~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Zheng, Charles Z.

Working Paper
Existence of monotone equilibria in first-price auctions
with resale

EPRI Working Paper, No. 2014-1

Provided in Cooperation with:

Economic Policy Research Institute (EPRI), Department of Economics, University of Western
Ontario

Suggested Citation: Zheng, Charles Z. (2014) : Existence of monotone equilibria in first-price auctions
with resale, EPRI Working Paper, No. 2014-1, The University of Western Ontario, Economic Policy
Research Institute (EPRI), London (Ontario)

This Version is available at:
https://hdl.handle.net/10419/123486

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/123486
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Existence of Monotone Equilibria in
First-Price Auctions with Resale
by

Charles Z. Zheng

Working Paper # 2014-1 June 2014

Western@

Economic Policy Research Institute
EPRI Working Paper Series

Department of Economics
Department of Political Science
Social Science Centre
The University of Western Ontario
London, Ontario, N6A 5C2
Canada

This working paper is available as a downloadable pdf file on our website
http://economics.uwo.ca/epri/



Existence of Monotone Equilibria in

First-Price Auctions with Resale*

Charles Z. Zheng!

May 26, 2014

Abstract

Existence of a monotone pure-strategy perfect Bayesian equilibrium is proved for a
multistage game of first-price auctions with interbidder resale, with any finite number
of ex ante different bidders. Endogenous gains at resale complicate the winner’s curse
and upset previous fixed-point methods to prove existence of monotone equilibria. This
paper restructures the fixed-point approach with respect to comparative statics of the
resale mechanisms strategically chosen after the auction. Despite speculation possibil-
ities and the discontinuity-inducing uniform tie-breaking rule, at our equilibrium any

bid that stands a chance to win is strictly increasing in the bidder’s use value.
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1 Introduction

Analyses of economic institutions are based on existence of equilibria of the underlying games.
Among them first-price auctions, widely used in practice, are of particular theoretical interest
because of a discontinuity problem, arising at tying bids, that may upset standard arguments
of equilibrium existence. To solve this discontinuity problem sophisticated methods based
on fixed-point theorems have been developed, one guaranteeing existence of monotone pure-
strategy equilibria due to Athey [1], McAdams [10], Reny and Zamir [16], and Reny [15], and
the other for mixed-strategy equilibria, augmented with endogenous tie-breaking rules, due
to Jackson, Simon, Swinkels and Zame [5].! However, neither method has been applied to
dynamic games such as auctions with resale.? With resale, foundational assumptions need to
be reexamined with respect to the continuation play at resale. For example, a main hurdle
for the fixed-point approach to monotone equilibria is the winner’s curse, which has been
handled in the literature by bounding it with sufficiently strong primitive assumptions. But
resale would endogenize the winner’s curse and renders it unbounded a priori, as a bidder
could magnify the winner’s curse for the rivals by acting as a high-bidding speculator so that
his rivals might want to lose now and buy the good at resale. This paper contributes to the
monotone pure-strategy fixed-point approach by restructuring it with respect to comparative
statics of resale thereby proving existence of a perfect Bayesian equilibrium, with strictly
increasing bid functions, for a two-stage game of a first-price auction with resale.

Let us start by looking into the main steps of the monotone fixed-point approach to
see how they may fail given resale possibilities. After that, the rest of the Introduction will
outline how these steps are replaced by new arguments based on analysis of resale.

The general idea of this fixed-point approach, dating back to the general equilibrium
literature,® is to approximate the original economy by some sequence of finite economies
where equilibria exist and then prove that a limit point of the sequence of such approximation
equilibria is an equilibrium of the original one. For auctions, the main impediment to such

passing-to-limit arguments is a discontinuity problem caused by the possibility of ties. For

1 Kotowski [6] has a recent application of the fixed-point methods in auctions with budget constraints.
2 The conceptual awkwardness of the no-resale assumption has been noted by Zheng [19] and Hafalir and

Krishna [4]. The possibility of resource misallocation, which may occur at equilibrium in first-price auctions

among ex ante different bidders given the no-resale assumption, induces bidders to attempt resale.
3 For example, Werner [18] and Magill and Quinzii [9].



instance, in a three-bidder case depicted by Figure 1, each bidder i plays an equilibrium

bidding strategy 3/, a nondecreasing function from his type ¢; to a bid, in the approximation

o0

o°_, converges to its limit, a

auction game indexed by m; when the sequence (57", 53", 53")
nonvanishing mass of bids, submitted by bidder 1 of types in [aj, z1] and bidder 2 of types
in [ag, 2], are clustered within an interval collapsing into the point x (while bidder 3’s types
that bid within the cluster vanish into a point z3). The crucial stage of the fixed-point
approach is to demonstrate a contradiction to the approximation equilibria by arguing that
some types of at least one of the bidders, say some elements in [as, 25], strictly prefer to

deviate from their 53'-bids within the cluster at x to a bid say z’ slightly above the cluster.

This no-tie argument, due to Athey [1] and now standard within the fixed-point literature,
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Figure 1: A tying situation

can be summarized into two steps, illustrated here from bidder 2’s viewpoint:*

i. One needs to prove that, as bidder 2’s type increases from ay to 29, his preference to
winning strictly increases and eventually, with sufficiently high types, he strictly prefers
to win conditional on the winning event that he can win with the 33'-bids within the

cluster at z, which roughly corresponds to the event “(¢1,t3) € [0, a;1] x [0, 23]”.

ii. For the desired contradiction it suffices to show that the types obtained in the previous
step strictly prefer to deviate to 2’ from their £5*-bids within the cluster at z. This

was done by proving that their expected net gains from winning cannot decrease when

4 The two steps correspond to Claims 1 and 2 in the Appendix of Athey [1].



they consider only the event in which the deviation is pivotal, i.e., that bidder 2
cannot prefer less to win when the conditioned event moves from the winning event

“(t1,t3) € [0,a1] x [0, z3]" up to the pivotal event “(t1,t3) € [a1, z1] X [0, z3]”.

To see the troubles, consider an independent private values model where ¢; is bidder 7’s
use value of the good for sale. Step (i) can fail because a bidder with high types, say the
elements of [ag, 25| in Figure 1, may eventually acquire and consume the good whether he
wins it now or buys it later at resale. Then the type t5 in bidder 2’s payoff as a winner is
canceled out by the 5 in his payoff as a loser, so his net gain from winning does not increase
in ty, and [ag, 25] need not contain a type that strictly prefers to win, contrary to Step (i).

To consider a case where Step (ii) is unsalvageable, suppose within this paragraph
that, in Figure 1, bidder 1’s bids within the cluster at x are above bidder 2’s within the
cluster, so that bidder 1 wins when they both bid in the cluster. Thus, the winning event for
bidder 2, when he bids within the cluster, corresponds to “(t1,t3) € [0,a1] x [0, z3]”, while
the pivotal event for bidder 2’s deviation from the cluster to &’ corresponds to “(t1,t3) €
la1, z1] x [0, z3]”. Athey’s Step (ii) would argue that bidder 2’s preference to win does not
decrease when the conditioned event moves from the winning event to the pivotal one. Given
resale, however, the opposite can be true. For instance, let the probability of [as, 23] be so
large that, conditional on the winning event [0, a;] x [0, z3], if bidder 2 loses then with a large
probability he buys the good from the types [as, 23] of bidder 3. By contrast, conditional on
the pivotal event [aq, z1] X [0, z3], if bidder 2 loses, he buys the good from bidder 1 with types
in [ay,z1). Since [as, z3] is higher than [aj, z1] in strong-set order, the resale price offered
to bidder 2, in expectation, is higher in the winning event (where bidder 3 is the reseller)
than in the pivotal event (where bidder 1 is the reseller). Thus, when the conditioned event
moves up to the pivotal one, bidder 2’s expected payoff from losing, or roughly speaking
the winner’s curse, becomes higher. On the other hand, bidder 2’s payoff from winning is
invariant to his rivals’ types because, from Figure 1, as > z3 > z; and hence if he wins then
he will consume the good to obtain its use value t,. Consequently, when he takes into account
that his deviation is pivotal, bidder 2 prefers strictly less to win, contrary to Step (ii).

The fundamental reason why Athey’s no-tie argument does not work here is that a
monotonicity assumption in the literature may fail given resale. The assumption stipulates
that a bidder’s ex post net payoff from winning is nondecreasing in his rivals’ types (e.g.,

A.1.iii of Reny and Zamir). With resale, by contrast, a winner’s payoff may fail to be
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nondecreasing in his rivals’ types because the optimal resale mechanism may resell the good
to a subsidized bidder who pays a lower price than someone else, so the winner’s ex post
resale revenue could decrease when a subsidized bidder’s type rises to buy the good from him
at resale. A loser’s payoff may fail to be nonincreasing because a loser’s gain from trading
with reseller 7 may be larger than that with reseller k. Thus, when j has a slightly higher
type to become the reseller instead of k, this bidder’s ex post payoff increases. Hence the ex
post net gain from winning may fail to be nondecreasing in the rivals’ types.

In addition to the no-tie argument, two other important conditions, which did not
appear difficult in the received literature, become problematic given resale. One is single
crossing, crucial to guarantee existence of the aforementioned approximation equilibria. The
other is payoff security, which is needed to deliver the passing-to-limit result in the literature.
The single-crossing condition says that if a bidder prefers a high bid to a low one then the
preference remains so when his type gets higher. The literature obtained this condition by
assuming it for every possible profile of realized types (e.g., A.1.iv of Reny and Zamir). With
resale, the assumption fails when an increase of a bidder’s type turns him from a speculator
to a consumer, with sufficiently high types of his rivals.” The payoff-security condition says
that bidding slightly above an atom of the rivals’ bids does not make a bidder worse-off
than bidding at the atom. In the literature, verification of this condition is simply Step (ii),°
which as illustrated above can fail with resale.

This paper is devoted to overcoming these challenges that resale presents to the fixed-
point approach. To capture the endogenous nature of resale, we assume that the resale
mechanism is a reseller-optimal auction & la Myerson [13] based on post-auction beliefs.
Athey’s critical steps are restructured with respect to new comparative statics properties of
the Myerson resale auction, with initial bids or post-auction beliefs being the parameters.

The existence proof starts by establishing an increasing-difference theorem (Theo-
rem 1), which through its single-crossing implication ensures existence of the aforementioned
approximation equilibria. It is based on two comparative statics properties of the Myerson

resale mechanism (Propositions 1 and 2). Then comes the critical step, the no-tie argument,

5 While the higher bid brings about higher revenues for the speculator-type since he charges higher
resale prices due to the higher posterior about the willingness-to-pay of his clientele, the consumer-type,
who benefits from none of such revenue effect, strictly prefers the lower bid, which costs him less. This also

upsets a slightly weaker single-crossing assumption proposed by Quah and Strulovici [14, Th. 4(c), p28].
6 For example, the displayed formula (A.5) in Reny and Zamir [16].



to prove that ties do not occur at a limit point of a sequence of such approximating equilibria
(Theorem 2). With its counterpart in the received literature hindered by resale, our no-tie
argument is complicated and relies on new properties of endogenous resale uncovered in this
paper. Then a passing-to-limit argument delivers the existence theorem (Theorem 3).

The first step of our no-tie argument is to prove that, if a tie at the limit occurs
then there exists a dominant bidder whose probability of winning the tie converges to one
(Lemma 8). In Figure 1, for instance, the infimum a; of bidder 1’s types that bid within
the cluster at z is less than all elements of [ag, 25|, bidder 2’s types bidding in the cluster.
Consequently, with types being use values of the good, conditional on the pivotal event
“(ta,t3) € [ag, z9] X [0, 23)” of the bid increase from the cluster to a’, bidder 1 would have
zero gain from trading with the reseller player 2. I.e., bidder 1 would suffer zero winner’s
curse with the bid increase. On the other hand, the bid increase generates a revenue effect
by adding a mass of high types [as, 22| to bidder 1’s clientele thereby increasing his expected
resale revenue by a positive amount (Lemma 9, due to a property of the optimal resale
mechanism proved in §A.2.1).” Thus, bidder 1 with types nearby a; would strictly prefer to
deviate unless within the cluster his bids are almost exclusively on the top layer so that he
mostly outbids the tying rivals. Hence bidder 1 is the dominant bidder.

To derive a contradiction from the supposed occurrence of a tie, our next step is to
prove that some bidder who is supposed to bid just below the dominant rival within the tying
cluster, such as bidder 2 in Figure 1, strictly prefers to deviate to a bid slightly above the
cluster. The proof, from §5.2.1 to §5.2.5, is nontrivial because the winner’s curse for bidder 2
is not negligible. Contrary to the case of bidder 1, even the infimum ay of the atom-bidding
types of bidder 2 can gain from buying the good at resale from some atom-bidding types
of bidder 1, as as > a;. This nontrivial winner’s curse is handled in two substeps. First,
we prove that if [as, 25| contains some sufficiently high types then for such types of bidder 2
the winner’s curse is more than outweighed by the “winner’s blessing” (payoff from winning

conditional on the pivotal event). Then he strictly prefers the deviation (§5.2.3, due to a

7 Note that the revenue effect is null in no-resale models. In other words, notwithstanding zero winner’s
curse, Athey’s no-tie argument still cannot be replicated to prove that bidder 1 strictly prefers the higher
bid. Even if her Step (i) works, so that bidder 1’s preference to win strictly increases in his type on [aq, 21]
conditional on his winning event, his preference may still be reversed when the conditioned event switches
to the pivotal event. That is because his ex post payoff from winning may fail to be nondecreasing in his

rivals’ types, as explained above regarding the monotonicity assumption.



property of the optimal resale mechanism proved in §A.3). Second, in the other case, we
find some types in [ag, 29] for whom the winner’s curse is nearly balanced by the winner’s
blessing. This is done by deducing the viability of bidder 2’s deviation from the profitability
of bidder 1’s on-path action despite information asymmetry between them (§5.2.4).5 Then
the revenue effect of the deviation, as in the case for bidder 1 in the previous paragraph,
implies bidder 2’s strict incentive to deviate (§5.2.5), which delivers the no-tie theorem.

In the received literature, a no-tie theorem would have sufficed the passing-to-limit
argument, as the aforementioned payoff-security condition is implied by simply repeating
Step (ii) in Athey’s argument. Not so with resale, because as explained previously the
monotonicity assumption may fail. With the monotonicity assumption, Athey’s Step (ii) is
accomplished without relying on any equilibrium condition. Without this assumption, our
no-tie argument relies on the condition that the deviant bidder 2 is supposed to bid at the
cluster according to the approximation equilibria (so that the deviation to 2’ in Figure 1
costs him only an infinitesimal increase of payment). But such an equilibrium condition is
not available when the payoff-security condition is being considered.

To avoid this problem I assume that the reserve price of the initial auction is zero.
Then the no-tie theorem implies that the approximation equilibria at the limit allow for only
inconsequential atoms, which stand no chance to win (Lemma 14). To complete the passing-
to-limit argument, therefore, it suffices to handle such atoms. Here complications can occur
when a bidder can change the inconsequentiality of an atom with a unilateral deviation,
which could cause discontinuity at the limit. This problem is solved by Lemma 15. Then
the existence proof is complete.

This existence theorem is more general than previous results in first-price auctions
with resale in that it allows for any finite number of differently distributed bidders while
the previous literature assumed either two bidders or at most two kinds of bidders ex ante,
with bidders of the same kind drawn from the same distribution. Notwithstanding some
remarkable results in this literature, such as Garratt and Troger [2] in mixed strategies and

Hafalir and Krishna [4], Lebrun [7, 8] and Virag [17] in pure strategies, the two-distribution

8 The deduction, consisting of Lemmas 11 and 12, is based on two nontrivial facts. First, bidder 2 can
nearly mimic bidder 1’s optimal resale mechanism in the event of the tie, largely due to the fact that bidder 1
is the dominant rival. Second, the expected revenue produced by a fixed Myerson auction does not decrease
when the weight of a bidder’s type is pushed upward (Lemma 22, proved here despite the fact that the ex

post revenue generated by a Myerson auction need not be nondecreasing in a bidder’s type).



assumption has been crucial to their differential equations method.

Nevertheless, the existence theorem is still restricted by the aforementioned assumption
of zero reserve price, as well as several other assumptions such as the privacy of a loser’s bid
in the initial auction, common infimum for bidders’ prior supports, and a reseller’s power to
choose resale mechanisms. These assumptions, however, are common in the current auction-
resale literature such as those cited above as well as Zheng [19] and Garratt, Troger and
Zheng [3].° Now that the existence proof has shown it feasible to extend the fixed-point
approach beyond its previous confines of no-resale single-stage models, investigations of its

further expansion, including dispensability of these assumptions, are at hand.

2 The Model

2.1 The Auction-Resale Game

There are two periods, a finite set I of bidders, and an indivisible good. For each i € I,
bidder i’s type, or use value of the good, is independently drawn from a commonly known
distribution F;, with the realized value privately known to ¢. In period one, every bidder ¢
submits as his bid an element of {{} U B;, where [ < 0 denotes the losing bid, amounting
to nonparticipation in the period-one auction, and B; C [r,00) is the set of serious bids
admissible for bidder ¢, with reserve price r > 0 for all bidders. Ties are broken randomly and
uniformly with equal probabilities. If the good is sold then, after the winner is selected, the
highest bid and the winner’s identity are announced publicly, with nothing else disclosed,'®
and the winner pays for the good at the price equal to his winning bid. Then period two
starts and the period-one winner chooses a selling mechanism that offers resale to the other
bidders in I, called losing bidders. A selling mechanism is any game form to be played by
the losing bidders. After the players have acted given this mechanism, the entire game ends.

Every bidder is assumed risk-neutral in his payoff, defined to be his use value, if he is the

final owner of the good, plus the net monetary transfer he receives from others. Discounting

9 Zheng [19] did not assume common infimum of the priors but made some other assumptions. Hafalir
and Krishna [4] and Lebrun [7, 8] considered some other disclosure policies and weaker bargaining power of

the reseller based on the two-distribution assumption and take-it-or-leave offers as the resale mechanism.
10 Tf the action of a losing bidder is also disclosed, pure-strategy equilibrium is unlikely to exist unless the

loser gets to choose the resale mechanism.



is assumed away for simplicity.

Assume for every bidder ¢ the prior F; has differentiable and strictly positive density f;
on its support 7; := [0,%;], with prior virtual utility ¢; — (1 — Fi(t;))/f;(t;) having strictly
positive derivative with respect to ¢; on T;. Denote T_; := Iyep 13Ty and T := e T "

A profile (3;);er of bid functions, with 3; : T; — {{}UB; for each i € I, is said monotone
if and only if 3; is a weakly increasing function for each ¢ € I, i.e., everyone’s period-one bid

is weakly increasing in his use value of the good.

2.2 Boldfaced Symbols for Random Variables

Denote bidder ’s type by t; as the random variable and ¢; as the realized value. Denote
t_; = (tp)ren gy and t—; == ()ken (i} as the random vector and the realization for the type
profile across rivals of 7. Analogously, denote t := (¢;,t_;) := (ty)ker, t := (ti,t—;) == (tk)ker,
t_ij) = (te)renfiyy and - j) == (tk)renfijy- Denote E[g(x)] for the expected value of any
function g of the random variable or random vector &, with the random variable/vector bold-
faced, based on the prior distributions. Denote E[g(x) | E] for the expected value conditional

on event E, 1[FE] for the indicator function of event E, and Pr{E} := E[1[F]].

3 The Endogenous Payoff Functions

We shall derive a bidder’s expected payoff in the auction-resale game from a continuation

equilibrium at the resale stage, which implements a reseller-optimal auction & la Myerson [13].

3.1 Continuation Equilibrium at Resale
3.1.1 Atoms and Inverse Images of Bids

If §; : T; — R is a weakly increasing function, denote for any b > ;(0)
BrH0) = {ti € Ty: Bits) = b},
Bime(b) = sup{t; € Ty : Bi(t;) < b}, (1)
Brap(0) = sup{t; € T; : Bi(t:) < b}. (2)

1 The assumption that bidders have a common infimum of their prior supports is used in Lemmas 15

and 23. The positive-derivative assumption of prior virtual utilities is slightly stronger than the usual one

that requires only strict monotonicity. The strengthening is needed in Lemmas 12 and 15.



We adopt the convention of letting sup S := inf S := 0 when a subset S of T; is empty. Note
that if 5;'(b) # @ then (;1(b) = inf 3, (b) and S, (b) = sup §; ' (b).

For any bidder 4, an atom of 3; means a bid b € B; such that 3; ' (b) is a nondegenerate
interval, i.e., Z_lif(b) < B;shp(b)' An atom of f_;, with f_; := (;) i, means an atom of [3;

for some j € I'\ {i}. Likewise, an atom of 3 := (/3;)e; means an atom of 3; for some j € I.

3.1.2 Public Histories and Posterior Beliefs

If bidder i wins with bid b; in period one (so b; > [, i.e., b; € B;) then (i,b;) denotes the
commonly known public history. Given any public history (i,b;), with every losing bidder k
(k # i) having played according to [k, the posterior distribution Fy(- | 4,b;, 3) of ¢ is
derived from Bayes’s rule based on the observation that k£ has been defeated either because

Bi(tx) < b; or because (i (t;) = b; and k did not win the tie-breaking lottery.

Lemma 1 For any public history (i,b;), any monotone profile 3, and any k # i, the density
fi(- | 4,6, 8) of Fr(- | i,b;,3) is finite and strictly positive on its support [O,ﬁ,;slup(bi)};
if b; is not an atom of By then fi(- | i,b;, 3) is continuous on this posterior support; else

fr(- | 4,0, B) is continuous at all but one point in the posterior support.

Proof Appendix C. =

3.1.3 Posterior Virtual Utilities

For each losing bidder k € I'\ {4} in public history (i, b;), define Vip, 5 : T — R by

1-F (t |i,bi,ﬂ) . 1
b= oo s ik < Gpup(bi)

Viewis(te) == Vi(ty | bi, B) = .
Braup (i) if th > By up (03),

(3)
and define the posterior virtual utility function for losing bidder k # ¢ to be either V, g if b;
is not an atom of [, or the ironed version of V} ;. s according to Myerson’s [13] procedure
if b; is an atom of f;. By the previous and the next lemmas, Vj, s fails to be monotone
and hence ironing is needed precisely when the winning bid b; is an atom of 3. Denote k’s

posterior virtual utility by Vk,i,bi,ﬁ(tk) or Vi(ty | i,b;, 3).12

12 When the winning bid b; is an atom of S, the posterior distribution of ¢, depends on i by Eq. (75).

Hence the notation i for the winner in the ironed posterior virtual utility function Vi ; », g cannot be dropped.

10



Lemma 2 There exists A > 0 such that, for any public history (i,b;), any monotone profile
B, and any k # i, if b; is not an atom of B, then:

a. for any ty, € T, Viinis(tr) = Viw,s(te) and, if t; € [0, 6,;51@(1)@')},

Fi. (Baup (b)) — Frlti).

Vi plBr) = b = Je(te) ’

(4)

b. Vi, 15 strictly increasing on [0,6,;511110(61)] , at a rate greater than or equal to A, and
is constant on [ﬁk_,;up(bi),fk} ;
. . _1 .

c. if b; > by and b is not an atom of By, then Vip, 5 > Vi 5 on [0>5k,sup(biﬂ:

d. Vi, is continuous on Ty,

Proof Appendix C. =

3.1.4 Resale Mechanisms

Given any public history (i,b;), by Lemma 1, Myerson’s [13] characterization of optimal
auctions is applicable to the auction-design problem for our reseller 7.'* Thus, the mechanism

M;(b;, t;, 3) defined below is optimal for the bidder-turned reseller ¢ with type t; € T;:
a. each losing bidder k # ¢ independently submits a report, say ¢, of his type;
b. for any t_; € T, i resells the good to a bidder k # i such that
Vi(ty | 4,b;, 8) = max {ti,r?gcvj(tj | i,bi,ﬁ)} :

if there are more than one such bidders then ¢ picks one of them through an equal-

probability lottery; if no such k exists then i keeps the good;

c. for any k # 1, if bidder k is resold the good then the payment k delivers to i equals

pkﬂ"bi,g(t,k) ;= inf {t; € Tk : Vk,i,bi,ﬁ(t;;) Z max {tl,]er[r{é{xzxk} Vj,i,bi,ﬁ(tj)}} ) (5)

if k is not resold the good then k pays zero to i.

13 Myerson [13] assumed continuous density throughout a bidder’s support while our posterior density
may be discontinuous at one point (Lemma 1). But this difference does not affect Myerson’s result. Also
see Footnote 9 of Garratt, Troger and Zheng [3] for an explanation why Myerson’s result is applicable here

despite the possibility that the reseller may be privately informed of her type.
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Following directly from Myerson’s result, we have—

Lemma 3 For any public history (i,b;), any t; € T; and any monotone profile 3, if the
posterior belief of t; is Fj(- | i,b;,3) for each j # i, then it is a continuation equilibrium for

player i to choose M;(b;, t;, ) and everyone else to participate and be truthful.

For any public history (4, b;), if b; is not an atom of 3_;, then Lemma 2 implies that, for
any losing bidder k # 4, the posterior virtual utility function Vmbiﬁ is equal to the strictly
increasing function Vj , 3 on the posterior support [0, Br. iup(bi)] of t;, hence for any t_; such
that bidder k of type t; wins in M;(b;, t;, 8) (i.e., max {¢;, maxjen (i} Vipio(t;) } < ﬁ,;slup(bi)),
Eq. (5) is simplified to, with ijblh 5 denoting the inverse function of V., s,

Drin,a(tor) = ijbli,,@ (max {ti, max V},m,ﬁ(h’)}) . (6)

JEN{ik}
3.2 The Payoff from the Auction

3.2.1 The Indicator Function for Winning

The uniform tie-breaking rule corresponds to a random vector (p,);e; subject to two condi-
tions: (i) for any realization (p;)icr, pi € {1,...,|I|} for any i € I, and p; # p; for any i # j;
and (ii) any such realization has the same probability. The interpretation is that if p; > p,
then bidder ¢ beats j in the coin toss when their bids are tied.

For any realization (py)res of the uniform tie-breaking lottery, any i € I, any J C I'\{i},
and any profile (by)resugiy of bids across bidders in J U {i}, write

(Z,bl) >_(Pk)kel (bk)ke], or brieﬂy (Z,bl) b (bk-)ke],

if and only if

keJ

b; € B; and {bi > max by, or {bi = max b, and VK € argmaxb; : p; > py,
keJ jeJ

And write (i, b;) % (bx)res if and only if (i,b;) > (bx)res is not true.
For example, 1 [(i,bi) — (ﬁk(tk))kel\{i}] is the indicator function for the event that
bidder ¢ wins, possibly after tie-breaking, with bids b; from ¢ and (g(tx) from each rival k.

12



3.2.2 Ex Post Payoff for a Winner

For any public history (i,b;) and any (¢;,t_;) € T; x T_;, define W;(t_; | b;, t;, 3) to be the
payoff for player ¢ when ¢ wins at the initial auction with bid b; and offers resale via the
Myerson auction M;(b;, t;, 3) according to the continuation equilibrium specified in Lemma 3,
when rivals of ¢ abide by the monotone profile 5_; in period one and the profile of realized
types across other players happens to be ¢t_;. That bidder ¢ wins with bid b; implies b; € B;.
For the case b; ¢ By, i.e., b; = [, define W;(t_; | I, t;, 3) := 0.

If a serious bid b; (i.e., b; € B;) is not an atom of J_;, one can derive from Lemmas 2

and 3 that, for all t_; € Hk# [0, 5;;31@(@)] except a set of measure zero and for any ¢; € T,
Wit | biti, 8) = 1 [ti > max Vi(t | bi,ﬁ)} (7)

+ 3 bt |Vilt | 05) > max (o, o Vi | )}

#i
3.2.3 Ex Post Payoff for a Losing Bidder

For any distinct bidders i # j and any (t;,t-;) = (t;,t;,t_u;)) € T, x T; x T_(; ;) such
that 5;(t;) € Bj and §;(t;) > Oi(ty) for all k € I\ {7, 7}, define L;;(t_; | t;,3) to be the
payoff for player ¢ when bidder j wins at the initial auction with bid (;(¢;) and offers resale
via mechanism M; (5;(t;),t;, B) according to the continuation equilibrium, when everyone is
supposed by other players to abide by the monotone profile 5 in period one and the profile
of realized types across bidders happens to be (t;,1;,t_(;))-

Note that L;;(t_; | t;, ) is invariant to ¢’s period-one bid b;, due to the fact that
reseller j in choosing resale mechanisms does not know the bids from the losing bidders.

If 3;(t;) is not an atom of B_; then, as in the previous case for W;, for any i # j, for
all t_j) € [Ligqify [0, Braup(Bi(t5))] but a set of measure zero, and for any t; € T;,

Lij(t—i | ti,8) = (ti = pijig;e),8(t-1)) 1 | Vi, 1;),5(t:) > max {tm I&E}X}Vkﬂ] )ﬁ(tz‘)H . (8)

Before the auction outcome is announced in period one, bidder ¢ does not know who
is the winner, but he knows that, at any realized type profile t € T', if he loses the auction
then the winner is selected from I\ {i} with each rival k € I\ {i} bidding Bk (tx). Thus, i’s
ex post payoff from losing, given any realized type profile (¢;,t_;) € T, is equal to

t_z ’ tz, ﬁ Z Pr { (5k(t}g))kel\{”}} Lij(t—i | tia ﬁ) (9)

JFi
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3.2.4 Interim Expected Payoff

Denote U;(b;, t;, 3) for type-t; bidder i’s expected payoff in the entire game from bidding b;
in period one followed by the continuation equilibrium specified by Lemma 3, provided that

everyone else abides by the monotone profile § at period one. Thus,

Uibisti,B) = B |1[(,55) = (Belti)en sy (Wiltos | bi,ts, B) = b = Lit i | . 5))]
+E [Li(t—; | t:, 8)] (10)

where the boldfaced letters inside the expectation operator [E denote the random variables.
Since W; and L; are derived from the continuation equilibrium at resale, we obtain a

perfect Bayesian equilibrium if the period-one bid functions best reply one another:

Lemma 4 If a monotone profile (3;)icr of period-one bid functions constitutes a Nash equi-
librium, across almost all bidder-types, with respect to the interim expected payoff functions
(Ui(+, -, 8))ier given by Eq. (10), then (8;)icr coupled with the continuation play characterized

in Lemma 3 constitutes a perfect Bayesian equilibrium of the auction-resale game.

4 Increasing Difference

Based on comparative statics of the continuation equilibrium, the first theorem says that the
difference in a bidder’s expected payoff due to an increase in his period-one bid is weakly

increasing in his type, provided that ties occur with zero probability, i.e.,
Viel:Vjel\{i}:Vb € B;:b; isnot an atom of ;. (11)

Theorem 1 (increasing difference) For any bidderi, any monotone profile B of bid func-
tions satisfying Eq. (11), and any b}, b € B;U{l} such that b > b, U;(b!, t;, 5) — U;(b, ti, 3)

1) 71

1s a weakly increasing function of t; throughout Tj.

This property is due to a relationship between period-one bids and the final alloca-
tion after resale (Propositions 1 and 2), which say that higher period-one bids imply higher
probabilities of being the final owner of the good. This relationship implies the increasing
difference property through the payoff-equivalence routine in mechanism design. With no-
tations and lemmas introduced in §4.1-§4.3, the proof of the theorem is completed in §4.4.

Eq. (11) is needed to ensure that the posterior virtual utility functions are well-behaved.

14



4.1 Final Allocations

For any bidder ¢, any monotone profile 5 of bid functions, and any ¢ := (tx)resr € T', define:

e Q;(b;,t,3) to be the probability with which ¢ is the final owner in the continuation
equilibrium (Lemma 3) conditional on the public history (i,b;), when b; € B; and the
realized type profile is t (if b; ¢ B, i.e., b; = [, then define Q;(b;,t, 5) := 0);

e ¢;;(t,3) to be the probability with which ¢ is the final owner in the continuation equi-
librium (Lemma 3) conditional on the public history (j, 5;(¢;)), when §;(t;) € B; and
the realized type profile is ¢ (if 5;(¢;) = [ then define ¢;;(¢, 5) := 0);

e ¢;(t,3) to be the probability with which 7 is the final owner when some rival of i wins

the period-one auction and offers resale according to the continuation equilibrium, i.e.,

= Z Pr {(J} Bi(t;)) = (6k‘(tk))kel\{i,j}} a5 (t, B). (12)

J#
If b; € B; is not an atom of 5_;, then one can derive from Lemmas 2 (Claims a and b)

and 3 that, for all t_; € [],,; [0, B, aup(bi)] but a set of measure zero and for any ; € Tj,

Oilbist, 8) = 1 [ti > mas Vilt zm] . (13)

Analogously, for any ¢; € T; with §;(t;) € B;, if §;(¢;) is not an atom of 5_; then for any
i # 4, forall t_gij) € [ 1o [ ﬁmup(ﬁj( t;))] but a set of measure zero and for any ¢; € T;,

kel\{i,j}

aott. ) =1 [Vt | 5609 2 mac{o, ma ida |00} g

4.2 The Envelope Condition

For any bidder i, define (with boldfaced letters denoting random variables):

Wilbisti ) = B Wil | bitis ) | (.5 = (Bi(6)en o] (15)
Lilbiti,8) = B [Lilts | t8) ] (0 # (Bi(8)jeny] (16)
Qubit.B) = E[QilbititB) ] (b) = (B(E))en ] (17)
Gt ) = E |t 8) | (0 # (B jen g ] (18)

The next lemma follows from the Milgrom-Segal envelope theorem [11].
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Lemma 5 For any i € I, any b; € B; U {l}, and any monotone profile 3, the functions
Wi(bi, -, 3) and Ly(b;, -, 3) are absolutely continuous and, for any t; € T;,

Wibntn ) = Wilbs,0,5) / Q,(bi, 72, B)drs, (19)

Zz(bz,tl,ﬁ) = bZ,Tl, dTi. (20)

\

Proof Appendix D. =

4.3 Initial Bids and the Final Allocation

The comparative statics in Propositions 1 and 2 are about ex post probabilities conditional on

the profile of realized types across all bidders, not to be confused with expected probabilities.

Proposition 1 For any i € I and any monotone profile 3 satisfying Eq. (11), if b} > b,
then Q; (b t,3) > Q; (., t,3) for any t; € T; and almost every t_; € Hk# [O,ﬁ,;;up(b;)}.

Proof Appendix D. =

Propositions 1 says that if a bidder wins the initial auction then his probability of
eventually keeping the good cannot be lower had he submitted any higher bid. The intuition
is that a higher winning bid would make the winner think more highly about the losing
bidders’ willingness to pay and hence set higher reserve prices. Consequently, given the

same realized types, his mechanism results in no resale with a higher probability.

Proposition 2 For any bidders i # j and any monotone profile 5 satisfying Eq. (11),
Qi(bi,t, B) > qi(t, B) for any t; € T; and almost everyt_; € T—; such that b; > maxy; Br(tr).**

Proof Appendix D. =

Proposition 2 says that a bidder is more likely to become the final owner of the good
when he is the reseller than when he is a potential buyer at resale. This is similar to an
elementary economics fact that a monopolist who cannot perfectly discriminate its potential
buyers would under-supply its goods. The monopolist at resale, our reseller would not resell
the good without a price markup above her own use value, while potential buyers are willing

to pay for it at any price not exceeding their use values.

14 Proposition 2 extends Lemma 1 of Garratt, Troger and Zheng [3] to the ex post perspective.
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4.4 Proof of Theorem 1
By Egs. (10), (15) and (16),
Ui(bi, ti, B) = E[1[b; = t_]] (Wilbs, ti, B) — bi) + E[L[b; o t_3]] Li(bi, ti, 8),  (21)

where b; = t_; is a shorthand for i’s winning event (i, b;) > (ﬂk(tk))ke]\{i}, and b; ¥ t_; its
complement. For any b/ > b}, let AU;(t;) := U (b}, t;, 5) — U;(bl, t;, 3). By Eq. (21),

AU (t:) = E[L[6] = t 3] (Wb, ti, 8) = b)) —=E[1[b] = ¢ )] (W,(bj, ti, ) — b)
FE[LB] A )] Liby, b, B) = E[L[0] # t )] Li(b], ti, B).

Differentiate this equation with respect to ¢; and then plug into the right-hand side the
envelope equations (19) and (20) and the equations (17) and (18) for @ and g to obtain

iAUi(m = E[[b] = t_;]Qi(bf,ti,t_i, 3) — L[ = t_;] Qi(}, ts,t_;, B)]

ot;
+E L [6] # t-i qi(tit—i, B) — LB 3] qilti, t—i, B)] -
The right-hand side, after rearrangements, with notation [ suppressed, is equal to

E[1[0; =t (Qi(b], ti, t_i) — Qi(bi, ti, t—i))l—i_EE (1[0 At b = 3] (Qs(b7 ti, i) — ailts, t—i))l-

:;X :ZY

For any ¢_; at which the indicator function inside the integral X is nonzero, b > max;,; 3;(t;)
and hence Proposition 1 applies; for any ¢_; at which the indicator inside Y is nonzero,
b > max;; 5;(t;) and hence Proposition 2 applies. Thus, both X and Y are nonnegative.
Hence %AUi(ti) > 0 for any t; interior to T;. This, coupled with the fact that AU;(¢;) is
absolutely continuous in ¢; (since U; by Eq. (21) is a linear combination of W; and L;, each

absolutely continuous in ¢; by Lemma 5), implies the monotonicity of AU;. m

5 Equilibria of the Approximation Games

Based on Theorem 1, if the bid spaces in the initial auction are replaced by some discrete
spaces, a monotone equilibrium exists. To obtain equilibrium in the original game, we shall
prove that the equilibrium property of such approximation equilibria is passed onto the limit
when the discrete bid spaces converge to the original one. A critical step of the proof is to
show that ties occur with zero probability at the limit (Theorem 2). As explained in the

Introduction, our no-tie argument is significantly different from that in the literature.
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5.1 The Approximation Games

For any m = 1,2,..., define an m-approximation game by replacing for any bidder ¢ the

space B; of serious bids with a discrete set B/ such that

i#j= B"NB"=0g, (22)
m < m' = B" C B™, (23)
min {|b; — ;| : b;, b, € B";b; # b} =277, (24)

3 3 m __ 3 m o __
lim,, 0o min B" =7, lim,, o sup B" = oo.

The main condition is Eq. (22), devised by Reny and Zamir [16] because their single-crossing
condition, like our increasing-difference theorem, applies only to non-atom bids.'®> The con-
dition ensures that, in any m-approximation game, a bidder’s serious bid is never an atom

of a rival’s bid function. Consequently, a bidder’s winning event is simplified:
(2, b5) = (B (k) pen gy < bi > max B3;(t;). (25)

Another consequence is that the posterior virtual utility functions are simplified to Eq. (4)
due to Lemma 2.a. More importantly, Theorem 1 applies, so U;(b;, t;, ) has the increasing
difference property in any m-approximation game.

For any m = 1,2,...,, a profile (3");c; of functions g : T; — {l} U B! is an m-

equilibrium if and only if, for any bidder ¢ and any t; € T;,

If, in addition, (" is weakly increasing for every 7, then the m-equilibrium is said mono-
tone. The next proposition follows from Kakutani’s fixed point theorem applied to each
m~approximation game based on the single-crossing property implied by Theorem 1. The

proof is the same as Athey’s [1, Theorem 1] and hence omitted.

Proposition 3 For any m = 1,2,..., there exists a monotone m-equilibrium.

15 Not needed here is the other perturbation devised by Athey [1] and adopted by Reny and Zamir, that a
bidder has to submit the losing bid [ when his type belongs to [0,1/m). They need the perturbation to ensure
a revealed-preference result. It would be redundant in this paper because our revealed-preference result is

ensured by an upcoming notion of consequentiality, which is needed anyway for our no-tie argument.
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By revealed preference, at any m-equilibrium a bidder never bids more than his ex-

pected payoff as a winner if he stands a positive probability of winning:

Lemma 6 For anym =1,2,..., if (B")ics is an m-equilibrium then for any i € I and any

t; € Ty such that Pr{B™(t;) > maxy; B (t,)} > 0, we have W, (B™(t), t;, 3™) — B (t;) > 0.

Proof Applying Ineq. (26) to the case " = [ and using Eqgs. (10) and (25), we have
Pr {@m(ti) > Iilgfﬁgl(tk)} (Wi (6" (ta), ts, B™) = B (t:) — La (B (t:), i, 8™)) > 0.

By the hypothesis Pr{4"(t;) > maxy»; ;" (tx)} > 0, the term in the bracket “(---)” is
nonnegative. Then the conclusion of the lemma follows from L; (8™(t;),t;, 3™) > 0, which

is true because ¢ can choose not to participate in the resale mechanism. m

5.2 Impossibility of Ties at the Limit

Given a monotone profile 3 of bid functions, call a serious bid b, consequential if Pr{y(t;) <
b.} > 0 for every bidder k € I, and inconsequential if otherwise. A tie of 5 means a serious

bid that is an atom for at least two distinct bidders according to their bid functions in f.

Theorem 2 (no tie) If a sequence (3™)5°_, of monotone m-equilibria converges pointwise

almost everywhere to a monotone profile 3*, then 3* admits no consequential tie.

To prove Theorem 2, suppose to the contrary that 5* admits a consequential tie b,.
As

a preliminary, the next lemma provides a minute picture of the clusters of rivaling bids

We shall derive a contradiction to the equilibrium property of the sequence (37)%_;.

collapsing to the atom b, as m — oo.

Lemma 7 If a sequence (™)°_; of monotone profiles converges pointwise a.e. to a mono-
tone profile % and if J is the set of bidders such that a serious bid b, is an atom of 5 for

all j € J, then there exist subsequence (™) ", and sequence (8,)5 — 0 such that, with

n=1

a; = sup{t; € T;: B (t;) < b},

5 = sup{t; € T;: B (t:;) < bu}, (27)
ap = inf{t; € T;: B""(t;) > bs — 0}, (28)
2t = sup{t; € T;: B"(t;) < by + 6n} (29)
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for each ©, we have:

Vi€ J: Vi€ (ah2h) by — 0, < B (L) < by + 6, (30)

Vi€ J: limpoe Prit; € T\ (al', 27) : by + 6, < B (t) < by + 6, + 27"} = 0, (31)
(32)

(33)

Viel: a;=1lim,_ o a?

— n
ooz =lim, o 27,

Vk ¢ J: lim, oo Pr{ty € T : b, — 0, < B (tk) < b+ 06, +27"} =0.

Proof Appendix E.1. =
With the (6,)22, in Lemma 7, the collapsing interval (b, — d,,b, + 0,,) is the range
of the §™~-bids for those types of bidder ¢ in (a?, 2!), says Ineq. (30). Along the subse-

quence (™) |, Eq. (31) says that the probability with which the types outside (a, z]")
would bid within (b, — d,, b, + 6,,) vanishes, Eq. (32) says that (a?, 2!") converges to (a;, 2;),
and Eq. (33) says that if §; has no atom at b, then the probability with which player & bids
in (by — d,,b"), with b being any bidder i’s lowest grid point above b, + d,,, goes to zero.

Given the subsequence (™) ", identified in Lemma 7, for each n denote

5=
By Eq. (33) and the consequentiality of b, we have
Vk & J: lim Pr {3 (t;) < b. —d,} > 0. (34)

For any n € {1,2,...}, any ¢, any ¢! € T; and any bids 0" and ¢} in B;" with b} > ¢,
the expected-payoff difference for a type-t} bidder ¢ caused by his bid increase from ¢} to b}

in the m,-equilibrium ™" is

AU () = U0, 7, ) — Us(c™, £, ). (35)

177 7771

To prove Theorem 2 by contradiction, it suffices to find a bidder i and a sequence (7, ¢, bI')>°
such that limsup,, AU (#?) > 0 and, for any sufficiently large n, the SP-inverse-image of ¢
is nondegenerate and contains t?. Then for all sufficiently large n, AU(t!) > 0 and,
with AU"(-) continuous (Lemma 5), the strict inequality extends to a neighborhood of ¢,
which contradicts the fact that 3" constitutes an m,-equilibrium.

To this end, decompose AU*(¢!") into three parts (proved in Appendix E.2):
AU (t) = AW (t]) = Ab" + AT (L), (36)
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where
AW = Pr{i s maxBL(e) | (V0005 - Wi, 5), 6D
A= 0 = ) Pr{or > e e |
A = Pt maBi(e) > o | (Vi ) - < THe) . (39

i) = E {th_i 57

b} 3 (t ol
) >12§lxﬁk( k) >Cz:|

Eq. (36) says that AU"(t}) consists of the revenue effect AW/ (t}'), payment effect Ab", and

pivotal effect AII?(t7), which includes L} (t7), the winner’s curse in our context.

5.2.1 Step 1: Locating a Deviant Bidder
Recall the set J of tying rivals specified in Lemma 7. Pick an element j € J such that

Vk e J:a; <a. (39)
With BI"" discrete, there exists

cj = min {Bjn(tj) it € (aj,zj)} (40)
Lemma 8 lim,,_., Pr {c;‘ < MaXgeJ\ {5} Bz?(tk) < by + 5n} =0.

Lemma 8 is proved in Appendix E.3. It can be understood from the viewpoint of those
types of bidder j nearby a;. If the lemma were not true, there would be a mass of rivaling
bids within (b, — d,,bs + d,) that outbid such types of bidder j, and the mass would not
vanish along the sequence of the approximation equilibria. On one hand, with valuation
nearly equal to a; and with Ineq. (39), such types of bidder j would have almost zero gain
from buying the good from these rival-types at resale, i.e., the winner’s curse for such types
of bidder j to jump over these rival-types is negligible. On the other hand, if such a low-
value bidder j outbids these rival-types, he would profit from reselling to them, again due to
Ineq. (39); with the mass of these rival-types nonvanishing, this expected profit is bounded
away from zero. Both sides considered, bidder j with types nearby a; would deviate to a bid
slightly above (b, — 6, bs + d,) if Lemma 8 does not hold.

For any n =1,2,... and any i € J \ {j}, with ¢} defined in Eq. (40), let

= max { B (1) € [0, (3) 1 (€) } - (41)
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For any sufficiently large n, [O, (B”);;f (c?)) # & due to Lemma 8 and the hypothesis
that b, is consequential; with B;"" discrete, ¢} exists.

Since J \ {7} is finite, there exists ¢ € J \ {j} with ¢]” = maxye (3 ¢ for all v in an
infinite subsequence (n,)52,. For this 4, lim, .. Pr {C?” < MaXke )\ {51} B () < c;”} = 0.
Combining this with Lemma 8 and Eq. (41) and relabeling subsequence (n,)32,, we have

n—00 keJ\{j}

Thus, as n — oo, the m,-equilibrium bids from all players other than bidder j vanish from

lim Pr {C? < max B(ty) < b. + 6n} = 0. (42)

(cf,bs +0n). By ¢ff < ¢, the interval (cf, b + d,,) is almost exclusively occupied by the bids

from bidder j with types in (a7, 2}), which converges to the nondegenerate (a;, z;) since b,
is an atom of 3;. This coupled with Eq. (34) (consequentiality of b.) implies

nh_)rrolo Pr {cf < krer}z\%} Bi(ts) < b+ 5n} > 0. (43)

By construction, ¢ < ¢} < b, + d,; by Eq. (42), the mass of i’s bids in (¢}, b. + dy)

vanishes while, with i € J, a nonvanishing mass of ¢’s bids remains in (b, — d,, b« +6,). Thus,

for all large n, ¢} > b, — d,, and hence
be — 0n < ¢ < ¢ < by + 0p. (44)

By Eq. (41), the 3-inverse-image of ¢ is nondegenerate. To complete the proof by con-
tradiction, it suffices to prove existence of a sequence (¢1")22; such that each t} belongs to
this inverse image and limsup, AU (t?) > 0, with AU (t!') the expected-payoff difference

rendered by the deviation from ¢ to
b :=min{b; € B]" : b; > b, + 0,,} . (45)

To this end, we calculate the three components of AU"(t') according to Eq. (36).
Among them, the payment effect Ab™ is O(9,) (hence O(1/n) by Lemma 7) because of
Ineq. (44) and b — ¢ < 2™ + b, + 0, — ¢, which follows directly from Eq. (45). Thus, we
need only to calculate the revenue effect AW/ (¢') and pivotal effect AIT?(¢}).

5.2.2 Step 2: The Revenue Effect of the Deviation

By a revealed-preference argument, one can prove AW/* > 0 (Proposition 4, Appendix A.2.1).
The next lemma asserts further that the revenue effect is bounded away from zero if bidder ¢

has potential gain of trade with his rivals when he wins with the higher bid.
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Lemma 9 Ift} —, t; such that 0 < t; < maxy; 2, then limsup,,_, . AW (t}') > 0.

Proof Appendix E.5. =

By Eq. (32), 2 is the limit of the supremum 2z} of bidder £’s types that bid below b} in
the m,-equilibrium. Hence the condition “¢}' —,, t; such that ¢, < maxj.; z;,” implies that,
for all approximation equilibria sufficiently far along the sequence, bidder 7 can profit from
reselling the good to his rivals if he wins with the bid . By Eq. (43), the mass of rival-types
surpassed by the bid increase does not vanish along the sequence. Hence the bid increase
brings about a nonvainishing increase of resale probability and expected revenue at resale,

given the possible gain of resale hypothesized in this lemma.

5.2.3 Step 3: Pivotal Effect Case One: Bypassing the Middleman

Two cases need to be considered on the pivotal effect AII?(¢}). In the first case, bidder i’s
type is so high that, in the event of tying at b, and he loses to bidder j, he buys the good
nearly for sure from bidder j. Essentially a middleman, bidder j charges this type of ¢ a price
markup in addition to the period-one price. In making the bid increase thereby surpassing j,
bidder i avoids paying the price markup, which constitutes the pivotal effect in this case.

More precisely, for any k& € I and any x € T}, define

Via(t) = ik — (Fr(x) — Fe(te))/ fr(tx) ji) ii’; <z o

By Lemma 25 (Appendix E.4, due to Eq. (42)), when bidder j wins with a bid b in the
collapsing (¢, b, + 6,), every losing bidder k’s posterior virtual utility function converges
to Vi ., as n — oo. Hence the precise meaning of our first case is that at the limit bidder ¢

outranks everyone else in terms of (Vg ., ) i.e., V. (t;) > maxy,; z; as in the next lemma.

k)

Lemma 10 If ¢} —, t; such that V; ., (t;) > maxyy; 25, then lim,_,. AII?(t7) > 0.

Proof Appendix E.6. =

Since the types of j that bid in (c},b. + d,) would nearly for sure resell the good to
bidder ¢ when i’s type happens to satisfy the hypothesis of the lemma, the expected payment
extracted from such a high type of bidder 7 is larger than j’s expected resale revenue by a
nonvanishing margin, as i could be of low types according to j’s posterior belief (Lemma 23,

Appendix A.3). With j’s expected resale revenue never below his period-one winning bid
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(Lemma 6), this nonvanishing margin implies a nonvanishing markup between the current
price for the good and the expected payment that the high-type bidder ¢ would need to

deliver to reseller j. This markup constitutes the pivotal effect of the bid increase.

5.2.4 Step 4: Pivotal Effect Case Two: Becoming the Middleman

Here comes the other case for the pivotal effect, where bidder ¢’s type is not high enough
to nearly for sure buy the good at resale from bidder j. Different than the previous case,
bidder j’s period-one bid, which is approximately the current price in the event that bidder ¢’s
deviation is pivotal, could be higher than the price that j will charge ¢ at resale: Even if
the revenue extracted from ¢ is less than what j pays at period one, j can still profit from
the revenues extracted from the other potential buyers.!® Then the deviant bidder i suffers
a winner’s curse in the magnitude of the period-one price minus the lower price at resale.
The solution stems from an idea of turning the table: In the same way that j’s loss
from dealing with 7 is balanced by j’s revenues extracted from other bidders, ¢’s winner’s
curse is balanced by the revenues from the same clientele if ¢ becomes the reseller status

instead of 7. Denote

Qr = {ti el ;: kgl{&x} Br(ty) < b el < B]"(tj) < b:‘} , (47)
irj
UR(EY) = Wi 8") — o —E[Li(t- [ 7, 67) | Q7] (48)

Hence Q7 is the pivotal event of i’s bid increase, and ¢! (%) his expected payoff from winning

minus his winning bid and minus his winner’s curse.
Lemma 11 If 3*(t?) = ¢ for each n and (t*)>, converges, then

lim (1) > lim E [1[t; < Vi (6] (W5 (87, t_y) | B2 (L) 85, 8") — B7(t;)) | Q] . (49)

n—oo n—0o0

16 For example, suppose that in the continuation game where bidder j is the reseller, t; = 2, t; is uniformly
distributed on [0,4], and ¢, uniformly distributed on [0,10]. In j’s optimal resale mechanism, the maximum

of bidder #’s expected payment (when t; = 4) is equal to

6 7
2 x3 +/ (t — 3)dt /10 = 2.15,

while the reseller j’s expected payoff equals

3 6 1 6 dty, dt; dt; dty,
SENSLN P X3+2x = %6 (t; + 3) 2k 24 (tr — 3) L 2% o 376,
1570771 0 +4X X+//t * 104+//tk3’c 1 10

Thus, at period one, it is possible for bidder j to submit a bid strictly between 2.15 and 3.76.
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Proof Appendix E.7. m
Lemma 12 There exists a sequence (1), such that BM(t?) = ¢} for each n and

n—oo

Proof Appendix E8. =

To explain the two lemmas, let us temporarily pretend that, when j’s bid is clustered
around the tie, bidder i somehow knows exactly what j’s bid b; is equal to. Consider a
resale mechanism M" that i could offer if he wins at period one: First, ¢ announces his
own type t? and then asks bidder j whether ¢I' is above the reserve price that 7 would have
offered 7+ had j been the winner, which implies that j would always resell the good had j
won. If bidder j says No, then ¢ offers resale to all bidders via the Myerson auction that ¢
should have chosen on the 3"-equilibrium path. If bidder j answers Yes, by contrast, i offers
resale to all but bidder j via j’s resale mechanism, where i’s own announced type, together
with the losing bidders’, are discounted to their virtual utilities. Here i can replicate j’s
resale mechanism because of our temporary assumption that ¢ knows j’s bid b;. Reseller 7’s
uncertainty about j’s type makes no difference, because ¢ excludes j in this case.

While the mechanism M" is suboptimal to 7, it generates enough expected revenue to
cover the winner’s curse and winning bid. To see why, note that the winner’s curse is null
if bidder j, presumed honest, answers No to i’s question. In that case, bidder i’s net gain
is just his expected revenue as a reseller minus his winning bid. Since his resale mechanism
in that case coincides with the Myerson auction that he should have chosen on path, the
expected revenue it generates is the same as his on-path expected revenue, which can cover
the winning bid by a revealed-preference argument (Lemma 6).

Thus, consider the case where bidder j answers Yes to ¢’s question. In that case, ¢’s
resale mechanism M" either keeps the good to ¢ himself or resells the good to some bidder &
other than 7. Similarly, had bidder ¢ lost to j at period one then ;5 would resell the good to
either bidder ¢ or some other losing bidder £ but would never keep the good to j herself. The
events for these final outcomes are identical between M"™ and j’s resale mechanism, since the
two mechanisms coincide when j honestly answers Yes. Let us calculate i’s gain and loss

from outbidding j in these two events:
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final owner gain foregone trade with j current price net gain

- -l n n T T 3 T
i i’s use value t! t — i G Pij — &G

k Phi 0 ¢ P — €

Here pi; denotes the resale price that ¢ would need to pay j had j won, and pj; the resale
price at which k& buys from ¢ in M™. Since M™ replicates j’s resale mechanism, py; = pj,.
Thus, whether the final owner is ¢ himself or some k ¢ {7, 7}, ¢’s net gain from outbidding j
is nearly the same as j’s profit had j won (with ¢! ~ b, ~ b;), which is nonnegative by a
revealed-preference argument for bidder j.

In sum, whether 5 answers Yes or No to ¢’s question, ¢’s payoff from outbidding j can
nearly offset the winner’s curse (foregone gain of buying from j) and the current price.
This is the combined implication of Inegs. (49) and (50), where the indicator function
1 [t; < Vi.n(t)] corresponds to j’s affirmative answer.

Two problems in the above heuristic argument need to be repaired. First, the argument
was based on a false assumption that ¢ somehow knows j’s bid B]"(t]) However, removing
this assumption does not upset our conclusion. By Eq. (42), when i’s bid increase is pivotal,
bidder j’s bid 37(t;) ranges in the interval (¢}, b, +0,) where the others rarely bid, hence the
resale mechanism selected by j as a reseller stays mostly constant. Therefore, ¢ can nearly
replicate j’s mechanism with the pretended winning bid b; being any element in this interval.

The second problem is that each player accounts its own profits and loss based on its
private information, hence nonnegative expected profit from j’s viewpoint need not imply
nonnegative expected profit conditional on the realized type of bidder i. Lemma 12 solves
this problem by observing that there exist types t' of bidder i conditional on which j’s
expected profit is nonnegative. In order for such " to be those whose (P-bids equal ¢,
essentially the highest among i’s bids that belong to the tying cluster, we need such ' to
exist at the high end of bidder i’s posterior support. That is ensured by comparative statics

of the Myerson auction (Lemma 22, Appendix A.2.2).

5.2.5 Step 5: Completing the Proof of Theorem 2

There are only two possible cases: either (i) z; < maxyy; 2 or (ii) z; > maxy,; 2.
In Case (i), by Lemma 12, there exists a sequence (), such that G7(t?) = ¢ for
each n and Ineq. (50) holds. Extracting a converging subsequence if necessary, we may

assume without loss of generality that ¢} —, ¢; for some ¢;. Then Lemma 11 says that
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Ineq. (49) holds. Combining both inequalities we have

lim sup AIT} (¢!') = lim sup Pr(Q}') lim sup ¢} (¢}') > 0. (51)

For any n, since ¢ < b, + 6, by Ineq. (44), t? < 2I'. Hence t; < z; < maxyy; 2. Thus,
Lemma 9 implies lim sup,,_,.. AW/ (¢?) > 0. Plugging into Eq. (36) this strict inequality, as
well as Ineq. (44) and Eq. (51), we have limsup,,_, . AU (t}') > 0.

In Case (i), where z; > maxyy; 2, Lemma 10 implies that lim, . AII?(z;) > 0.
Plugging this into Eq. (36) and noting AW/(z;) > 0 (Proposition 4, Appendix A.2.1) and
Eq. (44), we obtain lim, .., AU(z;) > 0. With AU}(t;) continuous in t; (Lemma 5),
there exists a < z; such that lim, . AU/ (t;) > 0 for all ¢, € («,z]. By Eq. (42), the

n

distance between z]' and the supremum of the inverse image (B");l (c}

') converges to zero;

thus, with 2]' —, z; by Eq. (32), this supremum converges to z;. Hence we can pick a
sequence (t1")°2 ; such that I € (B”)Z_l (c) for each n and ¢ —,, z;. Then for all sufficiently
large n, t?" € («, z;] and hence limsup,,_,., AU (t?') > 0. Therefore, the desired contradiction
limsup,,_., AUP(t?") > 0 is obtained, which completes the proof of Theorem 2. m

Slightly modifying the construction of ¢}, we can extend the above proof to obtain—
Corollary 1 If b, > r then b, is not a consequential atom of 3*.

Proof Appendix E.9. =

6 Equilibrium of the Original Game

We shall complete the existence proof by showing that the m-equilibrium condition, Ineq. (26),
converges to the equilibrium condition for the original game, Ineq. (59) in the following. This
is not as automatic as in the received literature, without their payoff-security condition ex-
plained in the Introduction. We break down the argument into two cases, depending on
whether an atom is involved at the limit. When no atom is involved, the convergence of a
bidder’s expected payoff follows from the convergence of his winner’s payoff, loser’s payoff
and winning status, all due to the convergence of posterior virtual utilities (Lemmas 16, 17
and 19). When an atom is involved, it is either inconsequential or equal to the reserve price r
(Corollary 1). Assuming r = 0, we shall show that the atom is necessarily inconsequential

(Lemma 14) and, furthermore, no bidder can change its inconsequentiality with a unilateral
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deviation (Lemma 15). Then a bidder’s expected payoff from bidding at the atom becomes

a loser’s payoff, which converges as in the former case (Lemma 18).

Theorem 3 (existence) Assume that the space of serious bids is [0,00) for any bidder i.
Then the auction-resale game defined in §2.1 admits a monotone perfect Bayesian equilib-
rium; furthermore, at this equilibrium, any bidder’s period-one bid that can win with strictly

positive probability is a strictly increasing function of the bidder’s use value.

By Proposition 3, for each m = 1,2, ... there exists a monotone m-equilibrium [ :=
(B)ier of the m-approximation game. Taking a convergent subsequence of (5™)%°_, if
necessary, we can assume without loss that for any bidder ¢ there exists a weakly increasing
bid function 5} : T; — B; U {l} such that 5™ converges to 3 pointwise almost everywhere

on T;. The rest of the proof proceeds with the following lemmas.

Lemma 13 If b, > [ is an inconsequential atom of 3*, then there exists k € I such that b,

s not an atom of B; and, for any such k,

Pr{Bi(t) > b} = Pr{fi(te) > b} = 1, (52)
limy,,— 00 0™ = b = limy, oo Pr{B;"(tx) > 0™} = 1. (53)

Proof By definition of consequentiality, with b, not consequential, there exists k € [ for
whom b, is not an atom of ; and Eq. (52) holds for any such k. Since b, is not an atom

of 55, Eq. (52) implies lim,, .o, Pr {3} (tx) > b.} = 1, which implies Eq. (53). =

Lemma 14 If [0,00) is the set of serious bids then no serious bid is a consequential atom

of B*.

Proof Suppose not, say b, > [ is a consequential atom of 3;. With zero reserve price, either

(i) b > 0 or (ii) b, = 0. Case (i) is impossible by Corollary 1. Thus, consider Case (ii) and

oo

let the bid zero be a consequential atom of 7, with (B”):;l the subsequence and (6,)52,

the shrinking radius of the bid cluster at zero, specified by Lemma 7. Let
b := min{b; € B" : b; > I, }.
By Theorem 2,

n—oo

lim Pr {l < Iilgxﬁg(tk) < bf} =0. (54)
J
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For any ¢ # j, with zero being a consequential bid, there exists a z; > 0 such that, for
all sufficiently large n, B(t;) = [ for all t; € (0,2). Pick any such i and t;. Bidder i’s
expected-payoff difference between bidding 0" and submitting [, by Eq. (10), is equal to

AUME) = E [1

by > rgg;c@?(tk)} (Wit—i | b7, t;, 3") — 0 — Li(t— | t:, 3"))
> E {1 [b? > IQQ}B?(%)} (t: — Lij(t—: | tnB"))} —O(1/n),

where the inequality uses the facts W, > t; to replace W; with ¢, b —, 0 to remove b},
and Egs. (33) and (54) to replace L; with L;;. Since lim,_ Pr {bf > maXy. B}?(tk)} >
[11zi Fie(2x) > 0, to prove lim, AU(t;) > 0 it suffices to show

lim E {ti — Lij(t—i | tmﬁn)

n—oo

b > e )| > 0. (55)

For any t_; € T_;, Li;(t_; | t;, 3") is equals to either zero or ¢; — pi;(t—i), with p?;(t_;) the
resale price offered by j when j is the reseller. By its optimality, pf';(t_;) is at least as high
as the reserve price offered to i by the zero type of j based on the posterior distribution
of t; with support [O, (B”);:up (l)}, which converges to the nondegenerate [0, z;] as n — oo.
Hence the reserve price converges to some p > 0. Thus, at the limit, the integrand on the
left-hand side of Ineq. (55) is no less than a strictly positive constant, either ¢; or p. Hence

we obtain the desired contradiction that bidder 7 of type t; would deviate for large n. m

Lemma 15 If a serious bid b, is an inconsequential atom of 3* then there are at least two

bidders whose (3*-bidding functions do not have b, as an atom.

Proof Appendix F. m

Lemma 15 eliminates a case where a serious bid b, is an atom of 3} for all £ but
a single bidder ¢, so that b, is inconsequential only because ¢’s (3/-bid is above b, almost
surely. In this case, if ¢ chooses to bid below b, instead of abiding by 3F then the bid b,
would have positive winning probability and cause possible discontinuity in ¢’s expected
payoff. The lemma asserts impossibility of this case, with a proof similar in spirit to that
of Lemma 10: Should the case occur, then in m-equilibria for sufficiently large m, we can
choose a bidder j with sufficiently high types who would almost always outrank his rivals
in the resale mechanism offered by those types of bidder ¢+ who would have won without j’s

deviation. These types of 7, if undefeated, act merely as middlemen for j and impose on j
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a price markup (Lemma 23, Appendix A.3), which bidder j could have bypassed with a
higher bid. Different from Lemma 10, however, these types of bidder ¢ do not constitute a
nonvanishing mass. Therefore, much of the proof of the lemma is to fine-tune the magnitude

of s deviation so that his expected net gain is strictly positive.

Lemma 16 For any k € I, if (b™)3°_, is a sequence of serious bids that converges to some b

such that neither is b an atom of B nor is O™ an atom of B (VYm), then
V€ [0, (8 ) ey (1) ¢ T Vit | 07, 8™) = Vilte | b, 5). (56)

Proof Since neither b is an atom of 3] nor b an atom of 3}, Lemma 2.a is applicable.
Thus, for any t, € [0, (B (b)), Vit | b, 8%) obeys Eq. (4) with (81, (b) being the
B. ;up(b) there; for large enough m, such t; also belongs to [ (ﬁm);sup (b™)| and hence
Vi(te | b™, ™) also obeys Eq. (4) with (3™), ! sup (0) being the 5 Sup( ) there. Since b is not
an atom of 3}, the mass of ¢, between (ﬁm)ksup (b™) and (ﬁ*)ksup( ) vanishes as b — b.

Thus, Fj ((ﬂm)kysup (bm)> —m Fy ((ﬁ )k iup (b)) Hence Eq. (56) follows. m

Lemma 17 For any i € I, any t; € T; and any measurable subset S C T,

lim E[Li(t; | i, ™)1[S]] = E [Li(t—i | t:, 37)1[S]] . (57)

m—0o0

Proof By definition of L; in Eq. (9), L;(t_; | t;, 5*) equals zero unless t_; belongs to the set
S = {t_; e T_;: B;(t;) > for some j # i} .

Since ™ — [(* and [ is isolated from [0, 00), lim,, oo Li(t—; | t;, ™) = 0 by Eq. (9) unless
t_; € S'. Thus, it suffices to prove (57) with the integration domain S replaced with S N S’.

First, consider any ¢_; € S" at which the highest bid 37 (t;) among rivals of i is not an
atom of 3* ;. Then Eq. (56) holds for all k # j with the role (b™, b) played by (3} (t;), 5; (t;)),
and Egs. (6) and (8) hold with respect to g*. Egs. (6) and (8) also hold with respect to g™

due to Eq. (22). Thus,
Second, consider the other kind of ¢t_; in S’, the elements of

S — {t—i €S 3£ |Bi(ty) = k{él{ax By (tr); 85 (t;) is an atom of ﬂ*j} }
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Since there are at most countably many atoms of 3* ., we can discard any t_; € S” such

j»
that 37(t;) is not an atom of 37, as all such ¢_; constitute only a zero-measure subset of T";.
Thus, suppose that 37 (t;) is an atom of both 37 and 3*;. Then 3;(t;) would be a tie, which is
impossible by Theorem 2, unless 3;(t;) is inconsequential. Now that 5} (t;) is inconsequential,
Lemma 15 (applicable because 3;(t;) > [, as t_; € S') implies that there are at least two
bidders whose bid functions in 3* do not have 3;(;) as an atom. One of them is a bidder &
different than the i in this lemma, and Eqs. (52) and (53) imply Pr {5;:(tx) > 3;(t;)} = 1 and
im0 { B (t) > B7"(t;)} = 1. The first equation says that those t_¢ ;) at which 3;(t;)
wins against [, constitute a zero-measure set, and the second says that the measure of

those t_(; ;) at which 3*(;) wins against 3 shrinks to zero as m — oo. Thus,

lim E[L;(t_; | t;, ™)1[S"]] = 0 = E[Li(t_; | t;, 5)1[S"]].

m—00

Eq. (57) is obtained by summing this equation with the integration of Eq. (58) across all
t,eSNS'\S. =m

Lemma 18 For any i € I, any t; € T; and any m, let b* € B" and b]* —,, b;. If b; is an
inconsequential atom of B*;, then lim,,_. U;(B"(t:), t;, 5™) > U;(b, t;, B%).

—1

Proof Since b]* —,, b; and b* € B!" for each m, b; > . Since b; is an inconsequential atom,
Lemma 15 implies that there exists k # ¢ for whom b; is not an atom of 3}, and Lemma 13
implies that Egs. (52) and (53) holds. Thus, with ™ an m-equilibrium and b* € B}",
lim U3(5" (1), 1, 6) = Tim Gy 4, 6™) E tim BLi( | 4, 57)
@ EL;(t— | ti, 37) = Ui(bi, i, 37),
where the first and last equalities also use Eq. (10). =

Lemma 19 For anyi € I, any t; € T; and any m, let b* € B™ and b]* —, b;. If b; is not
an atom of B*; then lim,, .., U;(b1*, t;, ™) = U;(b;, t;, B*).

Proof By hypothesis, b; is not an atom of 5*,, nor bf* an atom of 5™, due to Eq. (22).

7

Thus, from Eq. (10) and suppressing the symbol ¢;, we have

U;(ot, pm) = E{l

b > rilixﬁ;n(tk)] (Wit | 0", 8™) — b — Li(t_; | 5m))} +E[Li(t— | 8™)],

Ui(b, %) = Ell

b > B8 | (Wit | 8,0%) = b= Lt | 7)) + E Lt | ).
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Here Wi(t_; | b7, 5™) and W;(t_; | b;,5*) obey Eq. (7) with virtual utility functions
(Vi [ 6, 8™)) s and (Vi(- | by %)) 4> because the condition for (7) is guaranteed by the
indicator functions 1 [b" > maxy; S7'(tx)] and 1 [b; > maxy; B (tg)]. Since b* —,, b; and

b; is not an atom of 5*,, Eq. (56) applies to the case b = b;. Thus, by Eqs. (6) and (7),
lim VVz(t—z | bzm,ﬁm) = VVZ(t_Z | b“ﬁ*) a.e. t_i € T—i-
As ™ — 3* and b; is not an atom of 5*,, we also have

m—00

b, > rilgxﬁ,j(tk)} ae t; €T,
Combining these two equations with Eq. (57) yields the conclusion of the lemma. m

Lemma 20 If [0,00) is the set of serious bids, then for any i € I and almost every t; € T;

Proof We know that 8/"(t;) —., 5;(t;) for almost every t; € T;. Pick any such ¢;. For any
b; € B, Lemma 14 says that b; is either not an atom, or an inconsequential atom, of 3*..
In the first case, with US°_, B!" dense in B due to Eq. (24), there is a sequence (b")5°_,

converging to b; with b]" € B/ for each m. By Lemma 19 and revealed preference of the

m~equilibrium bid 5™ (t;),
lim U;(8;"(t:), ti, ™) = U(bis i, B7). (60)

In the second case, Lemma 18 implies the same inequality. The same inequality holds for
b; = [ by revealed preference of 3/"(t;). Thus, Ineq. (60) holds for any b; € B U {l}.

Thus, it suffices to show lim,, ., U; (8" (t;), i, ™) = Ui(B;(t:), t;, ). If BF(t;) > 1 and
is not an atom of 8*,, this equation follows directly from Lemma 19. If 5(¢;) > [ and is an
atom of §*,, then Lemma 14 says that [(;(¢;) is inconsequential; hence Eqs. (52) and (53),
applied to the case b = (3 (t;), imply that

Pr {mm > Igg;cﬁi(tk)} — lim Pr {@w > n;g;cﬁm)} 0,

which by Eq. (10) implies
lim U;(8"(t:),t:, 8™) = lim EL;(2; [ t;, B™) L ELi(t; | 1, 8°) = Ui(B; (L), i, B7).
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If G (t;) = [, then the formula displayed above follows trivially. Thus,
Ui(B; (t:), i, B%) = W%lféo Ui(B"(t:), ti, B™) = Ui(bi, ti, B7)
for any b; € [0,00) U {l}, as desired. m
Lemma 20 implies that (37);c; constitutes a Nash equiilbrium given the interim payoff
functions (U;);er defined in Eq. (10). Then Lemma 4 implies that (5;);cr coupled with the
continuation equilibrium constitutes a perfect Bayesian equilibrium of the original auction-
resale game. In addition, Lemma 14 implies strict monotonicity of each [3; for all bids that

have a strictly positive probability of winning at 5*. This completes the proof of Theorem 3.

7 Conclusion

Fixed-point approaches have been foundational to theoretical investigations of discontinuous
games especially certain auction mechanisms. Incorporation of post-auction resale into such
approaches not only would make them more realistically relevant but also is theoretically
compelling because, as noted in the literature, resources can be misallocated in certain
asymmetric auctions, triggering the incentive for resale. The possibility of resale brings
about new challenges to the fixed-point approaches. The value-correlation across bidders,
previously assumed exogenous, becomes endogenously determined by resale, which is itself
endogenous. The discontinuity problem of tying bids gets compounded to the discontinuity
of post-auction beliefs and that of the payoffs at resale. Yet these challenges turn out to
be surmountable, as demonstrated in this paper, extending the fixed-point approach for
monotone equilibria beyond its previous confines of single-stage no-resale models.

To capture its endogenous nature, this paper models resale by assuming that the winner
in an auction gets to choose any selling mechanism to offer resale, hence at equilibrium resale
is offered through the Myerson auctions. The extent to which the properties of such resale
mechanisms instrumental to our existence proof may be generalized to other resale settings is
left for future investigations. Nevertheless, there is a merit, at least for the first endeavor, to
endogenize resale mechanism as in our model. It shows us the power of mechanism design, as
a modeling technique, to pin down resale mechanisms among the myriad of secondary-market
arrangements often hard to observe. Just as the rational choice axiom reduces individual
behaviors to regularity, the endogenous treatment of resale mechanisms generates subtle

comparative statics in equilibrium with forward-looking bidding behaviors.
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A Comparative Statics of the Myerson Auction

Here are some properties of the optimal auction characterized by Myerson [13] with respect
to the distributions of the bidder-types. In our context, the Myeson auction corresponds to
the equilibrium resale mechanism selected by a reseller whose winning bid is not an atom of

the other bidders’ strategies, and the distributions the post-auction beliefs.

A.1 Notations and Preliminaries

Let i, € I denote the current seller and I\ {i.} the set of potential buyers. For any i € I'\{i.}
and any (; < t;, let the distribution Fj ¢, of i’s type t; is derived from the prior F; via

Fie,(t) = Fi(t:)/Fi(G)

for all ¢; in the support [0, ¢;], and likewise for the density f;.,. Assume, on the support of F,
that F; has strictly positive density f; and the prior virtual utility ¢; — (1 — F;(t;))/ fi(t;) is
strictly increasing in ¢;. Define the posterior virtual utility V; ¢, (¢;) by Eq. (46) if ¢; < ¢; and
by Vi (t:) == ¢ if t; > (. Then V;, is strictly increasing and continuous on [0, (;]. Let
seller i,’s realized type t;, be given. For any i # i, and any t_; := (;,, (tx)kg¢{i,i.}), denote
v;(t_;) := max {ti*, kglax Vich (tk)} . (61)

{isic}

Given positive vector ¢ := ((x)ri., let M(¢) denote the Myerson auction based on (Vy ¢, )i, ,
which for each realized type profile (;,,t_;,) sells only to a bidder k for whom V¢, (tx) >
vg(t_g) at price Vk_ék (vk(t—x)) and charges everyone else zero price. Forany t_;. € [[,cp iy T
denote R(t;,,t_;,,() for seller i,’s ex post payoff (“revenue”) generated by mechanism M(()
when the realized type profile is t_; . Let

E(C) =K [R(ti*atfi*a C) | t*i* g C*i*] )

where, for any points z and y in the same euclidean space, x < y means z;, < y; for each
coordinate k, and = £ y means “not x < y”. With every Vj, strictly increasing on [0, (],

the seller’s optimization problem belongs to the regular case of Myerson [13]. Thus,
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A.2 DMonotonicity of Expected Revenues

Different from the case in the received literature, such a monotonicity condition does not
follow from the affiliation inequalities in Milgrom and Weber [12], because the ex post revenue
R(t_;,, () need not be nondecreasing in t_;,, as explained in the Introduction. The monotone

properties obtained here are based on the fact that the expected revenue is maximized.

A.2.1 With Respect to Supremums of Type-Supports

With monotone bidding strategies in the initial auction, a higher winning bid implies higher
supremums of the posterior supports of the losing bidders. If the reseller adjusts her resale

mechanism accordingly, the effect on her expected revenues is quantified below.
Proposition 4 If ( < (' and ¢ # ¢, then R(¢) < R({') and:

a. if maxgy;, G < 1, < maxyy, (, then

riey T > (1= L) (Wl i) —12.) (63)

k,

b. if t;, < maxyy;, ( then
R(¢) = R(Q) > ~Pr{3k eI\ {i}: G <t <G}, (64)

where

- TTisi B (Gk) = T B (min (Vg (4,), G })
(Hk;éi F (C;'g)) (H,@,éZ F,. (Ck))

Proof There are only two possible cases: (i) ¢;, > maxy;, (x and (ii) ¢;, < maxy;, (.

.. (65)

Case (i): t;, > maxyy;, (4. Then there is no gain of trade and hence R(¢) =t;,. By
the fact that R(¢') > t;,, we have R(¢') > R(¢). Now suppose, in addition, that ¢;, < (,
for some k # i,, which is the case in Claim (a) of the proposition. Then there is a strictly
positive probability that sale happens at mechanism M((’); in the case of sale, seller i,’s
payoff is at least as large as the reserve price V. ;k (t;,). Hence Ineq. (63) follows.

Case (ii): t;, < maxy;, ;. Note that the mechanism M(() is ex post incentive feasible
for any potential buyer k € I\ {i.}: Conditional on any ¢t_; € T_j, k’s winning probability

in M({’") is nondecreasing in t; since k’s virtual utility Vi, (tx) is so, and k’s payment
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Vk_gk (v(t_g)), denoted py(t_) here, satisfies the envelope equation conditional on ¢_j. Thus,
when the support supremums are ((j,)rxi. instead of (Cx)ri., M(() is still incentive feasible.
Hence let E(C | (") denote seller i,’s expected payoff generated by M(() at the truthtelling

equilibrium given distributions (Fy ¢/ )i, By revealed preference from i.’s viewpoint,

R(¢') = R() = R | ¢') = R(Q): (66)
Denote
A = {ti €Tty Sty > f]gfl@ka,ck(tk)} ,
B = {tz‘ €Tty £t S5t > IgiXVk,ck(tk)} ,
C = {teTliti SCH\A,
D = {tyeT ity £¢Gt,, =M\ B.

Thus, AU C is the support of t_;, given (; within AU C, A is the event in which 4, does
not sell the good at mechanism M((). Analogously, AU B U C U D is the support of ¢_;,
given (', and AU B the event of no-sale at mechanism M(().

Let 7(A), m(B), 7(C) and 7(D) denote the prior probabilities of these sets. Since
ti, < ( for some k # i in this case, 7(C) > 0 (since Vg¢, < (x). Let us compare the

*

performance of mechanism M(() conditional on ¢ with its performance conditional ¢’

AUB C D
- . m(A) 7(C)
probability given ( (A0 7(A)+7(C) 0
.. . m(A)+7(B) m(C) m(D)
probability given ¢’ 7(A)+n(B)+7(C)+n(D)  w(A)+n(B)+n(C)+n(D)  7(A)+n(B)+n(C)+r(D)
ex post payoff for i ti. D i Gi-(OPi (=) 3254, @i (D)ps(t—5)

In the cells on the last row and the third and fourth columns, the ex post payoff for seller i,
is equal to D, qji. (t)p;(t-;), where gj;, (t) denotes the probability with which i, sells the
good to j in the mechanism M((). According to the payment rule in M(¢), this sum of
payments is at least as large as the reserve price V. ( ;) for any j who wins; this reserve
price is strictly greater than ¢;, as t;, < ¢} in this case. Therefore,
R(C[¢) = R()
_— ( 7(D) A
“\7(A) +7(B) +#(C) + (D) m(A) +7(B) +7(C)+7n(D) w(A)+n(C)
m(C) (w(B) + =(D) |
(m(A) + 7(B) + 7(C) + (D)) (x(A) + = (C)) ™




which is equal to 7(B) + w(D) multiplied by the v defined by Eq. (65). Note that 7(B) +
7(D) =Pr{3k e I\ {i.}: (s <ty <]} Thus, Ineq. (66) implies (64). =

A.2.2 With Respect to an Upward Push of a Bidder’s Type-Support

Recall that R(t;,,t_;,,() denotes the ex post payoff for the type-t;, seller i, generated by
the Myerson auctoin M(¢) when the realized type profile across k # i, is t_;,. Here we
consider how a perturbation of a bidder’s type distribution may affect the expected value of

R(t;,,t_;,,(). For any i # i, and any t; € T}, let

@i(titi,) =E [R (titi, ), C) |ty S Cpian) - (67)

Given the posterior beliefs determined by ¢, E [¢;(¢;,t:,) | t; € [0, ¢]] is equal to the expected
payoff for 7, generated by M(() and is the maximum expected payoff for the type-t;, seller i,
among all incentive feasible mechanisms. Within this subsection, ( is held fixed and is

suppressed from our notations, hence Vj, means Vj ¢, ; also suppressed is the symbol ¢;, .
Lemma 21 For any t;, € T;, and any i # i., @i(-,t;,) is continuous on [0, (;].

Proof Let (; > 2” > 2’ > 0. Suppose the value of ¢; increases from 2’ to x”. Given any t_;,

this change affects the seller’s ex post payoff R(t;,t1_(,), () in only two cases:

L Vie(2') < wvi(tm;) < Vi(2"). Let k. be the bidder whose virtual utility is the highest
when t; = 2’. Then, when ¢; increases from z’ to 2”, the winner in M(() switches from £,

to i and the revenue for i, changes from V,_' (vi. (t_(p.), t = @')) to V1 (Vi (1))

. V;(2") < v(t—;) and V;(z") equals the second highest among ((Vk<tk))k¢{i,i*} ,Vi(ac”)).
Let £* be the bidder whose virtual utility is the highest when ¢; = z” (hence also the
highest when ¢; = 2’). When ¢; increases from 2’ to z”, k* remains to be the winner
in M(¢) but her payment increases from V; " (vk, (t_ik.), i = 2')) to Vi.' (Vi(2”)). By

Eq. (61) the definition of vg, and continuity of Vy,, this increase in revenue

Ve 1) = i (max {o Vo), e, V(e }) < VE 4@ < Vi 4 0)
= O(z" = 2).

Note that @;(z”) — p;(z’) is equal to the expected value of the sum of the two revenue-

differences, in Cases (i) and (i), across all t_(;;.) € [];4q,,,(0, G- As noted above, the
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" — '), and so is its expected value. The probability measure

case-(ii) difference is O(x
of those t_(;;,) that belong to Case (i) is also O(z" — 2’), because Case (i) occurs only if

Vi(z") < vi(t_;) < Vi(2"), which belongs to the event

U (twine T 0,61 V@) < max Vi(te) = Vi(t;) < Vil@") o,
e hy ke {iis}
J{isix} ke {ivis}

whose measure is O(z” —2') since V; is strictly increasing and V; continuous. Thus, ¢;(z") —

wi(x)=0(" —2'). =
Lemma 22 For any t;, € T;,, any i # i. and any o € [0, (),
Elpi(ti ti) | ti € [0, Gll = Epi(ts, t:,) [ £ € 0,G]] - (68)

Proof Denote @, := E[p;(t;) | t; € [0,¢;]]. Suppose, to the contrary of the lemma, that
E[p;i(t;) | t; € [, i]] < @; for some a € [0, ;). Then trivially o > 0. Let S := {¢t; € [o, (] :
©i(t;) < @;}. Then the measure of S is strictly positive, so inf S < (;. Let

inf S if inf S > «
sup {t; € [0,a] : @;(t;) > @;} ifinfS = a.

By definition of x, if x < t; < « then ¢;(t;) < @;; and if a < t; < x then ¢;(t;) > @,. Thus,

Elpi(t:) | ti € [z, Gl <& (69)

Hence x > 0. By continuity of ¢; (Lemma 21), ¢;(x) = ;.
Now consider a mechanism M which is the same as M(¢) except that bidder i’s virtual

utility function V; is replaced by a function V; defined by

Vi :

M is incentive compatible: V; is nondecreasing and hence bidder #’s probability of winning
is nondecreasing in his type; the monotonicity of the other bidders’ winning probabilities is
unaffected. The payment rule satisfies the envelope formula because the payment is defined
according to the formula based on (‘N/l, (Vk) ké{i,u})- Individual rationality of M is obvious.

Thus, we may assume that bidders participate and are truthful in M. When bidder i’s
type is any t; € [0,z], M acts in the same way as M((), generating the same expected
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revenue ;(t;) conditional on ¢;. When t; > z, by contrast, M acts as M(() except that ¢; is
treated as x, so the expected revenue conditional on ¢; becomes ¢;(x).

Thus, the expected revenue generated by M is equal to a convex combination between
E [pi(t;) | t; € [0,z]] and p;(z). As noted above, p;(z) = ;. Also E[p;(t;) | t; € [0,z]] > P,
by Ineq. (69). This coupled with the fact x > 0 implies that the expected revenue yielded
by M is greater than p,;. But that contradicts the fact that P, is maximum among all

equilibrium-feasible mechanisms. m

Corollary 2 For any measurable S C T;, and any i # i, Elp;(t;,t;,) | ti, € S] is continu-
ous in t; on [0,¢;], and for any « € [0,¢;)

Elpi(ti ti,) | t; € o, (s ti. € S] > Efpi(ti, ti,) |t € [0,]; L, € S]. (70)

Proof Since E[p;(t;,¢;,) | t;, € S] is an integral of ¢(t;,¢;,) across t;, and the integrand
o(t;,t;,) is continuous in ¢; by Lemma 21, the integral is also continuous in ¢;. For any

a € 10,¢), Ineq. (68) holds. Integrating (68) across all t;, € S, we obtain Ineq. (70). =

A.3 An Upper Bound of Expected Revenues

This upper bound is the expected payment made by the highest possible bidder-type.

Lemma 23 Ifi e I\ {i.} and {; = maxy;, ( > t;., then
R0 < | v (mox fro o Vi 00} ) |00 = | @
Proof By Egs. (61) and (62),

R(¢) = E[max{Vi¢ &), vi(ti,, t—i) | t-i. < (il
= E[vi(ti., t—i)1 [ilti, t_i) = Vi, ()] [ 0. < (i)

/

-~

=X
+E [Vie, (&)1 [v3(ti,, t(iin) < Vie(&:)] | toi S ¢

-~

First, we calculate X. For any ¢_; in the integration domain of X, the hypothe-
sis ¢; > max{t;,, maxpe(is,y (e} implies v;(t;,,t_(4,)) < ¢ and hence V;é (vilti., t—(ia))) =
v;(ts,, t_(ii.)). Furthermore, there is a positive-measure subset of the integration domain in

which this inequality is strict: When ¢_;, is nearly zero so that every bidder’s virtual utility
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is negative, v;(t;,,t_(4,)) = t;, while Vifé(vi(ti*, t_(ii)) = Vi,_Cli (t;,), strictly larger than t;,

by Eq. (46). This subset is of positive measure in 7__;, since the priors have no gap. Thus,

X <E [V (ilti, t—iy)1 [viti, t—in) = Vie )] [, S ¢ ] (72)

To calculate Y, denote ¢;(t_;,) := 1 [vi(ti*,t_(i,i*)) <Vig (ti)], the probability with
which bidder ¢ buys the good at player i,’s mechanism M((). Denote

g;(t;) =E [Qi(tht—(i,i*)) |t (i) = C—(i,i*)} .

By Eq. (46),

_ 1 - Fi,Ci (tl) _ “ — (. ] 1 - Fi,Ci (tl) . Nt
Y=E |:<tz - W) Qi(tiat—(i,i*))‘ t_;, = C—i*:| = /0 q;(ts) (tz - W) fic. (t:)dt;.

Going through the integration-by-parts routine in reverse order, we have
Gi G G
v = [Canata - [ [ awn @
0 0 t;
Gi G [t .
= [ tatsads - [ [ s
0 o Jo
t;

= /OQ (t@-(ti)— /0 @-(ti)dti) Fuc(t)dts,

which by the envelope-theorem routine is equal to the ex ante expected payment of type (;
in player 7,’s mechanism M(() conditional on the event that ¢, € [0, (x| for all k # i,. Thus,

by the definition of the payment rule in that mechanism,
Y o= E V! (vilti, t—i)) 1 [vilti, t_a) < Vie ()] |t < i

This combined with Ineq. (72) gives the desired inequality:

R(¢Q) <E Vi (vilti, t—ii)) 1 t=i. S Ci] =E Vi (vilti t—in)) | =i S Coiiny) - ®

B A Semicontinuity Property of Monotone Functions

For any weakly increasing function g : [a,2] — R, define g ;(y) and gs_u;(y) by Egs. (1)
and (2), with g taking the role of f3.
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Lemma 24 Let g : [a, z] — R be a weakly increasing function with a < z. For anyy > g(a)

and any € > 0, there exists & > 0 such that if y — 6 <y’ <y + 0 then

It W) — € < gt (V) < g5 (V) < gaun () + €. (73)

Proof First, suppose g(a) <y < g(z). Let € > 0. As g is weakly increasing, we can shrink e

so that g,¢(y) — § and gk (y) + § each belong to [a, 2]. By definitions of g, ¢(y) and ggL(y),

g (951%(1/) - %) <y<g (g;l}p(y) + g) . (74)
Let » y
5 i {g (gsup(y)2+ 5)ty vy (9ini (y)z— )+ y} |

Then 6 > 0. Pick any 3 such that y —§ < 3 < y + 4. Either (i) g7'(v') = @ or (ii)
g Hy') # @. In case (i), since

9 (gt () — €/2) +y

<y—0<v,
9 ) Yy

9 (9int () — €/2) <
by Eq. (1) we have g, (y') > gii(y) — €/2 > gi.t(y) —e. In case (ii), if z € g7(y) and
x < g1 (y) — €/2, then monotonicity of g implies

9 (9t (W) —€/2) +y
2

Y =g(x) < g (gaf(y) — €/2) < <y-—4,

contradicting the fact that y' > y—d; thus, gt (v') > gt (v) —€/2 > gt (y) —e. Analogously,
we can show g1 (y') < giun(y) + €. Thus, (73) holds if g(a) < y < g(2).

Next consider the case where y > ¢(z). If y > g(z) then, for any sufficiently small § > 0,
y—6& > g(2) and hence y — § < y < y + & implies g.; (y) = I W) = 2 = gt () = g (V).

£

If y = g(z) then we just replace the upper bound g (9o (y) + §

) in Ineq. (74) by any number
bigger than y, and then the calculation in the previous paragraph follows. The case where

y < g(a) is analogous. m

C Posterior Densities and Virtual Utilities

Proof of Lemma 1 Denote 7 (i, b;) for the probability of the event that bidder k, condi-
tional on submitting the highest bid b; (thereby tying with 7 and possibly others), loses the
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tie-breaking lottery. Then (with the convention of letting || =1)

jeo L

m(ib) = 3 }g:j;(H@(ﬁj,;lp(bi))—wj,;fwi)))) [I AL
JeI\

SCI\{i,k} jes (Su{ik})

Note that 7 (i, b;) is independent of ¢;. By Bayes’s rule,

Fy (tr) if 4. < 6L (b,
i 8) = | OB o =R oy kS Prin0)

Fio(Br i (00)+(Fr (tk) = Fi (B 1,5 (6:))) . (i,bi)
AT O T AT =P 5 TG a1 Prant (00) < B < By (B1)-

(75)

Thus, the density

fr(tr)
)—

=T . = — if bk < Bk_llnf(bl)
fk (tk | i, bia ﬁ) — Fk(ﬁk,inf(bZ))Jr(Fk(ﬂk sup(bz Fk(ﬁk mf(b ))) k( bi ) ’

Tr (b)) (3,b4) e a—1 (1 -1 -

P LB B L ()P ey o Dkine (06) <t < By (bi);
(76)
at the point 3 (b)), the right density is equal to m(i,b;) times the left density. Thus,
fr(- | 4,b;, B) exists and is strictly positive on the posterior support and is continuous unless

ﬁ,;ilnf( i) # B Sup( ;), in which case 3, mf( ;) is the only discontinuity point. m

Proof of Lemma 2 By hypothesis, b; is not an atom of ;. Thus, 6,;;up(b7;) = ﬁ,;ilnf(bl-)
and Eqgs. (75) and (76) together imply Eq. (4) for any ¢, € [Oyﬁk_,slup(bz‘)]. For any t, €

—1 )) —
(O,ﬁ,;slup(bi)), the derivative of Vi, 5, or E <t — Fk(ﬁk“}‘c’:?;i)) Fk(tk)) by Eq. (4), is no less

than either 2 or 4~ (t - %’;Efﬁ) , which, strictly positive on the compact T; by assumption,
is bigger than a )\k > 0 constant to t;. Thus, Claims (b) follows, with A := maxyec; min{\, 2},
and so does Claim (d). With V};, s nondecreasing on 7}, according to Claim (b), the ironing
procedure is unnecessary and hence Claim (a) follows. To prove Claim (c), pick any b; > b;
such that b} is not an atom of 3. Hence both 0} and b; satisfy Eq. (4). Let AV (¢ | b, ;) :=

Vk,b;,,@<tk> - Vk,bi,ﬁ<tk>- By EQS. (3) and (4),

Fi (B Lo ) = Fi (B, L, (0)

Rl if f < B gup(b)
A‘/k(tk ’ b;’bz) - Vk b, ( ) - ﬁk_slup( ) if 5]@ sup( ) St < ﬁk sup(b/) <77)
ﬁk sup( ) ﬁk sup( ) if tk 2 6k,sup<b;)7

where Slup(bi) < B Sup( ') because [ is weakly increasing. The uppermost branch of

Eq. (77) implies Claim (c). (The other branches will be used in Lemma 15.) =

42



D Details of the Increasing Difference Theorem

Proof of Lemma 5 First, we prove Eq. (19). In the continuation equilibrium, in choosing a
resale mechanism, player i the reseller effectively inputs an alleged type ¢; into the formula in
Lemma 3 that outputs a mechanism optimal for ¢;, which determines i’s expected probability
of being the final owner, Q;(b;,%;, 3), and i’s expected revenue, denoted by R;(bs, s, 3).
Then 4’s expected payoff in period 2 is t;Q;(b;, t;, 3) + R;(bs, t;, ). Optimality of the resale
mechanism means this expected payoff is maximized when #; = t;. Then the envelope
theorem of Milgrom and Segal [11, Theorem 2] implies (19).

Next we prove Eq. (20). From i’s viewpoint, the continuation equilibrium in the event
that ¢ does not win the period-one auction is equivalent to an incentive feasible direct rev-
elation mechanism that solicits from 7 a report of his type and then plays the continuation

equilibrium on his behalf. Thus, the envelope theorem again implies

t;
Zz(bmtuﬁ> - zl(b27076> +/ qz(bluTzaﬁ)de
0

The resale mechanism, optimal for the reseller, leaves zero surplus to the zero type of any

other bidder. Thus, L;(b;,0, 3) = 0 and Eq. (20) follows. m

Propositions 1 If b, ¢ B; then the conclusion is vacuously true, since in that case
Q:(b,t,8) = Qi(l,t,5) = 0 by definition of @;. Thus, let b, € B;. Since b > b, we also
have 0] € B;. Then Eq. (11) implies that neither b, nor b} is an atom of S_;. Thus, for all
ti € [T [0, ﬁ,;slup(bg)] but a set of measure zero and for any t; € T;, Eq. (13) holds whether
b; = ! or b; = b,. Consider any such t_;, and we shall prove that Q;(b,t,3) > Q;(¥,t,3).
To avoid triviality, suppose Q;(b;,t, 3) > 0. Then Eq. (13) implies, for each k € I\ {i}:

t; > Vi(ty | 05, 8) > Vi(te | V], B),

where the second inequality is due to the fact that Vi (¢ | b;, ) is weakly decreasing in b;
(Lemma 2.c, applicable because t_; € [, [0, ﬁ,;slup(b;)} ). Thus, Q;(b},t,5) =1 by Eq. (13),
with b/ playing the role of b; there. Hence Q;(b!,t,3) > Q;(b.,t,3). m

Proposition 2 Pick any ¢t € T. To avoid triviality, suppose that ¢;(¢,5) > 0. Then
Eq. (12) implies that g¢;;(t,5) > 0 for some j # i such that | < (;(¢;) = maxyz; Or(tr)-
By hypothesis b; > maxy; O (t), b; > [. Thus, both b; and 3;(t;) are serious bids, hence
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by Eq. (11) b; is not an atom of 3_;, nor (3;(¢;) an atom of 5_;. Thus, Eq. (13) holds for
all t; € [, [0, Braup(bi)] but a set of measure zero, and Eq. (14) holds for all t_(; ;) €
[Tieris [0, Brsup(Bi (t5))
[Theris [0, Braup(Bi (t5))
ti € [T [0, ﬂ,;slup(bi)} is met. Thus, Egs. (13) and (14) both hold for almost every t_; € T_;
such that ¢;;(t,3) > 0 and b; > maxy; B (tr). Thus, ¢;(t, ) > 0 implies

] but a set of measure zero. By the choice of j, the condition t_; ;) €

] is satisfied; by the hypothesis b; > maxy; Ok(tx), the condition

Vilti | B;(t;), B) > max{tj, max Vi (ty | ﬁj(tj),ﬁ)}. (78)

kel\{i,j}
By Eq. (13), it suffices to prove ¢; > maxgep iy Vi(tx | bi, 3). To this end, given (78) and the
fact t; > Vi(t; | B;(t;), 8) and t; > V;(t; | b;, B) due to Eq. (3), it suffices to prove
Vk € I\{i,j} : Vi(te | B;(t5), B) = Vielty | bi, ). (79)

Thus, pick any k ¢ {4, j}. By hypothesis, b; > §;(t;). By the choice of j, ¢, € [O, ﬁ,;slup(ﬁj (tj))],
so Ineq. (79) follows from Lemma 2.c with the (b}, b;) there being (b;, 3;(¢;)) here. Hence
Qi(bi,t, B) > q;;(t, B). This being true for any j # ¢ who may win at the realized profile t_;,

E Details of the No-Tie Theorem

E.1 Proof of Lemma 7

Denote x := b,. Let € > 0. Since the density f; of ¢; is positive on its compact support [0, ;]

for every i € I, there exists 7(e) > 0 such that

O<n<nle)=Viel :YyeT,:Prob{y<t, <y+4n} < ———. (80)
maX ey tj
Pick any n > 0 such that
1 < min {77(6)7 €, 1nin(z; — ak)} : (81)
For any ¢ > 0, let
N"™(z;0) = (x — §,x + ) N B".
By Lemma 24 and monotonicity of 5%, there exists a d(¢) > 0 such that
vie I ()7 (NP (@:25(e))) € (= m, 7+ ) (82)
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As g™ — (* pointwise almost everywhere, 5" — 3* uniformly except on a set E* := I, E
such that each Ef has Lebesgue measure less than 7 (Littlewood’s third principle or Egoroft’s
theorem). Thus, for any 6 > 0 such that

5 < o(e), (83)

there exists m(d) with

such that for every integer m > m(d) and for every i € I, we have
vt € T\ B |Br(t) — Bt < 82, (85)
(857" (N7™(230/2)) € (a: =, 2+ m), (86)

where (86) follows from (82) and (83).

Now we construct an infinite subsequence (™) ,. For each n = 1,2,..., let ¢, :=
1/n. With e, taking the role of ¢, there exists 7, as the left-hand side of Ineq. (81) and d(e, )
specified in Eq. (82). Let

5, := min {1/n, §(en),  — z} . (87)
Hence there exists an m(d,,) satisfying Ineq. (84). Let
my, :=min{m =1,2,...:m >m(d,);m > m,_ 1+ 1}.

Note that n’ > n = m,, > m,. Hence subsequence (™), is constructed. Also Egs. (85)
and (86) are satisfied when (m,,, d,,n,) plays the role of (m,d,n).

First, we claim that, for each 7 € I,

Vi, € (B5) (N™ (2:6,/2)) \ EF -z — 3, < 8™ (t;) <  + 0, (88)
(87 (N (5.6 4+ 27)) \ B C (a3 = 1y 20+ 7). (89)

To prove (88), pick any t; € (5;)*1 (N/™(;0,/2)) \ Ef. Then
85
B (t:) © BE(t) +00/2 < 24 0,/2+00/2 = + Oy,

and analogously 5" (t;) > x — J,. To prove (89), suppose t; < a; — n,. Then (82) and
monotonicity of 3¢ imply 3 (t;) < x — 20(e,); according to (85), either ¢; € E*, or

B (t:) < B7(t:)+0,/2 < —20(e,)+0,/2 (? —20(€,)+0(6,)/2 = x—b(e)—b(€y) /2 < £—6,—27,
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with the last inequality due to (83) and (84). Analogously, t; > z; 47, implies either ¢; € E}
or 3" (t;) > x + 0, +27™. Hence (89) follows.

Second, we show that, for each i € J, a and 2" defined by Eqs. (28) and (29) exist
and “a; < 2" and z; > a?” holds. By definition of a; and z;, (a;, 2;) C (87) "1 (N (x; 6,/2)).
Since the Lebesgue measure of Ef is less than 7,, which by (81) is smaller than z; — a;, there
exists t; € (a;,2) \ EF C (67) " (N™(2:6,/2)) \ E*. Hence (88) implies that the sets on the
right-hand sides of Eqs. (28) and (29) are nonempty. Thus, af and z]' exist. By the choice
of this ¢; and Ineq. (85), we have 3" (t;) < 57 (t;) + 0,/2 = © + J,/2. Thus, by definition

of 27", t; < zI'. Hence a; < 2, otherwise ¢; > a; > 2!, a contradiction. Analogously, z; > a'.

Third, (30) follows from Egs. (28) and (29) and the fact that 8" is nondecreasing.

Fourth, we prove (32). Recall that (a;, z;) C (87) " (N/""(;0,/2)) and a? < z;. Thus,
if a; < a! then (88) implies that (a;, al’) C EF; with Ef of Lebesgue measure less than 7, we
have a —a; < n,. Analogously we have z; — 2" < n,. Also, if a' < a; —n,, then (89) implies
(a?,a; — n,) € Ef and hence the interval cannot be longer than 7,; hence a; — al* < 2n,.
Analogously we have 2" — z; < 2n,,. Thus, since 1, < ¢, by (81), we have (32).

Fifth, we prove (31) and (33). For any k € I\ J, (3;)'(x) is either singleton or empty,
hence aj, = 2z by definition. Thus, it follows from (89) that (3™)~" (N (x; 6, 4+ 27™))
is either contained in (ay — N, ax] U |2k, 2k + 1) or contained in Ej. Since the Lebesgue
measure of neither set is bigger than 27n,, (80) implies (33). Likewise, (80) implies (31)
for any i € J because, by (89), {t; € T; : x + 0, < 3;""(t;) <  + 6, + 2™} is contained in
Er U2l zi+nn).

E.2 Proof of the Decomposition Equation (36)

Eq. (36) is the same as the following equation: for any bids b}, b; € B; with b} > b,

Ui(by, ti, B) — Ui(bi, i, B)
= E[1[b; = t_]] (Wb, ti, 8) — Wi(bi, t5, 8)) — (b — b;) Pr{b = ¢_;} (90)
+Pr{b, = t_;, b # t_i} (Wil ti, B) — bi — Li(b, bi, t:, 8))

where b; > t_; is a shorthand for ¢’s winning event, b;  t_; its complement, and

Li(b),bi,t;, B) :=E [Li(t—; | t;,3) | b = t_i, b; # t_].
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To prove Eq. (90), note that Eq. (10) says, with the symbols (¢;, 5) suppressed,
Us(bi) = E[L[b; =t (Wi(t—i | bi) — bi — Li(t—:))] + E[Li(t—)] .
Then for any bids b, > b;,

Us(by) = Us(by) = E[L[; =t Wilt—i | 0)] —E[1[b; = t—i] Wit | bi)]

—UELY, =t +0E[L[b; =t )] +E[(1[b; = t_;] — 1[b] > t_;]) Li(t_;)]
= E[1[, =t ]]W;1)) —E[1[b; = t_;]] W;(b;)

—bE[L[b =t ]| +bE[L[b; =t ]] —E[1[b; # t_, 0. = t_;] Li(t_,)].

Then Eq. (90) follows from breaking apart 1[b; = t_;] = 1[0 = t_;] — 1[b; ¥ t_;, 0} = t_;].

E.3 Proof of Lemma 8

Suppose that the lemma is not true. Then, extracting a subsequence and relabeling super-

scripts if necessary, we may assume without loss of generality that

lim Pr {c;? < max 3 (ty) < b, + 5n} > 0. (91)

n—00 keJ\{s}
By definition of ¢} in Eq. (40) and monotonicity of B;L,

Vn : Je, € (O,min {l/n,rilg}((zk - aj)/Q}) Vty € (a},a) +e€,) 1 B (L) = cf. (92)

(The above choice of €, is feasible because by Ineq. (39) z, > ay > a; for every k € J.) Let

n +— t} be any choice function such that for each n
th € (a?,a? + en) )

We shall derive a contradiction by proving that for some sufficiently large n the type-t

bidder j strictly prefers to deviate from his m,-equilibrium bid ¢} to the bid
b? = min{bj € B}n" b > b, +5n}.
To prove this claim, first we establish

lim ATI?(£7) > 0. (93)

n—oo

47



By Eq. (38), All}(t}) is equal to a probability times ¢7(t}) := Wj(c?, £, B~ — L;L(t?)

j
Hence it suffices to show lim,, .., ¥7(¢}) > 0. To this end, we first claim that

lim B [L;(t_; | t7,8") [ t_; € Q)] =0, (94)

where Q7 := {t,j €T j:cf < maxgy; Br(ty) < b?} By Lemma 7, as n — oo, the difference
between (7 and the Q’] defined below vanishes:
Qr o= UkeJ\{j}Q;Lk, where for each k € J\ {j}
Q?k = {tj eT_;:ty € (ay,2); cj < B(te) = riljfﬁg(tk) < b Vh ¢ J [Bﬁ(th) < cﬂ } )
Thus, Ineq. (94) is unchanged when its integrand L;(t_; | t7, 3") is replaced by
> o1 [@?(tk) > max G5 (ty) | Lx (t5 | t7,5") .
k . J'#{i.g}
€N}

For any k£ € J \ {j}, bidder j’s payoff L;; from losing the auction to bidder k cannot
exceed t} —ty. Since t7 < af +e€, < a} +1/n by the choice of t7 and ¢, (Eq. (92)), and since

al? —, a; for each ¢ € J, we have for any ¢, € (af, z}):
(39)
th<ai+e <aj+0(1/n) < ap+0(1/n) <ap +0(1/n) <t +O(1/n).
Thus, 0 < L7 (- | t7, B < th —ty = O(1/n) for any t_; € Q;Lk That proves (94). Thus,

lim 7 (¢7) = lim (W;(c?, 2, 3" — ¢)) >0,

n—oo n—oo

with the second inequality due to the fact B]"(t?) = ¢ and Lemma 6. That proves Ineq. (93).
Second, by Eq. (92),

th<aj+e, <ajt+e, +0(1/n) < aj+nkl€a§(zk—aj)/2+0(1/n) = I?éif(zk+aj)/2+0(1/n),

hence lim,, .ot} < maxye (2 + a;)/2 < maxyey 2 < maxgz; 2x. Lhus, Lemma 9 implies
limsup,,_,,, AW (t7) > 0. Plugging this inequality, Ineq. (93), and lim, .. (b7 — c}) = 0
(¢} € (bs — O, bu + 0,) since t7 € (a, 27)) into Eq. (36), we have limsup,,_,., AUZ(t}) > 0.

Thus, there are sufficiently large n for which the type-t7 bidder j strictly prefers deviating

to b7 from his m,-equilibrium bid ¢}. This contradiction proves the lemma.
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E.4 The Dominant Rival’s Resale Mechanisms

The next lemma helps us to predict the resale mechanism employed by the dominant bidder j
specified in Lemma 8 when he wins with a bid clustered at b,. In that event, j’s winning bid
ranges within a neighborhood where his rivals rarely bid, hence his posterior belief about
the others stays mostly constant to his winning bid, and so are the posterior virtual utility

functions and payment rules at resale. We shall use the notation Vy, defined in Eq. (46).

Lemma 25 Let j be specified by Lemma 8, ¢} specified by Eqs. (41) and (42), and b} specified
by Eq. (45). If ™ is someone’s winning bid in [c},b}] for each n = 1,2,..., then for any
ke I\{j}, with z; specified in Eq. (27),

-1

I (), @) = 5)
Vit € Ty : nhjglO Vi (tk | [L’n,Bn) = Vk’,zk (tk), (96)

and, if in addition z, > max {tj, MaxXyrg ik} Vi 2, (tk/)}, then
: i _y-1
Jim prjon o (5 L) = Vi, <maX {tj, X Vo (tk')}) : (97)
Proof Let k € I\ {j}. Since 2" € [}, b}], Egs. (31), (33) and (42) together imply that
- (™) and z} (defined in Eq. (29))

the probability measure of the interval between (B”)k cup

vanishes. Thus, Eq. (95) follows from the no-gap assumption of F} and the fact z}' —,, z; by
Eq. (32). To prove (96), note that 2", a winning bid in the m,-approximation game, is not
an atom of the losers’ strategies, due to Eq. (22). Thus, Vj (tk | 2™, B”) obey Eq. (4), with z™
being the b; there, if ), < (5) ,;iup (z") and is equal to (5") ];iup (z™) if t), > (B) I;iup (x™).
Then Eq. (96) follows from Egs. (46) and (95). To prove Eq. (97), let its condition z; >
max {t;, maxpg(jky iz, (te) } be satisfied. Then Eqgs. (95) and (96) imply

-1

3" ™) > max < t;, max Vi . gn(t
(ﬁ )z,sup( ) {J ké{ig) k,x™,6 (k’>}

for sufficiently large n. Thus, since j’s winning bid is not an atom of 5" ;» the conditions for

Eq. (6) are satisfied. Plug Eq. (96) for all &’ # j into Eq. (6) and we obtain Eq. (97). =

E.5 Proof of Lemma 9

Since b} > b, + 6,, by definition of b}, the probability with which b wins is no less than
Pr {b* + 0, > max B,?(tk)}, and limsup,, ., Pr {b* + 0, > max B,?(tk)} > 0 by the con-
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sequentiality of b, and the convergence 5" — 3*. Thus, by Eq. (37), it suffices to show

limsup (W, (b}, t7, B") — Wy(c!, ¢, B)) >

n—o0o

To this end, denote y} := (ﬁ") ksup (cf) for each k € I. Extracting a convergent subsequence

and relabeling superscripts if necessary, we may assume without loss of generality
Vk eI 3y, € Ty : lim y; = yg. (98)

By Eq. (46), V; . (t;) is continuous in x for any t; € [0, z]. Thus, if ¢; < z then

kg

vk €I\ {i}: lim Vi (t) =V, (t:). (99)

The rest of the proof uses Proposition 4, with (y})k-; and (z}})r-; playing the role of ¢
and (’ there. The proposition is applicable because the winning bids ¢! and b} are not atoms
of 3",, hence the posterior virtual utility functions obey Eq. (4). There are only two cases:
either (i) ¢; > max;,; y; or (ii) ¢; < y; for some j # i.

Case (i): This implies, by Eq. (98), #} +1/n > max;; yj for sufficiently large n. Since
t; < maxyy; 2z, by hypothesis of the lemma, Eq. (32) implies ¢} < maxy; 2z for sufficiently
large n. Thus, max;,; y7 — 1/n < 1 < maxgy, 2 for sufficiently large n. For any such n,
Wi(ep,tr, ") <t + 1/n because the public history (i,¢}) implies t; <y for each j # i.

Thus, mimicking the reasoning for Ineq. (63), we have, for some j # i with z; > ¢;,

i b 01717 T iz \Yi ) T Y T nj.
F;(2}) 7%
Since t! — t; and z]' —,, z;, Eq. (99) and the continuity of V 2 together imply that the right-
hand side converges to <1 — F; (VJ_;J (tl)> / Fj(zj)> <VJ_Z1J (ti) — ti>, which is strictly positive
since ijlj (t;) > t; due to z; > t; (which implies z; > V;yl] > t; by Eq. (46)).
Case (ii): By Eq. (98), for infinitely many n, t} < yj and hence Ineq. (64) holds, i.e.,
Wb, 1, B") — Wi(cl, 1, ™) > 7, Pr {c < max [7(t;) < b"}

je\{i}

where according to Eq. (65)

[T Fryi) — i F (min {Vk_;g (1), yi?})
(Hk;&z Fk(zg)) (Hk;ﬁz Fk(?//?))
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By Ineq. (43), limsup,, ., Pr{c! < maxje ) 87 (t;) < bP} > 0; by Eq. (99),

lim sup 7 ::IIk#iP%(gk)__IIkiilﬂ7Onhl{lijk(ﬁ)7yk})
o (Hk#z Fk(zk)) <Hk7éz Fk(yk))

t; >0,

where the inequality is due to the fact t; < y; (which implies t; <V} ylj < y; by Eq. (46)).
Hence again limsup,,_., (W (b7, 7, 3") — Wy(c?, ¢, ")) > 0, as desired.

E.6 Proof of Lemma 10

By Egs. (38), (47) and (48), the pivotal effect equals AII? (¢7') = Pr(Q2)y(¢!). By Ineq. (43),
lim sup,, Pr(Q?) > 0. Thus, it suffices to show that limsup,, ¥"(¢}") > 0.

To this end, we start by calculating the price markup. Pick any ¢; € (a;, ;). For all
z1") by Eq. (32), hence Egs. (30) and (44) imply ¢ < 57(t;) < by
Note that Eq. (97) holds for k = i because z; > max {t;, maxpg(jr} Vi, (te) }, which is

sufficiently large n, t; € (af, 2]

due to the t; chosen above coupled with any t_; ;) € Hk,¢{i7j}[0, Zk), a8 MaXy 4 2 < 2; by
hypothesis of the lemma. Integrating Eq. (97) across all such t_; ;) gives

E {le (maX {tj, max Vi ., (tk)}> ' tij = Z—(m’)}
’ k¢{i,j}

- JLHSOE[%,B?(@),BH (b t-0p) [ty S 2= W}

= lmE {pi,jﬁy(tj)ﬁ (tj t—ij) |87 (t5) > ax, B (tk>1,

with the second line due to Eq. (95) applied to the case 2" = ﬁ”( ;). By Eq. (62),

W; (87 (t),t;,8") =E {max {tj,rilgf Vi, 6”<tk)} (1) > Iggfﬁ;?(tk)} :

By Egs. (95) and (96),
lim T, (F2(t;),t;, 3°) = E [max {tj, max Vi (m)}' t; < z_]} -
n—oo ¥l

Thus,

n—oo

Bt > s en)| =17, (30,0, 57))

= E [szlz (max {tj, max Vy Zk(m)}) ' t_( ) = z_(i’j)] —E [max {tj,n];lgjx Vizi (tk)}‘ t_; = zjl ,

kg {i.j}
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which is strictly positive by Ineq. (71), applicable since z; > maxy.; 2. The strict positivity
remains valid when W (ﬁ"( i), tj,ﬁ”) is replaced by ﬁ”( ), as ﬁ”( )< W, (Bf(tj),tj,[;")
by Lemma 6. Thus,

n— o0 k¢{i,j}

This being true for all ¢; € (a4, 2;), integration across such ¢; gives the price markup

lim E [p”gn( t),5m (tj,t—(z',j)) - 5}‘1(%)

n—oo

() > s (003t € (02) | > 0. (100)

Next, we calculate bidder ¢’s winner’s curse. By the hypothesis V., (t;) > maxy; 2

and tI" —, t;, as well as Egs. (32) and (96), for any ¢; € (aj, 2;)

0> lim (rggczg - Vm}t(tjmn(t?)) > lim <maX {t], max Vigra, )ﬁn(tk)} - V;ﬁ;l(tj)ﬁn(t?)) .

Hence the probability with which ¢ wins in j’s resale mechanism goes to one in the event

where i’s bid increase is pivotal, i.e., the event QF defined in Eq. (47). Thus,

lim E [L;(t_; | t7,8") | t—; € QF] (101)
= lim E {Lij(t_z- |7, 87) |57 (t5) > gl{ax Br(ty);t_; € Q”}
n—oo 7,]

_ hmE[ = Dij gy (B t-ap) |57 (t )>k1;1{3>j<}ﬁ;’§(tk);tj€(aj,zj)],

with the first line due to Egs. (31) and (42), and the substitution of the conditioned event
on the second line due to aj —, a; and 2} —, 2; (Eq. (32)).
Finally is the pivotal effect lim sup,, ¥ (¢!"). By definition, lim sup,, ¥!"(¢") is

17 7
n—oo

which, by Eq. (101) and the fact W; (c tr ﬁ”) > {7, is greater than or equal to the left-hand

7Y%

side of (100) and hence is strictly positive, as desired.

E.7 Proof of Lemma 11

Step 1: A resale mechanism for bidder i In the m,-approximation game, bidder
upon winning can offer resale via the following game form M" for bidders k # ¢, with the

notation (27, V;.n) defined in Eqgs. (29) and (46):
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a. Every bidder k # i picks an element from [0, 27|, say tx, and reports it as k’s type.
b. If tj Z VZ,Z?(T,?) then—

i. 7 resells the good to a bidder k € I\ {i} for whom

Vien gn(tr) > max{t” gl{ax} Vi, cn (th)}

at the price V Bn (max {t?, MaXng ik} Vi, or (th)}>;

ii. if no such k exists then ¢ keeps the good.
c. If tj < Vi,z? (t?) then—

i. 7 resells the good to a bidder k € I'\ {i,j} for whom

Vi) 2 max { Vip (8, 1o Vi r3e(0) }

at the price V o <max {sz (t7), maxpg iy Vi, en gn (th)}>

ii. if no such k exists then 7 keeps the good.

We claim that the mechanism M™ is ex post incentive feasible. It is ex post individually
rational because a bidder k£ # ¢ can stay out by reporting his type being zero, thereby
reporting a negative virtual utility. This gives him zero probability to win in Case (b), as
ti > 0. This also renders zero winning probability in Case (c), where t; < V; .»(#}') implies
Vier(ti) > 0. Thus, in either case bidder k can stay out thereby ensuring zero payoff.

The mechanism M" is also ex post incentive compatible. For any k # ¢ and any t_j, if
bidder k’s true type is tj, then by the rules in (b) and (c¢) his payoff conditional on winning

is positive if and only if ¢, >V, gn (Vg (t=k)), where

( ) max {t?, maxh¢{i7k} th c’(l’Bn (th)} if tj Z Vz,zf (t?)
UIZ t,k =
max {Vz Zl (t ) MmaXnpe 4,5k} Vh ReANCL (th)} if tj < VZ,Z? (t?)

With Vi on gn strictly increasing, ¢, > V o (v (t-x)) is equivalent to Vi n gn () > vf (t-1),
i.e., the event that k£ wins in M™ after reportlng truthfully. Thus, having a positive payoff

from winning in M" is equivalent to the event that he should win after truthtelling. Since
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the payoff from not winning in M" is equal to zero, this implies incentive compatibility for

any bidder k € I\ {i}.)"

Step 2: Bidder i’s expected payoff as a reseller Denote w"(t_;) for i’s ex post payoff
generated by the participation and truthtelling equilibrium in M™ when the realized type

profile across k # i is t_;. By revealed preference,

W, (e}, 18, 8") > E [w”(t_i)

37 (t,) < | .
Denote

X" = E [1 [tj > Vi,z?(t?)] (" ‘maXﬂk tr) n} ’

Y = E |:1 [tj < Vz7z:z(t?)] ( ‘maxﬁk tk n:| .
Then
Wi (e, 6") — ¢l > X"+ Y™
To calculate X™, note from its definition that it is an integral on the set of t_; such
that t; >V, .n(t}'). At such ¢_;, mechanism M™" follows its rule (b), which coincides with the
resale mechanism M;(c?, 17, 3") that the type-t? bidder i would choose upon winning with
bid . (The posterior virtual utility functions conditional on the public history (i,c}') are

<Vk en B> because Lemma 2.a applies, as ¢} is not an atom of 37;.) Thus,
TP ki
X"=E |1[t; > V,.n(t} (| Lt ) = o Gt A
|: []—Vzvzz(z)}(vvl( 1|Cz7zaﬁ) Cz)‘lggzxﬁk(k)<cz:|
If Pr{t; > Vi () |maxyz; B (tr) < ¢ } = 0 then X" = 0; else then Lemma 22 implies

E[W (¢ | 27, 87)

Thus,

t; > Vi,zf(t?);rilgxﬁg(tk) < cf] >E [W (t_, | et ,ﬁ") ‘maxﬁk (tr) < ”} )

X" > Pr {t >sz( )‘Iilgxﬂk(tk) "}E[W (t_,|c“ “ﬁn)_c

B (ty) < | ;
max (3 (t) cz},

furthermore, since G7(t?) = c?

1)

the second factor on the right-hand side according to

Lemma 6 is nonnegative. Thus, X™ > 0 and hence

W, (et ") — et > Y™, (102)

17 When Vi,an (") <t; < V_n B (t1), bidder j gets zero payoff whether he reports his type to be above
Vi zn(t}) or below V; . (t7'), but he cannot profit from lying.
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To calculate Y™, note from its definition that it is an integral on the set of ¢_; such
that t; < Vi.n(t). At such t_;, mechanism M" follows its rule (c), under which ¢; has no
effect on the outcome of M", hence i’s ex post payoff w"(t_;) from M"™ is constant to ¢;.
Since the indicator 1 [t; < Vi (¢)] is weakly decreasing in ¢;, with @"(¢_;) independent
of t; and nonnegative, 1 [t; < Viar (t")] @ (t_;) is a weakly decreasing function of ¢; for any
t_(i)- Hence the integral of this function cannot increase when we move upward some mass

of ¢;, by replacing the conditioned event maxy; B (tx) < ¢ with the one in the following;
Y >E |1 [t < Vier ()] (0" (=) — ) | < Br(t;) < b Dax Bi(ty) < ¢
irj
By Eq. (42), we can replace the above conditioned event by 2! defined in Eq. (47). Thus,

lim Y™ > lim E[1[t; < V.o (t])] (0" (=) — ) |t € Q7] . (103)

n—oo n—oo

Step 3: The winner’s curse By Eq. (42), the probability with which bidders k ¢ {7, j}
wins given 2" vanishes as n — oo. Thus, the loser’s payoff for ¢ comes mainly from ¢’s payoff

from losing to j, i.e., when bidder j with some type t; wins with bid B;l(t]) € (e, b). In

177

that event, bidder j chooses the resale mechanism M; (B}“(tj), i, B”), which is determined

the winning bid 37'(Z;) is not an atom of 37, by Eq. (22)). Recall that the probability with

which bidder i gets to buy the good from j is denoted by g;; (t?,t_i,B"), with the price

by posterior virtual utility functions <Vk Anty) gn) (due to Lemma 2.a, applicable because
I ke

denoted by p; ; gr ;50 (t—;). Thus,

lim E [Li(t_; | 7, 5") | t_; € ]

(42) . n " - .
= limE [(t — Dijae),pr (tﬂ-)) qij (7.t B") | t_; € Q] (104)
= [Jim B [1 [t; < Viep(t))] (t? = PijAnt;),Br (t—i)> @ij (67, t—, 3") | t—; € Q?] :

where the second equality holds because t; > V; .» (t) implies that the probability with which

bidder ¢ can buy the good from j, and hence ¢’s payoff at resale, vanishes as n enlarges.

Step 4: Y™ balances the winner’s curse Combining (103) with (104) yields

lim (V" —E [Li(t | £, 5") |t € )

n—oo

n—oo
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To calculate the right-hand side, let ¢_; range within Qf such that ¢; < V;.»(#}'). Then

mechanism M™ operates under rule (c), and i’s payoff w™ (I, t_;) is equal to either ¢! if

Vi Zn t? > max V cn an t y 105
1) > max Vi (0 (105)
or the payment
—1 n _

Vk,clﬂ,@" <max {Vi,zf (tz )7 hé?z?fjc} Vh,,c?,ﬁ" (th) }) (1O6>

from some bidder k ¢ {3, j} if
Vier gn(tr) > max {Vi,zn(t?), max Vj, ﬂn(th)} . (107)
o gy e

By Eq. (96) and 2" —,, z;, t! —, t; and continuity of the mapping = — V; .(t;), we have

limy, oo Vion (ts) = Vi, (£),
hmnﬂoo Vk’,,é?(tj),,é" (tk:’) = Vk/7zk’ (tk/) = llmn*)oo Vk/7c'zr],’5n (tk’>,

limn_m ‘/iﬁ?(tj)ﬁ” (t?) = Vi,zi (tl) = hmn_m Vi,z? (t?)
Then for all sufficiently large n, the event (105) is approximated by

Vi), () > k{&?}?} Vi, gn(ty),5m (tk)

(which means if j wins j would resell to i since t; < Vi.n(1}') =~ L3 (4,5 (t)), and the

event (107) is approximated by

Vi gy t,5n (tk) > max {memﬁn (t), max Ve t,).8m (th)}

(which means j would resell to k), with the payment (106) approximated by py, ; gn () a» (t-1)-
J J I,
Thus, for all t; € Qf with t; <V, .n(t]') except a subset whose measure is O(1/n),

W (17, t=;) + O(1/n) = t7qi; (17 t_k, B") + Z Qi (trs t—k, Bn)pk,jﬁ]”(tj),@” (t—k)
kel\{i,j}

and hence

w" (t, ;) — (t? = PijBnt,),Br (t—i)> i (t7, 1=, 8") + O(1/n)

= Z qkj (tka t—k) Bn)pk,]ﬁ?(t])ﬁ” (t—k)7
ke\{s}
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which is equal to W (7, ¢_.;) | B;-L(tj), tj, ") because t; < Vir(t}) implies t; < Vigr(ts).5n ()
for all sufficiently large n, at which bidder j, upon winning, always resells the good. Thus,

lim (Y” —E [Li(tfi [0, 8") [t € Qﬂ)

n—oo

> lim E[1[t; < Vien(t1)] (W (88— | B (), 85, 8") — )| t-i € OF] .

n—oo

Combining this with Eq. (102), as well as the facts lim,,_,o ¢! = b, by Eq. (44) and b, =
lim,, o 37 (t;) for all ¢; such that 37(¢;) € (¢}, b'), we have

(A

= ,}EQOE[ (8 < Voep ()] (W5 (8, 8- | 57 (29), 85, 87) = B (8)) [ i € Q7]

which is Eq. (49). This proves the lemma.

E.8 Proof of Lemma 12
Pick any t; € (a;, 2;). By Lemma 6,

B) < B[ (e 50, 6.57) s BEee) < 310
Taking the limit and using Eq. (95), we have

lim G7(t;) < K [hm Ee ) { j (-5 1 B (), B")

n—oo n—oo

o B(t) < 50|

By Eq. (22) the winning bid 3}'(t;) is not an atom of 3", so the W; (t_; | 37(t;).t;,3") on
the right-hand side obeys Eq. (7) and hence is determined by the virtual utility functions
<Vkﬂ?(tj)ﬂn)k#. By Lemma 25, for each k # j, Vk’@?(tj)ﬁn — Vi, which is the virtual
utility function given distribution Fy(-)/Fy(z). Thus, W; (t_; | 37(t;),t;, ") converges to
the type-t; reseller j's expected payoff from the Myerson auction M(z) defined in §A.1. Ie.,
with the ¢; defined in Eq. (67) where (j is zj here,

lim B, , {W (tz,t ) |6”( i), tj,ﬁ") max 37 (t) < Bj”(t]) = pi(ti, tj). (108)

n—oc K {ig)

Denote %;(t;) := Ey, [pi(ti, t;) | t; € [0, 2]], so the above-displayed inequality means

lim B”( ;) < B(t5). (109)

n—oo



Denote

pu(ti) = E[L[t; < zipiti ) | t; € (a5,2)],
?. = E1[t; < z]wi(ty) |t € (a;,2)].

We construct a sequence (), such that 3(t") = ¢} for each n, t* —,, z;, and

lim . (&) > 9, (110)

n—oo

To this end, recall (B")Z_1 (¢!) # @ by Eq. (41). By Eq. (95), (3")

of this inverse image converges to z; as n — 0o. Hence there exists (¢)5°, such that I €

i_slup (¢?) the supremum

(B");l (cf) for each n and t} —,, z;. Thus, by continuity of . (Corollary 2), lim,, . ¢« (t}") =

0e(2), and ¢.(z;) > P, (otherwise ¢, < P, on an interval (¢, z;] for some o < z; by

continuity of ¢,, which contradicts Ineq. (70) of Corollary 2). Hence Ineq. (110) holds.
Plugging the definitions of ¢, and @, into (110), we have

By, |11t < 2] (i ot ) - Blt)| & € (a5, 2)] > 0.

n/—o00

Replace o;(t7,t;) with the left-hand side of Eq. (108), switch the positions of the integration
and the limit operators and then use Ineq. (109) to obtain

tj € (a;,2);

maxge(i,5) O (8) < 07 (t5)

> 0.

lim lim E |1 {t] < Zi] <WJ (t?l,t_(i’j) | Bjn(tj),tj,gn) — Bjn(t])> =

n’/—o0o0 n—oo

In the above integral, for any n and t_;, W; (ti, t_Gij) | Bf(tj), t;, B") is a uniformly bounded
and uniformly equicontinuous function of ¢;. Uniform boundedness follows from the com-
pactness of the prior supports of use values. Uniform equicontinuity follows from the fact
that, by Eq. (22), W, obeys Eq. (7), where for any k # j the virtual utility V}, and the resale
price p;; are uniformly equicontinuous in t;: Vj is so by Eq. (4); p,x is so because it obeys
Eq. (6), where the derivative of the increasing inverse function Vk_l is bounded from above

by 1/A > 0 (Lemma 2.b). Thus, in the sequence ( (¢, ")

e}

nzl):: L the diagonal subsequence

in which the superscripts of t?/ and BJ” coincide converges to the above double limit. Thus,

. n an 2N an t'e(a',Z');
limsupE | 1[t; < 2] (W (8 t-cg) | 57 (t;). 85, 57) = Br(gp)) |~ 7777 3 =0
n—00 maXgef; i} ﬁk (tk) < ﬁj (tj)

On the left-hand side, since a} —, a; and 2 —, z;, the part ¢; € (aj, zj) in the con-

ditioned event can be replaced by t; € (a},2}), and the entire conditioned event can be
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replaced by the pivotal event QF by Eqgs. (42) and (47). Since z; is a limit point of (¢7')7°,,
with V; ., continuous and V; ,,(z;) = z;, the indicator function 1 [t; < z;] can be replaced by

1 [t; < Vi.n(t")]. Hence we obtain Ineq. (50), and the lemma is proved.

E.9 Proof of Corollary 1

Suppose not, say b, > r is a consequential atom of 5;. By Theorem 2, no bidder other than j
has an atom at b,. Let (6,)p2; and ((ay, 2;), (@}, 2} )72;) be those specified in Lemma 7. For
any ¢ # j, define ¢ by Eq. (41). Since b, > r, lim,_, (bs — 6, — max;»; ¢') = 0; otherwise,
since the auction is first-price, bidder j with types in (a7, 2}') would deviate to a bid d} € B}
such that max;z; ¢ < dj < b, —d,. With I\ {j} finite, there exist an i € I\ {j} and an
infinite subsequence (n)32; along which ¢* = maxjc y\ ;) ¢j* for all k. As no one but j has
an atom at b,, Eq. (42) holds. Since lim,,_, (bx — 0,, — max;z; ') = 0, ¢'* < b, + 6, and
be + 0p, — " = O(dy, ). Furthermore, b, is consequential by hypothesis of the lemma. The

)

rest of the proof is identical to the proof of Theorem 2 starting from Eq. (42).

F Proof of Lemma 15

Let a serious bid b, be an inconsequential atom of 3*. By Lemma 13, there exists a bidder ¢
for whom b, is not an atom of 3. Since U)’_, B/ is dense in the space of serious bids due
to Eq. (24), there is a sequence (b")>°_, converging to b, with b/ € B!" for each m. Then
Egs. (52) and (53) imply that

Pr{s/(t;) > b.} = lim Pr{g"(¢;) > b"} = 1. (111)
To prove by contradiction, suppose b, is an atom of 3} for all k£ # i. Denote for any m

b = min{be B : 5" = b on some (z,z') C T; with z < 2},

by = inf{f;(#) - t; > 0}.
For each k # i and any m, denote

it = (B ()

2 = (B ) (0)
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[eS)
m=1"

Since g™ — B*, b —,, b and z is a limit point of (2}") Extracting a converging
subsequence and relabeling if necessary, assume that 2;* —,, 2 for each k # i. Note that
z, > 0 for each k # 4, as b, is an atom of [3;.

Note that b} is not an atom of 3. Otherwise, since b; > b, (Eq. (111)) and b, is an
atom of 3*,, b7 would be a consequential atom, contradicting Lemma 14. By the same token,
for any k # 4, the interval (b;, 00) contains no atom of ;.

Choose a j # i such that z; = maxy; z;. To derive a desired contradiction, we shall
prove that some types of bidder j that are supposed to bid below b at the m-equilibrium

would rather deviate to a slightly higher bid for large m.

m

Step 1: The price markup By definition of ;" and monotonicity of 3", there is a
sequence (t")°_, such that 5™(t") = b" for each m and ¢[* —,, 0. Then for all sufficiently
large m, 2" > 4"

Since z; = maxyy; 2, and 2z —,, 2 for all k # 7, for each m there exists €, > 0 such
that 27" — €, < 27" for each k ¢ {i, j} and €,, — 0. Thus, for each t_(; ;) € T"; ;) such that
tr < 2" — €, for each k ¢ {3, j}, if bidder ¢ wins with bid b]" (hence t; < 2} for all k # 1),

we have 27" > 7" (for all large m) and

®3)

Ve g () <t < 2" — €n < 25" = max Viym gm,

hence the resale price p;;ym gm (tzm, t—(i,j)) for j obeys Eq. (6). With the notation in (46),
Cm oam (ET ) =y m m .
p]ﬂ‘?bi Ne; (tz 7t—(Z,j)) Vj7Zj (max {tz ,klélﬁ’}j} Vk’zk (tk)}>

. m m . -1 .
Since 2" =, 2k, €n — 0, 7" —,, 0, and the functions Vk,z;" and x — V,m(v) are continuous,

m E [pjipmgm (67 t—j) | VE € {i,7} b, < 2" — €]

m—00

= E {v]j;j <maX {o, max Vk,zk(tk)}> ‘ Vi ¢ {i,j)}t, < zk} .

ké{i.j}

By Eq. (62) and the fact Vi zm —m Vi, for each k # i,

m—00

lim W; (b, ¢, 3™) =E {max {O,rilngk,zk(tk)}‘Vk #i:t, < zk} .
These two equations combined with Ineq. (71), which is due to z; = maxj; z; > 0, imply

m—00
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Since B™(t7") = b, W, (b, 7, 3™) > b by Lemma 6, the above inequality implies

lim (E [pjipmgm (67, ) | VE & {i,5} 1t < 20" — €] — b]") > 0.

m—00

Thus, there exists n € (0, z;/A) such that

lim (E [pjipmgm (7)) | VE & {5} 1t < 20" — €] — b") — 50 >0, (112)

m—00

with A the positive constant specified in Lemma 2.b.

Step 2: Construct a deviation for bidder j For any m, if ¥/,b € B!" then for each
k # i, neither bids are atom of 5", by Eq. (22). Thus, if in addition & > b then Eq. (77)
holds. Consequently, with f; > 0 on the compact T}, for all k,

[Vip,om (tr) — Vi gm ()] = O (Fk ((57”)/;;@ (b')> — F ((ﬁm)/;iup (b)>> :
Thus, there exists £ > 0 such that, for any m and any k # 1,

Pr{b < B7'(8) < ¥} < € = [V o — Vinnlloy < V111 (113)

sup

Since the limit b} of (") °_, is not an atom of the limit 5} of (5))~_,, and (b, 00) contains

no atom of the limit 5*; of (3™)"_ , by Lemma 24 there exists § € (0,7/2) for which

—1

lim (sup{¢;: () <" +0}) < nA, (114)
lim Pr{3k #i:0" < 3" (ty) <b"+0} < min {5,77,#_}. (115)
m—o0 maXger tk

For each m, let
bt = min{bEBm:b>Q’-‘+5},
= max {F(t;) : t; < 2"},

AUP () = U t;, ™) — Ui(, by, B™).

Step 3: Bidder j’s strict incentive to deviate For each m, by definition of ¢J', there
is a nondegenerate interval (z,27") such that 37"(t;) = ¢} for all t; € (z™,27"). Also note
ct < B7(2]") < b by monotonicity of 35", the definition of 27", and Eq. (22). Thus, since

bm —m b7, < b < b for all sufficiently large m. We shall derive the desired contradiction

by proving that for sufficiently large m some elements of (2™, 27") strictly prefer to deviate
from their m-equilibrium bid ¢]* to the bid b7". By continuity of AU (Lemma 5), it suffices

to show lim,, .., AU (25") > 0.
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Substep 3.a: The probability of winning Now that ' < b" for large m,

lim Pr{g/"(t;) > '} > hm Pr{p"(t;,) > 0"} =1

m—00

with the equality due to the definition of b;". Hence

lim Uj(c}", 85, ™) = hm EL;(t—; [ t;,6™)

for any ¢; € T; by Eq. (10). Thus, again by Eq. (10),

lim AU"(z;) = lim Pr {bm > mjxﬁk (tk)}ﬁ;n(zyl),

m—00 m—0o0
where

=m

Hj<;“>—E[V@(t_nb;azmm)—b;ﬂ Li(t_, | = 8™

b > (e | (16)
By definition of b; being inf{g!(¢) : t; > 0}, Pr{b; < G (t;) < b + 0} > 0. Consequently,

by definition of 0" as well as the fact that z;, > 0 for all k # 4,

lim Pr {b;” > maxﬁ,’;”(tk)} > Pr{b; < Br(t;) < bl +0} H Fi(z) > 0.
k#j

m—00
ke{i.j}

Thus, it suffices to show lim,, .. ﬁ;n(z;”) > 0.

Substep 3.b: The resale prices By (115), for any large enough m and any k # i,
B < B (t) < B 4S = Pr{bl < BR(6) < B7(0)} < € X Vi onom — Viarm] |, < mVI.

Thus, by (114) and the fact t;* —,, 0, we have for any sufficiently large m, any t_(; jy € T_ j
and any ¢; such that 0" < 8"(t;) < b+,

max {ti, max Vi gm(,),gm (tk)} — max {t;”, max Vj ym gm (tk)} > —2nA. (117)

k¢{i,j} : ke{i.j}
By Eq. (6), the two terms on the left-hand side of (117) can be inverted into j’s resale prices
via the inverses of his posterior virtual utility functions. Thus, with the derivatives of the

inverses bounded from above by 1/ (Lemma 2.b). Hence

Piigm.m (titg) = Piapmam (65t —) > =21 (118)

for any t_; ;) € T_; ) such that ¢, < 2 — e, for each k ¢ {7,j} and any ¢; such that
b < () < b + 6. The applicability of Eq. (6) to the resale price pj;pm gm (87, t_(ij)
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has been explained at Step 1, and its applicability to p;; gm ) sm (ti,t_(,-,j)), with £ (t;)
playing the role b;, is because for large m we have t; < 27* (5" < f"(t;) < b" + ¢ implies
via (114) that ¢; < n\ < 2! for large m) and, for each k ¢ {i,j},

Vigmypm(tr) <t < 250 — €6 < 27" = (ﬁm);slup (B") < (B™)aup (B (1)) -
Integrating (118) across the (¢;,t_(; ;)) quantified above, we have, for all large m,
E [pj,iﬂ;”(ti),,@m (tia t—(z‘,j)) | 6" < B (t:) < b;”;Vk i, ) [t < 2" — €mH
> E [pjigrpm (67 t-ap) | VEE {05} [t < 2 — €] — 20,
This combined with Ineq. (112) and 0 < 7/2 (which implies 7" < b; + 1 by the definition

of b"; then by b" —, bi we have b7* < b" + 7 for all large m) gives

im (E [pjiam),6m (b t-) | 07 < 87 (&) < b5 Vh & {i, 5} [ < 21" — €] = 0)')

> lim (B [pjappom (6 t-.5) | VE ¢ {05} [t < 2 = em]] = 20— & +m))
> bnp—2n—n = 2n. (119)
Substep 3.c: Bidder j’s opportunity cost of winning:
lim E |Lj;(t_; | ngyﬁm) bi* > I?gxﬁlgl(tﬁ
m—o0 L J
(115) l i . .
< im E [L;(t_; | 2", 3™)|b" > v(tk); bt > vt
< B Lyitg |27 67) b5 > mmax 5 (k) b krél{%}ﬁk(k)}Jrn
= M B\ Lyt | 27 57) b > max 57 (£:); VE & {6, 7} [be < 2" — em]} +1
= lmE (2] = pjaprceom (tistag) [ ] > B () Yk & {i, 5} [te < 2" — en]] +1
(119)
< lim (ij — b;") —n;

here the first equality is because the difference between the events b > maxy¢; ;3 B (k)
and Vk ¢ {i,5} [tk < 2" — €] vanishes as m — oo; the second equality is due to t; <
7t —em < 27 for all k ¢ {i,j} and t; < 2" for large m (due to Ineq. (114) and n < 2;).
Ineq. (115) also implies that for any k ¢ {i, j}

lim E [1 [ﬁ,’j(tk) > max ﬁzn(tz)] Ljp(t—; | 2", ™)

m—00

b > max i’ (t) | <.
Combining the two inequalities displayed above with Eq. (9), we have

i £ Lt | 57

m—00

bt > I}gl;?fﬁzn@k)} < lim (2" —=b7").

m—00 J
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Therefore, by Eq. (116) and the fact Wj(t_; | b7, 2J*, B™) > 27",

m—00 m—0o0 J

lim ﬁ;n(z;”) > lim (zm —b'—E [Lj(t—j | 2, ™)

by > rggfﬁ?(tk)D >0,

as desired.
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