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First-Price Auctions with Resale∗

Charles Z. Zheng†

May 26, 2014

Abstract

Existence of a monotone pure-strategy perfect Bayesian equilibrium is proved for a

multistage game of first-price auctions with interbidder resale, with any finite number

of ex ante different bidders. Endogenous gains at resale complicate the winner’s curse

and upset previous fixed-point methods to prove existence of monotone equilibria. This

paper restructures the fixed-point approach with respect to comparative statics of the

resale mechanisms strategically chosen after the auction. Despite speculation possibil-

ities and the discontinuity-inducing uniform tie-breaking rule, at our equilibrium any

bid that stands a chance to win is strictly increasing in the bidder’s use value.
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1 Introduction

Analyses of economic institutions are based on existence of equilibria of the underlying games.

Among them first-price auctions, widely used in practice, are of particular theoretical interest

because of a discontinuity problem, arising at tying bids, that may upset standard arguments

of equilibrium existence. To solve this discontinuity problem sophisticated methods based

on fixed-point theorems have been developed, one guaranteeing existence of monotone pure-

strategy equilibria due to Athey [1], McAdams [10], Reny and Zamir [16], and Reny [15], and

the other for mixed-strategy equilibria, augmented with endogenous tie-breaking rules, due

to Jackson, Simon, Swinkels and Zame [5].1 However, neither method has been applied to

dynamic games such as auctions with resale.2 With resale, foundational assumptions need to

be reexamined with respect to the continuation play at resale. For example, a main hurdle

for the fixed-point approach to monotone equilibria is the winner’s curse, which has been

handled in the literature by bounding it with sufficiently strong primitive assumptions. But

resale would endogenize the winner’s curse and renders it unbounded a priori, as a bidder

could magnify the winner’s curse for the rivals by acting as a high-bidding speculator so that

his rivals might want to lose now and buy the good at resale. This paper contributes to the

monotone pure-strategy fixed-point approach by restructuring it with respect to comparative

statics of resale thereby proving existence of a perfect Bayesian equilibrium, with strictly

increasing bid functions, for a two-stage game of a first-price auction with resale.

Let us start by looking into the main steps of the monotone fixed-point approach to

see how they may fail given resale possibilities. After that, the rest of the Introduction will

outline how these steps are replaced by new arguments based on analysis of resale.

The general idea of this fixed-point approach, dating back to the general equilibrium

literature,3 is to approximate the original economy by some sequence of finite economies

where equilibria exist and then prove that a limit point of the sequence of such approximation

equilibria is an equilibrium of the original one. For auctions, the main impediment to such

passing-to-limit arguments is a discontinuity problem caused by the possibility of ties. For

1 Kotowski [6] has a recent application of the fixed-point methods in auctions with budget constraints.
2 The conceptual awkwardness of the no-resale assumption has been noted by Zheng [19] and Hafalir and

Krishna [4]. The possibility of resource misallocation, which may occur at equilibrium in first-price auctions

among ex ante different bidders given the no-resale assumption, induces bidders to attempt resale.
3 For example, Werner [18] and Magill and Quinzii [9].
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instance, in a three-bidder case depicted by Figure 1, each bidder i plays an equilibrium

bidding strategy βm
i , a nondecreasing function from his type ti to a bid, in the approximation

auction game indexed by m; when the sequence (βm
1 , β

m
2 , β

m
3 )∞m=1 converges to its limit, a

nonvanishing mass of bids, submitted by bidder 1 of types in [a1, z1] and bidder 2 of types

in [a2, z2], are clustered within an interval collapsing into the point x (while bidder 3’s types

that bid within the cluster vanish into a point z3). The crucial stage of the fixed-point

approach is to demonstrate a contradiction to the approximation equilibria by arguing that

some types of at least one of the bidders, say some elements in [a2, z2], strictly prefer to

deviate from their βm
2 -bids within the cluster at x to a bid say x′ slightly above the cluster.

This no-tie argument, due to Athey [1] and now standard within the fixed-point literature,

0

0

a2 z2

a1 z1
t1

t2

bid

x

βm
1

βm
3

a3 z3
t3

βm
2

x′

Figure 1: A tying situation

can be summarized into two steps, illustrated here from bidder 2’s viewpoint:4

i. One needs to prove that, as bidder 2’s type increases from a2 to z2, his preference to

winning strictly increases and eventually, with sufficiently high types, he strictly prefers

to win conditional on the winning event that he can win with the βm
2 -bids within the

cluster at x, which roughly corresponds to the event “(t1, t3) ∈ [0, a1]× [0, z3]”.

ii. For the desired contradiction it suffices to show that the types obtained in the previous

step strictly prefer to deviate to x′ from their βm
2 -bids within the cluster at x. This

was done by proving that their expected net gains from winning cannot decrease when

4 The two steps correspond to Claims 1 and 2 in the Appendix of Athey [1].
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they consider only the event in which the deviation is pivotal, i.e., that bidder 2

cannot prefer less to win when the conditioned event moves from the winning event

“(t1, t3) ∈ [0, a1]× [0, z3]” up to the pivotal event “(t1, t3) ∈ [a1, z1]× [0, z3]”.

To see the troubles, consider an independent private values model where ti is bidder i’s

use value of the good for sale. Step (i) can fail because a bidder with high types, say the

elements of [a2, z2] in Figure 1, may eventually acquire and consume the good whether he

wins it now or buys it later at resale. Then the type t2 in bidder 2’s payoff as a winner is

canceled out by the t2 in his payoff as a loser, so his net gain from winning does not increase

in t2, and [a2, z2] need not contain a type that strictly prefers to win, contrary to Step (i).

To consider a case where Step (ii) is unsalvageable, suppose within this paragraph

that, in Figure 1, bidder 1’s bids within the cluster at x are above bidder 2’s within the

cluster, so that bidder 1 wins when they both bid in the cluster. Thus, the winning event for

bidder 2, when he bids within the cluster, corresponds to “(t1, t3) ∈ [0, a1] × [0, z3]”, while

the pivotal event for bidder 2’s deviation from the cluster to x′ corresponds to “(t1, t3) ∈
[a1, z1] × [0, z3]”. Athey’s Step (ii) would argue that bidder 2’s preference to win does not

decrease when the conditioned event moves from the winning event to the pivotal one. Given

resale, however, the opposite can be true. For instance, let the probability of [a3, z3] be so

large that, conditional on the winning event [0, a1]× [0, z3], if bidder 2 loses then with a large

probability he buys the good from the types [a3, z3] of bidder 3. By contrast, conditional on

the pivotal event [a1, z1]× [0, z3], if bidder 2 loses, he buys the good from bidder 1 with types

in [a1, z1]. Since [a3, z3] is higher than [a1, z1] in strong-set order, the resale price offered

to bidder 2, in expectation, is higher in the winning event (where bidder 3 is the reseller)

than in the pivotal event (where bidder 1 is the reseller). Thus, when the conditioned event

moves up to the pivotal one, bidder 2’s expected payoff from losing, or roughly speaking

the winner’s curse, becomes higher. On the other hand, bidder 2’s payoff from winning is

invariant to his rivals’ types because, from Figure 1, a2 > z3 > z1 and hence if he wins then

he will consume the good to obtain its use value t2. Consequently, when he takes into account

that his deviation is pivotal, bidder 2 prefers strictly less to win, contrary to Step (ii).

The fundamental reason why Athey’s no-tie argument does not work here is that a

monotonicity assumption in the literature may fail given resale. The assumption stipulates

that a bidder’s ex post net payoff from winning is nondecreasing in his rivals’ types (e.g.,

A.1.iii of Reny and Zamir). With resale, by contrast, a winner’s payoff may fail to be

4



nondecreasing in his rivals’ types because the optimal resale mechanism may resell the good

to a subsidized bidder who pays a lower price than someone else, so the winner’s ex post

resale revenue could decrease when a subsidized bidder’s type rises to buy the good from him

at resale. A loser’s payoff may fail to be nonincreasing because a loser’s gain from trading

with reseller j may be larger than that with reseller k. Thus, when j has a slightly higher

type to become the reseller instead of k, this bidder’s ex post payoff increases. Hence the ex

post net gain from winning may fail to be nondecreasing in the rivals’ types.

In addition to the no-tie argument, two other important conditions, which did not

appear difficult in the received literature, become problematic given resale. One is single

crossing, crucial to guarantee existence of the aforementioned approximation equilibria. The

other is payoff security, which is needed to deliver the passing-to-limit result in the literature.

The single-crossing condition says that if a bidder prefers a high bid to a low one then the

preference remains so when his type gets higher. The literature obtained this condition by

assuming it for every possible profile of realized types (e.g., A.1.iv of Reny and Zamir). With

resale, the assumption fails when an increase of a bidder’s type turns him from a speculator

to a consumer, with sufficiently high types of his rivals.5 The payoff-security condition says

that bidding slightly above an atom of the rivals’ bids does not make a bidder worse-off

than bidding at the atom. In the literature, verification of this condition is simply Step (ii),6

which as illustrated above can fail with resale.

This paper is devoted to overcoming these challenges that resale presents to the fixed-

point approach. To capture the endogenous nature of resale, we assume that the resale

mechanism is a reseller-optimal auction à la Myerson [13] based on post-auction beliefs.

Athey’s critical steps are restructured with respect to new comparative statics properties of

the Myerson resale auction, with initial bids or post-auction beliefs being the parameters.

The existence proof starts by establishing an increasing-difference theorem (Theo-

rem 1), which through its single-crossing implication ensures existence of the aforementioned

approximation equilibria. It is based on two comparative statics properties of the Myerson

resale mechanism (Propositions 1 and 2). Then comes the critical step, the no-tie argument,

5 While the higher bid brings about higher revenues for the speculator-type since he charges higher

resale prices due to the higher posterior about the willingness-to-pay of his clientele, the consumer-type,

who benefits from none of such revenue effect, strictly prefers the lower bid, which costs him less. This also

upsets a slightly weaker single-crossing assumption proposed by Quah and Strulovici [14, Th. 4(c), p28].
6 For example, the displayed formula (A.5) in Reny and Zamir [16].
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to prove that ties do not occur at a limit point of a sequence of such approximating equilibria

(Theorem 2). With its counterpart in the received literature hindered by resale, our no-tie

argument is complicated and relies on new properties of endogenous resale uncovered in this

paper. Then a passing-to-limit argument delivers the existence theorem (Theorem 3).

The first step of our no-tie argument is to prove that, if a tie at the limit occurs

then there exists a dominant bidder whose probability of winning the tie converges to one

(Lemma 8). In Figure 1, for instance, the infimum a1 of bidder 1’s types that bid within

the cluster at x is less than all elements of [a2, z2], bidder 2’s types bidding in the cluster.

Consequently, with types being use values of the good, conditional on the pivotal event

“(t2, t3) ∈ [a2, z2] × [0, z3]” of the bid increase from the cluster to x′, bidder 1 would have

zero gain from trading with the reseller player 2. I.e., bidder 1 would suffer zero winner’s

curse with the bid increase. On the other hand, the bid increase generates a revenue effect

by adding a mass of high types [a2, z2] to bidder 1’s clientele thereby increasing his expected

resale revenue by a positive amount (Lemma 9, due to a property of the optimal resale

mechanism proved in §A.2.1).7 Thus, bidder 1 with types nearby a1 would strictly prefer to

deviate unless within the cluster his bids are almost exclusively on the top layer so that he

mostly outbids the tying rivals. Hence bidder 1 is the dominant bidder.

To derive a contradiction from the supposed occurrence of a tie, our next step is to

prove that some bidder who is supposed to bid just below the dominant rival within the tying

cluster, such as bidder 2 in Figure 1, strictly prefers to deviate to a bid slightly above the

cluster. The proof, from §5.2.1 to §5.2.5, is nontrivial because the winner’s curse for bidder 2

is not negligible. Contrary to the case of bidder 1, even the infimum a2 of the atom-bidding

types of bidder 2 can gain from buying the good at resale from some atom-bidding types

of bidder 1, as a2 > a1. This nontrivial winner’s curse is handled in two substeps. First,

we prove that if [a2, z2] contains some sufficiently high types then for such types of bidder 2

the winner’s curse is more than outweighed by the “winner’s blessing” (payoff from winning

conditional on the pivotal event). Then he strictly prefers the deviation (§5.2.3, due to a

7 Note that the revenue effect is null in no-resale models. In other words, notwithstanding zero winner’s

curse, Athey’s no-tie argument still cannot be replicated to prove that bidder 1 strictly prefers the higher

bid. Even if her Step (i) works, so that bidder 1’s preference to win strictly increases in his type on [a1, z1]

conditional on his winning event, his preference may still be reversed when the conditioned event switches

to the pivotal event. That is because his ex post payoff from winning may fail to be nondecreasing in his

rivals’ types, as explained above regarding the monotonicity assumption.
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property of the optimal resale mechanism proved in §A.3). Second, in the other case, we

find some types in [a2, z2] for whom the winner’s curse is nearly balanced by the winner’s

blessing. This is done by deducing the viability of bidder 2’s deviation from the profitability

of bidder 1’s on-path action despite information asymmetry between them (§5.2.4).8 Then

the revenue effect of the deviation, as in the case for bidder 1 in the previous paragraph,

implies bidder 2’s strict incentive to deviate (§5.2.5), which delivers the no-tie theorem.

In the received literature, a no-tie theorem would have sufficed the passing-to-limit

argument, as the aforementioned payoff-security condition is implied by simply repeating

Step (ii) in Athey’s argument. Not so with resale, because as explained previously the

monotonicity assumption may fail. With the monotonicity assumption, Athey’s Step (ii) is

accomplished without relying on any equilibrium condition. Without this assumption, our

no-tie argument relies on the condition that the deviant bidder 2 is supposed to bid at the

cluster according to the approximation equilibria (so that the deviation to x′ in Figure 1

costs him only an infinitesimal increase of payment). But such an equilibrium condition is

not available when the payoff-security condition is being considered.

To avoid this problem I assume that the reserve price of the initial auction is zero.

Then the no-tie theorem implies that the approximation equilibria at the limit allow for only

inconsequential atoms, which stand no chance to win (Lemma 14). To complete the passing-

to-limit argument, therefore, it suffices to handle such atoms. Here complications can occur

when a bidder can change the inconsequentiality of an atom with a unilateral deviation,

which could cause discontinuity at the limit. This problem is solved by Lemma 15. Then

the existence proof is complete.

This existence theorem is more general than previous results in first-price auctions

with resale in that it allows for any finite number of differently distributed bidders while

the previous literature assumed either two bidders or at most two kinds of bidders ex ante,

with bidders of the same kind drawn from the same distribution. Notwithstanding some

remarkable results in this literature, such as Garratt and Tröger [2] in mixed strategies and

Hafalir and Krishna [4], Lebrun [7, 8] and Virág [17] in pure strategies, the two-distribution

8 The deduction, consisting of Lemmas 11 and 12, is based on two nontrivial facts. First, bidder 2 can

nearly mimic bidder 1’s optimal resale mechanism in the event of the tie, largely due to the fact that bidder 1

is the dominant rival. Second, the expected revenue produced by a fixed Myerson auction does not decrease

when the weight of a bidder’s type is pushed upward (Lemma 22, proved here despite the fact that the ex

post revenue generated by a Myerson auction need not be nondecreasing in a bidder’s type).
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assumption has been crucial to their differential equations method.

Nevertheless, the existence theorem is still restricted by the aforementioned assumption

of zero reserve price, as well as several other assumptions such as the privacy of a loser’s bid

in the initial auction, common infimum for bidders’ prior supports, and a reseller’s power to

choose resale mechanisms. These assumptions, however, are common in the current auction-

resale literature such as those cited above as well as Zheng [19] and Garratt, Tröger and

Zheng [3].9 Now that the existence proof has shown it feasible to extend the fixed-point

approach beyond its previous confines of no-resale single-stage models, investigations of its

further expansion, including dispensability of these assumptions, are at hand.

2 The Model

2.1 The Auction-Resale Game

There are two periods, a finite set I of bidders, and an indivisible good. For each i ∈ I,

bidder i’s type, or use value of the good, is independently drawn from a commonly known

distribution Fi, with the realized value privately known to i. In period one, every bidder i

submits as his bid an element of {l} ∪ Bi, where l < 0 denotes the losing bid , amounting

to nonparticipation in the period-one auction, and Bi ⊆ [r,∞) is the set of serious bids

admissible for bidder i, with reserve price r ≥ 0 for all bidders. Ties are broken randomly and

uniformly with equal probabilities. If the good is sold then, after the winner is selected, the

highest bid and the winner’s identity are announced publicly, with nothing else disclosed,10

and the winner pays for the good at the price equal to his winning bid. Then period two

starts and the period-one winner chooses a selling mechanism that offers resale to the other

bidders in I, called losing bidders . A selling mechanism is any game form to be played by

the losing bidders. After the players have acted given this mechanism, the entire game ends.

Every bidder is assumed risk-neutral in his payoff, defined to be his use value, if he is the

final owner of the good, plus the net monetary transfer he receives from others. Discounting

9 Zheng [19] did not assume common infimum of the priors but made some other assumptions. Hafalir

and Krishna [4] and Lebrun [7, 8] considered some other disclosure policies and weaker bargaining power of

the reseller based on the two-distribution assumption and take-it-or-leave offers as the resale mechanism.
10 If the action of a losing bidder is also disclosed, pure-strategy equilibrium is unlikely to exist unless the

loser gets to choose the resale mechanism.
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is assumed away for simplicity.

Assume for every bidder i the prior Fi has differentiable and strictly positive density fi

on its support Ti :=
[
0, ti
]
, with prior virtual utility ti − (1 − Fi(ti))/fi(ti) having strictly

positive derivative with respect to ti on Ti. Denote T−i := Πk∈I\{i}Tk and T := Πk∈ITk.
11

A profile (βi)i∈I of bid functions, with βi : Ti → {l}∪Bi for each i ∈ I, is said monotone

if and only if βi is a weakly increasing function for each i ∈ I, i.e., everyone’s period-one bid

is weakly increasing in his use value of the good.

2.2 Boldfaced Symbols for Random Variables

Denote bidder i’s type by ti as the random variable and ti as the realized value. Denote

t−i := (tk)k∈I\{i} and t−i := (tk)k∈I\{i} as the random vector and the realization for the type

profile across rivals of i. Analogously, denote t := (ti, t−i) := (tk)k∈I , t := (ti, t−i) := (tk)k∈I ,

t−(i,j) := (tk)k∈I\{i,j} and t−(i,j) := (tk)k∈I\{i,j}. Denote E[g(x)] for the expected value of any

function g of the random variable or random vector x, with the random variable/vector bold-

faced, based on the prior distributions. Denote E[g(x) |E] for the expected value conditional

on event E, 1[E] for the indicator function of event E, and Pr{E} := E [1[E]].

3 The Endogenous Payoff Functions

We shall derive a bidder’s expected payoff in the auction-resale game from a continuation

equilibrium at the resale stage, which implements a reseller-optimal auction à la Myerson [13].

3.1 Continuation Equilibrium at Resale

3.1.1 Atoms and Inverse Images of Bids

If βi : Ti → R is a weakly increasing function, denote for any b ≥ βi(0)

β−1
i (b) := {ti ∈ Ti : βi(ti) = b},

β−1
i,inf(b) := sup{ti ∈ Ti : βi(ti) < b}, (1)

β−1
i,sup(b) := sup{ti ∈ Ti : βi(ti) ≤ b}. (2)

11 The assumption that bidders have a common infimum of their prior supports is used in Lemmas 15

and 23. The positive-derivative assumption of prior virtual utilities is slightly stronger than the usual one

that requires only strict monotonicity. The strengthening is needed in Lemmas 12 and 15.
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We adopt the convention of letting supS := inf S := 0 when a subset S of Ti is empty. Note

that if β−1
i (b) 6= ∅ then β−1

i,inf(b) = inf β−1
i (b) and β−1

i,sup(b) = sup β−1
i (b).

For any bidder i, an atom of βi means a bid b ∈ Bi such that β−1
i (b) is a nondegenerate

interval, i.e., β−1
i,inf(b) < β−1

i,sup(b). An atom of β−i, with β−i := (βj)j 6=i, means an atom of βj

for some j ∈ I \ {i}. Likewise, an atom of β := (βj)j∈I means an atom of βj for some j ∈ I.

3.1.2 Public Histories and Posterior Beliefs

If bidder i wins with bid bi in period one (so bi > l, i.e., bi ∈ Bi) then (i, bi) denotes the

commonly known public history . Given any public history (i, bi), with every losing bidder k

(k 6= i) having played according to βk, the posterior distribution Fk(· | i, bi, β) of tk is

derived from Bayes’s rule based on the observation that k has been defeated either because

βk(tk) < bi or because βk(tk) = bi and k did not win the tie-breaking lottery.

Lemma 1 For any public history (i, bi), any monotone profile β, and any k 6= i, the density

fk(· | i, bi, β) of Fk(· | i, bi, β) is finite and strictly positive on its support
[
0, β−1

k,sup(bi)
]
;

if bi is not an atom of βk then fk(· | i, bi, β) is continuous on this posterior support; else

fk(· | i, bi, β) is continuous at all but one point in the posterior support.

Proof Appendix C.

3.1.3 Posterior Virtual Utilities

For each losing bidder k ∈ I \ {i} in public history (i, bi), define Vk,bi,β : Tk → R by

Vk,bi,β(tk) := Vk(tk | bi, β) :=

 tk − 1−Fk(tk|i,bi,β)
fk(tk|i,bi,β)

if tk ≤ β−1
k,sup(bi)

β−1
k,sup(bi) if tk ≥ β−1

k,sup(bi),
(3)

and define the posterior virtual utility function for losing bidder k 6= i to be either Vk,bi,β if bi

is not an atom of βk, or the ironed version of Vk,bi,β according to Myerson’s [13] procedure

if bi is an atom of βk. By the previous and the next lemmas, Vk,bi,β fails to be monotone

and hence ironing is needed precisely when the winning bid bi is an atom of βk. Denote k’s

posterior virtual utility by V k,i,bi,β(tk) or V k(tk | i, bi, β).12

12 When the winning bid bi is an atom of βk, the posterior distribution of tk depends on i by Eq. (75).

Hence the notation i for the winner in the ironed posterior virtual utility function V k,i,bi,β cannot be dropped.
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Lemma 2 There exists λ > 0 such that, for any public history (i, bi), any monotone profile

β, and any k 6= i, if bi is not an atom of βk, then:

a. for any tk ∈ Tk, V k,i,bi,β(tk) = Vk,bi,β(tk) and, if ti ∈
[
0, β−1

k,sup(bi)
]
,

Vk,bi,β(tk) = tk −
Fk

(
β−1

k,sup(bi)
)
− Fk(tk)

fk(tk)
; (4)

b. Vk,bi,β is strictly increasing on
[
0, β−1

k,sup(bi)
]
, at a rate greater than or equal to λ, and

is constant on
[
β−1

k,sup(bi), tk
]
;

c. if b′i > bi and b′i is not an atom of βk, then Vk,bi,β ≥ Vk,b′i,β
on
[
0, β−1

k,sup(bi)
]
;

d. Vk,bi,β is continuous on Tk;

Proof Appendix C.

3.1.4 Resale Mechanisms

Given any public history (i, bi), by Lemma 1, Myerson’s [13] characterization of optimal

auctions is applicable to the auction-design problem for our reseller i.13 Thus, the mechanism

Mi(bi, ti, β) defined below is optimal for the bidder-turned reseller i with type ti ∈ Ti:

a. each losing bidder k 6= i independently submits a report, say tk, of his type;

b. for any t−i ∈ T−i, i resells the good to a bidder k 6= i such that

V k(tk | i, bi, β) = max

{
ti,max

j 6=i
V j(tj | i, bi, β)

}
;

if there are more than one such bidders then i picks one of them through an equal-

probability lottery; if no such k exists then i keeps the good;

c. for any k 6= i, if bidder k is resold the good then the payment k delivers to i equals

pk,i,bi,β(t−k) := inf

{
t′k ∈ Tk : V k,i,bi,β(t′k) ≥ max

{
ti, max

j∈I\{i,k}
V j,i,bi,β(tj)

}}
; (5)

if k is not resold the good then k pays zero to i.

13 Myerson [13] assumed continuous density throughout a bidder’s support while our posterior density

may be discontinuous at one point (Lemma 1). But this difference does not affect Myerson’s result. Also

see Footnote 9 of Garratt, Tröger and Zheng [3] for an explanation why Myerson’s result is applicable here

despite the possibility that the reseller may be privately informed of her type.
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Following directly from Myerson’s result, we have—

Lemma 3 For any public history (i, bi), any ti ∈ Ti and any monotone profile β, if the

posterior belief of tj is Fj(· | i, bi, β) for each j 6= i, then it is a continuation equilibrium for

player i to choose Mi(bi, ti, β) and everyone else to participate and be truthful.

For any public history (i, bi), if bi is not an atom of β−i, then Lemma 2 implies that, for

any losing bidder k 6= i, the posterior virtual utility function V k,i,bi,β is equal to the strictly

increasing function Vk,bi,β on the posterior support
[
0, β−1

k,sup(bi)
]

of tk, hence for any t−k such

that bidder k of type tk wins in Mi(bi, ti, β) (i.e., max
{
ti,maxj∈I\{i,k} Vj,bi,β(tj)

}
≤ β−1

k,sup(bi)),

Eq. (5) is simplified to, with V −1
k,bi,β

denoting the inverse function of Vk,bi,β,

pk,i,bi,β(t−k) = V −1
k,bi,β

(
max

{
ti, max

j∈I\{i,k}
Vj,bi,β(tj)

})
. (6)

3.2 The Payoff from the Auction

3.2.1 The Indicator Function for Winning

The uniform tie-breaking rule corresponds to a random vector (ρi)i∈I subject to two condi-

tions: (i) for any realization (ρi)i∈I , ρi ∈ {1, . . . , |I|} for any i ∈ I, and ρi 6= ρj for any i 6= j;

and (ii) any such realization has the same probability. The interpretation is that if ρi > ρj

then bidder i beats j in the coin toss when their bids are tied.

For any realization (ρk)k∈I of the uniform tie-breaking lottery, any i ∈ I, any J ⊆ I\{i},
and any profile (bk)k∈J∪{i} of bids across bidders in J ∪ {i}, write

(i, bi) �(ρk)k∈I
(bk)k∈J , or briefly (i, bi) � (bk)k∈J ,

if and only if

bi ∈ Bi and

[
bi > max

k∈J
bk or

[
bi = max

k∈J
bk and ∀k ∈ arg max

j∈J
bj : ρi > ρk

]]
.

And write (i, bi) 6� (bk)k∈J if and only if (i, bi) � (bk)k∈J is not true.

For example, 1
[
(i, bi) � (βk(tk))k∈I\{i}

]
is the indicator function for the event that

bidder i wins, possibly after tie-breaking, with bids bi from i and βk(tk) from each rival k.

12



3.2.2 Ex Post Payoff for a Winner

For any public history (i, bi) and any (ti, t−i) ∈ Ti × T−i, define Wi(t−i | bi, ti, β) to be the

payoff for player i when i wins at the initial auction with bid bi and offers resale via the

Myerson auction Mi(bi, ti, β) according to the continuation equilibrium specified in Lemma 3,

when rivals of i abide by the monotone profile β−i in period one and the profile of realized

types across other players happens to be t−i. That bidder i wins with bid bi implies bi ∈ Bi.

For the case bi /∈ Bi, i.e., bi = l, define Wi(t−i | l, ti, β) := 0.

If a serious bid bi (i.e., bi ∈ Bi) is not an atom of β−i, one can derive from Lemmas 2

and 3 that, for all t−i ∈
∏

k 6=i

[
0, β−1

k,sup(bi)
]

except a set of measure zero and for any ti ∈ Ti,

Wi(t−i | bi, ti, β) = ti1

[
ti > max

k 6=i
Vk(tk | bi, β)

]
(7)

+
∑
j 6=i

pj,i,bi,β(t−j)1

[
Vj(tj | bi, β) > max

{
ti, max

k/∈{i,j}
Vk(tk | bi, β)

}]
.

3.2.3 Ex Post Payoff for a Losing Bidder

For any distinct bidders i 6= j and any (ti, t−i) = (ti, tj, t−(i,j)) ∈ Ti × Tj × T−(i,j) such

that βj(tj) ∈ Bj and βj(tj) ≥ βk(tk) for all k ∈ I \ {i, j}, define Lij(t−i | ti, β) to be the

payoff for player i when bidder j wins at the initial auction with bid βj(tj) and offers resale

via mechanism Mj (βj(tj), tj, β) according to the continuation equilibrium, when everyone is

supposed by other players to abide by the monotone profile β in period one and the profile

of realized types across bidders happens to be (ti, tj, t−(i,j)).

Note that Lij(t−i | ti, β) is invariant to i’s period-one bid bi, due to the fact that

reseller j in choosing resale mechanisms does not know the bids from the losing bidders.

If βj(tj) is not an atom of β−j then, as in the previous case for Wi, for any i 6= j, for

all t−(i,j) ∈
∏

k/∈{i,j}
[
0, β−1

k,sup(βj(tj))
]

but a set of measure zero, and for any ti ∈ Ti,

Lij(t−i | ti, β) =
(
ti − pi,j,βj(tj),β(t−i)

)
1

[
Vi,βj(tj),β(ti) > max

{
tj, max

k/∈{i,j}
Vk,βj(tj),β(ti)

}]
. (8)

Before the auction outcome is announced in period one, bidder i does not know who

is the winner, but he knows that, at any realized type profile t ∈ T , if he loses the auction

then the winner is selected from I \ {i} with each rival k ∈ I \ {i} bidding βk(tk). Thus, i’s

ex post payoff from losing, given any realized type profile (ti, t−i) ∈ T , is equal to

Li(t−i | ti, β) :=
∑
j 6=i

Pr
{

(j, βj(tj)) � (βk(tk))k∈I\{i,j}

}
Lij(t−i | ti, β). (9)
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3.2.4 Interim Expected Payoff

Denote Ui(bi, ti, β) for type-ti bidder i’s expected payoff in the entire game from bidding bi

in period one followed by the continuation equilibrium specified by Lemma 3, provided that

everyone else abides by the monotone profile β at period one. Thus,

Ui(bi, ti, β) = E
[
1
[
(i, bi) � (βk(tk))k∈I\{i}

]
(Wi(t−i | bi, ti, β)− bi − Li(t−i | ti, β))

]
+E [Li(t−i | ti, β)] , (10)

where the boldfaced letters inside the expectation operator E denote the random variables.

Since Wi and Li are derived from the continuation equilibrium at resale, we obtain a

perfect Bayesian equilibrium if the period-one bid functions best reply one another:

Lemma 4 If a monotone profile (βi)i∈I of period-one bid functions constitutes a Nash equi-

librium, across almost all bidder-types, with respect to the interim expected payoff functions

(Ui(·, ·, β))i∈I given by Eq. (10), then (βi)i∈I coupled with the continuation play characterized

in Lemma 3 constitutes a perfect Bayesian equilibrium of the auction-resale game.

4 Increasing Difference

Based on comparative statics of the continuation equilibrium, the first theorem says that the

difference in a bidder’s expected payoff due to an increase in his period-one bid is weakly

increasing in his type, provided that ties occur with zero probability, i.e.,

∀i ∈ I : ∀j ∈ I \ {i} : ∀bi ∈ Bi : bi is not an atom of βj. (11)

Theorem 1 (increasing difference) For any bidder i, any monotone profile β of bid func-

tions satisfying Eq. (11), and any b′i, b
′′
i ∈ Bi∪{l} such that b′′i > b′i, Ui(b

′′
i , ti, β)−Ui(b

′
i, ti, β)

is a weakly increasing function of ti throughout Ti.

This property is due to a relationship between period-one bids and the final alloca-

tion after resale (Propositions 1 and 2), which say that higher period-one bids imply higher

probabilities of being the final owner of the good. This relationship implies the increasing

difference property through the payoff-equivalence routine in mechanism design. With no-

tations and lemmas introduced in §4.1–§4.3, the proof of the theorem is completed in §4.4.

Eq. (11) is needed to ensure that the posterior virtual utility functions are well-behaved.
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4.1 Final Allocations

For any bidder i, any monotone profile β of bid functions, and any t := (tk)k∈I ∈ T , define:

• Qi(bi, t, β) to be the probability with which i is the final owner in the continuation

equilibrium (Lemma 3) conditional on the public history (i, bi), when bi ∈ Bi and the

realized type profile is t (if bi /∈ Bi, i.e., bi = l, then define Qi(bi, t, β) := 0);

• qij(t, β) to be the probability with which i is the final owner in the continuation equi-

librium (Lemma 3) conditional on the public history (j, βj(tj)), when βj(tj) ∈ Bj and

the realized type profile is t (if βj(tj) = l then define qij(t, β) := 0);

• qi(t, β) to be the probability with which i is the final owner when some rival of i wins

the period-one auction and offers resale according to the continuation equilibrium, i.e.,

qi(t, β) =
∑
j 6=i

Pr
{

(j, βj(tj)) � (βk(tk))k∈I\{i,j}

}
qij(t, β). (12)

If bi ∈ Bi is not an atom of β−i, then one can derive from Lemmas 2 (Claims a and b)

and 3 that, for all t−i ∈
∏

k 6=i

[
0, β−1

k,sup(bi)
]

but a set of measure zero and for any ti ∈ Ti,

Qi(bi, t, β) = 1

[
ti ≥ max

k∈I\{i}
Vk(tk | bi, β)

]
. (13)

Analogously, for any tj ∈ Tj with βj(tj) ∈ Bj, if βj(tj) is not an atom of β−j then for any

i 6= j, for all t−(i,j) ∈
∏

k/∈{i,j}
[
0, β−1

k,sup(βj(tj))
]

but a set of measure zero and for any ti ∈ Ti,

qij(t, β) = 1

[
Vi(ti | βj(tj), β) ≥ max

{
tj, max

k∈I\{i,j}
Vk(tk | βj(tj), β)

}]
. (14)

4.2 The Envelope Condition

For any bidder i, define (with boldfaced letters denoting random variables):

W i(bi, ti, β) := E
[
Wi(t−i | bi, ti, β) | (i, bi) � (βj(tj))j∈I\{i}

]
, (15)

Li(bi, ti, β) := E
[
Li(t−i | ti, β) | (i, bi) 6� (βj(tj))j∈I\{i}

]
, (16)

Qi(bi, t, β) := E
[
Qi(bi, ti, t−i, β) | (i, bi) � (βj(tj))j∈I\{i}

]
, (17)

qi(bi, ti, β) := E
[
qi(ti, t−i, β) | (i, bi) 6� (βj(tj))j∈I\{i}

]
. (18)

The next lemma follows from the Milgrom-Segal envelope theorem [11].
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Lemma 5 For any i ∈ I, any bi ∈ Bi ∪ {l}, and any monotone profile β, the functions

W i(bi, ·, β) and Li(bi, ·, β) are absolutely continuous and, for any ti ∈ Ti,

W i(bi, ti, β) = W i(bi, 0, β) +

∫ ti

0

Qi(bi, τi, β)dτi, (19)

Li(bi, ti, β) =

∫ ti

0

qi(bi, τi, β)dτi. (20)

Proof Appendix D.

4.3 Initial Bids and the Final Allocation

The comparative statics in Propositions 1 and 2 are about ex post probabilities conditional on

the profile of realized types across all bidders, not to be confused with expected probabilities.

Proposition 1 For any i ∈ I and any monotone profile β satisfying Eq. (11), if b′′i > b′i

then Qi(b
′′
i , t, β) ≥ Qi(b

′
i, t, β) for any ti ∈ Ti and almost every t−i ∈

∏
k 6=i

[
0, β−1

k,sup(b
′
i)
]
.

Proof Appendix D.

Propositions 1 says that if a bidder wins the initial auction then his probability of

eventually keeping the good cannot be lower had he submitted any higher bid. The intuition

is that a higher winning bid would make the winner think more highly about the losing

bidders’ willingness to pay and hence set higher reserve prices. Consequently, given the

same realized types, his mechanism results in no resale with a higher probability.

Proposition 2 For any bidders i 6= j and any monotone profile β satisfying Eq. (11),

Qi(bi, t, β) ≥ qi(t, β) for any ti ∈ Ti and almost every t−i ∈ T−i such that bi ≥ maxk 6=i βk(tk).
14

Proof Appendix D.

Proposition 2 says that a bidder is more likely to become the final owner of the good

when he is the reseller than when he is a potential buyer at resale. This is similar to an

elementary economics fact that a monopolist who cannot perfectly discriminate its potential

buyers would under-supply its goods. The monopolist at resale, our reseller would not resell

the good without a price markup above her own use value, while potential buyers are willing

to pay for it at any price not exceeding their use values.

14 Proposition 2 extends Lemma 1 of Garratt, Tröger and Zheng [3] to the ex post perspective.
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4.4 Proof of Theorem 1

By Eqs. (10), (15) and (16),

Ui(bi, ti, β) = E [1 [bi � t−i]]
(
W i(bi, ti, β)− bi

)
+ E [1 [bi 6� t−i]]Li(bi, ti, β), (21)

where bi � t−i is a shorthand for i’s winning event (i, bi) � (βk(tk))k∈I\{i}, and bi 6� t−i its

complement. For any b′′i > b′i, let ∆Ui(ti) := Ui(b
′′
i , ti, β)− Ui(b

′
i, ti, β). By Eq. (21),

∆Ui(ti) = E [1 [b′′i � t−i]]
(
W i(b

′′
i , ti, β)− b′′i

)
− E [1 [b′i � t−i]]

(
W i(b

′
i, ti, β)− b′i

)
+E [1 [b′′i 6� t−i]]Li(b

′′
i , ti, β)− E [1 [b′i 6� t−i]]Li(b

′
i, ti, β).

Differentiate this equation with respect to ti and then plug into the right-hand side the

envelope equations (19) and (20) and the equations (17) and (18) for Q and q to obtain

∂

∂ti
∆Ui(ti) = E [1 [b′′i � t−i]Qi(b

′′
i , ti, t−i, β)− 1 [b′i � t−i]Qi(b

′
i, ti, t−i, β)]

+E [1 [b′′i 6� t−i] qi(ti, t−i, β)− 1 [b′i 6� t−i] qi(ti, t−i, β)] .

The right-hand side, after rearrangements, with notation β suppressed, is equal to

E [1 [b′i � t−i] (Qi(b
′′
i , ti, t−i)−Qi(b

′
i, ti, t−i))]︸ ︷︷ ︸

=:X

+ E [1 [b′i 6� t−i, b
′′
i � t−i] (Qi(b

′′
i , ti, t−i)− qi(ti, t−i))]︸ ︷︷ ︸

=:Y

.

For any t−i at which the indicator function inside the integralX is nonzero, b′i ≥ maxj 6=i βj(tj)

and hence Proposition 1 applies; for any t−i at which the indicator inside Y is nonzero,

b′′i ≥ maxj 6=i βj(tj) and hence Proposition 2 applies. Thus, both X and Y are nonnegative.

Hence ∂
∂ti

∆Ui(ti) ≥ 0 for any ti interior to Ti. This, coupled with the fact that ∆Ui(ti) is

absolutely continuous in ti (since Ui by Eq. (21) is a linear combination of W i and Li, each

absolutely continuous in ti by Lemma 5), implies the monotonicity of ∆Ui. �

5 Equilibria of the Approximation Games

Based on Theorem 1, if the bid spaces in the initial auction are replaced by some discrete

spaces, a monotone equilibrium exists. To obtain equilibrium in the original game, we shall

prove that the equilibrium property of such approximation equilibria is passed onto the limit

when the discrete bid spaces converge to the original one. A critical step of the proof is to

show that ties occur with zero probability at the limit (Theorem 2). As explained in the

Introduction, our no-tie argument is significantly different from that in the literature.
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5.1 The Approximation Games

For any m = 1, 2, . . ., define an m-approximation game by replacing for any bidder i the

space Bi of serious bids with a discrete set Bm
i such that

i 6= j =⇒ Bm
i ∩Bm

j = ∅, (22)

m < m′ =⇒ Bm
i ⊆ Bm′

i , (23)

min {|bi − b′i| : bi, b′i ∈ Bm
i ; bi 6= b′i} = 2−m, (24)

limm→∞ minBm
i = r, limm→∞ supBm

i = ∞.

The main condition is Eq. (22), devised by Reny and Zamir [16] because their single-crossing

condition, like our increasing-difference theorem, applies only to non-atom bids.15 The con-

dition ensures that, in any m-approximation game, a bidder’s serious bid is never an atom

of a rival’s bid function. Consequently, a bidder’s winning event is simplified:

(i, bi) � (βk(tk))k∈I\{i} ⇐⇒ bi > max
j 6=i

βj(tj). (25)

Another consequence is that the posterior virtual utility functions are simplified to Eq. (4)

due to Lemma 2.a. More importantly, Theorem 1 applies, so Ui(bi, ti, β) has the increasing

difference property in any m-approximation game.

For any m = 1, 2, . . . ,, a profile (βm
i )i∈I of functions βm

i : Ti → {l} ∪ Bm
i is an m-

equilibrium if and only if, for any bidder i and any ti ∈ Ti,

∀bmi ∈ Bm
i ∪ {l} : Ui(β

m
i (ti), ti, β

m) ≥ Ui(b
m
i , ti, β

m). (26)

If, in addition, βm
i is weakly increasing for every i, then the m-equilibrium is said mono-

tone. The next proposition follows from Kakutani’s fixed point theorem applied to each

m-approximation game based on the single-crossing property implied by Theorem 1. The

proof is the same as Athey’s [1, Theorem 1] and hence omitted.

Proposition 3 For any m = 1, 2, . . ., there exists a monotone m-equilibrium.

15 Not needed here is the other perturbation devised by Athey [1] and adopted by Reny and Zamir, that a

bidder has to submit the losing bid l when his type belongs to [0, 1/m). They need the perturbation to ensure

a revealed-preference result. It would be redundant in this paper because our revealed-preference result is

ensured by an upcoming notion of consequentiality, which is needed anyway for our no-tie argument.
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By revealed preference, at any m-equilibrium a bidder never bids more than his ex-

pected payoff as a winner if he stands a positive probability of winning:

Lemma 6 For any m = 1, 2, . . ., if (βm
i )i∈I is an m-equilibrium then for any i ∈ I and any

ti ∈ Ti such that Pr {βm
i (ti) > maxk 6=i β

m
k (tk)} > 0, we have W i (β

m
i (ti), ti, β

m)−βm
i (ti) ≥ 0.

Proof Applying Ineq. (26) to the case bmi = l and using Eqs. (10) and (25), we have

Pr

{
βm

i (ti) > max
k 6=i

βm
k (tk)

}(
W i (β

m
i (ti), ti, β

m)− βm
i (ti)− Li (β

m
i (ti), ti, β

m)
)
≥ 0.

By the hypothesis Pr {βm
i (ti) > maxk 6=i β

m
k (tk)} > 0, the term in the bracket “(· · · )” is

nonnegative. Then the conclusion of the lemma follows from Li (β
m
i (ti), ti, β

m) ≥ 0, which

is true because i can choose not to participate in the resale mechanism.

5.2 Impossibility of Ties at the Limit

Given a monotone profile β of bid functions, call a serious bid b∗ consequential if Pr{βk(tk) ≤
b∗} > 0 for every bidder k ∈ I, and inconsequential if otherwise. A tie of β means a serious

bid that is an atom for at least two distinct bidders according to their bid functions in β.

Theorem 2 (no tie) If a sequence (βm)∞m=1 of monotone m-equilibria converges pointwise

almost everywhere to a monotone profile β∗, then β∗ admits no consequential tie.

To prove Theorem 2, suppose to the contrary that β∗ admits a consequential tie b∗.

We shall derive a contradiction to the equilibrium property of the sequence (βm)∞m=1. As

a preliminary, the next lemma provides a minute picture of the clusters of rivaling bids

collapsing to the atom b∗ as m→∞.

Lemma 7 If a sequence (βm)∞m=1 of monotone profiles converges pointwise a.e. to a mono-

tone profile β∗ and if J is the set of bidders such that a serious bid b∗ is an atom of β∗j for

all j ∈ J , then there exist subsequence (βmn)∞n=1 and sequence (δn)∞n=1 → 0 such that, with

ai := sup {ti ∈ Ti : β∗i (ti) < b∗} ,

zi := sup {ti ∈ Ti : β∗i (ti) ≤ b∗} , (27)

an
i := inf {ti ∈ Ti : βmn

i (ti) > b∗ − δn} , (28)

zn
i := sup {ti ∈ Ti : βmn

i (ti) < b∗ + δn} (29)
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for each i, we have:

∀i ∈ J : ∀ti ∈ (an
i , z

n
i ) : b∗ − δn < βmn

i (ti) < b∗ + δn, (30)

∀i ∈ J : limn→∞ Pr {ti ∈ Ti \ (an
i , z

n
i ) : b∗ + δn ≤ βmn

i (ti) ≤ b∗ + δn + 2−mn} = 0, (31)

∀i ∈ I : ai = limn→∞ an
i , zi = limn→∞ zn

i , (32)

∀k /∈ J : limn→∞ Pr {tk ∈ Tk : b∗ − δn ≤ βmn
k (tk) ≤ b∗ + δn + 2−mn} = 0. (33)

Proof Appendix E.1.

With the (δn)∞n=1 in Lemma 7, the collapsing interval (b∗ − δn, b∗ + δn) is the range

of the βmn-bids for those types of bidder i in (an
i , z

n
i ), says Ineq. (30). Along the subse-

quence (βmn)∞n=1, Eq. (31) says that the probability with which the types outside (an
i , z

n
i )

would bid within (b∗ − δn, b∗ + δn) vanishes, Eq. (32) says that (an
i , z

n
i ) converges to (ai, zi),

and Eq. (33) says that if β∗k has no atom at b∗ then the probability with which player k bids

in (b∗ − δn, b
n
i ), with bni being any bidder i’s lowest grid point above b∗ + δn, goes to zero.

Given the subsequence (βmn)∞n=1 identified in Lemma 7, for each n denote

β̄n := βmn .

By Eq. (33) and the consequentiality of b∗, we have

∀k /∈ J : lim
n→∞

Pr
{
β̄n

k (tk) < b∗ − δn
}
> 0. (34)

For any n ∈ {1, 2, . . .}, any i, any tni ∈ Ti and any bids bni and cni in Bmn
i with bni > cni ,

the expected-payoff difference for a type-tni bidder i caused by his bid increase from cni to bni

in the mn-equilibrium βmn is

∆Un
i (tni ) := Ui(b

n
i , t

n
i , β̄

n)− Ui(c
n
i , t

n
i , β̄

n). (35)

To prove Theorem 2 by contradiction, it suffices to find a bidder i and a sequence (tni , c
n
i , b

n
i )∞n=1

such that lim supn ∆Un
i (tni ) > 0 and, for any sufficiently large n, the β̄n

i -inverse-image of cni

is nondegenerate and contains tni . Then for all sufficiently large n, ∆Un
i (tni ) > 0 and,

with ∆Un
i (·) continuous (Lemma 5), the strict inequality extends to a neighborhood of tni ,

which contradicts the fact that β̄n constitutes an mn-equilibrium.

To this end, decompose ∆Un
i (tni ) into three parts (proved in Appendix E.2):

∆Un
i (tni ) = ∆W n

i (tni )−∆bn + ∆Πn
i (tni ), (36)
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where

∆W n
i (tni ) := Pr

{
bni > max

k 6=i
β̄n

k (tk)

}(
W i(b

n
i , t

n
i , β̄

n)−W i(c
n
i , t

n
i , β̄

n)
)
, (37)

∆bn := (bni − cni ) Pr

{
bni > max

k 6=i
β̄n

k (tk)

}
,

∆Πn
i (tni ) := Pr

{
bni > max

k 6=i
β̄n

k (tk) > cni

}(
W i(c

n
i , t

n
i , β̄

n)− cni − L
n

i (tni )
)
, (38)

L
n

i (tni ) := E
[
Li(t−i | tni , β̄n)

∣∣∣∣bni > max
k 6=i

β̄n
k (tk) > cni

]
.

Eq. (36) says that ∆Un
i (tni ) consists of the revenue effect ∆W n

i (tni ), payment effect ∆bn, and

pivotal effect ∆Πn
i (tni ), which includes L

n

i (tni ), the winner’s curse in our context.

5.2.1 Step 1: Locating a Deviant Bidder

Recall the set J of tying rivals specified in Lemma 7. Pick an element j ∈ J such that

∀k ∈ J : aj ≤ ak. (39)

With Bmn
j discrete, there exists

cnj := min
{
β̄n

j (tj) : tj ∈
(
an

j , z
n
j

)}
. (40)

Lemma 8 limn→∞ Pr
{
cnj < maxk∈J\{j} β̄

n
k (tk) ≤ b∗ + δn

}
= 0.

Lemma 8 is proved in Appendix E.3. It can be understood from the viewpoint of those

types of bidder j nearby aj. If the lemma were not true, there would be a mass of rivaling

bids within (b∗ − δn, b∗ + δn) that outbid such types of bidder j, and the mass would not

vanish along the sequence of the approximation equilibria. On one hand, with valuation

nearly equal to aj and with Ineq. (39), such types of bidder j would have almost zero gain

from buying the good from these rival-types at resale, i.e., the winner’s curse for such types

of bidder j to jump over these rival-types is negligible. On the other hand, if such a low-

value bidder j outbids these rival-types, he would profit from reselling to them, again due to

Ineq. (39); with the mass of these rival-types nonvanishing, this expected profit is bounded

away from zero. Both sides considered, bidder j with types nearby aj would deviate to a bid

slightly above (b∗ − δn, b∗ + δn) if Lemma 8 does not hold.

For any n = 1, 2, . . . and any i ∈ J \ {j}, with cnj defined in Eq. (40), let

cni := max
{
β̄n

i (ti) : ti ∈
[
0,
(
β̄n
)−1

i,inf
(cnj )

)}
. (41)
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For any sufficiently large n,
[
0,
(
β̄n
)−1

i,inf
(cnj )

)
6= ∅ due to Lemma 8 and the hypothesis

that b∗ is consequential; with Bmn
i discrete, cni exists.

Since J \ {j} is finite, there exists i ∈ J \ {j} with c
nγ

i = maxk∈J\{j} c
nγ

k for all γ in an

infinite subsequence (nγ)
∞
γ=1. For this i, limγ→∞ Pr

{
c
nγ

i < maxk∈J\{j,i} β̄
nγ

k (tk) < c
nγ

j

}
= 0.

Combining this with Lemma 8 and Eq. (41) and relabeling subsequence (nγ)
∞
γ=1, we have

lim
n→∞

Pr

{
cni < max

k∈J\{j}
β̄n

k (tk) < b∗ + δn

}
= 0. (42)

Thus, as n→∞, the mn-equilibrium bids from all players other than bidder j vanish from

(cni , b∗ + δn). By cni < cnj , the interval (cni , b∗ + δn) is almost exclusively occupied by the bids

from bidder j with types in (an
j , z

n
j ), which converges to the nondegenerate (aj, zj) since b∗

is an atom of β∗j . This coupled with Eq. (34) (consequentiality of b∗) implies

lim
n→∞

Pr

{
cni < max

k∈I\{i}
β̄n

k (tk) < b∗ + δn

}
> 0. (43)

By construction, cni < cnj < b∗ + δn; by Eq. (42), the mass of i’s bids in (cni , b∗ + δn)

vanishes while, with i ∈ J , a nonvanishing mass of i’s bids remains in (b∗−δn, b∗+δn). Thus,

for all large n, cni > b∗ − δn and hence

b∗ − δn < cni < cnj < b∗ + δn. (44)

By Eq. (41), the β̄n
i -inverse-image of cni is nondegenerate. To complete the proof by con-

tradiction, it suffices to prove existence of a sequence (tni )∞n=1 such that each tni belongs to

this inverse image and lim supn ∆Un
i (tni ) > 0, with ∆Un

i (tni ) the expected-payoff difference

rendered by the deviation from cni to

bni := min {bi ∈ Bmn
i : bi ≥ b∗ + δn} . (45)

To this end, we calculate the three components of ∆Un
i (tni ) according to Eq. (36).

Among them, the payment effect ∆bn is O(δn) (hence O(1/n) by Lemma 7) because of

Ineq. (44) and bni − cni ≤ 2mn + b∗ + δn − cni , which follows directly from Eq. (45). Thus, we

need only to calculate the revenue effect ∆W n
i (tni ) and pivotal effect ∆Πn

i (tni ).

5.2.2 Step 2: The Revenue Effect of the Deviation

By a revealed-preference argument, one can prove ∆W n
i ≥ 0 (Proposition 4, Appendix A.2.1).

The next lemma asserts further that the revenue effect is bounded away from zero if bidder i

has potential gain of trade with his rivals when he wins with the higher bid.
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Lemma 9 If tni →n ti such that 0 < ti < maxk 6=i zk, then lim supn→∞ ∆W n
i (tni ) > 0.

Proof Appendix E.5.

By Eq. (32), zk is the limit of the supremum zn
k of bidder k’s types that bid below bni in

the mn-equilibrium. Hence the condition “tni →n ti such that ti < maxk 6=i zk” implies that,

for all approximation equilibria sufficiently far along the sequence, bidder i can profit from

reselling the good to his rivals if he wins with the bid bni . By Eq. (43), the mass of rival-types

surpassed by the bid increase does not vanish along the sequence. Hence the bid increase

brings about a nonvainishing increase of resale probability and expected revenue at resale,

given the possible gain of resale hypothesized in this lemma.

5.2.3 Step 3: Pivotal Effect Case One: Bypassing the Middleman

Two cases need to be considered on the pivotal effect ∆Πn
i (tni ). In the first case, bidder i’s

type is so high that, in the event of tying at b∗ and he loses to bidder j, he buys the good

nearly for sure from bidder j. Essentially a middleman, bidder j charges this type of i a price

markup in addition to the period-one price. In making the bid increase thereby surpassing j,

bidder i avoids paying the price markup, which constitutes the pivotal effect in this case.

More precisely, for any k ∈ I and any x ∈ Tk, define

Vk,x(tk) :=

 tk − (Fk(x)− Fk(tk))/fk(tk) if 0 ≤ tk ≤ x

x if tk ≥ x.
(46)

By Lemma 25 (Appendix E.4, due to Eq. (42)), when bidder j wins with a bid b in the

collapsing (cnj , b∗ + δn), every losing bidder k’s posterior virtual utility function converges

to Vk,zk
as n→∞. Hence the precise meaning of our first case is that at the limit bidder i

outranks everyone else in terms of (Vk,zk
)k 6=j, i.e., Vi,zi

(ti) ≥ maxk 6=i zk as in the next lemma.

Lemma 10 If tni →n ti such that Vi,zi
(ti) ≥ maxk 6=i zk, then limn→∞ ∆Πn

i (tni ) > 0.

Proof Appendix E.6.

Since the types of j that bid in (cnj , b∗ + δn) would nearly for sure resell the good to

bidder i when i’s type happens to satisfy the hypothesis of the lemma, the expected payment

extracted from such a high type of bidder i is larger than j’s expected resale revenue by a

nonvanishing margin, as i could be of low types according to j’s posterior belief (Lemma 23,

Appendix A.3). With j’s expected resale revenue never below his period-one winning bid
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(Lemma 6), this nonvanishing margin implies a nonvanishing markup between the current

price for the good and the expected payment that the high-type bidder i would need to

deliver to reseller j. This markup constitutes the pivotal effect of the bid increase.

5.2.4 Step 4: Pivotal Effect Case Two: Becoming the Middleman

Here comes the other case for the pivotal effect, where bidder i’s type is not high enough

to nearly for sure buy the good at resale from bidder j. Different than the previous case,

bidder j’s period-one bid, which is approximately the current price in the event that bidder i’s

deviation is pivotal, could be higher than the price that j will charge i at resale: Even if

the revenue extracted from i is less than what j pays at period one, j can still profit from

the revenues extracted from the other potential buyers.16 Then the deviant bidder i suffers

a winner’s curse in the magnitude of the period-one price minus the lower price at resale.

The solution stems from an idea of turning the table: In the same way that j’s loss

from dealing with i is balanced by j’s revenues extracted from other bidders, i’s winner’s

curse is balanced by the revenues from the same clientele if i becomes the reseller status

instead of j. Denote

Ωn
i :=

{
t−i ∈ T−i : max

k/∈{i,j}
β̄n

k (tk) < bni ; cni < β̄n
j (tj) < bni

}
, (47)

ψn
i (tni ) := W i

(
cni , t

n
i , β̄

n
)
− cni − E

[
Li(t−i | tni , β̄n) | Ωn

i

]
. (48)

Hence Ωn
i is the pivotal event of i’s bid increase, and ψn

i (tni ) his expected payoff from winning

minus his winning bid and minus his winner’s curse.

Lemma 11 If β̄n
i (tni ) = cni for each n and (tni )∞n=1 converges, then

lim
n→∞

ψn
i (tni ) ≥ lim

n→∞
E
[
1
[
tj < Vi,zn

i
(tni )

] (
Wj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)
− β̄n

j (tj)
)∣∣Ωn

i

]
. (49)

16 For example, suppose that in the continuation game where bidder j is the reseller, tj = 2, ti is uniformly

distributed on [0, 4], and tk uniformly distributed on [0, 10]. In j’s optimal resale mechanism, the maximum

of bidder i’s expected payment (when ti = 4) is equal to

6
10

× 3 +
∫ 7

6

(tk − 3)dtk/10 = 2.15,

while the reseller j’s expected payoff equals

3
4
× 6

10
× 2 +

1
4
× 6

10
× 3 +

3
4
× 4

10
× 6 +

∫ 4

3

∫ 10

ti+3

(ti + 3)
dtk
10

dti
4

+
∫ 7

6

∫ 4

tk−3

(tk − 3)
dti
4

dtk
10

≈ 3.76.

Thus, at period one, it is possible for bidder j to submit a bid strictly between 2.15 and 3.76.
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Proof Appendix E.7.

Lemma 12 There exists a sequence (tni )∞n=1 such that β̄n
i (tni ) = cni for each n and

lim sup
n→∞

E
[
1
[
tj < Vi,zn

i
(tni )

] (
Wj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)
− β̄n

j (tj)
)∣∣Ωn

i

]
≥ 0. (50)

Proof Appendix E.8.

To explain the two lemmas, let us temporarily pretend that, when j’s bid is clustered

around the tie, bidder i somehow knows exactly what j’s bid bj is equal to. Consider a

resale mechanism Mn that i could offer if he wins at period one: First, i announces his

own type tni and then asks bidder j whether tni is above the reserve price that j would have

offered i had j been the winner, which implies that j would always resell the good had j

won. If bidder j says No, then i offers resale to all bidders via the Myerson auction that i

should have chosen on the β̄n-equilibrium path. If bidder j answers Yes, by contrast, i offers

resale to all but bidder j via j’s resale mechanism, where i’s own announced type, together

with the losing bidders’, are discounted to their virtual utilities. Here i can replicate j’s

resale mechanism because of our temporary assumption that i knows j’s bid bj. Reseller i’s

uncertainty about j’s type makes no difference, because i excludes j in this case.

While the mechanism Mn is suboptimal to i, it generates enough expected revenue to

cover the winner’s curse and winning bid. To see why, note that the winner’s curse is null

if bidder j, presumed honest, answers No to i’s question. In that case, bidder i’s net gain

is just his expected revenue as a reseller minus his winning bid. Since his resale mechanism

in that case coincides with the Myerson auction that he should have chosen on path, the

expected revenue it generates is the same as his on-path expected revenue, which can cover

the winning bid by a revealed-preference argument (Lemma 6).

Thus, consider the case where bidder j answers Yes to i’s question. In that case, i’s

resale mechanism Mn either keeps the good to i himself or resells the good to some bidder k

other than j. Similarly, had bidder i lost to j at period one then j would resell the good to

either bidder i or some other losing bidder k but would never keep the good to j herself. The

events for these final outcomes are identical between Mn and j’s resale mechanism, since the

two mechanisms coincide when j honestly answers Yes. Let us calculate i’s gain and loss

from outbidding j in these two events:
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final owner gain foregone trade with j current price net gain

i i’s use value tni tni − pn
ij cni pn

ij − cni

k pn
ki 0 cni pn

ki − cni

Here pn
ij denotes the resale price that i would need to pay j had j won, and pn

ki the resale

price at which k buys from i in Mn. Since Mn replicates j’s resale mechanism, pn
ki = pn

kj.

Thus, whether the final owner is i himself or some k /∈ {i, j}, i’s net gain from outbidding j

is nearly the same as j’s profit had j won (with cni ≈ b∗ ≈ bj), which is nonnegative by a

revealed-preference argument for bidder j.

In sum, whether j answers Yes or No to i’s question, i’s payoff from outbidding j can

nearly offset the winner’s curse (foregone gain of buying from j) and the current price.

This is the combined implication of Ineqs. (49) and (50), where the indicator function

1
[
tj < Vi,zn

i
(tni )

]
corresponds to j’s affirmative answer.

Two problems in the above heuristic argument need to be repaired. First, the argument

was based on a false assumption that i somehow knows j’s bid β̄n
j (tj). However, removing

this assumption does not upset our conclusion. By Eq. (42), when i’s bid increase is pivotal,

bidder j’s bid β̄n
j (tj) ranges in the interval (cni , b∗+δn) where the others rarely bid, hence the

resale mechanism selected by j as a reseller stays mostly constant. Therefore, i can nearly

replicate j’s mechanism with the pretended winning bid bj being any element in this interval.

The second problem is that each player accounts its own profits and loss based on its

private information, hence nonnegative expected profit from j’s viewpoint need not imply

nonnegative expected profit conditional on the realized type of bidder i. Lemma 12 solves

this problem by observing that there exist types tni of bidder i conditional on which j’s

expected profit is nonnegative. In order for such tni to be those whose β̄n
i -bids equal cni ,

essentially the highest among i’s bids that belong to the tying cluster, we need such tni to

exist at the high end of bidder i’s posterior support. That is ensured by comparative statics

of the Myerson auction (Lemma 22, Appendix A.2.2).

5.2.5 Step 5: Completing the Proof of Theorem 2

There are only two possible cases: either (i) zi < maxk 6=i zk or (ii) zi ≥ maxk 6=i zk.

In Case (i), by Lemma 12, there exists a sequence (tni )∞n=1 such that β̄n
i (tni ) = cni for

each n and Ineq. (50) holds. Extracting a converging subsequence if necessary, we may

assume without loss of generality that tni →n ti for some ti. Then Lemma 11 says that
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Ineq. (49) holds. Combining both inequalities we have

lim sup
n→∞

∆Πn
i (tni ) = lim sup

n→∞
Pr(Ωn

i ) lim sup
n→∞

ψn
i (tni ) ≥ 0. (51)

For any n, since cni < b∗ + δn by Ineq. (44), tni ≤ zn
i . Hence ti ≤ zi < maxk 6=i zk. Thus,

Lemma 9 implies lim supn→∞ ∆W n
i (tni ) > 0. Plugging into Eq. (36) this strict inequality, as

well as Ineq. (44) and Eq. (51), we have lim supn→∞ ∆Un
i (tni ) > 0.

In Case (ii), where zi ≥ maxk 6=i zk, Lemma 10 implies that limn→∞ ∆Πn
i (zi) > 0.

Plugging this into Eq. (36) and noting ∆W n
i (zi) ≥ 0 (Proposition 4, Appendix A.2.1) and

Eq. (44), we obtain limn→∞ ∆Un
i (zi) > 0. With ∆Un

i (ti) continuous in ti (Lemma 5),

there exists α < zi such that limn→∞ ∆Un
i (t′i) > 0 for all t′i ∈ (α, zi]. By Eq. (42), the

distance between zn
i and the supremum of the inverse image

(
β̄n
)−1

i
(cni ) converges to zero;

thus, with zn
i →n zi by Eq. (32), this supremum converges to zi. Hence we can pick a

sequence (tni )∞n=1 such that tni ∈
(
β̄n
)−1

i
(cni ) for each n and tni →n zi. Then for all sufficiently

large n, tni ∈ (α, zi] and hence lim supn→∞ ∆Un
i (tni ) > 0. Therefore, the desired contradiction

lim supn→∞ ∆Un
i (tni ) > 0 is obtained, which completes the proof of Theorem 2. �

Slightly modifying the construction of cni , we can extend the above proof to obtain—

Corollary 1 If b∗ > r then b∗ is not a consequential atom of β∗.

Proof Appendix E.9.

6 Equilibrium of the Original Game

We shall complete the existence proof by showing that them-equilibrium condition, Ineq. (26),

converges to the equilibrium condition for the original game, Ineq. (59) in the following. This

is not as automatic as in the received literature, without their payoff-security condition ex-

plained in the Introduction. We break down the argument into two cases, depending on

whether an atom is involved at the limit. When no atom is involved, the convergence of a

bidder’s expected payoff follows from the convergence of his winner’s payoff, loser’s payoff

and winning status, all due to the convergence of posterior virtual utilities (Lemmas 16, 17

and 19). When an atom is involved, it is either inconsequential or equal to the reserve price r

(Corollary 1). Assuming r = 0, we shall show that the atom is necessarily inconsequential

(Lemma 14) and, furthermore, no bidder can change its inconsequentiality with a unilateral
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deviation (Lemma 15). Then a bidder’s expected payoff from bidding at the atom becomes

a loser’s payoff, which converges as in the former case (Lemma 18).

Theorem 3 (existence) Assume that the space of serious bids is [0,∞) for any bidder i.

Then the auction-resale game defined in §2.1 admits a monotone perfect Bayesian equilib-

rium; furthermore, at this equilibrium, any bidder’s period-one bid that can win with strictly

positive probability is a strictly increasing function of the bidder’s use value.

By Proposition 3, for each m = 1, 2, . . . there exists a monotone m-equilibrium βm :=

(βm
i )i∈I of the m-approximation game. Taking a convergent subsequence of (βm)∞m=1 if

necessary, we can assume without loss that for any bidder i there exists a weakly increasing

bid function β∗i : Ti → Bi ∪ {l} such that βm
i converges to β∗i pointwise almost everywhere

on Ti. The rest of the proof proceeds with the following lemmas.

Lemma 13 If b∗ > l is an inconsequential atom of β∗, then there exists k ∈ I such that b∗

is not an atom of β∗k and, for any such k,

Pr {β∗k(tk) ≥ b∗} = Pr {β∗k(tk) > b∗} = 1, (52)

limm→∞ bm = b =⇒ limm→∞ Pr {βm
k (tk) > bm} = 1. (53)

Proof By definition of consequentiality, with b∗ not consequential, there exists k ∈ I for

whom b∗ is not an atom of β∗k and Eq. (52) holds for any such k. Since b∗ is not an atom

of β∗k , Eq. (52) implies limm→∞ Pr {βm
k (tk) > b∗} = 1, which implies Eq. (53).

Lemma 14 If [0,∞) is the set of serious bids then no serious bid is a consequential atom

of β∗.

Proof Suppose not, say b∗ > l is a consequential atom of β∗j . With zero reserve price, either

(i) b∗ > 0 or (ii) b∗ = 0. Case (i) is impossible by Corollary 1. Thus, consider Case (ii) and

let the bid zero be a consequential atom of β∗j , with
(
β̄n
)∞

n=1
the subsequence and (δn)∞n=1

the shrinking radius of the bid cluster at zero, specified by Lemma 7. Let

bni := min{bi ∈ Bmn
i : bi > δn}.

By Theorem 2,

lim
n→∞

Pr

{
l < max

k 6=j
β̄n

k (tk) < bni

}
= 0. (54)
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For any i 6= j, with zero being a consequential bid, there exists a zi > 0 such that, for

all sufficiently large n, β̄n
i (ti) = l for all ti ∈ (0, zi). Pick any such i and ti. Bidder i’s

expected-payoff difference between bidding bni and submitting l, by Eq. (10), is equal to

∆Un
i (ti) = E

[
1

[
bni > max

k 6=i
β̄n

k (tk)

] (
Wi(t−i | bni , ti, β̄n)− bni − Li(t−i | ti, β̄n)

)]
≥ E

[
1

[
bni > max

k 6=i
β̄n

k (tk)

] (
ti − Lij(t−i | ti, β̄n)

)]
−O(1/n),

where the inequality uses the facts W i ≥ ti to replace W i with ti, b
n
i →n 0 to remove bni ,

and Eqs. (33) and (54) to replace Li with Lij. Since limn→∞ Pr
{
bni > maxk 6=i β̄

n
k (tk)

}
≥∏

k 6=i Fk(zk) > 0, to prove limn ∆Un
i (ti) > 0 it suffices to show

lim
n→∞

E
[
ti − Lij(t−i | ti, β̄n)

∣∣∣∣bni > max
k 6=i

β̄n
k (tk)

]
> 0. (55)

For any t−i ∈ T−i, Lij(t−i | ti, β̄n) is equals to either zero or ti − pn
i,j(t−i), with pn

i,j(t−i) the

resale price offered by j when j is the reseller. By its optimality, pn
i,j(t−i) is at least as high

as the reserve price offered to i by the zero type of j based on the posterior distribution

of ti with support
[
0,
(
β̄n
)−1

i,sup
(l)
]
, which converges to the nondegenerate [0, zi] as n →∞.

Hence the reserve price converges to some p > 0. Thus, at the limit, the integrand on the

left-hand side of Ineq. (55) is no less than a strictly positive constant, either ti or p. Hence

we obtain the desired contradiction that bidder i of type ti would deviate for large n.

Lemma 15 If a serious bid b∗ is an inconsequential atom of β∗ then there are at least two

bidders whose β∗-bidding functions do not have b∗ as an atom.

Proof Appendix F.

Lemma 15 eliminates a case where a serious bid b∗ is an atom of β∗k for all k but

a single bidder i, so that b∗ is inconsequential only because i’s β∗i -bid is above b∗ almost

surely. In this case, if i chooses to bid below b∗ instead of abiding by β∗i then the bid b∗

would have positive winning probability and cause possible discontinuity in i’s expected

payoff. The lemma asserts impossibility of this case, with a proof similar in spirit to that

of Lemma 10: Should the case occur, then in m-equilibria for sufficiently large m, we can

choose a bidder j with sufficiently high types who would almost always outrank his rivals

in the resale mechanism offered by those types of bidder i who would have won without j’s

deviation. These types of i, if undefeated, act merely as middlemen for j and impose on j
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a price markup (Lemma 23, Appendix A.3), which bidder j could have bypassed with a

higher bid. Different from Lemma 10, however, these types of bidder i do not constitute a

nonvanishing mass. Therefore, much of the proof of the lemma is to fine-tune the magnitude

of j’s deviation so that his expected net gain is strictly positive.

Lemma 16 For any k ∈ I, if (bm)∞m=1 is a sequence of serious bids that converges to some b

such that neither is b an atom of β∗k nor is bm an atom of βm
k (∀m), then

∀tk ∈
[
0, (β∗)−1

k,sup (b)
)

: lim
m→∞

Vk(tk | bm, βm) = Vk(tk | b, β∗). (56)

Proof Since neither bm is an atom of βm
k nor b an atom of β∗k , Lemma 2.a is applicable.

Thus, for any tk ∈
[
0, (β∗)−1

k,sup (b)
)
, Vk(tk | b, β∗) obeys Eq. (4) with (β∗)−1

k,sup (b) being the

β−1
k,sup(b) there; for large enough m, such tk also belongs to

[
0, (βm)−1

k,sup (bm)
]

and hence

Vk(tk | bm, βm) also obeys Eq. (4) with (βm)−1
k,sup (bm) being the β−1

k,sup(b) there. Since b is not

an atom of β∗k , the mass of tk between (βm)−1
k,sup (bm) and (β∗)−1

k,sup (b) vanishes as bm → b.

Thus, Fk

(
(βm)−1

k,sup (bm)
)
→m Fk

(
(β∗)−1

k,sup (b)
)
. Hence Eq. (56) follows.

Lemma 17 For any i ∈ I, any ti ∈ Ti and any measurable subset S ⊆ T−i,

lim
m→∞

E [Li(t−i | ti, βm)1[S]] = E [Li(t−i | ti, β∗)1[S]] . (57)

Proof By definition of Li in Eq. (9), Li(t−i | ti, β∗) equals zero unless t−i belongs to the set

S ′ :=
{
t−i ∈ T−i : β∗j (tj) > l for some j 6= i

}
.

Since βm → β∗ and l is isolated from [0,∞), limm→∞ Li(t−i | ti, βm) = 0 by Eq. (9) unless

t−i ∈ S ′. Thus, it suffices to prove (57) with the integration domain S replaced with S ∩ S ′.
First, consider any t−i ∈ S ′ at which the highest bid β∗j (tj) among rivals of i is not an

atom of β∗−j. Then Eq. (56) holds for all k 6= j with the role (bm, b) played by (βm
j (tj), β

∗
j (tj)),

and Eqs. (6) and (8) hold with respect to β∗. Eqs. (6) and (8) also hold with respect to βm

due to Eq. (22). Thus,

lim
m→∞

Li(t−i | ti, βm) = Li(t−i | ti, β∗). (58)

Second, consider the other kind of t−i in S ′, the elements of

S ′′ :=

{
t−i ∈ S ′ : ∃j 6= i

[
β∗j (tj) ≥ max

k/∈{i,j}
β∗k(tk); β

∗
j (tj) is an atom of β∗−j

]}
.
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Since there are at most countably many atoms of β∗−j, we can discard any t−i ∈ S ′′ such

that β∗j (tj) is not an atom of β∗j , as all such t−i constitute only a zero-measure subset of T−i.

Thus, suppose that β∗j (tj) is an atom of both β∗j and β∗−j. Then β∗j (tj) would be a tie, which is

impossible by Theorem 2, unless β∗j (tj) is inconsequential. Now that β∗j (tj) is inconsequential,

Lemma 15 (applicable because β∗j (tj) > l, as t−i ∈ S ′) implies that there are at least two

bidders whose bid functions in β∗ do not have β∗j (tj) as an atom. One of them is a bidder k

different than the i in this lemma, and Eqs. (52) and (53) imply Pr
{
β∗k(tk) > β∗j (tj)

}
= 1 and

limm→∞
{
βm

k (tk) > βm
j (tj)

}
= 1. The first equation says that those t−(i,j) at which β∗j (tj)

wins against β∗−j constitute a zero-measure set, and the second says that the measure of

those t−(i,j) at which βm
j (tj) wins against βm

−j shrinks to zero as m→∞. Thus,

lim
m→∞

E [Li(t−i | ti, βm)1 [S ′′]] = 0 = E [Li(t−i | ti, β∗)1 [S ′′]] .

Eq. (57) is obtained by summing this equation with the integration of Eq. (58) across all

t−i ∈ S ∩ S ′ \ S ′′.

Lemma 18 For any i ∈ I, any ti ∈ Ti and any m, let bmi ∈ Bm
i and bmi →m bi. If bi is an

inconsequential atom of β∗−i, then limn→∞ Ui(β
m
i (ti), ti, β

m) ≥ Ui(bi, ti, β
∗).

Proof Since bmi →m bi and bmi ∈ Bm
i for each m, bi > l. Since bi is an inconsequential atom,

Lemma 15 implies that there exists k 6= i for whom bi is not an atom of β∗k , and Lemma 13

implies that Eqs. (52) and (53) holds. Thus, with βm an m-equilibrium and bmi ∈ Bm
i ,

lim
n→∞

Ui(β
m
i (ti), ti, β

m) ≥ lim
m→∞

Ui(b
m
i , ti, β

m)
(53)
= lim

m→∞
ELi(t−i | ti, βm)

(57)
= ELi(t−i | ti, β∗)

(52)
= Ui(bi, ti, β

∗),

where the first and last equalities also use Eq. (10).

Lemma 19 For any i ∈ I, any ti ∈ Ti and any m, let bmi ∈ Bm
i and bmi →m bi. If bi is not

an atom of β∗−i then limm→∞ Ui(b
m
i , ti, β

m) = Ui(bi, ti, β
∗).

Proof By hypothesis, bi is not an atom of β∗−i, nor bmi an atom of βm
−i, due to Eq. (22).

Thus, from Eq. (10) and suppressing the symbol ti, we have

Ui(b
m
i , β

m) = E
[
1

[
bmi > max

k 6=i
βm

k (tk)

]
(Wi(t−i | bmi , βm)− bmi − Li(t−i | βm))

]
+ E [Li(t−i | βm)] ,

Ui(bi, β
∗) = E

[
1

[
bi > max

k 6=i
β∗k(tk)

]
(Wi(t−i | bi, β∗)− bi − Li(t−i | β∗))

]
+ E [Li(t−i | β∗)] .

31



Here Wi(t−i | bmi , βm) and Wi(t−i | bi, β∗) obey Eq. (7) with virtual utility functions

(Vk(· | bmi , βm))k 6=i and (Vk(· | bi, β∗))k 6=i, because the condition for (7) is guaranteed by the

indicator functions 1 [bmi > maxk 6=i β
m
k (tk)] and 1 [bi > maxk 6=i β

∗
k(tk)]. Since bmi →m bi and

bi is not an atom of β∗−i, Eq. (56) applies to the case b = bi. Thus, by Eqs. (6) and (7),

lim
m→∞

Wi(t−i | bmi , βm) = Wi(t−i | bi, β∗) a.e. t−i ∈ T−i.

As βm → β∗ and bi is not an atom of β∗−i, we also have

lim
m→∞

1

[
bmi > max

k 6=i
βm

k (tk)

]
= 1

[
bi > max

k 6=i
β∗k(tk)

]
a.e. t−i ∈ T−i.

Combining these two equations with Eq. (57) yields the conclusion of the lemma.

Lemma 20 If [0,∞) is the set of serious bids, then for any i ∈ I and almost every ti ∈ Ti

∀bi ∈ [0,∞) ∪ {l} : Ui(β
∗
i (ti), ti; β

∗) ≥ Ui(bi, ti, β
∗). (59)

Proof We know that βm
i (ti) →m β∗i (ti) for almost every ti ∈ Ti. Pick any such ti. For any

bi ∈ B, Lemma 14 says that bi is either not an atom, or an inconsequential atom, of β∗−i.

In the first case, with ∪∞m=1B
m
i dense in B due to Eq. (24), there is a sequence (bmi )∞m=1

converging to bi with bmi ∈ Bm
i for each m. By Lemma 19 and revealed preference of the

m-equilibrium bid βm
i (ti),

lim
m→∞

Ui(β
m
i (ti), ti, β

m) ≥ Ui(bi, ti, β
∗). (60)

In the second case, Lemma 18 implies the same inequality. The same inequality holds for

bi = l by revealed preference of βm
i (ti). Thus, Ineq. (60) holds for any bi ∈ B ∪ {l}.

Thus, it suffices to show limm→∞ Ui(β
m
i (ti), ti, β

m) = Ui(β
∗
i (ti), ti, β

∗). If β∗i (ti) > l and

is not an atom of β∗−i, this equation follows directly from Lemma 19. If β∗i (ti) > l and is an

atom of β∗−i, then Lemma 14 says that β∗i (ti) is inconsequential; hence Eqs. (52) and (53),

applied to the case b = β∗i (ti), imply that

Pr

{
β∗i (ti) ≥ max

k 6=i
β∗k(tk)

}
= lim

m→∞
Pr

{
βm

i (ti) ≥ max
k 6=i

βm
k (tk)

}
= 0,

which by Eq. (10) implies

lim
m→∞

Ui(β
m
i (ti), ti, β

m) = lim
m→∞

ELi(ti | ti, βm)
(57)
= ELi(ti | ti, β∗) = Ui(β

∗
i (ti), ti, β

∗).
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If β∗i (ti) = l, then the formula displayed above follows trivially. Thus,

Ui(β
∗
i (ti), ti, β

∗) = lim
m→∞

Ui(β
m
i (ti), ti, β

m) ≥ Ui(bi, ti, β
∗)

for any bi ∈ [0,∞) ∪ {l}, as desired.

Lemma 20 implies that (β∗i )i∈I constitutes a Nash equiilbrium given the interim payoff

functions (Ui)i∈I defined in Eq. (10). Then Lemma 4 implies that (β∗i )i∈I coupled with the

continuation equilibrium constitutes a perfect Bayesian equilibrium of the original auction-

resale game. In addition, Lemma 14 implies strict monotonicity of each β∗i for all bids that

have a strictly positive probability of winning at β∗. This completes the proof of Theorem 3.

7 Conclusion

Fixed-point approaches have been foundational to theoretical investigations of discontinuous

games especially certain auction mechanisms. Incorporation of post-auction resale into such

approaches not only would make them more realistically relevant but also is theoretically

compelling because, as noted in the literature, resources can be misallocated in certain

asymmetric auctions, triggering the incentive for resale. The possibility of resale brings

about new challenges to the fixed-point approaches. The value-correlation across bidders,

previously assumed exogenous, becomes endogenously determined by resale, which is itself

endogenous. The discontinuity problem of tying bids gets compounded to the discontinuity

of post-auction beliefs and that of the payoffs at resale. Yet these challenges turn out to

be surmountable, as demonstrated in this paper, extending the fixed-point approach for

monotone equilibria beyond its previous confines of single-stage no-resale models.

To capture its endogenous nature, this paper models resale by assuming that the winner

in an auction gets to choose any selling mechanism to offer resale, hence at equilibrium resale

is offered through the Myerson auctions. The extent to which the properties of such resale

mechanisms instrumental to our existence proof may be generalized to other resale settings is

left for future investigations. Nevertheless, there is a merit, at least for the first endeavor, to

endogenize resale mechanism as in our model. It shows us the power of mechanism design, as

a modeling technique, to pin down resale mechanisms among the myriad of secondary-market

arrangements often hard to observe. Just as the rational choice axiom reduces individual

behaviors to regularity, the endogenous treatment of resale mechanisms generates subtle

comparative statics in equilibrium with forward-looking bidding behaviors.
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A Comparative Statics of the Myerson Auction

Here are some properties of the optimal auction characterized by Myerson [13] with respect

to the distributions of the bidder-types. In our context, the Myeson auction corresponds to

the equilibrium resale mechanism selected by a reseller whose winning bid is not an atom of

the other bidders’ strategies, and the distributions the post-auction beliefs.

A.1 Notations and Preliminaries

Let i∗ ∈ I denote the current seller and I\{i∗} the set of potential buyers. For any i ∈ I\{i∗}
and any ζi ≤ ti, let the distribution Fi,ζi

of i’s type ti is derived from the prior Fi via

Fi,ζi
(ti) := Fi(ti)/Fi(ζi)

for all ti in the support [0, ζi], and likewise for the density fi,ζi
. Assume, on the support of Fi,

that Fi has strictly positive density fi and the prior virtual utility ti − (1− Fi(ti))/fi(ti) is

strictly increasing in ti. Define the posterior virtual utility Vi,ζi
(ti) by Eq. (46) if ti ≤ ζi and

by Vi,ζi
(ti) := ζi if ti ≥ ζi. Then Vi,ζi

is strictly increasing and continuous on [0, ζi]. Let

seller i∗’s realized type ti∗ be given. For any i 6= i∗ and any t−i := (ti∗ , (tk)k/∈{i,i∗}), denote

vi(t−i) := max

{
ti∗ , max

k/∈{i,i∗}
Vk,ζk

(tk)

}
. (61)

Given positive vector ζ := (ζk)k 6=i∗ , let M(ζ) denote the Myerson auction based on (Vk,ζk
)k 6=i∗ ,

which for each realized type profile (ti∗ , t−i∗) sells only to a bidder k for whom Vk,ζk
(tk) ≥

vk(t−k) at price V−1
k,ζk

(vk(t−k)) and charges everyone else zero price. For any t−i∗ ∈
∏

k∈I\{i∗} Tk,

denote R(ti∗ , t−i∗ , ζ) for seller i∗’s ex post payoff (“revenue”) generated by mechanism M(ζ)

when the realized type profile is t−i∗ . Let

R(ζ) := E [R(ti∗ , t−i∗ , ζ) | t−i∗ 5 ζ−i∗ ] ,

where, for any points x and y in the same euclidean space, x 5 y means xk ≤ yk for each

coordinate k, and x 65 y means “not x 5 y”. With every Vk,ζk
strictly increasing on [0, ζk],

the seller’s optimization problem belongs to the regular case of Myerson [13]. Thus,

R(ζ) = E
[
max

{
ti∗ ,max

k 6=i∗
Vk,ζk

(tk)

}∣∣∣∣ t−i∗ 5 ζ−i∗

]
. (62)
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A.2 Monotonicity of Expected Revenues

Different from the case in the received literature, such a monotonicity condition does not

follow from the affiliation inequalities in Milgrom and Weber [12], because the ex post revenue

R(t−i∗ , ζ) need not be nondecreasing in t−i∗ , as explained in the Introduction. The monotone

properties obtained here are based on the fact that the expected revenue is maximized.

A.2.1 With Respect to Supremums of Type-Supports

With monotone bidding strategies in the initial auction, a higher winning bid implies higher

supremums of the posterior supports of the losing bidders. If the reseller adjusts her resale

mechanism accordingly, the effect on her expected revenues is quantified below.

Proposition 4 If ζ 5 ζ ′ and ζ 6= ζ, then R(ζ) ≤ R(ζ ′) and:

a. if maxk 6=i∗ ζk ≤ ti∗ < maxk 6=i∗ ζ
′
k, then

R(ζ ′)−R(ζ) ≥

1−
Fk

(
V−1

k,ζ′k
(ti∗)

)
Fk (ζ ′k))

(V−1
k,ζ′k

(ti∗)− ti∗

)
; (63)

b. if ti∗ < maxk 6=i∗ ζk then

R(ζ ′)−R(ζ) ≥ γ Pr {∃k ∈ I \ {i∗} : ζk < tk ≤ ζ ′k]} , (64)

where

γ :=

∏
k 6=i Fk (ζk)−

∏
k 6=i Fk

(
min

{
V−1

k,ζk
(ti∗), ζk

})(∏
k 6=i Fk (ζ ′k)

)(∏
k 6=i Fk (ζk)

) ti∗ . (65)

Proof There are only two possible cases: (i) ti∗ ≥ maxk 6=i∗ ζk and (ii) ti∗ < maxk 6=i∗ ζk.

Case (i): ti∗ ≥ maxk 6=i∗ ζk. Then there is no gain of trade and hence R(ζ) = ti∗ . By

the fact that R(ζ ′) ≥ ti∗ , we have R(ζ ′) ≥ R(ζ). Now suppose, in addition, that ti∗ < ζ ′k

for some k 6= i∗, which is the case in Claim (a) of the proposition. Then there is a strictly

positive probability that sale happens at mechanism M(ζ ′); in the case of sale, seller i∗’s

payoff is at least as large as the reserve price V−1
k,zk

(ti∗). Hence Ineq. (63) follows.

Case (ii): ti∗ < maxk 6=i∗ ζk. Note that the mechanism M(ζ) is ex post incentive feasible

for any potential buyer k ∈ I \ {i∗}: Conditional on any t−k ∈ T−k, k’s winning probability

in M(ζ ′) is nondecreasing in tk since k’s virtual utility Vk,ζk
(tk) is so, and k’s payment
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V−1
k,ζk

(v(t−k)), denoted pk(t−k) here, satisfies the envelope equation conditional on t−k. Thus,

when the support supremums are (ζ ′k)k 6=i∗ instead of (ζk)k 6=i∗ , M(ζ) is still incentive feasible.

Hence let R̂(ζ | ζ ′) denote seller i∗’s expected payoff generated by M(ζ) at the truthtelling

equilibrium given distributions (Fk,ζ′k
)k 6=i∗ . By revealed preference from i∗’s viewpoint,

R(ζ ′)−R(ζ) ≥ R̂(ζ | ζ ′)−R(ζ). (66)

Denote

A :=

{
t−i ∈ T−i : t−i∗ 5 ζ; ti∗ > max

k 6=i∗
Vk,ζk

(tk)

}
,

B :=

{
t−i ∈ T−i : t−i∗ 65 ζ; t−i∗ 5 ζ ′; ti∗ > max

k 6=i
Vk,ζk

(tk)

}
,

C := {t−i ∈ T−i : t−i∗ 5 ζ} \ A,

D := {t−i ∈ T−i : t−i∗ 65 ζ; t−i∗ 5 ζ ′} \B.

Thus, A ∪ C is the support of t−i∗ given ζ; within A ∪ C, A is the event in which i∗ does

not sell the good at mechanism M(ζ). Analogously, A ∪ B ∪ C ∪ D is the support of t−i∗

given ζ ′, and A ∪B the event of no-sale at mechanism M(ζ).

Let π(A), π(B), π(C) and π(D) denote the prior probabilities of these sets. Since

ti∗ < ζk for some k 6= i in this case, π(C) > 0 (since Vk,ζk
≤ ζk). Let us compare the

performance of mechanism M(ζ) conditional on ζ with its performance conditional ζ ′:

A ∪B C D

probability given ζ π(A)
π(A)+π(C)

π(C)
π(A)+π(C)

0

probability given ζ ′ π(A)+π(B)
π(A)+π(B)+π(C)+π(D)

π(C)
π(A)+π(B)+π(C)+π(D)

π(D)
π(A)+π(B)+π(C)+π(D)

ex post payoff for i ti∗
∑

j 6=i∗
qji∗(t)pj(t−j)

∑
j 6=i∗

qji∗(t)pj(t−j)

In the cells on the last row and the third and fourth columns, the ex post payoff for seller i∗

is equal to
∑

j 6=i∗
qji∗(t)pj(t−j), where qji∗(t) denotes the probability with which i∗ sells the

good to j in the mechanism M(ζ). According to the payment rule in M(ζ), this sum of

payments is at least as large as the reserve price V−1
j,ζj

(ti∗) for any j who wins; this reserve

price is strictly greater than ti∗ as ti∗ < ζ ′j in this case. Therefore,

R̂(ζ | ζ ′)−R(ζ)

> ti∗

(
π(D)

π(A) + π(B) + π(C) + π(D)
− 0 +

π(A) + π(B)

π(A) + π(B) + π(C) + π(D)
− π(A)

π(A) + π(C)

)
=

π(C) (π(B) + π(D))

(π(A) + π(B) + π(C) + π(D)) (π(A) + π(C))
ti∗ .
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which is equal to π(B) + π(D) multiplied by the γ defined by Eq. (65). Note that π(B) +

π(D) = Pr {∃k ∈ I \ {i∗} : ζk < tk ≤ ζ ′k]}. Thus, Ineq. (66) implies (64).

A.2.2 With Respect to an Upward Push of a Bidder’s Type-Support

Recall that R(ti∗ , t−i∗ , ζ) denotes the ex post payoff for the type-ti∗ seller i∗ generated by

the Myerson auctoin M(ζ) when the realized type profile across k 6= i∗ is t−i∗ . Here we

consider how a perturbation of a bidder’s type distribution may affect the expected value of

R(ti∗ , t−i∗ , ζ). For any i 6= i∗ and any ti ∈ Ti, let

ϕi(ti, ti∗) := E
[
R
(
ti, ti∗ , t−(i,i∗), ζ

)
| t−(i,i∗) 5 ζ−(i,i∗)

]
. (67)

Given the posterior beliefs determined by ζ, E [ϕi(ti, ti∗) | ti ∈ [0, ζi]] is equal to the expected

payoff for i∗ generated by M(ζ) and is the maximum expected payoff for the type-ti∗ seller i∗

among all incentive feasible mechanisms. Within this subsection, ζ is held fixed and is

suppressed from our notations, hence Vk means Vk,ζk
; also suppressed is the symbol ti∗ .

Lemma 21 For any ti∗ ∈ Ti∗ and any i 6= i∗, ϕi(·, ti∗) is continuous on [0, ζi].

Proof Let ζi ≥ x′′ > x′ ≥ 0. Suppose the value of ti increases from x′ to x′′. Given any t−i,

this change affects the seller’s ex post payoff R(ti, t−(i,i∗), ζ) in only two cases:

i. Vi,ζi
(x′) < vi(t−i) ≤ Vi(x

′′). Let k∗ be the bidder whose virtual utility is the highest

when ti = x′. Then, when ti increases from x′ to x′′, the winner in M(ζ) switches from k∗

to i and the revenue for i∗ changes from V−1
k∗

(
vk∗(t−(i,k∗), ti = x′)

)
to V−1

i (Vk∗(tk∗)).

ii. Vi(x
′′) < vi(t−i) and Vi(x

′′) equals the second highest among
(
(Vk(tk))k/∈{i,i∗} ,Vi(x

′′)
)
.

Let k∗ be the bidder whose virtual utility is the highest when ti = x′′ (hence also the

highest when ti = x′). When ti increases from x′ to x′′, k∗ remains to be the winner

in M(ζ) but her payment increases from V−1
k∗

(
vk∗(t−(i,k∗), ti = x′)

)
to V−1

k∗ (Vi(x
′′)). By

Eq. (61) the definition of vk∗ and continuity of Vk∗ , this increase in revenue

V−1
k∗ (Vi(x

′′))− V−1
k∗

(
max

{
ti∗ ,Vi(x

′), max
k/∈{i,i∗k∗}

Vk(tk)

})
≤ V−1

k∗ (Vi(x
′′))− V−1

k∗ (Vi(x
′))

= O(x′′ − x′).

Note that ϕi(x
′′) − ϕi(x

′) is equal to the expected value of the sum of the two revenue-

differences, in Cases (i) and (ii), across all t−(i,i∗) ∈
∏

k/∈{i,i∗}[0, ζk]. As noted above, the
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case-(ii) difference is O(x′′ − x′), and so is its expected value. The probability measure

of those t−(i,i∗) that belong to Case (i) is also O(x′′ − x′), because Case (i) occurs only if

Vi(x
′) < vi(t−i) ≤ Vi(x

′′), which belongs to the event

⋃
j /∈{i,i∗}

t−(i,i∗) ∈
∏

k/∈{i,i∗}

[0, ζk] : Vi(x
′) < max

k/∈{i,i∗}
Vk(tk) = Vj(tj) ≤ Vi(x

′′)

 ,

whose measure is O(x′′−x′) since Vj is strictly increasing and Vi continuous. Thus, ϕi(x
′′)−

ϕi(x
′) = O(x′′ − x′).

Lemma 22 For any ti∗ ∈ Ti∗, any i 6= i∗ and any α ∈ [0, ζi),

E [ϕi(ti, ti∗) | ti ∈ [α, ζi]] ≥ E [ϕi(ti, ti∗) | ti ∈ [0, ζi]] . (68)

Proof Denote ϕi := E [ϕi(ti) | ti ∈ [0, ζi]]. Suppose, to the contrary of the lemma, that

E [ϕi(ti) | ti ∈ [α, ζi]] < ϕi for some α ∈ [0, ζi). Then trivially α > 0. Let S := {ti ∈ [α, ζi] :

ϕi(ti) < ϕi}. Then the measure of S is strictly positive, so inf S < ζi. Let

x :=

 inf S if inf S > α

sup {ti ∈ [0, α] : ϕi(ti) ≥ ϕi} if inf S = α.

By definition of x, if x < ti < α then ϕi(ti) < ϕi; and if α < ti < x then ϕi(ti) ≥ ϕi. Thus,

E [ϕi(ti) | ti ∈ [x, ζi]] < ϕi. (69)

Hence x > 0. By continuity of ϕi (Lemma 21), ϕi(x) = ϕi.

Now consider a mechanism M̃ which is the same as M(ζ) except that bidder i’s virtual

utility function Vi is replaced by a function Ṽi defined by

Ṽi(ti) :=

 Vi(ti) if ti ≤ x

Vi(x) if ti ≥ x.

M̃ is incentive compatible: Ṽi is nondecreasing and hence bidder i’s probability of winning

is nondecreasing in his type; the monotonicity of the other bidders’ winning probabilities is

unaffected. The payment rule satisfies the envelope formula because the payment is defined

according to the formula based on
(
Ṽi, (Vk)k/∈{i,i∗}

)
. Individual rationality of M̃ is obvious.

Thus, we may assume that bidders participate and are truthful in M̃ . When bidder i’s

type is any ti ∈ [0, x], M̃ acts in the same way as M(ζ), generating the same expected
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revenue ϕi(ti) conditional on ti. When ti > x, by contrast, M̃ acts as M(ζ) except that ti is

treated as x, so the expected revenue conditional on ti becomes ϕi(x).

Thus, the expected revenue generated by M̃ is equal to a convex combination between

E [ϕi(ti) | ti ∈ [0, x]] and ϕi(x). As noted above, ϕi(x) = ϕi. Also E [ϕi(ti) | ti ∈ [0, x]] > ϕi

by Ineq. (69). This coupled with the fact x > 0 implies that the expected revenue yielded

by M̃ is greater than ϕi. But that contradicts the fact that ϕi is maximum among all

equilibrium-feasible mechanisms.

Corollary 2 For any measurable S ⊆ Ti∗ and any i 6= i∗, E [ϕi(ti, ti∗) | ti∗ ∈ S] is continu-

ous in ti on [0, ζi], and for any α ∈ [0, ζi)

E [ϕi(ti, ti∗) | ti ∈ [α, ζi]; ti∗ ∈ S] ≥ E [ϕi(ti, ti∗) | ti ∈ [0, ζi]; ti∗ ∈ S] . (70)

Proof Since E [ϕi(ti, ti∗) | ti∗ ∈ S] is an integral of ϕ(ti, ti∗) across ti∗ and the integrand

ϕ(ti, ti∗) is continuous in ti by Lemma 21, the integral is also continuous in ti. For any

α ∈ [0, ζi), Ineq. (68) holds. Integrating (68) across all ti∗ ∈ S, we obtain Ineq. (70).

A.3 An Upper Bound of Expected Revenues

This upper bound is the expected payment made by the highest possible bidder-type.

Lemma 23 If i ∈ I \ {i∗} and ζi = maxk 6=i∗ ζk > ti∗, then

R(ζ) < E
[
V−1

i,ζi

(
max

{
ti∗ , max

k/∈{i,i∗}
Vk,ζk

(tk)

})∣∣∣∣ t−(i,i∗) 5 ζ−(i,i∗)

]
. (71)

Proof By Eqs. (61) and (62),

R(ζ) = E
[
max

{
Vi,ζi

(ti), vi(ti∗ , t−(i,i∗))
}∣∣ t−i∗ 5 ζ−i∗

]
= E

[
vi(ti∗ , t−(i,i∗))1

[
vi(ti∗ , t−(i,i∗)) ≥ Vi,ζi

(ti)
]
| t−i∗ 5 ζ−i∗

]︸ ︷︷ ︸
=:X

+ E
[
Vi,ζi

(ti)1
[
vi(ti∗ , t−(i,i∗)) < Vi,ζi

(ti)
]
| t−i∗ 5 ζ−i∗

]︸ ︷︷ ︸
=:Y

.

First, we calculate X. For any t−i∗ in the integration domain of X, the hypothe-

sis ζi ≥ max{ti∗ ,maxk/∈{i,i∗} ζk} implies vi(ti∗ , t−(i,i∗)) ≤ ζi and hence V−1
i,ζi

(vi(ti∗ , t−(i,i∗))) ≥
vi(ti∗ , t−(i,i∗)). Furthermore, there is a positive-measure subset of the integration domain in

which this inequality is strict: When t−i∗ is nearly zero so that every bidder’s virtual utility
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is negative, vi(ti∗ , t−(i,i∗)) = ti∗ while V−1
i,ζi

(vi(ti∗ , t−(i,i∗))) = V−1
i,ζi

(ti∗), strictly larger than ti∗

by Eq. (46). This subset is of positive measure in T−i∗ since the priors have no gap. Thus,

X < E
[
V−1

i,ζi
(vi(ti∗ , t−(i,i∗)))1

[
vi(ti∗ , t−(i,i∗)) ≥ Vi,ζi

(ti)
]
| t−i∗ 5 ζ−i∗

]
. (72)

To calculate Y , denote qi(t−i∗) := 1
[
vi(ti∗ , t−(i,i∗)) < Vi,ζi

(ti)
]
, the probability with

which bidder i buys the good at player i∗’s mechanism M(ζ). Denote

qi(ti) := E
[
qi(ti, t−(i,i∗)) | t−(i,i∗) 5 ζ−(i,i∗)

]
.

By Eq. (46),

Y = E
[(

ti −
1− Fi,ζi

(ti)

fi,ζi
(ti)

)
qi(ti, t−(i,i∗))

∣∣∣∣ t−i∗ 5 ζ−i∗

]
=

∫ ζi

0

qi(ti)

(
ti −

1− Fi,ζi
(ti)

fi,ζi
(ti)

)
fi,ζi

(ti)dti.

Going through the integration-by-parts routine in reverse order, we have

Y =

∫ ζi

0

tiqi(ti)fi,ζi
(ti)dti −

∫ ζi

0

∫ ζi

ti

qi(ti)fi,ζi
(t′i)dt

′
idti

=

∫ ζi

0

tiqi(ti)fi,ζi
(ti)dti −

∫ ζi

0

∫ ti

0

qi(ti)dtifi,ζi
(t′i)dt

′
i

=

∫ ζi

0

(
tiqi(ti)−

∫ ti

0

qi(ti)dti

)
fi,ζi

(ti)dti,

which by the envelope-theorem routine is equal to the ex ante expected payment of type ζi

in player i∗’s mechanism M(ζ) conditional on the event that tk ∈ [0, ζk] for all k 6= i∗. Thus,

by the definition of the payment rule in that mechanism,

Y = E
[
V−1

i,ζi

(
vi(ti∗ , t−(i,i∗))

)
1
[
vi(ti∗ , t−(i,i∗)) < Vi,ζi

(ti)
]
| t−i∗ 5 ζ−i∗

]
.

This combined with Ineq. (72) gives the desired inequality:

R(ζ) < E
[
V−1

i,ζi

(
vi(ti∗ , t−(i,i∗))

)
| t−i∗ 5 ζ−i∗

]
= E

[
V−1

i,ζi

(
vi(ti∗ , t−(i,i∗))

)
| t−(i,i∗) 5 ζ−(i,i∗)

]
. �

B A Semicontinuity Property of Monotone Functions

For any weakly increasing function g : [a, z] → R, define g−1
inf (y) and g−1

sup(y) by Eqs. (1)

and (2), with g taking the role of βk.
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Lemma 24 Let g : [a, z] → R be a weakly increasing function with a < z. For any y ≥ g(a)

and any ε > 0, there exists δ > 0 such that if y − δ < y′ < y + δ then

g−1
inf (y)− ε < g−1

inf (y
′) ≤ g−1

sup(y
′) < g−1

sup(y) + ε. (73)

Proof First, suppose g(a) < y < g(z). Let ε > 0. As g is weakly increasing, we can shrink ε

so that g−1
inf (y)− ε

2
and g−1

sup(y) + ε
2

each belong to [a, z]. By definitions of g−1
inf (y) and g−1

sup(y),

g
(
g−1
inf (y)−

ε

2

)
< y < g

(
g−1
sup(y) +

ε

2

)
. (74)

Let

δ := min

{
g
(
g−1
sup(y) + ε

2

)
+ y

2
− y, y −

g
(
g−1
inf (y)− ε

2

)
+ y

2

}
.

Then δ > 0. Pick any y′ such that y − δ < y′ < y + δ. Either (i) g−1(y′) = ∅ or (ii)

g−1(y′) 6= ∅. In case (i), since

g
(
g−1
inf (y)− ε/2

)
<
g
(
g−1
inf (y)− ε/2

)
+ y

2
≤ y − δ < y′,

by Eq. (1) we have g−1
inf (y

′) ≥ g−1
inf (y) − ε/2 > g−1

inf (y) − ε. In case (ii), if x ∈ g−1(y) and

x < g−1
inf (y)− ε/2, then monotonicity of g implies

y′ = g(x) ≤ g
(
g−1
inf (y)− ε/2

)
<
g
(
g−1
inf (y)− ε/2

)
+ y

2
≤ y − δ,

contradicting the fact that y′ > y−δ; thus, g−1
inf (y

′) ≥ g−1
inf (y)−ε/2 > g−1

inf (y)−ε. Analogously,

we can show g−1
sup(y

′) < g−1
sup(y) + ε. Thus, (73) holds if g(a) < y < g(z).

Next consider the case where y ≥ g(z). If y > g(z) then, for any sufficiently small δ > 0,

y − δ > g(z) and hence y − δ < y′ < y + δ implies g−1
inf (y

′) = g−1
sup(y

′) = z = g−1
inf (y) = g−1

sup(y).

If y = g(z) then we just replace the upper bound g
(
g−1
sup(y) + ε

2

)
in Ineq. (74) by any number

bigger than y, and then the calculation in the previous paragraph follows. The case where

y ≤ g(a) is analogous.

C Posterior Densities and Virtual Utilities

Proof of Lemma 1 Denote πk(i, bi) for the probability of the event that bidder k, condi-

tional on submitting the highest bid bi (thereby tying with i and possibly others), loses the
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tie-breaking lottery. Then (with the convention of letting
∏

j∈∅ xj := 1)

πk(i, bi) =
∑

S⊆I\{i,k}

|S|+ 1

|S|+ 2

(∏
j∈S

(Fj(β
−1
j,sup(bi))− Fj(β

−1
j,inf(bi)))

) ∏
j∈I\(S∪{i,k})

Fj(β
−1
j,inf(bi))

 .

Note that πk(i, bi) is independent of tk. By Bayes’s rule,

Fk(tk | i, bi, β) =


Fk(tk)

Fk(β−1
k,inf(bi))+(Fk(β−1

k,sup(bi))−Fk(β−1
k,inf(bi)))πk(i,bi)

if tk ≤ β−1
k,inf(bi)

Fk(β−1
k,inf(bi))+(Fk(tk)−Fk(β−1

k,inf(bi)))πk(i,bi)

Fk(β−1
k,inf(bi))+(Fk(β−1

k,sup(bi))−Fk(β−1
k,inf(bi)))πk(i,bi)

if β−1
k,inf(bi) ≤ tk ≤ β−1

k,sup(bi).

(75)

Thus, the density

fk(tk | i, bi, β) =


fk(tk)

Fk(β−1
k,inf(bi))+(Fk(β−1

k,sup(bi))−Fk(β−1
k,inf(bi)))πk(i,bi)

if tk < β−1
k,inf(bi)

fk(tk)πk(i,bi)

Fk(β−1
k,inf(bi))+(Fk(β−1

k,sup(bi))−Fk(β−1
k,inf(bi)))πk(i,bi)

if β−1
k,inf(bi) < tk ≤ β−1

k,sup(bi);

(76)

at the point β−1
k,inf(bi), the right density is equal to πk(i, bi) times the left density. Thus,

fk(· | i, bi, β) exists and is strictly positive on the posterior support and is continuous unless

β−1
k,inf(bi) 6= β−1

k,sup(bi), in which case β−1
k,inf(bi) is the only discontinuity point. �

Proof of Lemma 2 By hypothesis, bi is not an atom of βk. Thus, β−1
k,sup(bi) = β−1

k,inf(bi)

and Eqs. (75) and (76) together imply Eq. (4) for any tk ∈
[
0, β−1

k,sup(bi)
]
. For any tk ∈(

0, β−1
k,sup(bi)

)
, the derivative of Vk,bi,β, or d

dti

(
ti −

Fk(β−1
k,sup(bi))−Fk(tk)

fk(tk)

)
by Eq. (4), is no less

than either 2 or d
dti

(
ti − 1−Fk(tk)

fk(tk)

)
, which, strictly positive on the compact Ti by assumption,

is bigger than a λk > 0 constant to ti. Thus, Claims (b) follows, with λ := maxk∈I min{λk, 2},
and so does Claim (d). With Vk,bi,β nondecreasing on Tk according to Claim (b), the ironing

procedure is unnecessary and hence Claim (a) follows. To prove Claim (c), pick any b′i > bi

such that b′i is not an atom of βk. Hence both b′i and bi satisfy Eq. (4). Let ∆Vk(tk | b′i, bi) :=

Vk,b′i,β
(tk)− Vk,bi,β(tk). By Eqs. (3) and (4),

∆Vk(tk | b′i, bi) =


−Fk(β−1

k,sup(b′i))−Fk(β−1
k,sup(bi))

fk(tk)
if tk ≤ β−1

k,sup(bi)

Vk,b′i,β
(tk)− β−1

k,sup(bi) if β−1
k,sup(bi) ≤ tk ≤ β−1

k,sup(b
′
i)

β−1
k,sup(b

′
i)− β−1

k,sup(bi) if tk ≥ β−1
k,sup(b

′
i),

(77)

where β−1
k,sup(bi) ≤ β−1

k,sup(b
′
i) because βk is weakly increasing. The uppermost branch of

Eq. (77) implies Claim (c). (The other branches will be used in Lemma 15.) �
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D Details of the Increasing Difference Theorem

Proof of Lemma 5 First, we prove Eq. (19). In the continuation equilibrium, in choosing a

resale mechanism, player i the reseller effectively inputs an alleged type t̂i into the formula in

Lemma 3 that outputs a mechanism optimal for t̂i, which determines i’s expected probability

of being the final owner, Qi(bi, t̂i, β), and i’s expected revenue, denoted by Ri(bi, t̂i, β).

Then i’s expected payoff in period 2 is tiQi(bi, t̂i, β) + Ri(bi, t̂i, β). Optimality of the resale

mechanism means this expected payoff is maximized when t̂i = ti. Then the envelope

theorem of Milgrom and Segal [11, Theorem 2] implies (19).

Next we prove Eq. (20). From i’s viewpoint, the continuation equilibrium in the event

that i does not win the period-one auction is equivalent to an incentive feasible direct rev-

elation mechanism that solicits from i a report of his type and then plays the continuation

equilibrium on his behalf. Thus, the envelope theorem again implies

Li(bi, ti, β) = Li(bi, 0, β) +

∫ ti

0

qi(bi, τi, β)dτi.

The resale mechanism, optimal for the reseller, leaves zero surplus to the zero type of any

other bidder. Thus, Li(bi, 0, β) = 0 and Eq. (20) follows. �

Propositions 1 If b′i /∈ Bi then the conclusion is vacuously true, since in that case

Qi(b
′
i, t, β) = Qi(l, t, β) = 0 by definition of Qi. Thus, let b′i ∈ Bi. Since b′′i > b′i, we also

have b′′i ∈ Bi. Then Eq. (11) implies that neither b′′i nor b′i is an atom of β−i. Thus, for all

t−i ∈
∏

k 6=i

[
0, β−1

k,sup(b
′
i)
]

but a set of measure zero and for any ti ∈ Ti, Eq. (13) holds whether

bi = b′′i or bi = b′i. Consider any such t−i, and we shall prove that Qi(b
′′
i , t, β) ≥ Qi(b

′
i, t, β).

To avoid triviality, suppose Qi(b
′
i, t, β) > 0. Then Eq. (13) implies, for each k ∈ I \ {i}:

ti ≥ Vk(tk | b′i, β) ≥ Vk(tk | b′′i , β),

where the second inequality is due to the fact that Vk(tk | bi, β) is weakly decreasing in bi

(Lemma 2.c, applicable because t−i ∈
∏

k 6=i

[
0, β−1

k,sup(b
′
i)
]
). Thus, Qi(b

′′
i , t, β) = 1 by Eq. (13),

with b′′i playing the role of bi there. Hence Qi(b
′′
i , t, β) ≥ Qi(b

′
i, t, β). �

Proposition 2 Pick any t ∈ T . To avoid triviality, suppose that qi(t, β) > 0. Then

Eq. (12) implies that qij(t, β) > 0 for some j 6= i such that l < βj(tj) = maxk 6=i βk(tk).

By hypothesis bi ≥ maxk 6=i βk(tk), bi > l. Thus, both bi and βj(tj) are serious bids, hence
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by Eq. (11) bi is not an atom of β−i, nor βj(tj) an atom of β−j. Thus, Eq. (13) holds for

all t−i ∈
∏

k 6=i

[
0, β−1

k,sup(bi)
]

but a set of measure zero, and Eq. (14) holds for all t−(i,j) ∈∏
k/∈{i,j}

[
0, β−1

k,sup(βj(tj))
]

but a set of measure zero. By the choice of j, the condition t−(i,j) ∈∏
k/∈{i,j}

[
0, β−1

k,sup(βj(tj))
]

is satisfied; by the hypothesis bi ≥ maxk 6=i βk(tk), the condition

t−i ∈
∏

k 6=i

[
0, β−1

k,sup(bi)
]
is met. Thus, Eqs. (13) and (14) both hold for almost every t−i ∈ T−i

such that qij(t, β) > 0 and bi ≥ maxk 6=i βk(tk). Thus, qij(t, β) > 0 implies

Vi(ti | βj(tj), β) ≥ max

{
tj, max

k∈I\{i,j}
Vk(tk | βj(tj), β)

}
. (78)

By Eq. (13), it suffices to prove ti ≥ maxk∈I\{i} Vk(tk | bi, β). To this end, given (78) and the

fact ti ≥ Vi(ti | βj(tj), β) and tj ≥ Vj(tj | bi, β) due to Eq. (3), it suffices to prove

∀k ∈ I \ {i, j} : Vk(tk | βj(tj), β) ≥ Vk(tk | bi, β). (79)

Thus, pick any k /∈ {i, j}. By hypothesis, bi ≥ βj(tj). By the choice of j, tk ∈
[
0, β−1

k,sup(βj(tj))
]
,

so Ineq. (79) follows from Lemma 2.c with the (b′i, bi) there being (bi, βj(tj)) here. Hence

Qi(bi, t, β) ≥ qij(t, β). This being true for any j 6= i who may win at the realized profile t−i,

Eq. (12) implies Qi(bi, t, β) ≥ qi(t, β). �

E Details of the No-Tie Theorem

E.1 Proof of Lemma 7

Denote x := b∗. Let ε > 0. Since the density fi of ti is positive on its compact support [0, ti]

for every i ∈ I, there exists η̃(ε) > 0 such that

0 < η < η̃(ε) =⇒ ∀i ∈ I : ∀y ∈ Ti : Prob {y ≤ ti ≤ y + 4η} < ε

maxj∈I tj
. (80)

Pick any η > 0 such that

η < min

{
η̃(ε), ε,min

k∈J
(zk − ak)

}
. (81)

For any δ > 0, let

Nm
i (x; δ) := (x− δ, x+ δ) ∩Bm

i .

By Lemma 24 and monotonicity of β∗i , there exists a δ̃(ε) > 0 such that

∀i ∈ I : (β∗i )
−1
(
Nm

i (x; 2δ̃(ε))
)
⊆ (ai − η, zi + η). (82)
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As βm → β∗ pointwise almost everywhere, βm → β∗ uniformly except on a set E∗ := Πi∈IE
∗
i

such that each E∗
i has Lebesgue measure less than η (Littlewood’s third principle or Egoroff’s

theorem). Thus, for any δ > 0 such that

δ ≤ δ̃(ε), (83)

there exists m̃(δ) with

2−m̃(δ) < δ̃(ε)/2 (84)

such that for every integer m ≥ m̃(δ) and for every i ∈ I, we have

∀ti ∈ Ti \ E∗
i : |βm

i (ti)− β∗i (ti)| < δ/2, (85)

(β∗i )
−1 (Nm

i (x; δ/2)) ⊆ (ai − η, zi + η), (86)

where (86) follows from (82) and (83).

Now we construct an infinite subsequence (βmn)∞n=1. For each n = 1, 2, . . ., let εn :=

1/n. With εn taking the role of ε, there exists ηn as the left-hand side of Ineq. (81) and δ̃(εn)

specified in Eq. (82). Let

δn := min
{

1/n, δ̃(εn), x− l
}
. (87)

Hence there exists an m̃(δn) satisfying Ineq. (84). Let

mn := min{m = 1, 2, . . . : m ≥ m̃(δn);m ≥ mn−1 + 1}.

Note that n′ > n⇒ mn′ > mn. Hence subsequence (βmn)∞n=1 is constructed. Also Eqs. (85)

and (86) are satisfied when (mn, δn, ηn) plays the role of (m, δ, η).

First, we claim that, for each i ∈ I,

∀ti ∈ (β∗i )
−1 (Nmn

i (x; δn/2)) \ E∗
i : x− δn < βmn

i (ti) < x+ δn, (88)

(βmn
i )−1 (Nmn

i (x; δn + 2−mn)) \ E∗
i ⊆ (ai − ηn, zi + ηn). (89)

To prove (88), pick any ti ∈ (β∗i )
−1 (Nmn

i (x; δn/2)) \ E∗
i . Then

βmn
i (ti)

(85)
< β∗i (ti) + δn/2 < x+ δn/2 + δn/2 = x+ δn,

and analogously βmn
i (ti) > x − δn. To prove (89), suppose ti ≤ ai − ηn. Then (82) and

monotonicity of β∗i imply β∗i (ti) ≤ x− 2δ̃(εn); according to (85), either ti ∈ E∗
i , or

βmn
i (ti) < β∗i (ti)+δn/2 ≤ x−2δ̃(εn)+δn/2

(83)

≤ x−2δ̃(εn)+δ̃(εn)/2 = x−δ̃(εn)−δ̃(εn)/2 < x−δn−2−mn ,
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with the last inequality due to (83) and (84). Analogously, ti ≥ zi +ηn implies either ti ∈ E∗
i

or βmn
i (ti) > x+ δn + 2−mn . Hence (89) follows.

Second, we show that, for each i ∈ J , an
i and zn

i defined by Eqs. (28) and (29) exist

and “ai < zn
i and zi > an

i ” holds. By definition of ai and zi, (ai, zi) ⊆ (β∗i )
−1(Nmn

i (x; δn/2)).

Since the Lebesgue measure of E∗
i is less than ηn, which by (81) is smaller than zi−ai, there

exists ti ∈ (ai, zi) \E∗
i ⊆ (β∗i )

−1 (Nmn
i (x; δn/2)) \E∗

i . Hence (88) implies that the sets on the

right-hand sides of Eqs. (28) and (29) are nonempty. Thus, an
i and zn

i exist. By the choice

of this ti and Ineq. (85), we have βmn
i (ti) < β∗i (ti) + δn/2 = x + δn/2. Thus, by definition

of zn
i , ti ≤ zn

i . Hence ai < zn
i , otherwise ti > ai ≥ zn

i , a contradiction. Analogously, zi > an
i .

Third, (30) follows from Eqs. (28) and (29) and the fact that βmn
i is nondecreasing.

Fourth, we prove (32). Recall that (ai, zi) ⊆ (β∗i )
−1(Nmn

i (x; δn/2)) and an
i < zi. Thus,

if ai < an
i then (88) implies that (ai, a

n
i ) ⊆ E∗

i ; with E∗
i of Lebesgue measure less than ηn, we

have an
i −ai < ηn. Analogously we have zi− zn

i < ηn. Also, if an
i < ai− ηn, then (89) implies

(an
i , ai − ηn) ⊆ E∗

i and hence the interval cannot be longer than ηn; hence ai − an
i < 2ηn.

Analogously we have zn
i − zi < 2ηn. Thus, since ηn < εn by (81), we have (32).

Fifth, we prove (31) and (33). For any k ∈ I \J , (β∗k)
−1(x) is either singleton or empty,

hence ak = zk by definition. Thus, it follows from (89) that (βmn
k )−1 (Nmn

k (x; δn + 2−mn))

is either contained in (ak − ηn, ak] ∪ [zk, zk + ηn) or contained in E∗
k . Since the Lebesgue

measure of neither set is bigger than 2ηn, (80) implies (33). Likewise, (80) implies (31)

for any i ∈ J because, by (89), {ti ∈ Ti : x+ δn ≤ βmn
i (ti) < x+ δn + 2−mn} is contained in

E∗
i ∪ [zn

i , zi + ηn).

E.2 Proof of the Decomposition Equation (36)

Eq. (36) is the same as the following equation: for any bids b′i, bi ∈ Bi with b′i > bi,

Ui(b
′
i, ti, β)− Ui(bi, ti, β)

= E [1 [b′i � t−i]]
(
W i(b

′
i, ti, β)−W i(bi, ti, β)

)
− (b′i − bi) Pr {b′i � t−i} (90)

+ Pr {b′i � t−i, bi 6� t−i}
(
W i(bi, ti, β)− bi − Li(b

′
i, bi, ti, β)

)
,

where bi � t−i is a shorthand for i’s winning event, bi 6� t−i its complement, and

Li(b
′
i, bi, ti, β) := E [Li(t−i | ti, β) | b′i � t−i, bi 6� t−i] .
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To prove Eq. (90), note that Eq. (10) says, with the symbols (ti, β) suppressed,

Ui(bi) = E [1 [bi � t−i] (Wi(t−i | bi)− bi − Li(t−i))] + E [Li(t−i)] .

Then for any bids b′i > bi,

Ui(b
′
i)− Ui(bi) = E [1 [b′i � t−i]Wi(t−i | b′i)]− E [1 [bi � t−i]Wi(t−i | bi)]

−b′iE [1 [b′i � t−i]] + biE [1 [bi � t−i]] + E [(1 [bi � t−i]− 1 [b′i � t−i])Li(t−i)]

(15)
= E [1 [b′i � t−i]]W i(b

′
i)− E [1 [bi � t−i]]W i(bi)

−b′iE [1 [b′i � t−i]] + biE [1 [bi � t−i]]− E [1 [bi 6� t−i, b
′
i � t−i]Li(t−i)] .

Then Eq. (90) follows from breaking apart 1 [bi � t−i] = 1 [b′i � t−i]− 1 [bi 6� t−i, b
′
i � t−i].

E.3 Proof of Lemma 8

Suppose that the lemma is not true. Then, extracting a subsequence and relabeling super-

scripts if necessary, we may assume without loss of generality that

lim
n→∞

Pr

{
cnj < max

k∈J\{j}
β̄n

k (tk) ≤ b∗ + δn

}
> 0. (91)

By definition of cnj in Eq. (40) and monotonicity of β̄n
j ,

∀n : ∃εn ∈
(

0,min

{
1/n,max

k∈J
(zk − aj)/2

})
: ∀tj ∈ (an

j , a
n
j + εn) : β̄n

j (tj) = cnj . (92)

(The above choice of εn is feasible because by Ineq. (39) zk > ak ≥ aj for every k ∈ J .) Let

n 7→ tnj be any choice function such that for each n

tnj ∈
(
an

j , a
n
j + εn

)
.

We shall derive a contradiction by proving that for some sufficiently large n the type-tnj

bidder j strictly prefers to deviate from his mn-equilibrium bid cnj to the bid

bnj := min
{
bj ∈ Bmn

j : bj ≥ b∗ + δn
}
.

To prove this claim, first we establish

lim
n→∞

∆Πn
j (tnj ) ≥ 0. (93)
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By Eq. (38), ∆Πn
j (tnj ) is equal to a probability times ψn

j (tnj ) := W j(c
n
j , t

n
j , β̄

n)− cnj − L
n

j (tnj ).

Hence it suffices to show limn→∞ ψn
j (tnj ) ≥ 0. To this end, we first claim that

lim
n→∞

E
[
Lj(t−j | tnj , β̄n) | t−j ∈ Ωn

j

]
= 0, (94)

where Ωn
j :=

{
t−j ∈ T−j : cnj < maxk 6=j β̄

n
k (tk) < bnj

}
. By Lemma 7, as n→∞, the difference

between Ωn
j and the Ω̃n

j defined below vanishes:

Ω̃n
j := ∪k∈J\{j}Ω̃

n
jk, where for each k ∈ J \ {j}

Ω̃n
jk :=

{
t−j ∈ T−j : tk ∈ (an

k , z
n
k ); cnj < β̄n

k (tk) = max
k 6=j

β̄n
k (tk) < bnj ;∀h /∈ J

[
β̄n

h (th) < cnj
]}

.

Thus, Ineq. (94) is unchanged when its integrand Lj(t−j | tnj , β̄n) is replaced by

∑
k∈J\{j}

1

[
β̄n

k (tk) > max
j′ /∈{i,j}

β̄n
j′(tj′)

]
Ljk

(
t−j | tnj , β̄n

)
.

For any k ∈ J \ {j}, bidder j’s payoff Ljk from losing the auction to bidder k cannot

exceed tnj − tk. Since tnj < an
j + εn < an

j +1/n by the choice of tnj and εn (Eq. (92)), and since

an
i →n ai for each i ∈ J , we have for any tk ∈ (an

k , z
n
k ):

tnj < an
j + εn ≤ aj +O(1/n)

(39)

≤ ak +O(1/n) ≤ an
k +O(1/n) < tk +O(1/n).

Thus, 0 ≤ Ln
jk(t−j | tnj , β̄n) ≤ tnj − tk = O(1/n) for any t−j ∈ Ω̃n

jk. That proves (94). Thus,

lim
n→∞

ψn
j (tnj ) = lim

n→∞

(
W j(c

n
j , t

n
j , β̄

n)− cnj )
)
≥ 0,

with the second inequality due to the fact β̄n
j (tnj ) = cnj and Lemma 6. That proves Ineq. (93).

Second, by Eq. (92),

tnj < an
j + εn ≤ aj + εn +O(1/n) < aj +max

k∈J
(zk−aj)/2+O(1/n) = max

k∈J
(zk +aj)/2+O(1/n),

hence limn→∞ tnj ≤ maxk∈J(zk + aj)/2 < maxk∈J zk ≤ maxk 6=j zk. Thus, Lemma 9 implies

lim supn→∞ ∆W n
j (tnj ) > 0. Plugging this inequality, Ineq. (93), and limn→∞(bnj − cnj ) = 0

(cnj ∈ (b∗ − δn, b∗ + δn) since tnj ∈ (an
j , z

n
j )) into Eq. (36), we have lim supn→∞ ∆Un

j (tnj ) > 0.

Thus, there are sufficiently large n for which the type-tnj bidder j strictly prefers deviating

to bnj from his mn-equilibrium bid cnj . This contradiction proves the lemma.
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E.4 The Dominant Rival’s Resale Mechanisms

The next lemma helps us to predict the resale mechanism employed by the dominant bidder j

specified in Lemma 8 when he wins with a bid clustered at b∗. In that event, j’s winning bid

ranges within a neighborhood where his rivals rarely bid, hence his posterior belief about

the others stays mostly constant to his winning bid, and so are the posterior virtual utility

functions and payment rules at resale. We shall use the notation Vk,x defined in Eq. (46).

Lemma 25 Let j be specified by Lemma 8, cni specified by Eqs. (41) and (42), and bni specified

by Eq. (45). If xn is someone’s winning bid in [cni , b
n
i ] for each n = 1, 2, . . ., then for any

k ∈ I \ {j}, with zk specified in Eq. (27),

lim
n→∞

(
β̄n
)−1

k,sup
(xn) = zk, (95)

∀tk ∈ Tk : lim
n→∞

Vk

(
tk | xn, β̄n

)
= Vk,zk

(tk), (96)

and, if in addition zk > max
{
tj,maxk′ /∈{j,k} Vk′,zk′

(tk′)
}
, then

lim
n→∞

pk,j,xn,β̄n(tj, t−(j,k)) = V−1
k,zk

(
max

{
tj, max

k′ /∈{j,k}
Vk′,zk′

(tk′)

})
. (97)

Proof Let k ∈ I \ {j}. Since xn ∈ [cni , b
n
i ], Eqs. (31), (33) and (42) together imply that

the probability measure of the interval between
(
β̄n
)−1

k,sup
(xn) and zn

k (defined in Eq. (29))

vanishes. Thus, Eq. (95) follows from the no-gap assumption of Fk and the fact zn
k →n zk by

Eq. (32). To prove (96), note that xn, a winning bid in the mn-approximation game, is not

an atom of the losers’ strategies, due to Eq. (22). Thus, Vk

(
tk | xn, β̄n

)
obey Eq. (4), with xn

being the bi there, if tk ≤
(
β̄n
)−1

k,sup
(xn) and is equal to

(
β̄n
)−1

k,sup
(xn) if tk ≥

(
β̄n
)−1

k,sup
(xn).

Then Eq. (96) follows from Eqs. (46) and (95). To prove Eq. (97), let its condition zk >

max
{
tj,maxk′ /∈{j,k} Vk′,zk′

(tk′)
}

be satisfied. Then Eqs. (95) and (96) imply(
β̄n
)−1

i,sup
(xn) > max

{
tj, max

k/∈{i,j}
Vk,xn,β̄n(tk)

}
for sufficiently large n. Thus, since j’s winning bid is not an atom of β̄n

−j, the conditions for

Eq. (6) are satisfied. Plug Eq. (96) for all k′ 6= j into Eq. (6) and we obtain Eq. (97).

E.5 Proof of Lemma 9

Since bni ≥ b∗ + δn by definition of bni , the probability with which bni wins is no less than

Pr
{
b∗ + δn > maxk 6=i β̄

n
k (tk)

}
, and lim supn→∞ Pr

{
b∗ + δn > maxk 6=i β̄

n
k (tk)

}
> 0 by the con-
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sequentiality of b∗ and the convergence β̄n → β∗. Thus, by Eq. (37), it suffices to show

lim sup
n→∞

(
W i(b

n
i , t

n
i , β̄

n)−W i(c
n
i , t

n
i , β̄

n)
)
> 0.

To this end, denote yn
k :=

(
β̄n
)−1

k,sup
(cni ) for each k ∈ I. Extracting a convergent subsequence

and relabeling superscripts if necessary, we may assume without loss of generality

∀k ∈ I ∃yk ∈ Tk : lim
n→∞

yn
k = yk. (98)

By Eq. (46), V−1
k,x(ti) is continuous in x for any ti ∈ [0, x]. Thus, if ti < zk then

∀k ∈ I \ {i} : lim
n→∞

V−1
k,yn

k
(ti) = V−1

k,yk
(ti). (99)

The rest of the proof uses Proposition 4, with (yn
k )k 6=i and (zn

k )k 6=i playing the role of ζ

and ζ ′ there. The proposition is applicable because the winning bids cni and bni are not atoms

of β̄n
−i, hence the posterior virtual utility functions obey Eq. (4). There are only two cases:

either (i) ti ≥ maxj 6=i yj or (ii) ti < yj for some j 6= i.

Case (i): This implies, by Eq. (98), tni + 1/n ≥ maxj 6=i y
n
j for sufficiently large n. Since

ti < maxk 6=i zk by hypothesis of the lemma, Eq. (32) implies tni < maxk 6=i z
n
k for sufficiently

large n. Thus, maxj 6=i y
n
j − 1/n ≤ tni < maxk 6=i z

n
k for sufficiently large n. For any such n,

W i(c
n
i , t

n
i , β̄

n) ≤ tni + 1/n because the public history (i, cni ) implies tj ≤ yn
j for each j 6= i.

Thus, mimicking the reasoning for Ineq. (63), we have, for some j 6= i with zj > ti,

W i(b
n
i , t

n
i , β̄

n)−W i(c
n
i , t

n
i , β̄

n) ≥

1−
Fj

(
V−1

j,zn
j
(tni )

)
Fj(zn

j )

(V−1
j,zn

j
(tni )− tni − 1/n

)
.

Since tni → ti and zn
i →n zi, Eq. (99) and the continuity of V−1

j,zn
j

together imply that the right-

hand side converges to
(
1− Fj

(
V−1

j,zj
(ti)
)
/Fj(zj)

)(
V−1

j,zj
(ti)− ti

)
, which is strictly positive

since V−1
j,zj

(ti) > ti due to zj > ti (which implies zj > V−1
j,yj

> ti by Eq. (46)).

Case (ii): By Eq. (98), for infinitely many n, tni < yn
j and hence Ineq. (64) holds, i.e.,

W i(b
n
i , t

n
i , β̄

n)−W i(c
n
i , t

n
i , β̄

n) ≥ γn Pr

{
cni < max

j∈J\{i}
β̄n

j (tj) < bni

}
,

where according to Eq. (65)

γn =

∏
k 6=i Fk(y

n
k )−

∏
k 6=i Fk

(
min

{
V−1

k,yn
k
(tni ), yn

k

})
(∏

k 6=i Fk(zn
k )
)(∏

k 6=i Fk(yn
k )
) tni .
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By Ineq. (43), lim supn→∞ Pr
{
cni < maxj∈J\{i} β̄

n
j (tj) < bni

}
> 0; by Eq. (99),

lim sup
n→∞

γn =

∏
k 6=i Fk(yk)−

∏
k 6=i Fk

(
min

{
V−1

k,yk
(ti), yk

})(∏
k 6=i Fk(zk)

)(∏
k 6=i Fk(yk)

) ti > 0,

where the inequality is due to the fact ti < yj (which implies ti < V−1
j,yj

< yj by Eq. (46)).

Hence again lim supn→∞
(
W i(b

n
i , t

n
i , β̄

n)−W i(c
n
i , t

n
i , β̄

n)
)
> 0, as desired.

E.6 Proof of Lemma 10

By Eqs. (38), (47) and (48), the pivotal effect equals ∆Πn
i (tni ) = Pr(Ωn

i )ψn
i (tni ). By Ineq. (43),

lim supn Pr(Ωn
i ) > 0. Thus, it suffices to show that lim supn ψ

n
i (tni ) > 0.

To this end, we start by calculating the price markup. Pick any tj ∈ (aj, zj). For all

sufficiently large n, tj ∈ (an
j , z

n
j ) by Eq. (32), hence Eqs. (30) and (44) imply cni < β̄n

j (tj) < bni .

Note that Eq. (97) holds for k = i because zi > max
{
tj,maxk′ /∈{j,k} Vk′,zk′

(tk′)
}
, which is

due to the tj chosen above coupled with any t−(i,j) ∈
∏

k′ /∈{i,j}[0, zk′), as maxk′ 6=i zk′ ≤ zi by

hypothesis of the lemma. Integrating Eq. (97) across all such t−(i,j) gives

E
[
V−1

i,zi

(
max

{
tj, max

k/∈{i,j}
Vk,zk

(tk)

})∣∣∣∣ t−(i,j) 5 z−(i,j)

]
= lim

n→∞
E
[
pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

)
| t−(i,j) 5 z−(i,j)

]
= lim

n→∞
E
[
pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

) ∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk)

]
,

with the second line due to Eq. (95) applied to the case xn = β̄n
j (tj). By Eq. (62),

W j

(
β̄n

j (tj), tj, β̄
n
)

= E
[
max

{
tj,max

k 6=j
Vk,β̄n

j (tj),β̄n(tk)

}∣∣∣∣ β̄n
j (tj) > max

k 6=j
β̄n

k (tk)

]
.

By Eqs. (95) and (96),

lim
n→∞

W j

(
β̄n

j (tj), tj, β̄
n
)

= E
[
max

{
tj,max

k 6=j
Vk,zk

(tk)

}∣∣∣∣ t−j 5 z−j

]
.

Thus,

lim
n→∞

(
E
[
pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

) ∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk)

]
−W j

(
β̄n

j (tj), tj, β̄
n
))

= E
[
V−1

i,zi

(
max

{
tj, max

k/∈{i,j}
Vk,zk

(tk)

})∣∣∣∣ t−(i,j) 5 z−(i,j)

]
− E

[
max

{
tj,max

k 6=j
Vk,zk

(tk)

}∣∣∣∣ t−j 5 z−j

]
,
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which is strictly positive by Ineq. (71), applicable since zi ≥ maxk 6=i zk. The strict positivity

remains valid when W j

(
β̄n

j (tj), tj, β̄
n
)

is replaced by β̄n
j (tj), as β̄n

j (tj) ≤ W j

(
β̄n

j (tj), tj, β̄
n
)

by Lemma 6. Thus,

lim
n→∞

(
E
[
pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

) ∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk)

]
− β̄n

j (tj)

)
> 0.

This being true for all tj ∈ (aj, zj), integration across such tj gives the price markup

lim
n→∞

E
[
pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

)
− β̄n

j (tj)

∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk); tj ∈ (aj, zj)

]
> 0. (100)

Next, we calculate bidder i’s winner’s curse. By the hypothesis Vi,zi
(ti) ≥ maxk 6=i zk

and tni →n ti, as well as Eqs. (32) and (96), for any tj ∈ (aj, zj)

0 ≥ lim
n→∞

(
max
k 6=i

zn
k − Vi,β̄n

j (tj),β̄n(tni )

)
≥ lim

n→∞

(
max

{
tj, max

k/∈{i,j}
Vi,β̄n

j (tj),β̄n(tk)

}
− Vi,β̄n

j (tj),β̄n(tni )

)
.

Hence the probability with which i wins in j’s resale mechanism goes to one in the event

where i’s bid increase is pivotal, i.e., the event Ωn
i defined in Eq. (47). Thus,

lim
n→∞

E
[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

]
(101)

= lim
n→∞

E
[
Lij(t−i | tni , β̄n)

∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk); t−i ∈ Ωn
i

]
= lim

n→∞
E
[
tni − pi,j,β̄n

j (tj),β̄n

(
tj, t−(i,j)

) ∣∣∣∣β̄n
j (tj) > max

k/∈{i,j}
β̄n

k (tk); tj ∈ (aj, zj)

]
,

with the first line due to Eqs. (31) and (42), and the substitution of the conditioned event

on the second line due to an
j →n aj and zn

j →n zj (Eq. (32)).

Finally is the pivotal effect lim supn ψ
n
i (tni ). By definition, lim supn ψ

n
i (tni ) is

lim
n→∞

(
W

n

i

(
cni , t

n
i , β̄

n
)
− E

[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

]
− cni

)
,

which, by Eq. (101) and the fact W i

(
cni , t

n
i , β̄

n
)
≥ tni , is greater than or equal to the left-hand

side of (100) and hence is strictly positive, as desired.

E.7 Proof of Lemma 11

Step 1: A resale mechanism for bidder i In the mn-approximation game, bidder i

upon winning can offer resale via the following game form Mn for bidders k 6= i, with the

notation (zn
i ,Vi,zn

i
) defined in Eqs. (29) and (46):
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a. Every bidder k 6= i picks an element from [0, zn
k ], say tk, and reports it as k’s type.

b. If tj ≥ Vi,zn
i
(tni ) then—

i. i resells the good to a bidder k ∈ I \ {i} for whom

Vk,cn
i ,β̄n(tk) ≥ max

{
tni , max

h/∈{i,k}
Vh,,cn

i ,β̄n(th)

}
at the price V −1

k,cn
i ,β̄n

(
max

{
tni ,maxh/∈{i,k} Vh,,cn

i ,β̄n(th)
})

;

ii. if no such k exists then i keeps the good.

c. If tj < Vi,zn
i
(tni ) then—

i. i resells the good to a bidder k ∈ I \ {i, j} for whom

Vk,cn
i ,β̄n(tk) ≥ max

{
Vi,zn

i
(tni ), max

h/∈{i,j,k}
Vh,,cn

i ,β̄n(th)

}
at the price V −1

k,cn
i ,β̄n

(
max

{
Vi,zn

i
(tni ),maxh/∈{i,j,k} Vh,,cn

i ,β̄n(th)
})

;

ii. if no such k exists then i keeps the good.

We claim that the mechanism Mn is ex post incentive feasible. It is ex post individually

rational because a bidder k 6= i can stay out by reporting his type being zero, thereby

reporting a negative virtual utility. This gives him zero probability to win in Case (b), as

tni ≥ 0. This also renders zero winning probability in Case (c), where tj ≤ Vi,zn
i
(tni ) implies

Vi,zn
i
(tni ) ≥ 0. Thus, in either case bidder k can stay out thereby ensuring zero payoff.

The mechanism Mn is also ex post incentive compatible. For any k 6= i and any t−k, if

bidder k’s true type is tk, then by the rules in (b) and (c) his payoff conditional on winning

is positive if and only if tk > V −1
k,cn

i ,β̄n (vn
k (t−k)), where

vn
k (t−k) :=

 max
{
tni ,maxh/∈{i,k} Vh,,cn

i ,β̄n(th)
}

if tj ≥ Vi,zn
i
(tni )

max
{
Vi,zn

i
(tni ),maxh/∈{i,j,k} Vh,,cn

i ,β̄n(th)
}

if tj < Vi,zn
i
(tni ).

With Vk,cn
i ,β̄n strictly increasing, tk > V −1

k,cn
i ,β̄n (vn

k (t−k)) is equivalent to Vk,cn
i ,β̄n(tk) > vn

k (t−k),

i.e., the event that k wins in Mn after reporting truthfully. Thus, having a positive payoff

from winning in Mn is equivalent to the event that he should win after truthtelling. Since
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the payoff from not winning in Mn is equal to zero, this implies incentive compatibility for

any bidder k ∈ I \ {i}.17

Step 2: Bidder i’s expected payoff as a reseller Denote ŵn(t−i) for i’s ex post payoff

generated by the participation and truthtelling equilibrium in Mn when the realized type

profile across k 6= i is t−i. By revealed preference,

W i

(
cni , t

n
i , β̄

n
)
≥ E

[
ŵn(t−i)

∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
.

Denote

Xn := E
[
1
[
tj ≥ Vi,zn

i
(tni )

]
(ŵn (t−i)− cni )

∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
,

Y n := E
[
1
[
tj < Vi,zn

i
(tni )

]
(ŵn (t−i)− cni )

∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
.

Then

W i

(
cni , t

n
i , β̄

n
)
− cni ≥ Xn + Y n.

To calculate Xn, note from its definition that it is an integral on the set of t−i such

that tj ≥ Vi,zn
i
(tni ). At such t−i, mechanism Mn follows its rule (b), which coincides with the

resale mechanism Mi(c
n
i , t

n
i , β̄

n) that the type-tni bidder i would choose upon winning with

bid cni . (The posterior virtual utility functions conditional on the public history (i, cni ) are(
Vk,cn

i ,β̄

)
k 6=i

because Lemma 2.a applies, as cni is not an atom of β̄n
−i.) Thus,

Xn = E
[
1
[
tj ≥ Vi,zn

i
(tni )

] (
Wi

(
t−i | cni , tni , β̄n

)
− cni

) ∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
.

If Pr
{
tj ≥ Vi,zn

i
(tni )

∣∣maxk 6=i β̄
n
k (tk) < cni

}
= 0 then Xn = 0; else then Lemma 22 implies

E
[
Wi

(
t−i | cni , tni , β̄n

) ∣∣∣∣tj ≥ Vi,zn
i
(tni ); max

k 6=i
β̄n

k (tk) < cni

]
≥ E

[
Wi

(
t−i | cni , tni , β̄n

) ∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
.

Thus,

Xn ≥ Pr

{
tj ≥ Vi,zn

i
(tni )

∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

}
E
[
Wi

(
t−i | cni , tni , β̄n

)
− cni

∣∣∣∣max
k 6=i

β̄n
k (tk) < cni

]
;

furthermore, since β̄n
i (tni ) = cni , the second factor on the right-hand side according to

Lemma 6 is nonnegative. Thus, Xn ≥ 0 and hence

W i

(
cni , t

n
i , β̄

n
)
− cni ≥ Y n. (102)

17 When Vi,zn
i
(tni ) < tj < V −1

j,cn
i ,β̄n(tni ), bidder j gets zero payoff whether he reports his type to be above

Vi,zn
i
(tni ) or below Vi,zn

i
(tni ), but he cannot profit from lying.
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To calculate Y n, note from its definition that it is an integral on the set of t−i such

that tj < Vi,zn
i
(tni ). At such t−i, mechanism Mn follows its rule (c), under which tj has no

effect on the outcome of Mn, hence i’s ex post payoff ŵn(t−i) from Mn is constant to tj.

Since the indicator 1
[
tj < Vi,zn

i
(tni )

]
is weakly decreasing in tj, with ŵn(t−i) independent

of tj and nonnegative, 1
[
tj < Vi,zn

i
(tni )

]
ŵn(t−i) is a weakly decreasing function of tj for any

t−(i,j). Hence the integral of this function cannot increase when we move upward some mass

of tj, by replacing the conditioned event maxk 6=i β̄
n
k (tk) < cni with the one in the following:

Y n ≥ E
[
1
[
tj < Vi,zn

i
(tni )

]
(ŵn (t−i)− cni )

∣∣∣∣cni < β̄n
j (tj) < bni ; max

k/∈{i,j}
β̄n

k (tk) < cni

]
.

By Eq. (42), we can replace the above conditioned event by Ωn
i defined in Eq. (47). Thus,

lim
n→∞

Y n ≥ lim
n→∞

E
[
1
[
tj < Vi,zn

i
(tni )

]
(ŵn (t−i)− cni ) | t−i ∈ Ωn

i

]
. (103)

Step 3: The winner’s curse By Eq. (42), the probability with which bidders k /∈ {i, j}
wins given Ωn

i vanishes as n→∞. Thus, the loser’s payoff for i comes mainly from i’s payoff

from losing to j, i.e., when bidder j with some type tj wins with bid β̄n
j (tj) ∈ (cni , b

n
i ). In

that event, bidder j chooses the resale mechanism Mj

(
β̄n

j (tj), tj, β̄
n
)
, which is determined

by posterior virtual utility functions
(
Vk,β̄n

j (tj),β̄n

)
k 6=j

(due to Lemma 2.a, applicable because

the winning bid β̄n
j (tj) is not an atom of β̄n

−j, by Eq. (22)). Recall that the probability with

which bidder i gets to buy the good from j is denoted by qij
(
tni , t−i, β̄

n
)
, with the price

denoted by pi,j,β̄n
j (tj),β̄n(t−i). Thus,

lim
n→∞

E
[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

]
(42)
= lim

n→∞
E
[(
tni − pi,j,β̄n

j (tj),β̄n(t−i)
)
qij
(
tni , t−i, β̄

n
)∣∣∣ t−i ∈ Ωn

i

]
(104)

= lim
n→∞

E
[
1
[
tj < Vi,zn

i
(tni )

] (
tni − pi,j,β̄n

j (tj),β̄n(t−i)
)
qij
(
tni , t−i, β̄

n
)∣∣∣ t−i ∈ Ωn

i

]
,

where the second equality holds because tj ≥ Vi,zn
i
(tni ) implies that the probability with which

bidder i can buy the good from j, and hence i’s payoff at resale, vanishes as n enlarges.

Step 4: Y n balances the winner’s curse Combining (103) with (104) yields

lim
n→∞

(
Y n − E

[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

])
≥ lim

n→∞
E
[
1
[
tj < Vi,zn

i
(tni )

] (
ŵn (tni , t−i)− cni −

(
tni − pi,j,β̄n

j (tj),β̄n(t−i)
)
qij
(
tni , t−i, β̄

n
))∣∣∣ t−i ∈ Ωn

i

]
.
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To calculate the right-hand side, let t−i range within Ωn
i such that tj < Vi,zn

i
(tni ). Then

mechanism Mn operates under rule (c), and i’s payoff ŵn (tni , t−i) is equal to either tni if

Vi,zn
i
(tni ) > max

k/∈{i,j}
Vk,cn

i ,β̄n(tk), (105)

or the payment

V −1
k,cn

i ,β̄n

(
max

{
Vi,zn

i
(tni ), max

h/∈{i,j,k}
Vh,,cn

i ,β̄n(th)

})
(106)

from some bidder k /∈ {i, j} if

Vk,cn
i ,β̄n(tk) > max

{
Vi,zn

i
(tni ), max

h/∈{i,j,k}
Vh,,cn

i ,β̄n(th)

}
. (107)

By Eq. (96) and zn
i →n zi, t

n
i →n ti and continuity of the mapping x 7→ Vi,x(ti), we have

limn→∞ Vi,zn
i
(ti) = Vi,zi

(ti),

limn→∞ Vk′,β̄n
j (tj),β̄n(tk′) = Vk′,zk′

(tk′) = limn→∞ Vk′,cn
i ,β̄n(tk′),

limn→∞ Vi,β̄n
j (tj),β̄n(tni ) = Vi,zi

(ti) = limn→∞ Vi,zn
i
(tni ).

Then for all sufficiently large n, the event (105) is approximated by

Vi,β̄n
j (tj),β̄n(tni ) > max

k/∈{i,j}
Vk,β̄n

j (tj),β̄n(tk)

(which means if j wins j would resell to i since tj < Vi,zn
i
(tni ) ≈ Vi,β̄n

j (tj),β̄n(tni )), and the

event (107) is approximated by

Vk,β̄n
j (tj),β̄n(tk) > max

{
Vi,β̄n

j (tj),β̄n(tni ), max
h/∈{i,j,k}

Vh,β̄n
j (tj),β̄n(th)

}
(which means j would resell to k), with the payment (106) approximated by pk,j,β̄n

j (tj),β̄n(t−k).

Thus, for all t−i ∈ Ωn
i with tj < Vi,zn

i
(tni ) except a subset whose measure is O(1/n),

ŵn (tni , t−i) +O(1/n) = tni qij(t
n
i , t−k, β̄

n) +
∑

k∈I\{i,j}

qkj(tk, t−k, β̄
n)pk,j,β̄n

j (tj),β̄n(t−k)

and hence

ŵn (tni , t−i)−
(
tni − pi,j,β̄n

j (tj),β̄n(t−i)
)
qij
(
tni , t−i, β̄

n
)

+O(1/n)

=
∑

k∈I\{j}

qkj(tk, t−k, β̄
n)pk,j,β̄n

j (tj),β̄n(t−k),
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which is equal toWj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)

because tj < Vi,zn
i
(tni ) implies tj < Vi,β̄n

j (tj),β̄n(tni )

for all sufficiently large n, at which bidder j, upon winning, always resells the good. Thus,

lim
n→∞

(
Y n − E

[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

])
≥ lim

n→∞
E
[
1
[
tj < Vi,zn

i
(tni )

] (
Wj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)
− cni

)∣∣ t−i ∈ Ωn
i

]
.

Combining this with Eq. (102), as well as the facts limn→∞ cni = b∗ by Eq. (44) and b∗ =

limn→∞ β̄n
j (tj) for all tj such that β̄n

j (tj) ∈ (cni , b
n
i ), we have

lim
n→∞

(
W i

(
cni , t

n
i , β̄

n
)
− cni − E

[
Li(t−i | tni , β̄n) | t−i ∈ Ωn

i

])
≥ lim

n→∞
E
[
1
[
tj < Vi,zn

i
(tni )

] (
Wj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)
− β̄n

j (tj)
)∣∣ t−i ∈ Ωn

i

]
,

which is Eq. (49). This proves the lemma.

E.8 Proof of Lemma 12

Pick any tj ∈ (aj, zj). By Lemma 6,

β̄n
j (tj) ≤ E

[
Wj

(
t−j | β̄n

j (tj), tj, β̄
n
) ∣∣∣∣max

k 6=j
β̄n

k (tk) < β̄n
j (tj)

]
.

Taking the limit and using Eq. (95), we have

lim
n→∞

β̄n
j (tj) ≤ Eti

[
lim

n→∞
Et−(i,j)

[
Wj

(
t−j | β̄n

j (tj), tj, β̄
n
) ∣∣∣∣ max

k/∈{i,j}
β̄n

k (tk) < β̄n
j (tj)

]∣∣∣∣ ti ≤ zi

]
.

By Eq. (22) the winning bid β̄n
j (tj) is not an atom of β̄n

−j, so the Wj

(
t−j | β̄n

j (tj), tj, β̄
n
)

on

the right-hand side obeys Eq. (7) and hence is determined by the virtual utility functions(
Vk,β̄n

j (tj),β̄n

)
k 6=j

. By Lemma 25, for each k 6= j, Vk,β̄n
j (tj),β̄n →n Vk,zk

, which is the virtual

utility function given distribution Fk(·)/Fk(zk). Thus, Wj

(
t−j | β̄n

j (tj), tj, β̄
n
)

converges to

the type-tj reseller j’s expected payoff from the Myerson auction M(z) defined in §A.1. I.e.,

with the ϕi defined in Eq. (67) where ζk is zk here,

lim
n→∞

Et−(i,j)

[
Wj

(
ti, t−(i,j) | β̄n

j (tj), tj, β̄
n
) ∣∣∣∣ max

k/∈{i,j}
β̄n

k (tk) < β̄n
j (tj)

]
= ϕi(ti, tj). (108)

Denote ϕi(tj) := Eti
[ϕi(ti, tj) | ti ∈ [0, zi]], so the above-displayed inequality means

lim
n→∞

β̄n
j (tj) ≤ ϕi(tj). (109)
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Denote

ϕ∗(ti) := E [1[tj < zi]ϕi(ti, tj) | tj ∈ (aj, zj)] ,

ϕ∗ := E [1[tj < zi]ϕi(tj) | tj ∈ (aj, zj)] .

We construct a sequence (tni )∞n=1 such that β̄n
i (tni ) = cni for each n, tni →n zi, and

lim
n→∞

ϕ∗(t
n
i ) ≥ ϕ∗. (110)

To this end, recall
(
β̄n
)−1

i
(cni ) 6= ∅ by Eq. (41). By Eq. (95),

(
β̄n
)−1

i,sup
(cni ) the supremum

of this inverse image converges to zi as n → ∞. Hence there exists (tni )∞n=1 such that tni ∈(
β̄n
)−1

i
(cni ) for each n and tni →n zi. Thus, by continuity of ϕ∗ (Corollary 2), limn→∞ ϕ∗(t

n
i ) =

ϕ∗(zi), and ϕ∗(zi) ≥ ϕ∗ (otherwise ϕ∗ < ϕ∗ on an interval (α′, zi] for some α′ < zi by

continuity of ϕ∗, which contradicts Ineq. (70) of Corollary 2). Hence Ineq. (110) holds.

Plugging the definitions of ϕ∗ and ϕ∗ into (110), we have

Etj

[
1 [tj < zi]

(
lim

n′→∞
ϕi(t

n′

i , tj)− ϕi(tj)
)∣∣∣ tj ∈ (aj, zj)

]
≥ 0.

Replace ϕi(t
n′
i , tj) with the left-hand side of Eq. (108), switch the positions of the integration

and the limit operators and then use Ineq. (109) to obtain

lim
n′→∞

lim
n→∞

E

1 [tj < zi]
(
Wj

(
tn

′

i , t−(i,j) | β̄n
j (tj), tj, β̄

n
)
− β̄n

j (tj)
) ∣∣∣∣∣∣ tj ∈ (aj, zj);

maxk/∈{i,j} β̄
n
k (tk) < β̄n

j (tj)

 ≥ 0.

In the above integral, for any n and t−i, Wj

(
ti, t−(i,j) | β̄n

j (tj), tj, β̄
n
)

is a uniformly bounded

and uniformly equicontinuous function of ti. Uniform boundedness follows from the com-

pactness of the prior supports of use values. Uniform equicontinuity follows from the fact

that, by Eq. (22), Wj obeys Eq. (7), where for any k 6= j the virtual utility Vk and the resale

price pj,k are uniformly equicontinuous in tk: Vk is so by Eq. (4); pj,k is so because it obeys

Eq. (6), where the derivative of the increasing inverse function V −1
k is bounded from above

by 1/λ > 0 (Lemma 2.b). Thus, in the sequence
((
tn

′
i , β̄

n
)∞

n=1

)∞
n′=1

, the diagonal subsequence

in which the superscripts of tn
′

i and β̄n
j coincide converges to the above double limit. Thus,

lim sup
n→∞

E

1 [tj < zi]
(
Wj

(
tni , t−(i,j) | β̄n

j (tj), tj, β̄
n
)
− β̄n

j (tj)
) ∣∣∣∣∣∣ tj ∈ (aj, zj);

maxk/∈{i,j} β̄
n
k (tk) < β̄n

j (tj)

 ≥ 0.

On the left-hand side, since an
j →n aj and zn

j →n zj, the part tj ∈ (aj, zj) in the con-

ditioned event can be replaced by tj ∈ (an
j , z

n
j ), and the entire conditioned event can be
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replaced by the pivotal event Ωn
i by Eqs. (42) and (47). Since zi is a limit point of (tni )∞n=1,

with Vi,zi
continuous and Vi,zi

(zi) = zi, the indicator function 1 [tj < zi] can be replaced by

1
[
tj < Vi,zn

i
(tni )

]
. Hence we obtain Ineq. (50), and the lemma is proved.

E.9 Proof of Corollary 1

Suppose not, say b∗ > r is a consequential atom of β∗j . By Theorem 2, no bidder other than j

has an atom at b∗. Let (δn)∞n=1 and ((aj, zj), (a
n
j , z

n
j )∞n=1) be those specified in Lemma 7. For

any i 6= j, define cni by Eq. (41). Since b∗ > r, limn→∞ (b∗ − δn −maxi6=j c
n
i ) = 0; otherwise,

since the auction is first-price, bidder j with types in (an
j , z

n
j ) would deviate to a bid dn

j ∈ Bmn
j

such that maxi6=j c
n
i < dn

j < b∗ − δn. With I \ {j} finite, there exist an i ∈ I \ {j} and an

infinite subsequence (nk)
∞
k=1 along which cnk

i = maxj′∈J\{j} c
nk

j′ for all k. As no one but j has

an atom at b∗, Eq. (42) holds. Since limn→∞ (b∗ − δn −maxi6=j c
n
i ) = 0, cnk

i < b∗ + δnk
and

b∗ + δnk
− cnk

i = O(δnk
). Furthermore, b∗ is consequential by hypothesis of the lemma. The

rest of the proof is identical to the proof of Theorem 2 starting from Eq. (42).

F Proof of Lemma 15

Let a serious bid b∗ be an inconsequential atom of β∗. By Lemma 13, there exists a bidder i

for whom b∗ is not an atom of β∗i . Since ∪∞m=1B
m
i is dense in the space of serious bids due

to Eq. (24), there is a sequence (bmi )∞m=1 converging to b∗ with bmi ∈ Bm
i for each m. Then

Eqs. (52) and (53) imply that

Pr {β∗i (ti) > b∗} = lim
m→∞

Pr {βm
i (ti) > bmi } = 1. (111)

To prove by contradiction, suppose b∗ is an atom of β∗k for all k 6= i. Denote for any m

bmi := min {b ∈ Bm
i : βm

i = b on some (x, x′) ⊆ Ti with x < x′} ,

b∗i := inf{β∗i (t′i) : t′i > 0}.

For each k 6= i and any m, denote

zm
k := (βm)−1

k,sup (bmi ) ,

zk := (β∗)−1
k,sup (b∗i ) .
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Since βm → β∗, bmi →m b∗i and zk is a limit point of (zm
k )∞m=1. Extracting a converging

subsequence and relabeling if necessary, assume that zm
k →m zk for each k 6= i. Note that

zk > 0 for each k 6= i, as b∗ is an atom of β∗k .

Note that b∗i is not an atom of β∗i . Otherwise, since b∗i ≥ b∗ (Eq. (111)) and b∗ is an

atom of β∗−i, b
∗
i would be a consequential atom, contradicting Lemma 14. By the same token,

for any k 6= i, the interval (b∗i ,∞) contains no atom of β∗k .

Choose a j 6= i such that zj = maxk 6=i zk. To derive a desired contradiction, we shall

prove that some types of bidder j that are supposed to bid below bmi at the m-equilibrium

would rather deviate to a slightly higher bid for large m.

Step 1: The price markup By definition of bmi and monotonicity of βm
i , there is a

sequence (tmi )∞m=1 such that βm
i (tmi ) = bmi for each m and tmi →m 0. Then for all sufficiently

large m, zm
j > tmi .

Since zj = maxk 6=i zk and zm
k →m zk for all k 6= i, for each m there exists εm ≥ 0 such

that zm
k − εm ≤ zm

j for each k /∈ {i, j} and εm → 0. Thus, for each t−(i,j) ∈ T−(i,j) such that

tk ≤ zm
k − εm for each k /∈ {i, j}, if bidder i wins with bid bmi (hence tk ≤ zm

k for all k 6= i),

we have zm
j > tmi (for all large m) and

Vk,bm
i ,βm(tk) ≤ tk ≤ zm

k − εm ≤ zm
j

(3)
= maxVj,bm

i ,βm ,

hence the resale price pj,i,bm
i ,βm

(
tmi , t−(i,j)

)
for j obeys Eq. (6). With the notation in (46),

pj,i,bm
i ,βm

(
tmi , t−(i,j)

)
= V−1

j,zm
j

(
max

{
tmi , max

k/∈{i,j}
Vk,zm

k
(tk)

})
.

Since zm
k →m zk, εm → 0, tmi →m 0, and the functions Vk,zm

k
and x 7→ V−1

k,x(v) are continuous,

lim
m→∞

E
[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} : tk ≤ zm

k − εm
]

= E
[
V−1

j,zj

(
max

{
0, max

k/∈{i,j}
Vk,zk

(tk)

})∣∣∣∣ ∀k /∈ {i, j} : tk ≤ zk

]
.

By Eq. (62) and the fact Vk,zm
k
→m Vk,zk

for each k 6= i,

lim
m→∞

W i (b
m
i , t

m
i , β

m) = E
[
max

{
0,max

k 6=i
Vk,zk

(tk)

}∣∣∣∣ ∀k 6= i : tk ≤ zk

]
.

These two equations combined with Ineq. (71), which is due to zj = maxk 6=i zk > 0, imply

lim
m→∞

(
E
[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} : tk ≤ zm

k − εm
]
−W i (b

m
i , t

m
i , β

m)
)
> 0.
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Since βm
i (tmi ) = bmi , W i (b

m
i , t

m
i , β

m) ≥ bmi by Lemma 6, the above inequality implies

lim
m→∞

(
E
[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} : tk ≤ zm

k − εm
]
− bmi

)
> 0.

Thus, there exists η ∈ (0, zj/λ) such that

lim
m→∞

(
E
[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} : tk ≤ zm

k − εm
]
− bmi

)
− 5η > 0, (112)

with λ the positive constant specified in Lemma 2.b.

Step 2: Construct a deviation for bidder j For any m, if b′, b ∈ Bm
i then for each

k 6= i, neither bids are atom of βm
k , by Eq. (22). Thus, if in addition b′ > b then Eq. (77)

holds. Consequently, with fk > 0 on the compact Tk for all k,

|Vk,b,βm(tk)− Vk,b′,βm(tk)| = O
(
Fk

(
(βm)−1

k,sup (b′)
)
− Fk

(
(βm)−1

k,sup (b)
))

.

Thus, there exists ξ > 0 such that, for any m and any k 6= i,

Pr {b < βm
k (tk) < b′} < ξ =⇒ ‖Vk,b′,βm − Vk,b,βm‖sup < ηλ/|I|, (113)

Since the limit b∗i of (bmi )∞m=1 is not an atom of the limit β∗i of (βm
i )∞m=1, and (b∗i ,∞) contains

no atom of the limit β∗−i of
(
βm
−i

)∞
m=1

, by Lemma 24 there exists δ ∈ (0, η/2) for which

lim
m→∞

(sup {ti : βm
i (ti) ≤ bmi + δ}) < ηλ, (114)

lim
m→∞

Pr {∃k 6= i : bmi < βm
k (tk) ≤ bmi + δ} < min

{
ξ, η,

η

maxk∈I tk

}
. (115)

For each m, let

bmj := min
{
b ∈ Bm

j : b > b∗i + δ
}
,

cmj := max
{
βm

j (tj) : tj < zm
j

}
,

∆Um
j (tj) := Ui(b

m
j , tj, β

m)− Ui(c
m
j , tj, β

m).

Step 3: Bidder j’s strict incentive to deviate For each m, by definition of cmj , there

is a nondegenerate interval (xm, zm
j ) such that βm

j (tj) = cmj for all tj ∈ (xm, zm
j ). Also note

cmj ≤ βm
j (zm

j ) < bmi by monotonicity of βm
j , the definition of zm

j , and Eq. (22). Thus, since

bmi →m b∗i , c
m
j ≤ b∗i < bmj for all sufficiently large m. We shall derive the desired contradiction

by proving that for sufficiently large m some elements of (xm, zm
j ) strictly prefer to deviate

from their m-equilibrium bid cmj to the bid bmj . By continuity of ∆Um
j (Lemma 5), it suffices

to show limm→∞ ∆Um
j (zm

j ) > 0.
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Substep 3.a: The probability of winning Now that cmj < bmi for large m,

lim
m→∞

Pr
{
βm

i (ti) > cmj
}
≥ lim

m→∞
Pr {βm

i (ti) ≥ bmi } = 1,

with the equality due to the definition of bmi . Hence

lim
m→∞

Uj(c
m
j , tj, β

m) = lim
m→∞

ELj(t−j | tj, βm)

for any tj ∈ Tj by Eq. (10). Thus, again by Eq. (10),

lim
m→∞

∆Um
j (zj) = lim

m→∞
Pr

{
bmj > max

k 6=j
βm

k (tk)

}
Π

m

j (zm
j ),

where

Π
m

j (zm
j ) := E

[
Wj(t−j | bmj , zm

j , β
m)− bmj − Li(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk)

]
. (116)

By definition of b∗i being inf{β∗i (t′i) : t′i > 0}, Pr {b∗i ≤ β∗i (ti) ≤ b∗i + δ} > 0. Consequently,

by definition of bmj as well as the fact that zk > 0 for all k 6= i,

lim
m→∞

Pr

{
bmj > max

k 6=j
βm

k (tk)

}
≥ Pr {b∗i ≤ β∗i (ti) ≤ b∗i + δ}

∏
k/∈{i,j}

Fk(zk) > 0.

Thus, it suffices to show limm→∞ Π
m

j (zm
j ) > 0.

Substep 3.b: The resale prices By (115), for any large enough m and any k 6= i,

bmi ≤ βm
i (ti) ≤ bmi +δ ⇒ Pr {bmi < βm

k (tk) < βm
i (ti)} < ξ

(113)⇒
∥∥Vk,βm

i (ti),βm − Vk,bm
i ,βm

∥∥
sup

< ηλ/|I|.

Thus, by (114) and the fact tmi →m 0, we have for any sufficiently large m, any t−(i,j) ∈ T−(i,j)

and any ti such that bmi ≤ βm
i (ti) ≤ bmi + δ,

max

{
ti, max

k/∈{i,j}
Vk,βm

i (ti),βm(tk)

}
−max

{
tmi , max

k/∈{i,j}
Vk,bm

i ,βm(tk)

}
> −2ηλ. (117)

By Eq. (6), the two terms on the left-hand side of (117) can be inverted into j’s resale prices

via the inverses of his posterior virtual utility functions. Thus, with the derivatives of the

inverses bounded from above by 1/λ (Lemma 2.b). Hence

pj,i,βm
i (ti),βm

(
ti, t−(i,j)

)
− pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
> −2η (118)

for any t−(i,j) ∈ T−(i,j) such that tk ≤ zm
k − εm for each k /∈ {i, j} and any ti such that

bmi ≤ βm
i (ti) ≤ bmi + δ. The applicability of Eq. (6) to the resale price pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
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has been explained at Step 1, and its applicability to pj,i,βm
i (ti),βm

(
ti, t−(i,j)

)
, with βm

i (ti)

playing the role bi, is because for large m we have ti < zm
j (bmi ≤ βm

i (ti) ≤ bmi + δ implies

via (114) that ti < ηλ < zm
i for large m) and, for each k /∈ {i, j},

Vk,βm
i (ti),βm(tk) ≤ tk ≤ zm

k − εm ≤ zm
j = (βm)−1

j,sup (bmi ) ≤ (βm)−1
j,sup (βm

i (ti)) .

Integrating (118) across the (ti, t−(i,j)) quantified above, we have, for all large m,

E
[
pj,i,βm

i (ti),βm

(
ti, t−(i,j)

)
| bmi ≤ βm

i (ti) < bmj ;∀k /∈ {i, j} [tk ≤ zm
k − εm]

]
≥ E

[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} [tk ≤ zm

k − εm]
]
− 2η.

This combined with Ineq. (112) and δ < η/2 (which implies bmj < b∗i + η by the definition

of bmj ; then by bmi →m b∗i we have bmj < bmi + η for all large m) gives

lim
m→∞

(
E
[
pj,i,βm

i (ti),βm

(
ti, t−(i,j)

)
| bmi ≤ βm

i (ti) < bmj ;∀k /∈ {i, j} [tk ≤ zm
k − εm]

]
− bmj

)
≥ lim

m→∞

(
E
[
pj,i,bm

i ,βm

(
tmi , t−(i,j)

)
| ∀k /∈ {i, j} [tk ≤ zm

k − εm]
]
− 2η − (bmi + η)

)
> 5η − 2η − η = 2η. (119)

Substep 3.c: Bidder j’s opportunity cost of winning:

lim
m→∞

E
[
Lji(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk)

]
(115)

≤ lim
m→∞

E
[
Lji(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk); b

m
i > max

k/∈{i,j}
βm

k (tk)

]
+ η

= lim
m→∞

E
[
Lji(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk);∀k /∈ {i, j} [tk ≤ zm

k − εm]

]
+ η

= lim
m→∞

E
[
zm

j − pj,i,βm
i (ti),βm

(
ti, t−(i,j)

)
| bmj > βm

i (ti);∀k /∈ {i, j} [tk ≤ zm
k − εm]

]
+ η

(119)
< lim

m→∞

(
zm

j − bmj
)
− η;

here the first equality is because the difference between the events bmi > maxk/∈{i,j} β
m
k (tk)

and ∀k /∈ {i, j} [tk ≤ zm
k − εm] vanishes as m → ∞; the second equality is due to tk ≤

zm
k − εm ≤ zm

j for all k /∈ {i, j} and ti < zm
j for large m (due to Ineq. (114) and η < zj).

Ineq. (115) also implies that for any k /∈ {i, j}

lim
m→∞

E
[
1

[
βm

k (tk) > max
l /∈{j,k}

βm
l (tl)

]
Ljk(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk)

]
< η.

Combining the two inequalities displayed above with Eq. (9), we have

lim
m→∞

E
[
Lj(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk)

]
< lim

m→∞

(
zm

j − bmj
)
.
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Therefore, by Eq. (116) and the fact Wj(t−j | bmj , zm
j , β

m) ≥ zm
j ,

lim
m→∞

Π
m

j (zm
j ) ≥ lim

m→∞

(
zm

j − bmj − E
[
Lj(t−j | zm

j , β
m)

∣∣∣∣bmj > max
k 6=j

βm
k (tk)

])
> 0,

as desired.
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