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Stable Biased Sampling∗

Samuel Häfner†

June 11, 2015

Abstract

This paper presents a model in which sampling biases are evolutionary stable. We
consider the sampling best response dynamics for a two-strategy population game
having a unique equilibrium that is in mixed strategies. Allowing players to use differing
sampling procedures, we model evolutionary competition between such procedures with
a variant of the replicator dynamics that discriminates on the basis of average fitness
among players with the same procedure. Using results on slow-fast systems, we find
that the sampling bias in stable procedures is generically non-zero, that the size of the
bias is the more extreme the closer the mixed equilibrium is to the boundary of (0,1),
and that, if sample size increases, then the bias eventually decreases. Based on these
observations, we argue that the presence of biases can be explained by an evolutionary
second-best effect correcting for suboptimal choices induced by playing best response
to small samples.

Keywords: Sampling Best Response Dynamics, Sampling Bias, Evolutionary Second-
Best, Two-Speed Dynamics

JEL-Classifications: C73, D83

1 Introduction

Consider a player in a large population who has to take a binary decision, where the optimal
choice depends on the share of the other players in the population choosing the first option
over the second option. Assume that all other players have made their choices, but that
it is technically unfeasible to monitor all the choices, and hence that our player has to
rely on a limited sample of the population in order to get a picture of the probabilities at
which the respective options are chosen by the other players. Experimental evidence about
choice under uncertainty suggests that humans making probability judgments based on
the observed frequency in finite samples are prone to errors that cause systematic biases in
their probability estimates (Hertwig et al., 2004, 2006). The source of such errors, however,
is disputed, and might either lie in biases in the inference from the sample on the true
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to Yvan Lengwiler for his ongoing support and to Georg Nöldeke for numerous insightful suggestions. Further
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the project. All remaining errors are my own.
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probability (Kahneman et al., 1982), or in biases in the sampling procedure generating the
sample from the population (Fiedler and Juslin, 2006; Freytag and Fiedler, 2006). Answers
to the question about the true error source are necessarily empirical; however, even if the
question could be resolved conclusively, it is not clear at all from an evolutionary perspective
why such biases in the estimates would persist in the first place, because they seem to lead
humans to systematically take suboptimal decisions.

This paper tries to shed some light on this question by assuming the latter of aforemen-
tioned error sources, i.e. by assuming that humans are naive intuitive statisticians (Juslin
et al., 2007). Naive intuitive statisticians infer the fraction of players choosing either option
from the frequencies at which these options occur in the sample, but ignore the fact that the
sampling process leading to their sample might be biased. We assume the presence of such a
sampling bias. We assume that the source of the bias is internal to the judging player in the
sense that players make for example observation errors (i.e. sometimes mistake a choice of
the first option in their sample for a choice of the second option, and vice versa) or encoding
errors (i.e. sometimes incorrectly store the sample before evaluating it) that both drive a
wedge between the probabilities at which the choices appear in the samples for the players
and the true probabilities of these choices in the population. The premise in the following
analysis is that evolution determines the magnitude of these sampling biases, and that it
does so in a way that the resulting sampling process yields fitness-maximizing choices. We
derive a simple model in which sample biases indeed induce fitness-maximizing behavior.

In the framework that we use the players’ decisions are interdependent and decisions are
made repeatedly. Players assume the choices of the others to be constant over time, but now
and then engage in probability judgements by sampling and thereupon adapt their strategy
choice. More specifically, the fraction of players choosing the first option, in the following
called the population state, follows a sampling best response dynamics (Sandholm, 2001a;
Oyama et al., 2015). The sampling best response dynamics describes the evolution of the
population state when players of a large population repeatedly face a game in which the
payoffs associated with the choices available depend on the current population state. Players
hold subjective beliefs about the population state, take the population state for stationary,
myopically choose a best response to their belief whenever playing the game, and with
constant arrival rate receive independent opportunities for belief revision. If such a revision
opportunity arrives for a player, the player obtains a finite population sample and takes the
frequency of the observed choices in the sample as the new belief of the current population
state.

In contrast to Sandholm (2001a) and Oyama et al. (2015) who analyze unbiased sampling
best response dynamics in games with pure strategy equilibria, this paper analyzes sampling
best response dynamics in two-strategy games with a unique equilibrium that is in mixed
strategies, and explicitly allows for biased sampling. The starting point of our analysis is the
observation that – as laid out in the two motivating examples to follow – for any unbiased
sampling procedure with a given sample size, we can find payoffs such that, if the sampling
best response dynamics is at rest, there exist differing sampling procedures which yield
higher expected utility at that rest point. Such sampling procedures either use a different
sample size or involve biased sampling probabilities. We will take these observations to
build a model in which different biases, and possibly sample sizes, stand in evolutionary
competition.
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1.1 Two Motivating Examples

In both examples, we consider a situation in which players from a unit mass population are
repeatedly pairwise matched to play a two-strategy game. The strategies are labeled by 1
and 2. If the fraction of players choosing strategy 1 in the population is given by z ∈ [0, 1],
then the expected payoffs Ui(z) to the players when choosing strategy i = 1, 2 are given by
U1(z) = −(1+ ε)z, ε > 0, and U2(z) = −(1− z). Because payoffs depend on the choices of
the other players only in terms of z, the game considered is an instance of a population game
(Sandholm, 2010) with z being called the population state. The game has a Hawk-Dove
structure with unique Nash equilibrium z∗ = 1/(2+ ε)< 1/2.

The derivation of the sampling best response dynamics in the following examples is
informal, and for a more formal treatment we refer the reader to Section 2.2.1. The first
example compares sampling procedures that differ in the sampling probabilities, the second
example compares sampling procedures that differ in the sample sizes.

Example 1. Suppose that revising agents employ sampling with a sample size of one, and
then play best response to the sample. That is, a revising agent chooses strategy 1 whenever
he observes strategy 2 in his sample, which happens with probability P1(z) = 1− z. Assuming
that individual revision opportunities occur according to Poisson processes that are independent
across players and arrive with rate one, the best response dynamics are given by

ż = P1(z)− z, (1)

where ż indicates the derivative with respect to time. System (1) has a unique rest point at
z = 1/2. The average utility in the population at z = 1/2 is given by

V (1/2) = U1(1/2)/2+ U2(1/2)/2. (2)

Now, consider an alternative sampling procedure that also has a sample size of one but samples
strategy 1 agents with probability p(z) ∈ [0,1] at population state z ∈ [0,1], satisfying
p(1/2) > 1/2. Players using this sampling procedure will play strategy 1 with probability
P2(z) = 1− p(z), and their average utility at z = 1/2 is given by

W (1/2) = (1− p(1/2))U1(1/2) + p(1/2)U2(1/2).

Because z∗ < 1/2 holds, it follows that U1(1/2)− U2(1/2)< 0, and hence that

V (1/2)−W (1/2) = (1/2+ p(1/2)− 1) [U1(1/2)− U2(1/2)]< 0.

That is, a biased sampling probability p(z) satisfying p(1/2)> 1/2 yields higher utility when
the current fraction of strategy 1 agents in the population is 1/2. The left panel in Figure 1
depicts this situation graphically for some continuous p(z) that satisfies p(1/2)> 1/2: at the
rest point z = 1/2 induced by players choosing strategy 1 with probability P1(z), the biased
sampling procedure with agents choosing strategy 1 with probability P2(z) is closer to the best
reply correspondence (red), and thus generates higher utility.

Example 2. Assume that the equilibrium z∗ lies in (z, 1/2) where z < 1/2 is equal to the
unique z ∈ (0,1) solving (1− z)2 − z = 0. Suppose there are two sampling procedures, both
sampling strategy 1 players with a probability equal to the current population state z, but with
the first using a sample size of k = 1, and the second using a sample size of k = 2.
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Ex. 1: Unbiased vs. Biased Sampling
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Ex. 2: Sample Size k = 1 vs. k = 2

Figure 1: The solid black graphs depict the probability Pi(z) of choosing strategy 1 at
population state z ∈ [0, 1]. Rest points of the best response dynamics thus induced – denoted
in the left panel by 1/2 and in the right panel by z̃i – can be read off by projecting the
intersection of Pi(z) and the 45-degree line onto the x-axis. The best response correspondence
when the equilibrium is z∗ is depicted in red.

First, suppose that all players follow the sampling procedure with sample size k = 1. Then,
the best response dynamics is again as in (1) with a rest point z̃1 = 1/2, and average utility
in the population V (z̃1) given by (2). At z̃1 = 1/2, the average utility for players employing
the procedure with sample size k = 2, who – playing best response to their sample – choose
strategy 1 with probability P2(z) = (1− z)2 (i.e. if and only if they see two strategy 2 player in
the sample), is given by

W (z̃1) = (1− z̃1)
2U1(z̃1) + (1− (1− z̃1)

2)U2(z̃1).

Because at z̃1 = 1/2 strategy 2 yields a higher payoff than strategy 1, and because 1− z̃1 <
1− (1− z̃1)2 holds, we have W (z̃1) > V (z̃1). That is, using sampling procedure with sample
size k = 2 instead of sampling procedure with sample size k = 1 yields a higher utility.

Conversely, suppose all players follow the sampling procedure with sample size k = 2. The
best response dynamics is given by

ż = P2(z)− z,

with the unique rest point z̃2 being equal to the unique z ∈ (0, 1) solving (1− z)2 − z = 0. The
average utility in the population at z̃2 is given by

W (z̃2) = z̃2U1(z̃2) + (1− z̃2)U2(z̃2).

At z̃2, the average utility for players employing the procedure with sample size k = 1, who play
strategy 1 if and only if they see a strategy 2 player in the sample, is given by

V (z̃2) = (1− z̃2)U1(z̃2) + z̃2U2(z̃2).

Because at z̃2 < z∗ strategy 1 yields a higher payoff than strategy 2, and because 1− z̃2 > z̃2

holds, we have V (z̃2) > W (z̃2). That is, using sampling procedure with sample size k = 1
instead of sampling procedure with sample size k = 2 yields a higher utility.

The right panel in Figure 1 depicts this situation graphically: At the rest point z̃1 induced by
players choosing strategy 1 with probability P1(z), the sampling procedure with agents choosing
strategy 1 with P2(z) is closer to the best reply correspondence (red), and thus generates higher
utility. Conversely, at the rest point z̃2 induced by players choosing strategy 1 with probability
P2(z), the sampling procedure with agents choosing strategy 1 with P1(z) is closer to the best
reply correspondence, and thus generates higher utility.
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Both examples describe a situation in which unbiased sampling yields a rest point at
which a suitably chosen different sampling procedure yields a higher utility to the players
using that alternative procedure. These findings suggest that, if we take utility as a measure
for evolutionary fitness, then there is scope for an analysis of evolutionary competition
between sampling procedures that differ in sample size and sampling bias.

1.2 Preview of the Model

We propose to model evolutionary competition between sampling procedures by adapting
the classical replicator dynamics (Taylor and Jonker, 1978). To this end, we define a family
of sampling procedures that revising players might use, and divide the population in two
subpopulations with all players in a subpopulation using an identical procedure, but with
the procedures differing between subpopulations. As a consequence, the distributions
of strategies chosen by revising players differ across subpopulations, and because utility
depends on the strategy distribution in the whole population, a wedge is driven between
average utilities in the subpopulations. Equating utility with fitness, we then assume that the
share of the subpopulation with higher than population average fitness level grows, whereas
the share of the subpopulation with lower than population average fitness level shrinks.

Combining the sampling best response dynamics with this adapted replicator dynamics
yields a dynamical system that consists of the sampling best response dynamics determining
the strategy distributions within subpopulations, and of the replicator dynamics determining
the share of the respective subpopulations. The key to our analysis lies in understanding
this dynamical system as a slow-fast system. Slow-fast systems are characterized by two
different time-scales. The variables subject to the faster time-scale are taken together in
what is called the fast node, and the others in the slow node, respectively (cf. e.g. Section
39 in Wasow, 1965). In the context of this paper, we understand the best response dynamics
as the fast, and replicator dynamics as the slow node.

The speed of the sampling best response dynamics is determined by the arrival rate of
revision opportunities: a higher arrival rate corresponds to a faster sampling best response
dynamics. For our analysis, we resort to a well-known result on slow-fast systems known as
Tikhonov’s theorem and an extension thereof (Theorems 1 and 2 in Lobry et al., 1998). These
results characterize the convergence, when the arrival rate grows large, of the solution of the
slow-fast system to the solution of a tractable reduced system that describes the dynamics
of the subpopulation shares when an infinitely fast sampling best response dynamics is
assumed.

At the center of our stability analysis are sampling-monomorphic rest points, by which
we mean rest points in which all revising players in the population use the same sampling
procedure. At such rest points, we consider intrusion of a small share of mutants with a
procedure that is different – in a sense to be made precise – from the incumbent procedure.
We call a procedure stable within a family of procedures, if the sampling-monomorphic
rest point is practically asymptotically stable (Byrnes and Isidori, 2002; Boudjellaba and
Sari, 2009) for any mutant procedure in that family. Practical asymptotic stability of a rest
point requires that for all sufficiently high arrival rates of revision opportunities, the solution
trajectory remains close to the rest point, and converges in the long run back to the rest
point when the arrival rate approaches infinity. Practical asymptotic stability of a rest point
is weaker than asymptotic stability for any positive arrival rate of revision opportunities, but
stronger than merely requiring asymptotic stability in the limit of infinite arrival rates.
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1.3 Preview of the Results

We consider families of sampling procedures with a finite sample size and with sampling
probabilities for strategy 1 players given by increasing differentiable functions of the current
population state. We say that a sampling procedure supports a population state if it yields
that population state in the sampling-monomorphic rest point, and show that a sampling
procedure is stable within the family considered if and only if it supports the unique mixed
Nash-equilibrium of the game (Proposition 1). This implies that the only population state
that can obtain under stable sampling procedures is the mixed Nash equilibrium of the
game.

We then analyze the nature of stable sampling procedures, with a particular focus on the
bias in such procedures. A sampling procedure is called locally unbiased at some population
state if the probability of sampling strategy 1 players at that population state corresponds to
the actual share of strategy 1 players, a sampling procedure is called locally biased if this
does not hold, and the difference between the probability of sampling strategy 1 players
and the actual share of strategy 1 players is called the sampling bias at that population state.
Our first result on stable sampling (Proposition 2) establishes that for all but a countable set
of population states, there is no unbiased sampling procedure supporting that population
state, if we assume that the population state is also the equilibrium of the underlying
game. Because for a sampling procedure to be stable it must support the equilibrium of the
underlying game, we thus say that stable sampling is generically biased.

This result suggests that, in combination with the limited information that sampling
yields for the players, simply playing best response to the strategy frequencies observed
in the sample induces evolutionary suboptimal decisions. Thus, the sampling bias can be
interpreted as an evolutionary second-best solution (Waldman, 1994) for players acting on
their sample in such a simplistic way. Evolutionary second-best solutions describe behavioral
distortions that are not evolutionary optimal by themselves but that re-align an agent’s
behavior with fitness maximization in the presence of some other distortion that drives
a wedge between the optimal behavior from the player’s point of view and the fitness
maximizing behavior from nature’s point of view, and that is – for whatever reasons – too
costly for nature to amend directly. See Section 1.4 for a discussion of the related literature.
We support this interpretation with a second result which shows that the stable sampling
bias vanishes as the sample size grows large (Proposition 3).

We further look at how the size of the stable bias relates to the asymmetry of the Nash
equilibrium. We call a mixed Nash equilibrium symmetric if the two strategies are played
with equal probability, and call it the more asymmetric the higher the absolute difference
between the two probabilities. For any fixed sample size, the stable bias is not monotone in
the asymmetry of the equilibrium. Rather, with the equilibrium population state approaching
either zero or one, the absolute difference between the actual share of a strategy in the
population and its sampling probability approaches one in any stable sampling procedure
with a finite sample size (Proposition 4). Hence, for sufficiently asymmetric equilibria the
evolutionary need for correction through biased sampling only vanishes slowly in growing
sample sizes k. We thus conclude the stable sampling bias does not converge uniformly
to zero in the asymmetry of the equilibrium when the sample size k approaches infinity
(Corollary 1).

Last, we extend the sampling procedure as in Oyama et al. (2015) and consider a
model of sampling with agents using random sample sizes. We show that allowing for
random sample sizes has the effect that the set of population states that can be supported
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by unbiased sampling procedures, given they are the equilibrium of the underlying game,
is not of measure zero anymore: Any sufficiently symmetric equilibrium can be supported
by an unbiased sampling procedure that uses random sample sizes. Nevertheless, for
sufficiently asymmetric equilibria correction through biased sampling is still required for
stability (Proposition 5), so biased sampling can still occur as an evolutionary second best
solution.

1.4 Related Literature

This paper relates to three different strands of literature: First, and most obviously, it
relates to models of best response and other learning dynamics both with and without
random sampling. Second, it relates to evolutionary models of preferences that also, but
only implicitly, build on two-speed dynamics. Third, there is a literature on evolutionary
second-best approaches to which this paper contributes. We discuss the strands in turn.

Learning dynamics

Besides in the models of Sandholm (2001a) and Oyama et al. (2015), random strategy
sampling with finite samples – albeit always in unbiased form, too – appears in several
different learning dynamics, such as in models of herding (Ellison and Fudenberg, 1993,
1995; Banerjee and Fudenberg, 2004) or in the adaptive play model of Young (1993).
Neither of these papers asks about the evolutionary stability of random sampling as we do
in this paper, but rather they focus on the stability properties of certain rest points of the
dynamics induced.

Sandholm (2001a) finds that, in population games with a finite strategy set, any 1/k-
dominant equilibrium is globally stable under the unbiased sampling best response dynamics,
given players draw a sample of size k ≥ 2. Oyama et al. (2015) extend the analysis and the
stability result to unbiased sampling procedures that involve randomizing over different
sample sizes, and to a set-notion of 1/k-dominance. These global stability results are the first
obtained under deterministic population dynamics, as opposed to selection results between
pure strategy equilibria under probabilistic population dynamics in which players are prone
to making small random mistakes as e.g. in Young (1993). In contrast to these papers, we
consider games with a unique equilibrium that is in mixed strategies.

The sampling best response dynamics is a perturbed version of the standard best response
dynamics (Gilboa and Matsui, 1991) in which the players learn the true population state
when receiving the opportunity for belief revision. The perturbation of the best response
dynamics induced by sampling differs from the kind of perturbation analyzed in Hopkins
(1999), Hofbauer and Hopkins (2005) or Hofbauer and Sandholm (2007) who assume
idiosyncratic shocks to players’ preferences at the time of revision.

Models of indirect preference evolution

Two-speed dynamics have been employed in models of preference evolution, albeit only
implicitly. For example, Sandholm (2001b), Dekel et al. (2007), or Alger and Weibull (2013)
deal with the limit case of play adapting infinitely fast to changes in the distribution of prefer-
ences. They do so by assuming that players are aware of the changing nature of preferences,
and always play equilibrium – if preferences are observed, given the commonly known
preferences in a match, or, if preferences are not observed, given the current distribution of
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preferences. As an exception, Sandholm (2001b, Appendix A) discusses how to relax in his
setup the assumption of infinitely fast adaptation of play at states where equilibrium play is
discontinuous in the distribution of the preferences. In contrast to Sandholm (2001b) who
remains unspecific about the adaptive process leading back to equilibrium play, we are very
specific about the dynamics leading to equilibrium play.

Evolutionary second-best approaches

Examples of evolutionary second-best explanations, that is, for constraints that drive a wedge
between the optimal behavior from the player’s point of view and the fitness maximizing
behavior from nature’s point of view and corresponding second-best solutions that re-align
an agent’s behavior with fitness maximization (cf. Waldman, 1994), include incomplete
information about the environment and relative consumption effects in preferences (Samuel-
son, 2004; Samuelson and Nöldeke, 2005), incomplete information about the environment
and menu dependent preferences (Samuelson and Swinkels, 2006), incomplete information
about the environment and an S-shaped value function (Netzer, 2009), a failure to ascribe
private information to other agents and an endowment effect in preferences (Frenkel et al.,
2015), or S-shaped value functions and non-linear probability weighting (Herold and Netzer,
2013). This paper contributes to this literature in examining the interplay between sam-
pling biases and the simple decision rule to play best response to the frequency of strategy
occurrences in a finite sample.

2 The Model

The model consists of an underlying population game, and of the dynamics that we obtain
by infinitely repeating the game in continuous time. We first present the underlying game,
and then describe the dynamics.

2.1 The Underlying Game

A population game with two strategies labeled 1 and 2 is played by players of a unit mass
population. The population state, i.e. the share of players choosing strategy 1, is denoted by
z ∈ [0,1], and the payoff to a player choosing strategy i ∈ 1,2 is given by Ui(z). We make
three assumptions about the payoff difference h(z) = U1(z)− U2(z) that are essential for
our results.

(U1) h(z) is Lipschitz-continuous on [0,1].

(U2) h(z) is non-increasing.

(U3) There is unique z∗ ∈ (0, 1) such that h(z∗) = 0.

(U1) is a technical assumption required for uniqueness of solution to the dynamical system
set up in the following. For all our results, we additionally rely on (U2) and (U3). (U2) and
(U3) together imply that h(z) is strictly decreasing at z∗ and that the set of states z to which
strategy 1 is a (weak) best response is a proper, closed interval given by [0, z∗]. So, neither
strategy is dominated, and we have h(0), h(1) 6= 0.

The above formulation of a population game encompasses for example random pairwise
matching in a Hawk-Dove game as described in Examples 1 and 2, but also more general
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playing-the-field games in which choosing strategy 1 has a negative externality on the payoff
of other players’ payoff when choosing strategy 1. In any population game considered, the
unique Nash equilibrium is in mixed strategies and given by z∗.

2.2 The Dynamics

Time is continuous and the game described above is repeated infinitely. We do not refer to
time explicitly, but all variables of the dynamics set up below are understood to implicitly
depend on time. The dynamics consist of the sampling best response dynamics and of the
replicator dynamics. We treat the two in turn.

2.2.1 Sampling Best Response Dynamics

At every point in time, each player holds an individual belief ẑ ∈ [0,1] about the current
population state z, and myopically plays best response to ẑ. Players employ a deterministic
tie-breaking rule in case of indifference and play strategy 1 whenever ẑ ∈ [0, z∗].1 Players
take the population state for stationary – that is, there is no updating of ẑ based on the
history of play – but from time to time, players receive individual opportunities for belief
revision. Such individual revision opportunities occur according to Poisson processes that
are independent across players, and arrive with rate λ > 0. A revising player forms a new
belief ẑ about the current population state by randomly sampling players in the population,
and then plays best response to ẑ until the next opportunity to revise arises.

A sampling procedure is described by the tuple {k, p} where k ∈ N+ denotes the sample
size and p : [0,1]→ [0,1] returns the sampling probability of strategy 1 for every popu-
lation state z ∈ [0,1]. Throughout the following, we assume that p(z) is increasing and
continuously differentiable2 on [0, 1].

Definition 1. A sampling procedure {k, p} is called

• locally unbiased at z ∈ [0,1] if p(z) = z,

• locally biased at z ∈ [0, 1] if p(z) 6= z.

Definition 2. d(z) = p(z)− z is the sampling bias at z.

We consider sampling procedures with finite sample sizes, and collect all sampling
procedures {k, p} for which it holds that k ≤ b ∈ N+ in the family Sb. Let m ≤ k be the
number of strategy 1 players observed in the sample. As in Sandholm (2001a), we assume
that agents take the frequency of strategy 1 observations as the population state, i.e. we
have ẑ = m/k. Under {k, p}, the distribution of m is binomial with the parameters (k, p(z))
depending on the population state z. The probability that a revising agent plays strategy 1
after sampling is given by

P (z|z∗, {k, p}) =
bk·z∗c
∑

i=0

�

k
i

�

p(z)i(1− p(z))k−i. (3)

1The particular tie-breaking rule in case of indifference is not important for any of our subsequent results.
All results go through for any (probabilistic) tie-breaking rule.

2We say that a function g : [0,1]m → Rm, m ∈ N+, is continuously differentiable on [0,1]m if g is
continuously differentiable at every interior point of [0,1]m, and, additionally, the relevant one-sided partial
derivatives of g exist and are continuous at all boundary points of [0,1]m.
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Observe that although the equilibrium z∗ is held fixed at the moment, we refer to it explicitly
in P (z|z∗, {k, p}). This will make the interpretation of the coming results more transparent.
For later use, it will prove helpful to write (3) as

P (z|z∗, {k, p}) = I1−p(z)(k− bkz∗c, bkz∗c+ 1), (4)

where Ix(α,β) denotes the cumulative distribution function of the beta distribution with
coefficients α, β . The right-hand side in (4) follows from the fact that the value FX (x) of
the cumulative distribution function FX of a binomial variable X ∼ B(n, p) evaluated at x is
equal to the value FY (1− p) of the distribution function FY of a beta-distributed variable
Y ∼ Beta(n− x , x +1) evaluated at 1− p (cf. Olver et al., 2010). From the right-hand side of
(4), we see that P(z|z∗, {k, p}) is decreasing in z for any z∗ and sampling procedure {k, p}.

The population is divided in two subpopulations labeled by 1 and 2. All players in
subpopulation q = 1, 2 use sampling procedure {k, p}q ∈ Sb. The mass of subpopulation 1
is denoted by y ∈ [0,1]. We call the population sampling-monomorphic if y ∈ {0, 1}: The
value y = 0 corresponds to the case in which all players in the population use sampling
procedure {k, p}2 ∈ Sb, while y = 1 corresponds to the case in which all players in the
population use sampling procedure {k, p}1 ∈ Sb. Strategy shares within subpopulations are
denoted by xq ∈ [0, 1], such that the current population state z is given by z = y x1+(1− y)x2.
We sometimes write the population state z as a function z(x , y), with x = (x1, x2) ∈ [0, 1]2,
in order to emphasize its dependence on (x , y).

We follow the literature (Hopkins, 1999; Hofbauer and Sandholm, 2007) in assuming
(i) that the fraction of players revising their belief in a short time period of length dτ > 0
is given by λdτ, and (ii) that the fraction of revising players in subpopulation q choosing
strategy 1 at population state z is P(z(t)|z∗, {k, p}q). This allows us to express the share
of players using strategy 1 in subpopulation q at time t + dτ, dτ > 0, as xq(t + dτ) =
(1−λdτ)xq(t) +λdτP(z(t)|z∗, {k, p}q). Taking the limit dτ→ 0, the dynamics of strategy
share xq ∈ [0, 1] in subpopulations q = 1, 2 is given by

ẋq = λ ·
�

P(z|z∗, {k, p}q)− xq

�

,

where ẋq indicates the derivative with respect to time t. Defining

R= (P (.|z∗, {k, p}1) , P (.|z∗, {k, p}2)),

we rewrite the sampling best response dynamics for (x , y) ∈ [0, 1]3 compactly as

ẋ = λ · [R (z(x , y))− x] . (5)

We refer to system (5) as the sampling best response node.

2.2.2 Evolution

Turning to the evolution of subpopulation share y ∈ [0, 1], we adapt the idea of the replicator
dynamics on strategies (Taylor and Jonker, 1978). Let average subpopulation utility in
subpopulation q = 1, 2 be given by

Ūq(x , y)≡ xqU1(z(x , y)) + (1− xq)U2(z(x , y)).

For (x , y) ∈ [0,1]3, the evolution of y is given by

ẏ = y (1− y)
�

Ū1 (x , y)− Ū2 (x , y)
�

,
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which we rewrite as

ẏ = y (1− y) (x1 − x2)h (z(x , y)) . (6)

We call (6) the evolution node. Equation (6) has a natural interpretation: As long as we are
not in a sampling-monomorphic state with y ∈ {0,1}, the share y of sampling procedure
{k, p}1 grows if either strategy 1 yields a higher utility than strategy 2 and the subpopulation
using {k, p}1 has currently a higher fraction of players choosing strategy 1, or if strategy 2
yields a higher utility than strategy 1 and the subpopulation using {k, p}1 has currently a
higher fraction of players choosing strategy 2.

2.2.3 The final system of interest

Taking together the sampling best response node (5) and the evolution node (6), we arrive
at the following final system of interest for (x , y) ∈ [0, 1]3.

λ−1 · ẋ = R (z(x , y))− x
ẏ = y (1− y) (x1 − x2)h (z(x , y)) (7)

Observe that the right-hand side of (7) is Lipschitz-continuous on [0,1]3: The sampling
best response node can be written as the difference R (z(x , y))− f (x , y) where f is clearly
Lipschitz-continuous and R ◦ z is Lipschitz-continuous by continuous differentiability of R on
[0, 1]3 and by linearity of z. The evolution node can be written as product g(x , y)h(z(x , y))
where g is clearly Lipschitz-continuous, and h ◦ z is Lipschitz-continuous because both h
and z are Lipschitz-continuous. Because system (7) never leaves [0, 1]3 the Picard-Lindelöf
theorem applies, and we get that, for any initial condition (x0, y0) ∈ [0, 1]3, a unique global
solution (x(t), y(t)) ∈ [0, 1]3, t ≥ 0 to (7) exists.

3 Stability

This section describes our stability criterion for sampling procedure {k, p} ∈ Sb, and gives a
necessary and sufficient condition for sampling procedure {k, p} ∈ Sb to be stable.

3.1 Sb-Stable Sampling

Let ( x̃ , ỹ) ∈ [0, 1]3 be a rest point of (7). We start with the definition of practical asymptotic
stability (cf. Boudjellaba and Sari, 2009) that we employ in the following. Let ‖.‖ denote
the standard Euclidean norm.

Definition 3. [Practically Asymptotic Stability] A rest point ( x̃ , ỹ) of (7) is practically asymp-
totically stable if conditions (a) and (b) below hold.

(a) For every θ > 0 there exists δ(θ )> 0 and λ̄ > 0 such that

‖(x0, y0)− ( x̃ , ỹ)‖< δ(θ ) ⇒ ‖(x(t), y(t))− ( x̃ , ỹ)‖< θ , ∀t ≥ 0, ∀λ > λ̄.

(b) There exists δ > 0 such that if ‖(x0, y0)− ( x̃ , ỹ)‖< δ, then

lim
λ→∞

lim
t→∞
‖(x(t), y(t))− ( x̃ , ỹ)‖= 0.
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Practical asymptotic stability3 of the rest point ( x̃ , ỹ) is weaker than asymptotic stability
of rest point ( x̃ , ỹ) for arbitrary λ > 0 (cf. Definition 8 in Appendix A): Whereas asymptotic
stability for arbitrary λ > 0 requires solution trajectories to stay close to ( x̃ , ỹ) and ultimately
converge back to ( x̃ , ỹ) for any λ > 0, practical asymptotic stability requires trajectories
starting close to ( x̃ , ỹ) to stay close for sufficiently high λ only, and merely in the limit of
λ→∞ requires trajectories to converge back to ( x̃ , ỹ) in the long run. Asymptotic stability
of the rest point ( x̃ , ỹ) for arbitrary λ > 0 cannot easily be checked without assuming
differentiability of the right-hand side in (7), and even if we did assume differentiability, we
would have to deal with non-hyperbolic rest points when ỹ ∈ {0,1}. Practical stability of
the rest point ( x̃ , ỹ), on the other hand, can be checked using the results presented below.

In the following we restrict attention to sampling-monomorphic rest points with ỹ =
1. The population state in such a sampling-monomorphic rest point is equal to x̃1. By
construction of the sampling best response node, x̃1 only depends on {k, p}1, and because
P(z|z∗, {k, p}) is decreasing in z for any sampling procedure {k, p} as can be inferred from
(4), x̃1 is unique. We say that {k, p}1 ∈ Sb supports the population state z = x̃1 given
equilibrium z∗:

Definition 4. Sampling procedure {k, p} supports z ∈ [0, 1] given equilibrium z∗ ∈ (0, 1) if
z = P(z|z∗, {k, p}) holds.

If the context is clear, we do not explicitly refer to the equilibrium z∗, but merely say
that {k, p} supports z. Sampling procedure {k, p}2 ∈ Sb is called the mutant procedure.
Throughout the following, we assume that {k, p}1 supporting z is z-different from {k, p}2.

Definition 5 (z-difference). {k, p}1 is z-different from {k, p}2 if

P(z|z∗, {k, p}1) 6= P(z|z∗, {k, p}2)

holds.

Two sampling procedures are denoted z-different if they do not induce the same dis-
tribution over strategies chosen by the revising players at population state z ∈ [0,1]. Be-
cause P(z|., .) is differentiable in z, this is equivalent to requiring that ∃ω > 0 such that
|P(z′|z∗, {k, p}1) − P(z′|z∗, {k, p}2)| 6= 0, ∀z′ ∈ (z −ω, z +ω) ∩ [0,1]. The reason for the
restriction to mutant sampling procedures that are z-different is that evolutionary pressure
between sampling procedures at some population state z is only effective when the sampling
procedures produce differing distributions over the strategies chosen by revising players.
We briefly return to this issue at the end of this section, in subsection 3.3 below.

Observe that for any two sampling procedures {k, p}1, {k, p}2 ∈ Sb where {k, p}1 supports
z ∈ [0,1], the sampling-monomorphic rest point ( x̃ , 1) of (7) has x̃ = (z, P(z|z∗, {k, p}2)).
With this, we can state the definition of an Sb-stable sampling rule.

Definition 6 (Sb-stable Sampling). Sampling procedure {k, p}1 ∈ Sb supporting z ∈ [0, 1]
is Sb-stable, if, keeping {k, p}1 fixed, for any {k, p}2 ∈ Sb being z-different from {k, p}1, the
rest point ( x̃ , ỹ) = ((z, P(z|z∗, {k, p}2)), 1) of (7) is practically asymptotically stable.

Informally, this condition states that a sampling procedure {k, p} ∈ Sb supporting z is
Sb-stable if it is resistant against intrusion of any mutant procedure in Sb that is z-different.

3The original formulation is: There is δ > 0 such that for all θ > 0 there is λ̄ > 0 and t̄ > 0 such that for all
λ > λ̄, any solution (x(t), y(t)) to (7) with ‖(x0, y0)− ( x̃ , ỹ)‖< δ satisfies ‖(x(t), y(t))− ( x̃ , ỹ)‖< θ for all
t > t̄ . It is standard to verify that this is analogous to Definition 3.
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3.2 Analysis

For any two sampling procedures {k, p}1, {k, p}2 ∈ Sb, let x∗ : [0, 1]→ [0, 1]2 be an implicit
function satisfying x∗(y) = R(z(x∗(y), y)), ∀y ∈ [0,1], which by the next lemma always
exists, and is both unique and differentiable.

Lemma 1. Fix {k, p}1, {k, p}2 ∈ Sb. Then, x∗(y) exists and is both unique and differentiable
on [0,1].

The proof makes use of the Jacobi C(x , y) = ∂x[R(z(x , y) − x] of the sampling best
response node (5) for y ∈ [0,1] held fixed that is given by

C(x , y) =
�

P ′ (z(x , y)|z∗, {k, p}1) y − 1 P ′ (z(x , y)|z∗, {k, p}1) (1− y)
P ′ (z(x , y)|z∗, {k, p}2) y P ′ (z(x , y)|z∗, {k, p}2) (1− y)− 1

�

, (8)

where P ′(z|z∗, {k, p}) denotes the derivative of P with respect to z. We can establish the
following property of the Jacobi C(x , y) that is instrumental in the proof of the subsequent
lemma:

Lemma 2. There is c > 0 such that the eigenvalues e1 and e2 of C(x∗(y), y) have real parts
Re(e1) and Re(e2) that satisfy Re(e1), Re(e2)< −c, ∀y ∈ [0, 1].

The above result implies that x∗(y) is a uniformly asymptotically stable rest point
of the sampling best response node (5) for any y ∈ [0,1]. For the following result, let
z∗(y) = y x∗1(y) + (1− y)x∗2(y). Using Lemma 1 and Lemma 2 we can apply Theorem 1
and Theorem 2 in Lobry et al. (1998) describing the behavior of the solutions to (7) when
the arrival rate λ of revision opportunities becomes high. This, together with Definition 3,
yields Lemma 3 below.

Lemma 3. Sampling procedure {k, p}1 supporting z ∈ [0,1] is Sb-stable iff ȳ = 1 is an
asymptotically stable rest point of reduced system

˙̄y = ȳ(1− ȳ)(x∗1( ȳ)− x∗2( ȳ))h(z
∗( ȳ)), ȳ ∈ [0, 1] (9)

for any procedure {k, p}2 ∈ Sb that is z-different from {k, p}1.

The reduced system (9) describes the evolution of the subpopulation share y given that
the best response process adapts infinitely fast to changes in y . A rest point ŷ ∈ [0, 1] of the
reduced system (9) is asymptotically stable iff there exists a neighborhood around ŷ such
that

( ȳ − ŷ)(x∗1( ȳ)− x∗2( ȳ))h(z
∗( ȳ))< 0 (10)

holds for all ȳ 6= ŷ in that neighborhood. By Lipschitz-continuity of the right-hand side of
(9) and because the system remains in [0, 1], there exists, for any initial condition ȳ0 ∈ [0, 1],
a unique global solution ȳ(t) ∈ [0,1] for t ≥ 0 satisfying (9). Lemma 1 is necessary for
Lemma 3 because it guarantees that the reduced system (9) is well-defined, and Lemma
2 is necessary because it guarantees that x(t) converges, when λ approaches infinity, to
x∗( ȳ(t)) pointwise and that y(t) converges to ȳ(t) uniformly on any interval on which ȳ(t)
is defined. Using Lemma 3 together with assumptions (U1)–(U3), we arrive at the main
result of this section, stated in Proposition 1.

Proposition 1. Sampling procedure {k, p} ∈ Sb is Sb-stable iff

z∗ = P(z∗|z∗, {k, p}). (11)

holds. Such a sampling procedure always exists.
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Stability condition (11) requires that procedure {k, p} ∈ Sb supports the equilibrium z∗,
i.e. the fraction of revising agents choosing strategy 1 at the equilibrium z∗ must be equal
to z∗. The result is intuitive: If the incumbent sampling procedure does not support the
equilibrium z∗, then there will be a mutant procedure yielding higher utility at the supported
population state, as suggested in Examples 1–2 in the introduction, thus rendering the
incumbent procedure unstable. If, on the other hand, the incumbent procedure supports the
equilibrium z∗ then any sufficiently small fraction of intruding mutant procedures producing
a share of revising players choosing strategy 1 that is strictly higher than z∗ instantaneously
– considering the limit λ =∞ – drives the population state strictly above z∗. If so, by
continuity of P(z|z∗, {k, p}) in z, the players in the incumbent subpopulation enjoy a higher
average utility than the mutants, and thus the mutants are driven out again. By an analogous
argument, any mutant procedure yielding a share of revising players choosing strategy 1
that is strictly below z∗ is crowded out again after intrusion. Crucially, this intuition is not
upset by considering any sufficiently high arrival rate λ.

3.3 A Remark on z-difference

The reason why Sb-stability is formulated only in terms of z-different sampling procedures
is that evolutionary pressure is absent among sampling procedures that induce identical
strategy shares at the population state supported by {k, p}1 ∈ Sb. The following result
makes this claim more precise:

Lemma 4. Assume (U1). Suppose that {k, p}1 ∈ Sb supports z ∈ [0, 1] and that {k, p}2 ∈ Sb

satisfies
P(z|z∗, {k, p}2) = P(z|z∗, {k, p}1).

Then, for any η, T > 0, there exists λ̄,ω> 0 such that, ∀λ > λ̄, we have

‖y(t)− y0‖ ≤ η,∀t ∈ [0, T], (12)

given that ‖x0 − x∗(y0)‖<ω holds.

Lemma 4 implies that if (x0, y0) are chosen sufficiently close to ( x̃ , 1) then any mutant
procedure {k, p}2 that is not z-different from incumbent procedure {k, p}1 supporting z is
not crowded out again in the long run: For any finite time T > 0 passed after intrusion, the
share of mutants 1− y(t) persisting in the population approaches its initial share 1− y0

uniformly over [0, T] as we let the rate λ of revision opportunities approach infinity. Quite
intuitively, if a mutant procedure does not induce differing behavior, then evolutionary
pressure is absent.

4 Properties of Stable Random Sampling

4.1 Generic Biasedness of Sampling Rules

In this section we show that Sb-stable sampling procedures are generically biased at the
respective sampling-monomorphic population state, by which we mean that, for any b <∞,
the set of z ∈ [0, 1] such that there is a sampling procedure {k, p} ∈ Sb that is both unbiased
at z and supports z given z is the equilibrium of the underlying game is of measure zero.
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To this end, we define p∗k(z) as the sampling probability that, for given z ∈ (0,1) and
k ∈ N+, uniquely solves

z = I1−p∗k(z)
(k− bkzc, bkzc+ 1). (13)

A sampling procedure {k, p} satisfying p(z) = p∗k(z) supports z given z is the equilibrium
of the underlying game. That is, for a given equilibrium z∗ ∈ (0,1), p∗k(z

∗) is the sampling
probability that renders a sampling procedure {k, p} satisfying p(z∗) = p∗k(z

∗) Sb-stable. Let

Kb(z)≡ {k ≤ b : p∗k(z) = z} (14)

be the set of sample sizes k ∈ {1, ..., b} to which there correspond sampling procedures that
both are unbiased at z and support z given z is the equilibrium of the underlying game. That
is, whenever z is an equilibrium of the underlying game and Kb(z) is non-empty, then there
exists a sampling procedure {k, p} ∈ Sb that is unbiased at z and Sb-stable. The proof of
the next proposition shows that the set of such z is countable, and we get:

Proposition 2. For any b ∈ N+, the set

{z ∈ (0,1) : Kb(z) 6= ;}

has measure zero.

To get an intuition for how the result comes about, we need to take a closer look at the
function

P(z|z, {k, p̃}) = I1−z(k− bkzc, bkzc+ 1), (15)

returning for a given sampling size k and the everywhere unbiased sampling probability
p̃(z) = z the fraction of revising agents choosing strategy 1 given the population state
z is also the equilibrium of the underlying game. For some z ∈ (0,1) to lie in the set
{z ∈ (0, 1) : Kb(z) 6= ;}, there must exists some sample size k such that z is a fixed point of
P(z|z, {k, p̃}). That such can hold only for a countable set of population states z is established
by showing that for every k ≤ b, the set of fixed points of P(z|z, {k, p̃}) is countable, which
is straightforward once we appreciate that, for any k ≤ b, the map P(z|z, {k, p̃}) is strictly
decreasing whenever it is continuous and that it has but finitely many points of discontinuity.

4.2 Biased Sampling as Evolutionary Second-Best

Proposition 2 suggests that in the absence of sampling biases, sampling k ∈ N+ players and
then playing best response to the frequency at which the strategies occur in the sample is
hardly ever optimal from an evolutionary perspective. Hence, keeping fixed some generic
equilibrium z∗ ∈ (0, 1), any sample size k ∈ N+, and the simple decision rule for our players
to naively play best response to the sample, nature will push sampling towards a bias that
compensates for the suboptimality of the choices induced. In this sense, sampling biases are
an evolutionary-second best distortion given that agents follow too simple a decision rule.

We can strengthen this evolutionary second-best claim by showing that the distortion
in the sampling probability required for stability eventually decreases when we increase
the sample size. In other words, if we allow agents to acquire more and more information
by using bigger samples, then the suboptimality of playing best response to the average
strategy occurrences in the sample becomes less severe. Recall that p∗k(z) implicitly defined
in (13) returns the sampling probability at z ∈ (0, 1) such that the sampling procedure {k, p}
satisfying p(z) = p∗k(z) is Sb stable, given z is the equilibrium of the underlying game.
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Proposition 3. For any z ∈ (0, 1), it holds limk→∞ p∗k(z) = z.

Proposition 3 implies that, for any equilibrium z∗, the bias at z∗ of anySb-stable procedure
vanishes when we let the sample size approach infinity. The intuition for this result is that,
when the sample size k grows large and the population state is kept fixed at the equilibrium
z∗, then already a small sampling bias has drastic effects on the choice of the revising agents
in the sense that it drives the share of agents choosing the first option to either extreme
of zero or one. Stability requires that this does not happen, and hence the bias at the
equilibrium must go to zero as k approaches infinity.

Although the stable bias at the equilibrium goes to zero in the sample size k for any
equilibrium z∗, the speed of this convergence depends on the particular locus of z∗ in
the interval (0,1). To see this, we proceed by further analyzing the relation between the
equilibrium z∗ and the sampling bias d(z∗) = p(z∗)− z∗ required such that sampling is stable
for given k. We start with an example examining the sampling probability that renders a
sampling procedure with a sample size of k = 3 Sb-stable.

Example 3. Consider a population game satisfying (U1)–(U3) with equilibrium z∗ ∈ (0,1).
Assume sampling with a sample size k = 3. By Proposition 1, sampling procedure {3, p} is
Sb-stable if and only if (11) holds, that is, if and only if p = p∗3 solves

z∗ =






(1− p∗3(z
∗))3 if z∗ ∈ (0, 1/3)

(1− p∗3(z
∗))3 + 3p∗3(z

∗)(1− p∗3(z
∗))2 if z∗ ∈ [1/3, 2/3)

(1− p∗3(z
∗))3 + 3p∗3(z

∗)(1− p∗3(z
∗))2 + 3p∗3(z

∗)2(1− p∗3(z
∗)) if z∗ ∈ [2/3,1)

. (16)

Figure 2 depicts sampling probability p∗3(z
∗) solving (16). The discontinuities arise at the points

of discontinuity in bkz∗c. At these points the set of signals ẑ ∈ {0, 1/2, 2/3, 1} to which players
play strategy 1 changes composition. As a consequence, the absolute value |d(z∗)| of the bias
required in order that {k, p} is Sb-stable is not monotone in z∗, and the sign of d(z∗) changes
several times on [0, 1].

From (16), it is immediate that for z∗ = 1/2 it must hold that p∗3(z
∗) = z∗, and further that

dp∗3(z
∗)/dz∗ < 0 whenever p∗3(z

∗) is differentiable. In particular, for z∗ ∈ (0, 1/3) we see, both
in (16) and Figure 2, that Sb-stable sampling procedure {3, p∗3} needs to oversample strategy 1
agents in an ever more extreme fashion as z∗ approaches 0, and for z∗ ∈ [2/3,1) we see that
Sb-stable sampling procedure {3, p} needs to undersample strategy 1 agents in an ever more
extreme fashion as z∗ approaches 1.

As an aside, we can also confirm the logic of the proof to Proposition 2 as discussed above:
Substituting p∗3(z

∗) with z∗ in (16), we see that the right-hand side of (16), corresponding to
P(z∗|z∗, {3, p̃}) with p̃(z) = z, is strictly decreasing in z∗ whenever it is continuous. Because
P(z∗|z∗, {3, p̃}) has three points of discontinuity, this implies that for k = 3, there can be at
most three different z∗ such that z∗ = P(z∗|z∗, {3, p̃}).

In the following, we call a mixed equilibrium symmetric if z∗ = 1/2, say that it is
asymmetric if z∗ 6= 1/2, and that it is the more asymmetric the higher the absolute difference
between z∗ and 1− z∗, that is, the higher |1− 2z∗|. Example 3 suggests that the absolute
value |d(z∗)| of the bias required in order that some {k, p} is Sb-stable is highest when the
equilibrium z∗ is most asymmetric. That this indeed holds for any finite sample size k is
established with Proposition 4 below.
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z∗

p∗(z∗)

1

1

1/3 2/3

1/2

Figure 2: Sampling probability p∗3(z
∗), z∗ ∈ (0,1), solving (16) as discussed in Example 3:

The value p∗3(z
∗) corresponds to the sampling probability of the stable sampling rule having

a sample size of k = 3, given the equilibrium of the underlying game is z∗. The diagonal
dotted line corresponds to the unbiased sampling probability.

Proposition 4. Let zn be a sequence with zn ∈ (0, 1), n = 1, 2, .... If zn→ 1, then for any k ∈ N+,
it holds limn→∞ p∗k(zn) = 0. If zn→ 0, then for any k ∈ N+, it holds limn→∞ p∗k(zn) = 1.

Proposition 4 establishes that for any bounded sample size, there are games with suf-
ficiently asymmetric equilibria such that the absolute value of the bias of the Sb-stable
procedure at this equilibrium is close to one. This implies that unbiased sampling is particu-
larly suboptimal when the equilibrium is very asymmetric. With this result we can return
to the question about the speed of the convergence of the stable sampling bias when we
increase the sample size.

Definition 7. The stable sampling bias vanishes uniformly, if for any η > 0 there is K > 0
such that ∀k ≥ K and ∀z ∈ (0,1) we have |p∗k(z)− z|< η.

Combining Proposition 4 and Proposition 3, the next result follows straight away.

Corollary 1. The stable sampling bias does not vanish uniformly.

That is, for sufficiently asymmetric equilibria the need for correction through biased
sampling only vanishes slowly in the sample size.

4.3 More Sophisticated Sampling

In this last section we explore the question whether there are – still assuming that players
choose best response to the frequency of strategy occurrences in the sample – more sophisti-
cated unbiased sampling procedures that yield higher fitness in games that have equilibria
z∗ which cannot be supported by the unbiased sampling procedures studied so far.

We consider the class of sampling procedures also studied in Oyama et al. (2015) that
allow sample sizes to be drawn at random. We assume that the sampling bias is independent
of the sample size. Let µ= {µk}∞k=1 be a distribution over sample sizes. A distribution over
sample sizes has finite support if there is K > 0 such that ∀k > K we have µk = 0. We let the
tuple {µ, p} stand for the sampling procedure described by µ and p. We collect the sampling
procedures using random sample sizes in the family S r

b , where now b indicates the upper
bound on the support of µ.
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An agent revising at population state z and using sampling procedure {µ, p} will play
strategy 1 with probability

P(z|z∗, {µ, p}) =
∞
∑

k=1

µkP(z|z∗, {k, p}). (17)

Because all P(z|z∗, {µ, p}) ∈ S r
b are decreasing in z and continuously differentiable, Lemmas

1 – 3 and Proposition 1 can be stated in terms of S r
b , too. That is, the results for stability

of a sampling procedure {k, p} ∈ Sb carry over to sampling procedures {µ, p} ∈ S r
b , and a

sampling procedure {µ, p} is S r
b -stable iff

P(z∗|z∗, {µ, p}) = z∗. (18)

Condition (18) is the analogue to the stability condition (11) for the family Sb. We next
show by Example 4 that this class of sampling procedures extends the set of population
states z ∈ (0, 1) that can be supported by unbiased sampling rules, given z is the equilibrium
of the underlying game, to a measureable set.

Example 4. Consider a population game satisfying (U1)–(U3) with equilibrium z∗ > 1/2, and
two sampling procedures with p(z) = z and sample sizes k = 1 and k = 2, respectively. The
fraction of revising players choosing strategy 1 at z∗ under the procedure with k = 1 is given by
P1 = 1− z∗ < z∗. The fraction of revising players choosing strategy 1 at z∗ under the procedure
with k = 2 is given by P2 = (1− z∗)2 + 2z∗(1− z∗). Observe that we have

P2 − z∗ = 1− z∗(1+ z∗).

Hence, there is an interval (1/2, z) with z > 1/2 such that ∀z∗ ∈ (1/2, z), we have P1 < z∗ < P2.
That is, to any equilibrium z∗ ∈ (1/2, z) there is an unbiased sampling procedure {µ, p} that
appropriately mixes between samples of size k = 1 and of size k = 2, such that (18) holds.

The example makes clear that for an equilibrium z∗ ∈ (0, 1) there is an unbiased procedure
{µ, p} ∈ S r

b that is S r
b -stable if and only if there exist unbiased sampling procedures {k1, p}

and {k2, p}, k1, k2 ∈ N+, such that P(z∗|z∗, {k1, p})≤ z∗ ≤ P(z∗|z∗, {k2, p}).
Even though the numerical calculations in Example 4 suggest that the class of games

with payoffs satisfying (U1)–(U3) in which stable sampling rules {µ, p} are unbiased is much
richer than if we only consider sampling rules {k, p} with a fixed sample size, sampling
with random sample sizes can still not accommodate for games with extremely asymmetric
equilibria. Proposition 5 below makes this claim more precise, and implies that the set of
population states z ∈ (0, 1) that can be supported by unbiased sampling with random sample
size, given z is the equilibrium of the underlying game, is a strict subset of (0, 1).

Proposition 5. There is, for every b ∈ N+, z̄ > 0 such that ∀z ∈ (0, z̄] ∩ [z̄, 1) there is no
{µ, p} ∈ S r

b with p unbiased at z such that P(z|z, {µ, p}) = z holds.

5 Conclusion

In this paper we have analyzed evolutionary stability of sampling biases. We have argued
that sampling biases serve as evolutionary second-best corrections for players that play
best response to the frequency of strategy occurrences in finite samples. Such a decision
rule is particularly evolutionary suboptimal in games with a highly asymmetric mixed Nash
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equilibrium. We have modeled the evolution of optimal biases in a framework of sampling
best response dynamics determining the population states in two subpopulations that use
different sampling procedures. The dynamics of the subpopulation shares is governed by
an adapted replicator dynamics that discriminates on the basis of average fitness within
subpopulations. We have interpreted the resulting dynamical system as two-speed dynamics,
which has allowed us to assess stability of a sampling procedure in terms of a lower-
dimensional tractable reduced system.

The two-speed dynamics analyzed here are likely to be important in other contexts as
well. For example, models of indirect preference evolution implicitly employ two-speed
dynamics with play adapting infinitely fast to changes in the preferences: The results on
slow-fast systems employed in this paper suggest a route to analyze the conditions under
which such a short-cut is feasible. Further, the application of the results on slow-fast systems
that we have resorted to is not restricted to the class of games that we have considered here.
Extensions to population games with more than two-strategies and with more than one
population should be feasible, in particular because the results allow focusing on a reduced
system that has the same number of dimensions as the evolutionary node. We leave these
directions for future research.

A Asymptotic Stability

Definition 8 (Asymptotic Stability, see e.g. Weibull, 1997.). Consider system u̇ = f (u),
f : [0, 1]n→ Rn, with initial condition u0 ∈ [0, 1]n, solution u(t), t ≥ 0, and rest point ũ so
that f (ũ) = 0. Rest point ũ is called asymptotically stable if it holds that

(a) for every ε > 0 there exists δ(ε)> 0 such that if ‖u0− ũ‖< δ(ε), then ‖u(t)− ũ‖< ε,
∀t ≥ 0, and

(b) there exists δ > 0 such that if ‖u0 − ũ‖< δ, then limt→∞ ‖u(t)− ũ‖= 0.

If (a) holds then rest point ũ is called neutrally stable; rest point ũ is called unstable if it
is neither asymptotically nor neutrally stable. If f is differentiable, a sufficient condition for
asymptotic stability of ũ is that all eigenvalues of the Jacobi ∂u f (ũ) have strictly negative
real parts, and a sufficient condition for ũ to be unstable is that all eigenvalues of the Jacobi
∂u f (ũ) have strictly positive real parts.

B Proofs

B.1 Proof of Lemma 1

We first show existence. By definition, z(x , y) is linear in the elements of x ∈ [0,1]2,
and hence continuous in x . From the differentiability of p1 and p2 it follows that R(z) is
differentiable, and hence continuous in z. Hence, for any fixed y ∈ [0,1], the composite
function R (z(., y)) continuously maps the compact and convex set [0, 1]2 into itself. We can
apply Brouwer’s fixed point theorem.

Uniqueness can be shown as follows: Recall that P ′(z|z∗, {k, p}q)≤ 0, for all z ∈ [0, 1] and
any {k, p}q ∈ Sb. Suppose the claim is false, that is, suppose that there are x 6= x ′ ∈ X ∗(y).
It must hold that

P(y x1 + (1− y)x2|z∗, {k, p}1) = x1 (a)
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P(y x1 + (1− y)x2|z∗, {k, p}2) = x2 (b)

P(y x ′1 + (1− y)x ′2|z
∗, {k, p}1) = x ′1 (a’)

P(y x ′1 + (1− y)x ′2|z
∗, {k, p}2) = x ′2 (b’)

Assume that x1 > x ′1. As P(.|z∗, {k, p}q), q = 1,2, are decreasing, it follows by (a) and (a′)
that y x1 + (1 − y)x2 < y x ′1 + (1 − y)x ′2. From y x1 + (1 − y)x2 < y x ′1 + (1 − y)x ′2 and
x1 > x ′1 it follows that x2 < x ′2. On the other hand, from y x1+(1− y)x2 < y x ′1+(1− y)x ′2,
(b), (b′) and the fact that P(.|z∗, {k, p}q), q = 1, 2, are decreasing it follows that x2 ≥ x ′2. A
contradiction. The argument can be repeated for x1 < x ′1, as well as for subpopulation 2.
This gives us uniqueness.

To establish differentiability, we observe that the determinant of the Jacobi C(x , y) given
in (8) reads as

det(C(x , y)) = −P ′ (z(x , y)|z∗, {k, p}1) y − P ′ (z(x , y)|z∗, {k, p}2) (1− y) + 1, (19)

which is strictly positive and bounded away from zero for all (x , y) ∈ [0,1]3. Hence,
C(x , y) is invertible for all (x , y) ∈ [0, 1]3, and because the right-hand side of the sampling
best response dynamics (5) is differentiable on [0,1]3, we can compute ∂y x∗(y) from
x∗(y) = R(z(x∗(y), y)) as

∂y x∗(y) = − [C(x∗(y), y)]−1
�

∂yR(z(x , y))
�

�

x=x∗(y)

�

. (20)

B.2 Proof of Lemma 2

The trace of the Jacobi C(x , y) given in (8) reads as

tr(C(x , y)) = P ′ (z(x , y)|z∗, {k, p}1) y + P ′ (z(x , y)|z∗, {k, p}2) (1− y)− 2, (21)

which is negative and strictly bounded away from zero for all (x , y) ∈ [0,1]3. Together
with the fact that the determinant given in (19) is positive and strictly bounded away from
zero for all (x , y) ∈ [0, 1]3, we have the claim by observing that the two eigenvalues satisfy
e1 + e2 = tr(C(x , y)) and e1e2 = det(C(x , y)).

B.3 Proof of Lemma 3

We start with Lemma 5 below that describes the convergence of the unique solution
(x(t), y(t)), t ≥ 0, of (7) with initial condition (x0, y0) ∈ [0,1]3 when λ approaches
infinity. Let ȳ(t) be the unique solution of (9) with initial condition ȳ0 = y0.

Lemma 5. Assume (U1), and fix any η > 0.

(a) For any T <∞, ∃L, λ̄,ω> 0 such that ∀λ > λ̄, we have

‖y(t)− ȳ(t)‖< η, ∀t ∈ [0, T] (22)

‖x(t)− x∗( ȳ(t))‖< η, ∀t ∈ [λ−1 L, T], (23)

given that ‖x0 − x∗(y0)‖ ≤ω holds.
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(b) Suppose ȳ = 1 is an asymptotically stable rest point of reduced system (9). Then,
∃L, λ̄,δ,ω> 0 such that ∀λ > λ̄, we have

‖y(t)− ȳ(t)‖< η, ∀t ≥ 0 (24)

‖x(t)− x∗( ȳ(t))‖< η, ∀t ≥ λ−1 L, (25)

given that ‖y0 − 1‖ ≤ δ and ‖x0 − x∗(y0)‖ ≤ω hold jointly.

Proof. For the following, let f : [0, 1]3→ R2 be shorthand for the vector field of the sampling
best response node, i.e.

f (x , y) = λ · [R (z(x , y))− x] , (26)

and let g : [0,1]3→ R be shorthand for the vector field of the evolutionary node, i.e.

g(x , y) = y (1− y) (x1 − x2)h (z(x , y)) . (27)

We consider a continuously differentiable function q : R3→ R2 given by

q(x , y) =
�

P̄1(z(x , y))− x1

P̄2(z(x , y))− x2

�

, (28)

with continuously differentiable P̄q : R→ R, P̄q(v) = P(v|z∗, {k, p}q) for v ∈ [0,1], q = 1,2
and z(x , y) = y x1 + (1 − y)x2. That is, we have q(x , y) = f (x , y) on [0,1]3. Further,
we define C̄(x , y) = ∂xq(x , y), and assume that all eigenvalues of C̄(x , y) have strictly
negative real parts and are strictly bounded away from zero on R3 \ [0, 1]3. Together with
Lemma 2, we then have that all eigenvalues of C̄(x , y) have strictly negative real parts that
are bounded away from zero on the whole R3, and hence that C̄(x , y) is invertible for all
(x , y) ∈ R3. Together with the fact that q is continuously differentiable on R3, it follows by
the implicit function theorem that there exists unique continuously differentiable function
x̄∗ : R→ R2 that satisfies q( x̄∗(y), y) = 0, ∀y ∈ R, and hence satisfies x̄∗(y) = x∗(y) on
[0,1].

We now adapt Theorems 1 and 2 in Lobry et al. (1998) to our setting. As discussed in
the text, g(x , y) is Lipschitz-continuous on [0,1]3 as a consequence of (U1). We consider
a Lipschitz-continuous function r : R3→ R satisfying r(x , y) = g(x , y) for (x , y) ∈ [0,1]3,
and use function r together with function q described above to define dynamical system
(29) for (x , y) ∈ R3 and 0< ε < 1.

ε · ẋ = q(x , y)
ẏ = r(x , y) . (29)

We are interested in the convergence when ε→ 0 of the unique solution (x(t), y(t)), t ≥ 0
of (29) with initial condition (x0, y0) ∈ [0,1]3, whose existence follows from the Picard-
Lindelöf theorem because any solution with initial condition in [0, 1]3 never leaves [0, 1]3.
To this end, fix arbitrary ρ > 0, and define the following system for ȳ ∈ (−ρ, 1+ρ):

˙̄y = r( x̄∗( ȳ), ȳ). (30)

By Lipschitz-continuity of the right-hand side of (30) and because the system remains in
[0, 1], there exists, for any initial condition ȳ0 ∈ [0, 1], a unique global solution ȳ(t) ∈ [0, 1]
for t ≥ 0 satisfying (30). The conditions that Lobry et al. (1998) impose on (29) and (30)
are as follows:
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(H1) For all y, q(x , y) is locally Lipschitz-continuous in x.

(H2) (i) The function x̄∗ : [−ρ, 1+ρ]→ R2 is continuous. (ii) For all y ∈ [−ρ, 1+ρ], x̄∗(y)
is an isolated root of p(x , y), (iii) [−ρ, 1+ρ] is compact.

(H3) (i) For each y ∈ [−ρ, 1 + ρ], the point x = x̄∗(y) is an asymptotically stable rest
point of ẋ = ε−1q(x , y). (ii) The basin of attraction of x = x̄∗(y) is uniform over
[−ρ, 1 + ρ], that is, there exists a > 0 such that for all y ∈ [−ρ, 1 + ρ], the ball
B = {x ∈ R2 : ‖x − x̄∗(y)‖ ≤ a} is a basin of attraction of x̄∗(y).

(H4) r( x̄∗( ȳ), ȳ) is locally Lipschitz continuous in ȳ ∈ (−ρ, 1+ρ).

(H5) x0 lies in the basin of attraction of x̄∗(y0).

Note that we have replaced the conditions (H1) and (H4) in Lobry et al. (1998) by their
sufficient conditions as identified in Lobry et al. (1999). Theorem 1 in Lobry et al. (1998)
then implies the following:

Lemma 6 (cf. Theorem 1 in Lobry et al., 1998). Suppose (H1) – (H5) to be satisfied. Let
T <∞. For every η > 0, there exists ε̄, L > 0 such that ∀ε < ε̄ we have

‖y(t)− ȳ(t)‖< η, 0≤ t ≤ T (31)

‖x(t)− x̄∗( ȳ(t))‖< η, εL ≤ t ≤ T. (32)

If we further assume:

(H6) ȳ = 1 is an asymptotically stable rest point of (30), and y0 lies in the basin of attraction
of ȳ = 1,

then the following is a consequence of Theorem 2 in in Lobry et al. (1998).

Lemma 7 (cf. Theorem 2 in Lobry et al., 1998). Suppose (H1) – (H6) to be satisfied. For
every η > 0, there exists ε̄, L > 0 such that ∀ε < ε̄ we have

‖y(t)− ȳ(t)‖< η, t ≥ 0 (33)

‖x(t)− x̄∗( ȳ(t))‖< η, t ≥ εL. (34)

We next argue that (H1) to (H4) are satisfied under the assumptions that we make on q
and r. (H1) holds by assumption. (H2.i) holds since x̄∗ is differentiable and hence continuous
on [−ρ, 1+ρ], (H2.ii) holds because it follows from Lemma 2 and our assumption on C̄(x , y)
that ∀y ∈ [−ρ, 1+ρ], the eigenvalues C̄( x̄∗(y), y) have strictly negative real parts, and
(H2.iii) holds because [−ρ, 1+ρ] is bounded and closed. (H3) is guaranteed by Lemma
2 and our assumption on C̄(x , y): (i) ∀y ∈ [−ρ, 1+ρ], the eigenvalues C̄( x̄∗(y), y) have
strictly negative real parts, and hence point x̄∗(y) is asymptotically stable ∀y ∈ [−ρ, 1+ρ].
(ii) Uniformity follows because the eigenvalues of C̄( x̄∗(y), y) are uniformly bounded away
from zero on [−ρ, 1+ρ]. Lastly, from the fact that x̄∗(y) is continuously differentiable, it
follows that the right-hand side of (30) is Lipschitz-continuous, and hence (H4) holds.

Finally, we note that there exist ω > 0 such that if we choose ‖x0 − x̄∗(y0)‖ < ω then
(H5) holds. This allows us to prove part (a) of Lemma 5: As observed in the text, the
solution (x(t), y(t)) of (7) with initial condition (x0, y0) ∈ [0,1]3 stays in [0, 1]3 for t ≥ 0
and is unique. Therefore, the solution (x(t), y(t)) of system (29) with initial condition
(x0, y0) ∈ [0, 1]3 coincides with the solution of (7) with the same initial condition, and hence
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is independent of the functional form assumed for q and r on R3 \ [0, 1]3. Since x̄∗ = x∗ on
[0,1], we get the claim by applying Lemma 6, and setting ε= λ−1 and ε̄= λ̄−1.

Claim (b) follows straight away: If ȳ = 1 is an asymptotically stable rest point of (30),
then there exist δ,ω> 0 such that if we choose ‖x0 − x̄∗(y0)‖<ω and ‖y0 − 1‖< δ, then
both (H5) and (H6) hold. Repeating the argument given in the last paragraph, applying
Lemma 7, and setting ε= λ−1 and ε̄= λ̄−1 then finishes the proof for claim (b).

The rest of the proof consists of three auxiliary lemmas that together imply Lemma 3.
The first is an observation needed below and also later on.

Lemma 8. Let z∗(y) = y x∗1(y) + (1− y)x∗2(y) and consider any ŷ ∈ [0, 1].

• If x∗1( ŷ)> x∗2( ŷ), then dz∗(y)/dy|y= ŷ > 0.

• If x∗1( ŷ)< x∗2( ŷ), then dz∗(y)/dy|y= ŷ < 0.

• If x∗1( ŷ) = x∗2( ŷ), then dz∗(y)/dy|y= ŷ = 0.

Proof. By definition, x∗(y) solves x∗(y) = R(z(x∗(y), y)) for all y ∈ [0,1] and is differen-
tiable by Lemma 1. If x = R(z(x , y)), then z = y x1 + (1− y)x2 satisfies

yP(z|z∗, {k, p}1) + (1− y)P(z|z∗, {k, p}2) = z. (35)

Totally differentiating (35), we get

dz
dy
=

P(z|z∗, {k, p}1)− P(z|z∗, {k, p}2)
1− yP ′(z|z∗, {k, p}1)− (1− y)P ′(z|z∗, {k, p}2)

. (36)

The denominator of (36) corresponds to the determinant of C(x , y) which we know to be
strictly positive. Because at any rest point (x , y) of the sampling best response node it holds
that x∗q(y) = P(z|z∗, {k, p}q), q = 1, 2, the claim follows.

Using Lemma 8, we get the following result that concerns the stability of the rest point
of reduced system (9).

Lemma 9. Assume (U1) – (U3). Fix {k, p}1 ∈ Sb supporting z ∈ [0,1] and choose any
{k, p}2 ∈ Sb that is z-different from {k, p}1. Then, ȳ = 1 is either an asymptotically stable rest
point of reduced system (9) or an unstable rest point of the reduced system (9).

Proof. Again, let z∗(y) = y x∗1(y) + (1 − y)x∗2(y). To get the claim, first suppose that
h(z∗(1)) 6= 0. Because h(z) is continuous by (U1) and z∗(y) is differentiable by Lemma 1, if
follows that h(z∗(y)) is continuous in y . Hence ∃ε > 0 such that the right-hand side of (9)
is either strictly positive or strictly negative ∀ ȳ ∈ [1− ε, 1] and consequently ȳ = 1 is either
an asymptotically stable or an unstable rest point of reduced system (9).

Second, suppose that h(z∗(1)) = 0. Because x∗1(1) 6= x∗2(1) by z-difference of {k, p}1 and
{k, p}2 it follows from Lemma 8 that dz/dy|y=1 6= 0. Together with the fact that h(z) is
strictly decreasing at z∗(1), by (U3), it follows that ∃ε > 0 such that the right-hand side of
(9) is either strictly positive or strictly negative ∀ ȳ ∈ [1− ε, 1). Consequently, it follows that
for the case h(z∗(1)) = 0, too, ȳ = 1 is either an asymptotically stable or an unstable rest
point of reduced system (9). This gives us the claim.

Using Lemma 5, we get the following third observation:
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Lemma 10. Assume (U1) – (U3), and fix {k, p}1 ∈ Sb supporting z ∈ [0, 1].

(a) If ȳ = 1 is an asymptotically stable rest point of (9) for any {k, p}2 ∈ Sb that is z-different
from {k, p}1, then F1 is Sb-stable.

(b) If ∃{k, p}2 ∈ Sb, {k, p}2 being z-different from {k, p}1, such that ȳ = 1 is an unstable
rest point of (9), then {k, p}1 is not Sb-stable.

Proof. We start with claim (a). If ȳ = 1 is an asymptotically stable rest point of reduced
system (9) for any {k, p}2 ∈ Sb that is z-different from {k, p}1, then part (b) of Lemma
5 applies for any {k, p}2 ∈ Sb that is z-different from {k, p}1. From this follows (b) in
Definition 3 for any {k, p}2 ∈ Sb that is z-different from {k, p}1 straight away.

Point (a) in Definition 3 can be shown as follows: Let ȳ(t) be a solution to (9) with
initial condition ȳ0. By asymptotic stability of ȳ = 1 we have that ∀ε > 0 ∃δ > 0 such that

‖ ȳ0 − 1‖< δ ⇒ ‖ ȳ(t)− 1‖< ε, ∀t ≥ 0. (37)

By continuity of x∗(y) on [0, 1] it thus follows that ∀ε > 0 ∃δ > 0 such that

‖ ȳ0 − 1‖< δ ⇒ ‖(x∗( ȳ(t)), ȳ(t))− ( x̃ , 1)‖< ε, ∀t ≥ 0. (38)

Let (x(t), y(t)) a solution to (7) with initial condition (x0, y0). By Lemma 5 (b) there is
to every small enough δ > 0 t̄ > 0 such that it follows from ‖(x0, y0)− ( x̃ , 1)‖ < δ that
(x(t), y(t))→ (x∗( ȳ(t), ȳ(t)) uniformly on t ≥ t̄ when λ→∞ and y0 = ȳ0. Together with
(38) it thus follows that ∀ε > 0 ∃λ̄, t̄,δ > 0 such that ∀λ≥ λ̄ we have

‖(x0, y0)− ( x̃ , 1)‖< δ ⇒ ‖(x(t), y(t))− ( x̃ , 1)‖< ε, ∀t ≥ t̄. (39)

Now fix ε > 0. By continuity of the solution (x(t), y(t)) in the initial conditions (x0, y0)
(Hale, 2009) it follows for every λ > λ̄ that ∃δ′ > 0 such that

‖( x̄0, ȳ0)− ( x̃ , 1)‖< δ′ ⇒ ‖(x(t), y(t))− ( x̃ , 1)‖< ε, ∀t ≥ 0. (40)

This gives us point (b) in Definition 3, and hence claim (a).
Turn to claim (b). Consider {k, p}2 ∈ Sb, {k, p}2 being z̃-different from {k, p}1, such

that ȳ = 1 is unstable on the reduced system (9). Then, there exists ε̄ > 0 such that for all
0 < ε ≤ ε̄, there is no δ > 0 such that ‖ ȳ0 − 1‖ < δ implies ‖ ȳ(t)− 1‖ < ε, ∀t ≥ 0. This,
together with Lemma 5 (a), implies that there exist η, λ̄,ω> 0 with η small enough such
that ∀λ > λ̄, condition (a) in Definition 3 fails whenever ‖x0− x∗(y0)‖<ω. That is, {k, p}1
cannot be Sb-stable.

The if-part of Lemma 3 follows directly from part (a) of Lemma 10, and the only-if part
follows from part (b) of Lemma 10 by observing that if, for some {k, p}2 ∈ Sb, ȳ = 1 is not
an asymptotically stable rest point of the reduced system (9), then it is unstable by Lemma
9.

B.4 Proof of Proposition 1

We start with the following observation needed later on.

Lemma 11. For any u, z ∈ [0,1] and k ∈ N+, there exists an increasing and continuously
differentiable function p : [0,1]→ [0,1] such that u= P(z|z∗, {k, p}).
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Proof. Fix z ∈ (0, 1). From (4), we see that for p(z) = 0 we have P(z|z∗, {k, p}) = 1, that for
p(z) = 1 we have P(z|z∗, {k, p}) = 0, and that P(z|z∗, {k, p}) is continuous in p(z). Since
u ∈ [0,1], the claim follows.

We first show that a sampling procedure {k, p} supporting z ∈ {0,1} cannot be Sb-
stable. So, consider z∗(1) ∈ {0,1}. More specifically, consider z∗(1) = 1; the argument for
z∗(1) = 0 is analogous. By (U2)–(U3), we have h(z∗(1)) < 0, and hence, by continuity of
the left-hand side of (10) in ȳ, condition (10) holds for all ȳ 6= 1 in a neighborhood of 1
iff (x∗1(1)− x∗2(1)) < 0 holds. But since x∗1(1) = 1 and consequently x∗2(1) < 1, we have a
contradiction. Hence, a sampling procedure {k, p} supporting z = 1 cannot be Sb-stable.

Next, we consider z∗(1) ∈ (0,1). We want to argue that condition (10) holds for all
ȳ 6= 1 in a neighborhood of 1 iff z∗(1) = z∗, where z∗ ∈ (0, 1) corresponds to the equilibrium
of the underlying game. First, consider the if -part. If z∗(1) = z∗, then h(z∗(1)) = 0. We need
to distinguish two cases: (1) x∗1(1)− x∗2(1)< 0, and (2) x∗1(1)− x∗2(1)> 0.

(1) If x∗1(1)− x∗2(1)< 0, then z∗(y)> z∗(1) for all y below, and sufficiently close to 1 by
Lemma 8. Because h(z) is strictly decreasing at z = z∗ by (U2) and x∗(y) is continuous
at y = 1, it then follows that (10) holds for all ȳ 6= 1 in a neighborhood of 1.

(2) If x∗1(1)− x∗2(1)> 0, then z∗(y)< z∗(1) for all y below, and sufficiently close to 1 by
Lemma 8. Because h(z) is strictly decreasing at z = z∗ by (U2) and x∗(y) is continuous
at y = 1, it then follows that (10) holds for all ȳ 6= 1 in a neighborhood of 1.

For the only if -part, we proceed by contradiction: Fix some {k, p}1 ∈ Sb supporting
z 6= z∗, and suppose that (10) holds for all ȳ 6= 1 in a neighborhood of 1 for any z-
different {k, p}2 ∈ Sb. Consider first the case h(z∗(1)) > 0. Because both z∗(1) ∈ (0,1)
and x∗1(1) = z∗(1) holds it follows that x∗1(1) ∈ (0,1). There exists, by Lemma 11 and
differentiability of p, a sampling procedure {k, p}2 ∈ Sb such that x∗2(y)> x∗1(y) holds for
all y 6= 1 in a neighborhood of 1. Consequently, because z∗(y) is continuous in y , there is a
neighborhood around 1 such that the inequality in equation (10) is reversed for all y 6= 1
in that neighborhood. We have a contradiction. An analogous argument establishes that
h(z∗(1))< 0 cannot hold.

To conclude, we recall that z∗(1) = z∗ holds if and only if z∗ = P(z∗|z∗, {k, p}) holds.
Finally, existence of a sampling procedure {k, p} ∈ Sb satisfying z∗ = P(z∗|z∗, {k, p}) follows
from Lemma 11.

B.5 Proof of Lemma 4

Because x∗1(1) = x∗2(1) holds it follows from Lemma 8 that dz∗(y)/dy|y=1 = 0. Observing
that P(z|z∗, {k, p}1) = P(z|z∗, {k, p}2) holds at the population state z being supported by
{k, p}1, we see that x∗1( ȳ) = x∗2( ȳ), ∀ ȳ ∈ [0, 1] follows. Hence the solution trajectory ȳ(t)
of reduced system (9) satisfies ȳ(t) = ȳ0, ∀t ≥ 0. The statement then follows from equation
(22) in Lemma 5.

B.6 Proof of Proposition 2

Let r(z, k) = I1−z(k − bkzc, bkzc + 1) − z, let f (u;α,β) be the p.d.f. of Iu(α,β), and fix
k ∈ {1, ..., b}. Because at all but at most countable z ∈ (0, 1), bkzc is constant in z, it follows
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that, for all but at most countable z ∈ (0,1), we have the derivative of r with respect to z
given by

rz(z, k) = − f (1− z; k− bkzc, bkzc+ 1)− 1 ∈ (−∞,−1). (41)

Consequently, the set
Rk = {z ∈ (0, 1) : r(z, k) = 0} (42)

is countable. From this, it follows that Rk is a measure-zero set, and consequently, that the
set

R=
⋃

k∈{1,...,b}
Rk (43)

is a measure-zero set, too. Because R= {z ∈ (0,1) : Kb(z) 6= ;}, we have the claim.

B.7 Proof of Proposition 3

We have P(z∗|z∗, {k, p}) = Prob {m< bkz∗c} where m∼ Bin(k, p(z∗)), which we can express
as

Prob {m< bkz∗c}= Prob

�

m− kp(z∗)
p

kp(z∗)(1− p(z∗))
<

bkz∗c − kp(z∗)
p

kp(z∗)(1− p(z∗))

�

. (44)

From the de Moivre-Laplace Theorem it follows that the distribution of the random variable
Sk, defined as

Sk =
m− kp(z∗)

p

kp(z∗)(1− p(z∗))
, (45)

approaches that of a standard normal variable as we let k→∞. Hence, we can write

lim
k→∞

Prob {m< bkz∗c}= Φ
�

lim
k→∞

bkz∗c − kp(z∗)
p

kp(z∗)(1− p(z∗))

�

, (46)

where Φ(.) denotes the c.d.f. of a standard normal variable. Observe that we have

kz∗ − 1− kp(z∗)≤ bkz∗c − kp(z∗)≤ kz∗ − kp(z∗). (47)

Define

f −(k) =
kz∗ − 1− kp(z∗)

p

kp(z∗)(1− p(z∗))
(48)

f +(k) =
kz∗ − kp(z∗)

p

kp(z∗)(1− p(z∗))
. (49)

Because for p(z∗)> z∗ we have limk→∞ f −(k) = f +(k) = −∞, it follows that

Φ

�

lim
k→∞

bkz∗c − kp(z∗)
p

kp(z∗)(1− p(z∗))

�

= 0. (50)

Conversely, because for p(z∗)< z∗ we have limk→∞ f −(k) = f +(k) =∞, it follows that

Φ

�

lim
k→∞

bkz∗c − kp(z∗)
p

kp(z∗)(1− p(z∗))

�

= 1. (51)

Because it must hold that P(z∗|z∗, {k, p}) = z∗ ∈ (0,1), for any k = 1,2, ..., it must follow
that limk→∞ p∗k(z) = z.
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B.8 Proof of Proposition 4

Let zn ∈ (0,1) be a sequence that converges to 1, i.e. zn → 1, and let pn be a sequence
satisfying

zn = I1−pn
(k− bkznc, bkznc+ 1). (52)

That is, for every zn we have pn = p∗k(zn). Observe that there is N > 0 such that ∀n > N ,
we have bkznc = bkzn+1c. Because, for any α,β > 0, Ix(α,β) is continuous in x and because
I1(α,β) = 1, we must have pn→ 0 as zn→ 1. We have the claim. The case zn→ 0 can be
shown using an analogous argument.

B.9 Proof of Proposition 5

Inspection of (3) reveals that if we assume p(z) = z, then limz→0 P(z|z, {k, p}) = 1, and
limz→1 P(z|z, {k, p}) = 0, ∀k = 1, ..., b. Because, as noted in the text, in order that

P(z|z, {µ, p}) = z

holds for p(z) = z, there must exist sampling procedures {k1, p} and {k2, p} with k1, k2 ∈ N+
and p(z) = z satisfying P(z|z, {k1, p})≤ z ≤ P(z|z, {k2, p}), and because µ has finite support,
the claim then follows.
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