero under both the null and alternative

when N/T ≥ 1/2. Observe that there are no CZ test results in Table 4, where N/T

exceeds 1/2.

2. The overall rejection rates of the double bootstrap tests depend not only on N/T , but

also on the number of groupings G. For a fixed value of N/T , the empirical size shrinks

toward zero as G decreases. Obviously, as G gets closer to 1, the new tests behave more

like the original CZ test under the null and alternative hypotheses. Recall that when

G = 1, Methods I and II correspond to the GRS and CZ test procedures, respectively.

3. In order to maximize the power of the bootstrap tests, it generally appears that G

should be increased as N/T increases. From Tables 1–3 we see that when N/T ≤ 1/4

(Panels A, B and D), we should set G = 1, i.e. perform the CZ test. An exception
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occurs under the heavy-tailed t6 distribution in Table 3, Panel D, where the bootstrap

tests with G = 2 do slightly better. But as N/T increases, the new tests based on

groupings clearly deliver more power than the CZ test. Indeed, the best power in

Tables 1–3 seems to be with G = 3 when N/T = 1/2 (Panels C and F), and with

G = 6 when N/T = 1 (Panel E). This pattern continues in Panels A, C and E of Table

4, where N/T = 1.25, and the best power performance occurs with G = 7 (6 groups

with 10 portfolios each and a group of 15 portfolios).

4. The best bootstrap test power performances (set in bold) compare quite favourably to

those of the GRS test. From Table 4 we can see that the power of bootstrap Methods

I and II is on par with that of the GRS procedure, and can even surpass it. Indeed, in

Panel F when the alternative is αi ∼ U [−0.35, 0.35], the GRS test has power of 78%,

while the new bootstrap methods have power attaining 90% and more. Furthermore,

when N ≥ T in Panel E of Tables 1–3 and Panels A, C, and E of Table 4, the double

bootstrap tests are the only ones available.

5. In Tables 1–4, the new bootstrap methods appear to perform somewhat better with

S× than with Smin at the values of G that maximize power. For instance, in Panel A

of Table 4 under αi ∼ U [−0.35, 0.35], bootstrap Method I applied with G = 7 delivers

power of 55.4% with S×, versus 47.4% with Smin. The S× statistic is also favoured

with Method II.

6. Comparing the power performances of the two double bootstrap methods, we see that

the completely non-parametric one (Method II) is only slightly less powerful than

Method I, whose first-level p-values rest on the GRS normality assumption. A notable

exception occurs in Table 4, Panels A, C, and E with G = 5, where Method II appears

to outperform Method I. As expected, all the tests suffer relative power losses as the

tails of the disturbance distribution become heavier from normal to t20 to t6, and gain

in power as T increases.

7. When the model disturbances deviate from normality (Tables 2 and 3; and Table 4,

Panels C–F), the underlying GRS p-values used in Method I are only approximate.
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Nevertheless, we see that the bootstrap procedure works remarkably well at keeping

the test size under control. This finding concurs with the robustness results in Affleck-

Graves and McDonald (1989), and is in line with the theoretical properties of combined

p-values established by Dufour et al. (2014) in a parametric bootstrap context.

3.2 Empirical results

The results of the empirical application are reported in Table 5, where the entries are the

p-values of the mean-variance efficiency tests performed with the N = 75 test asset portfolios

over the full 50-year sample period, as well as 5- and 10-year subperiods. The entries set

in bold represent cases of significance at the 5% level. Observe that the GRS and CZ tests

are not computable with five years of monthly data, since N = 75 > T = 60. The CZ

test remains “na” (not applicable) even with T=120 in the 10-year subperiods due to the

singularity problem. We apply the new bootstrap methods with four different portfolio

groupings: (i) G = 7 (6 groups of 10 portfolios and a group of 15 portfolios); (ii) G = 5 (2

groups of 10 portfolios, 2 groups of 15 portfolios, and a group of 25 portfolios); (iii) G = 4 (3

groups of 20 portfolios and a group of 15 portfolios); and (iv) G = 3 groups of 25 portfolios

each.

For the 50-year period, the implications of the CAPM are strongly rejected by all the

tests with p-values of no more than 0.02. In the 5-year subperiods, the new bootstrap tests

indicate, for the most part, non-rejections of the mean-variance efficiency hypothesis. We

also see some disagreements among the bootstrap tests. For instance, during the period

1/94–1/98, the decision as to whether to reject the null depends on the portfolio grouping.

In light of the power results in Tables 1–4, we would naturally be inclined to agree with the

rejections suggested by the G = 7 groups, since N/T = 1.25 in this case. Over the 10-year

subperiods, the GRS and bootstrap tests agree on far more rejections of the null hypothesis

at the conventional significance level. These results suggest that the CAPM generally finds

more support over shorter periods of time and tends to be incompatible with the data as the

time span lengthens. Note that the wild fluctuation in bootstrap p-values already revealed

by the 5-year subperiods is suggestive of temporal instabilities in the CAPM representation
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of expected returns.

4 Conclusion

In this paper we have described how double bootstrap methods can be used to test the

mean-variance efficiency hypothesis in the presence of multiple portfolio groupings. Under

the null hypothesis, the MLR model intercepts should be zero no matter how the test assets

are divided into groups. There are two ways we could test these joint restrictions. First,

we may stack the portfolio groups into an MLR model with, say, G × Ng equations and

proceed either with the F test of Gibbons et al. (1989) or the residual bootstrap method

of Chou and Zhou (2006). The shortcoming of this “testing by stacking” approach is that

the multivariate GRS and CZ tests may lose all their power or may not even be computable

as G × Ng becomes large relative to T . This problem can be clearly seen in Figure 1. In

comparison to the unconditional GRS test, the singularity problem appears much sooner in

the conditional CZ bootstrap world.

Instead of testing by stacking, we proposed a “divide and conquer” approach, which pro-

ceeds by bootstrapping combinations of the individual p-values associated with each portfolio

grouping. The individual p-values may be obtained from the marginal F distributions, if we

assume that the MLR disturbances are (not too far from) normally distributed. We showed

how these p-values can be combined (using either the minimum p-value or their product)

into a single statistic, which is then treated like any other statistic for the purpose of boot-

strapping. The second method we suggested uses a first round of bootstrapping to find the

individual p-values in addition to the second layer of bootstrap replications used to get the

p-value of the combined statistic. Of course, this second method is computationally more

demanding than the first one, but it offers protection in situations where the marginal GRS

p-values may be grossly incorrect. These double bootstrap methods account for the possibly

complex dependence structure among the p-values and control the probability of rejecting

the joint null hypothesis when mean-variance efficiency actually holds.
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Figure 1. This figure plots the power of the GRS and CZ tests as a function of the number of included test assets. The

returns are generated from model (2) with normally distributed innovations. The sample size is T = 60 and the number of test

assets N1 ranges from 1 to 58. The tests are performed at the nominal 0.05 level and the higher power curves are associated

with greater expected return deviations.
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