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Shill Bidder’s Behavior in a Second-Price Online Auction

DOMINIC HERZOG

University of Basel

12th May 2014

Shill bidding is a fraudulent in-auction strategy where a seller participates as a bidder in his own

auctions. This is the first paper on shill bidding that is based on a data set which includes personal

details. Along with bidding histories, I can prove that on the investigated platform 0.3% of all

auctions were influence by obvious shill bidders. The majority of the proven shill bidders’ behavior

in this paper does not fulfill any of the shill bidder types’ criteria discussed in the literature. I adopt

two algorithms which aim to identify shill bidders based on public information. On average, these

approaches assign a higher probability of being a shill bidder to the accounts of bidders who

certainly shilled on auctions in my data set. However, a reliable identification of proven shill

bidders and honest bidders is only possible to a limited extent.

Key words: auction, shill bidding, bidding behavior

JEL classification: D12, D44

INTRODUCTION

Shill bidding describes the auction behavior of a seller who also participates as a bidder in his

own auctions and allows the seller to drive up the sales price or to reach a desired minimum

price that is exempt of the insertion fee. The anonymity of the web facilitates this type of

fraudulent selling activity because even an attentive observer can hardly ever assign a user

account to a specific person. “The most crucial issue is that online identities are easily created

and cannot be tracked back to the physical identities without inside information.” (Ockenfels

et al., 2006, p. 25) The auctioneer, however, has access to the participants’ personal details,

and is therefore optimally positioned to prohibit shill bidding. Unfortunately, the auctioneer’s

incentive to fight this fraudulent behavior is limited. His main source of revenue from sold

articles is the final value fee and, therefore, his profit rises along with the sales price. If the

auctioneer publishes a bonafide warning that shill bidding is prohibited, this might encourage
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more aggressive bidding behavior and, therefore, his profit. However, he still has an incentive

to disregard such misconduct in order to profit from price-pushing shill bids.

Several studies (e.g., Trevathan and Read, 2007; Engelberg and Williams, 2009; Kauffman

and Wood, 2005; Ford et al., 2013; Dong et al., 2010) have recognized this incentive problem

and have developed approaches to tackle misconduct of this kind. They use public information

such as bidding histories in order to identify suspicious behavior. In particular, pairs of sellers

and bidders are seen as suspect if their accounts are observed to participate regularly in the

same auctions, where the bidder hardly ever wins. These studies successfully identify shill bid

accounts by use of their algorithm in their training data set. However, owing to the lack of field

data documenting proven shill bidders, the precision of their suggested approaches are difficult

to verify.

This paper focuses on the online auction platform ricardo.ch. Ricardo.ch AG is a Swiss

subsidiary of the multinational media company Naspers. With over 3 million user accounts and

20,000 sold articles per week, ricardo.ch operates the most frequently used auction platform

in Switzerland (ricardo.ch AG, 2014a). They offer second-price auctions with a proxy bidding

system, similar to the auction design used by eBay.

While searching for transmitted information on auction details, I noticed that ricardo trans-

mits valuable information that is not displayed in the browser. Along with user’s nicknames,

ricardo submits unsolicited personal details (e.g., full postal address, phone number) of users

to everyone browsing their website. Moreover, all maximum bids that have been entered in

the proxy bidding system are involuntarily submitted as well. By aggregating this information

and collating it with publicly observable data, I created a large data set which provides unique

insights into (shill-) bidding behavior.

Confidential information such as an individual’s personal details and the maximum bid are

not publically available for good reasons. However, ricardo.ch’s negligence in ensuring data

protection has provided a unique opportunity to obtain the personal details of all their user ac-

counts for scientific purposes. According to Naspers (2014), three additional European auction

houses belong to the ricardo Group, namely: ricardo.gr (operating in Greece); qxl.dk (operating

in Denmark); and qxl.no (operating in Norway). All four auction houses transfer the maxi-
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mum bid, entered for proxy bidding, of all bidders along with the bidding history. In addition,

personal details were also available for ricardo.gr.

These auction data allow me to assign all accounts on ricardo.ch and ricardo.gr to individuals

and identify shill bidders based upon information that is normally only accessible to the auc-

tioneer. In addition, I am able to monitor and judge ricardo’s attempts to prohibit shill bidding

and to test shill-bidder identification algorithms.

Most studies on auctions use data about behavior on eBay. In order to evaluate to what

extend the findings about shill bidding on ricardo can be applied to eBay, I compare the bidding

behavior on ricardo to comparable figures on eBay (USA) auctions presented by Hayne et al.

(2003).

The remainder of the paper is structured as follows. Section I discusses the related literature

and highlights the contribution of this paper. In Section II, I describe in more detail the data

collection and summarize my acquired data set. Section III analyzes the behavior of proven

shill bidders. Moreover, I apply two shill-bidder identification algorithms to my data in order to

check whether they identify the proven shill bidders. Section IV compares the bidders’ behavior

across the four country-specific auction houses provided by the ricardo Group and eBay (USA).

Finally, Section V concludes.

I LITERATURE

The rising popularity of online auctions has recently entailed an abundance of studies in this

field (Ockenfels et al., 2006, Aleem and Antwi-Boasiako, 2011). One branch of this liter-

ature investigates in-auction fraud; i.e., fraudulent behavior of any participant during a run-

ning auction. Such fraudulent behavior can emanate either from the auction house (e.g., Bag

et al., 2000), from buyers (e.g., Sher, 2012; Chen and Tauman, 2006), or from the seller (e.g.,

Chakraborty and Kosmopoulou, 2004; Izmalkov, 2004; Hlasny, 2006). The latter contains shill

bidding (the short form being ‘shills’).
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(a) Motivating Shills

Shill bidding describes the fraudulent in-auction behavior of a single individual, who influences

the auction by using multiple accounts in order to submit bids (Yokoo et al., 2004). Even though

auctions exists where potential buyers use shill bids (Sher, 2012, Yokoo et al., 2004), I focus on

sellers who bid on articles they are selling and use the term ‘shill bid’ in this narrower sense.

Shills can differ with regard to the sellers’ motivation (e.g., Kaur and Verma, 2013; Engelberg

and Williams, 2009; Watanabe and Yamato, 2008): (1) Reserve-Price Shilling occurs early in

the auction and ensures a minimum price, without paying the fees associated with an official

reserve price; (2) Buy-Back Shilling occurs late in the auction and is aimed at prohibiting the

sale of the article; (3) By Competitive Shilling, the seller continuously outbids the highest bidder

(up to a certain amount); and (4) Discover-and-Stop Shilling is a strategy in auctions with proxy

bidding, where the seller tries to discover the maximum bid and places a shill bid just below

this value.

The Discover-and-Stop strategy is based on eBay’s proxy bidding rules (Engelberg and

Williams, 2009). If the current (hidden) maximum bid exceeds an incoming bid by at least

one increment, then the system places a proxy bid which exceeds the incoming bid by exactly

one increment. If, however, the current (hidden) maximum bid exceeds an incoming bid

by less than one increment, then a proxy bid is placed at the maximum entered value. The

Discover-and-Stop strategy carries the risk of accidentally becoming the highest bidder.

However, this risk can be reduced when bidders bid in predictable units. Engelberg and

Williams (2009) became the highest bidder in 16 out of 46 Discover-and-Stop attempts and

won 7 out of 30 auctions. Such failed shill bid attempts are falsely classified as Competitive

Shills. Ricardo’s proxy bidding rules differ from those on eBay and do not allow the highest

bidder’s entered maximum bid to be revealed. Suppose the current highest bidder H entered bH

as his maximum bid. Later on, another bidder A enters the amount bA as his maximum bid. If

bH ≥ bA, then ricardo’s proxy bidding system places a bet at bA for H. H remains the highest

bidder because earlier bids are given priority.
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(b) Model that Deals with Shill Bidding

Chakraborty and Kosmopoulou (2004) analyze a common value auction without considering the

auctioneer’s reputation, being aware that reputation potentially affects the auctioneer’s long-run

profitability. They show that bidders cannot be fooled in equilibrium, because bidders correctly

anticipate the potential participation of the seller. Since the seller sometimes wins an auction,

the possibility of shill bidding lowers the expected payoff for buyers and sellers. However,

an auction house which only cares about the sales price and not about who wins the auction

gains from shill bidding. Kosmopoulou and Silva (2007) provide experimental evidence for

this model. They find that bidders bid less aggressively if they believe that shilling is possible

and is tolerated by the auction house.

(c) Evidence of Shill Bidding

Although shill bidding is strictly prohibited (ricardo.ch AG, 2014c; eBay Inc, 2013), previous

research as well as court rulings (Schwartz and Dobrzynski, 2001) prove that this behavior dis-

torts the course of numerous auctions. The anonymity provided by internet auctions facilitates

shilling, because bidders can hardly identify whether or not another bidder is shilling on behalf

of the seller. Shilling is even advantaged when the auction house permits multiple nicknames

per person (ricardo.ch AG, 2014c; eBay Inc, 2013). Auction houses therefore have an important

role to play in prohibiting shill bids. Along with bidding histories, they have exclusive access

to the personal data of all the nicknames and are therefore able to link nicknames and detect

individuals who obviously shill on their own articles.

(d) Identifying Shill Bidders

Auction houses prefer to preserve their good reputation by prohibiting shills, which encourage

a more aggressive bidding behavior. Unfortunately, as the auctioneer’s revenue is a share of the

sales price, they are not opposed to inconspicuous shill bidders who artificially buoy up the final

price.

The fact that auction houses have insufficient incentives to fight shill bidding has prompted

several studies which attempt to identify shill bidders based on public information. These stud-
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ies suggest ‘shilling variables’ which capture suspicious bidding characteristics and describe

how to calculate and condense them into a ‘shill score’ or into a shill probability, respectively.

They test their approach either on simulated data or on auctions where they identify shill bidders

according to a specific strategy.

Trevathan and Read (2005) developed an algorithm which calculates a shill score based on

six shilling variables. This shill score indicates whether a seller and a specific buyer are engaged

in collusive shill-biding behavior. In Trevathan and Read (2007), they extend their approach in

order to identify sellers who use multiple accounts to place shill bids. Their suggested collu-

sion score combines the shill score with dependencies among nicknames using a graph theory

approach.

Engelberg and Williams (2009) show that eBay’s proxy bidding design allows for a Discover-

and-Stop strategy. By incremental bidding, the seller can discover the maximum bid of the high-

est bidder and stop bidding just below this value. Based on betting behavior characteristics, they

estimate that 1.39 percent of all bids on eBay are placed according to their identified Discover-

and-Stop strategy and are therefore shills. Engelberg and Williams (2009) use a probit model

to validate their suggested shilling variables. Moreover, they experimentally demonstrate the

profitability of the Discover-and-Stop strategy and highlight the associated risk of overbidding.

Kauffman and Wood (2005) use premium bids as a proxy for shills. A premium bid is a bid

which is placed at an auction while another auction exists on the same article at a lower current

price. They find that premium bidding occurs in 23% of all auctions in their data set.

Ford et al. (2013) developed an algorithm based on a feed-forward, back-propagation neural

network in order to detect suspicious bidders. Suspicious bidders can then be analyzed in more

detail by an external shill verifier. Such a shill verifier is, for example, suggested by Dong et al.

(2010) who use an approach based on the Dempster-Shafer theory of evidence.

II DATA

Auctions on ricardo follow the rules of a second-price auction and offer the possibility of proxy

bidding. Proxy bidding means that a bidder can enter his maximum bid and the system au-

tonomously raises this bidder’s bid up to the desired amount. Ricardo uses a ‘soft close’ ending
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rule. The automatic run-time expansion is three minutes. Regarding this criterion, ricardo dif-

fers slightly from eBay’s (who uses a ‘hard close’) auction format. Ockenfels and Roth (2006)

analyze how different ending rules influence bidder’s behavior.

Owning multiple accounts is not prohibited in the terms and conditions of ricardo. However,

ricardo explicitly prohibits shill bids placed by the seller, by persons living in the seller’s house-

hold or by any person acting on behalf of the seller. Breach of this paragraph is sanctioned by

issuing a caution or suspension (ricardo.ch AG, 2014c; ricardo.ch AG, 2014b).

(a) Origin of the Data

In order to display dynamically changing contents in a user’s browser, the ricardo Group’s

websites use ‘Asynchronous JavaScript and XML’ (AJAX) requests. In practice, this means

that whenever a user addresses ricardo.ch, then: (1) the browser receives a source code which

contains placeholders; (2) the browser requests the current values for those placeholders from

the server; (3) the server replies with those values; and (4) the browser combines all information

in order to display the requested website.

In December 2013, I noticed very valuable information that was submitted by ricardo.ch’s

server in response to the implemented AJAX requests. Along with the public variables’ val-

ues (e.g., nickname), the server submitted personal details such as the user’s postal address

or his (mobile) phone number. Whenever an individual was browsing ricardo.ch’s auctions, the

browser received the personal details of all participating users. Even though this confidential in-

formation is not displayed in the browser, its submission clearly breaches data protection rules.

Privacy protection concerning the account data is not only in the consumers’ interest. Ricardo

itself is anxious to prevent any communication between auction participants, as the participants

may collude and arrange price agreements in order to avoid auction fees.

Shill bidders who attempt to raise the sales price, but also wish to avoid ending up as the

highest bidder, typically have to make decisions under uncertainty about the maximum bid that

another (proxy) bidder has entered. However, the AJAX standard request about the bidding

history of (running) auctions on ricardo returns the value of the entered maximum bid along

with the bidding history. Therefore, the combination of ricardo’s proxy bidding system and their
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information leakage which submits the highest bidder’s maximum bid is virtually an invitation

to shill.

On April 22, 2014, ricardo.ch blocked my IP address and, therefore, I stopped the recording.

I advised ricardo.ch of their platforms’ information leakage which was then closed by ricardo.ch

within a few hours.

(b) Data Collection

The data recording occurred in the period between December 21, 2013 and April 22, 2014.

To collect all the data necessary for a comprehensive analysis, I programmed three algorithms

in JAVA, with the purpose of collecting: (1) user details; (2) auction details and their bidding

histories; and (3) rating details.

Ricardo.ch does not prohibit the use computer systems for gathering information about the

activities undertaken on their platform, as long as these do not interfere with its normal perfor-

mance. Collecting and using these (personal) data for scientific research conforms to the Swiss

data protection law, DSG, Article 132(e).

The requests to ricardo.ch’s server in order to gain the desired items of information are de-

scribed below. Similar requests were possible for the three other European auction houses which

belong to the ricardo Group: ricardo.gr; qxl.dk; and qxl.no. Only the domain and the value of

the variable PartnerNr had to be changed according to Table 5.

User Details Ricardo assigns a unique user number userNr to each user account. This iden-

tification number remains the same, irrespective of whether the personal details or the

nickName change. The algorithm requested and recorded the personal details of all cur-

rently available user accounts. The requests took the following structure:

http://www.ricardo.ch/DataService/Proxy.aspx?DataService.svc/json/

GetAuctionSellerInfos?UserNr=userNr&PartnerNr=2&IsHttps=false

The server’s response to the request on my account contained, amongst other things, the

following excerpt:
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[...] ‘PhoneNumber’:‘0041615546909’ [...] ‘City’:‘Basel’ [...] ‘Street’:‘Winkelried-

platz’,‘StreetNr’:‘9’,‘ZipCode’:‘4053’ [...] ‘UserFirstName’:‘Dominic’, ‘UserLast-

Name’:‘Herzog’ [...]

Table 1 lists the variables which were recorded for each account and indicates for which

platform the corresponding value was submitted. The information about the ratings’ value

as well as whether or not an account has been suspended were recorded along with the

rating details.

[Table 1 here]

Auction Details and Their Bidding Histories Ricardo assigns a unique articleID to each auc-

tion. This number remains the same even if an article has not been sold and the item is

re-auctioned. Details on closed auctions as well as their bidding history remain available

for about three months. Therefore, available data on past auctions were recorded. In ad-

dition, the algorithm stored articleIDs from current auctions and requested the auction’s

information once the auction was closed. The requests took the following structure:

http://auto.ricardo.ch/DataService/Proxy.aspx?DataService.svc/json/

GetBidsHistory?AuctionNr=articleID&PartnerNr=2&NbBidsToShow=20000

&IsArchived=false&IsHttps=false

The auction’s details and the bidding history were recorded for each auction. Table 2 and

Table 3 list the recorded variables.

[Table 2 here]

[Table 3 here]

Rating Details I extracted the rating details of all accounts directly from the website’s source

code. The requests for this purpose were submitted via one of the two following links:

http://www.ricardo.ch/online-shop/nickName/?SeeComments=True

&SellerNickName=nickName

http://auto.ricardo.ch/accdb/ViewUser.asp?IDU=userNr
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Whenever possible, the rating details were extended with information about the rating

history during the last 12 months. These additional data show who’s rated who, and

therefore allow for more in-depth network analysis among accounts. The ratings received

and given are recorded and contain the variables described in Table 4. These requests

were made according to one of the two following links:

http://www.ricardo.ch/online-shop/nickName/?SellerNickName=nickName

&SeeComments=True&RatingPeriod=12&PageSize=120&CurrentPage=pageNumber

http://www.domain/accdb/ViewUser.asp?IDU=userNr &RatingType=7&RatingDate=12

&PageNr=pageNumber

[Table 4 here]

(c) Data Summary

Table 5 summarizes the recorded data set based upon these requests. On qxl.dk and qxl.no, I

only recorded the account’s details from users who took part in at least one recorded auction.

Comparing the number of accounts as well as the number of ratings across ricardo and qxl

platforms is, therefore, not possible. The average values shown in Table 5 refer to auctions

where the article was sold. The number of bids is the number of times a bidder entered a new

(maximum) bid.

[Table 5 here]

Ricardo.ch is by far the most frequently used platform. In comparison with the other ricardo

Group platforms, over twenty times as many articles were sold via the Swiss auction house. In

addition, auctions on ricardo.ch attract on average the most bids and the most bidders. Articles

sold on ricardo.ch have the highest values about median and average number of page views. A

high number can either result from more potential bidders or from repeated page requests. This

value is, therefore, a proxy for the buyers’ interest and activity on the platform.

Assuming independently and identically distributed private values among bidders, the seller’s

expected revenue equals the expected valuation of the second-highest bidder. This expected
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value of the second-order statistic rises as the number of bidders increases. Therefore, the

higher average participation rate on ricardo.ch might give reasons for the higher number of

offered, respectively sold, articles. However, the insertion fee as well as the final value fee

differ between ricardo’s platforms, which might influence a seller’s decision to list an article.

The optimal reserve price does not depend on the number of bidders involved in a standard

auction model (see, for example, Krishna, 2009). However, if only one bidder participates

in the auction, then the reserve price is most important in order to prevent the article from

being sold at the starting price. The auction house encourages sellers to abstain from a reserve

price, which is the same as the starting price on ricardo, by priority listing of auctions with a

start price of 1.00 CHF/EUR/DKK/NOK and by insertion fees which typically increase with

higher reservation prices. While priority listing occurs on all four platforms, the insertion fees

differ across platforms and article categories. However, the insertion fees are relatively low

compared with the final value fees. The Danish and Norwegian platforms charge an insertion

fee even for the lowest possible starting price, which might be responsible for the low share of

auctions without a reserve price. However, ricardo.gr did not charge any insertion fee during

the observation period and even the fact that most auctions attracted only one bidder did not

induce the sellers to set a reserve price.

III ANALYZING SHILL BIDDERS

The seller’s and the bidder’s accounts are both identified as shill bidder accounts if, in a specific

auction, the individuals behind the seller and a bidder live in the same household.

(a) Identify Shill Bidders: Personal Data

Accounts which are registered with an identical full name, address, postal code and zip are as-

signed to one single person (fullAddress). The same mobile phone number also indicates the

same person, and the same phone number indicates, at least, that the persons live in the same

household (phoneNumber). In addition, I treat accounts with identical last name, address, postal

code and zip as individuals inhabiting the same household (shortAddress), being aware of the

fact that this criterion might contain incorrect relationships. As some accounts might be iden-
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tified through more than one of these criteria, potentialShillBidAccounts and shillBidAccounts

count the number of accounts that fulfill at least one criterion.

This approach does not have the capacity to identify relationships between individuals who

have different last names or who do not live at the same address. In particular, I cannot assign

two accounts to one specific individual if the person moved and opened up a new account

afterwards.

Table 6 implies that on ricardo.ch 54% of all accounts belong to individuals who own one

single account. Most individuals with multiple accounts are identified according to their phone

number, whereas half of all users specified their mobile phone number as the phone number

by which they can be contacted. Owning multiple accounts can be interpreted as indicating

fraudulent dealings. However, there are other innocent reasons for having multiple accounts,

as when individuals simply forget their log in data or even forget that they already possess an

account.

[Table 6 here]

A shill bidder cannot be identified simply by the number of accounts he owns, but instead

by whether or not he uses more than one account in a specific auction. The data set contains

very few individuals who used more than one shill bidder account in order to bid for a specific

article. This result validates the focus on shill bids where an individual participates in his own

auction with one shill bidder account. Table 7 shows the number of identified shill bid accounts

as well as the number of individuals owning them.

[Table 7 here]

The 3,795 shillBidAccounts on ricardo.ch placed shill bids in 5,799 auctions (0.34% of the

total). On ricardo.gr, the share of auctions in which a shill bid occurred is 0.24% on the total.

However, this share results from only two identified shill bids and the low number of sold

articles. For this reason, the following shill bid analysis addresses solely the shill bidding

behavior on ricardo.ch.
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(b) Categorizing Identified Shill Bids

The literature generally describes four different types of shill bidding, namely: Reserve-Price

Shilling; Competitive Shilling; Buy-Back Shilling; and Discover-and-Stop Shilling. The aim

of this subsection is to determine which shilling strategy most commonly occurs on ricardo.ch.

Shill bids are, as in the previous subsection, identified either through the phoneNumber, the

fullAddress or the shortAddress. Rather than categorizing the account, I regard and categorize

each shill bid or each shill bid sequence, respectively. This approach allows for individuals who

use different shill bidding strategies.

The Discover-and-Stop Shilling strategy described by Engelberg and Williams (2009) cannot

be applied on ricardo due to differences in ricardo’s and eBay’s proxy bidding system. However,

I assign bids as if Discover-and-Stop Shilling would be possible on ricardo in order to examine

whether the behavior of some shill bidders nonetheless meets the Discover-and-Stop Shilling

criterion.

The Competitive Shilling strategy as well as the Discover-and-Stop Shilling strategy typically

need more than one bid. I name these bids ‘Auxiliary Shill Bids’. As the value of maxBid can

be publicly observed on ricardo, a shill bidder can simply bid the same maximum price in order

to raise the current sales price. I call this strategy ‘Insider Shilling’. In order to increase the

number of bids that can be assigned to a type, I define two additional types which allow for a

more tolerant interpretation of the Discover-and-Stop and Competitive Shilling strategy. The

Conservative Discover-and-Stop Shilling strategy considers that the expected lost profits from

overbidding the highest bidder increase along with higher prices. This risk causes the shill

bidder to stop discovering the highest price even though the hidden maximum price is still more

than one increment over the currently highest bid. Another interpretation would be, that the

shill bidder is not aware of the Discover-and-Stop Shilling strategy and simply tries to raise

the price while trying to avoid becoming the highest bidder. Conservative Discover-and-Stop

differs from Discover-and-Stop by allowing the bidder to underbid the maximum bid by up to

10 increments. The Aggressive Competitive Shilling strategy allows a shill bidder to overbid the

current maximum bid by up to 10 increments. This strategy reduces the shill bidder’s number

of bids which he has to enter on a specific article. These time savings might offset the higher
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risk of buying the article in the end, especially if the competing bidder does not use the proxy

bidding system. If a shill bid does not satisfy any of these eight criteria, then this bid is assigned

to the type ‘Others’.

I assign shill bids according to the flowchart shown in Figure 1, whose decisions are based

on the following criteria:

is an Auxiliary Shill Bid: An Auxiliary Shill Bids is identified: (1) if the shill bid is followed

by another shill bid within 10 minutes; and (2) if one proxy bid occurred

between these two shill bids.

follows an Auxiliary Shill Bid: This shill follows an Auxiliary Shill Bid, but is not labeled as an

Auxiliary Shill Bid itself.

is auction’s first bid: This bid is the first bid of the auction.

relative bid time: Bid time relative to the auction’s duration.

is winning bid: This bid is the winning bid.

inc_min: The bid’s increment compared to the minimal bid required.

inc_max: The bid’s increment compared to the current maxBid.

[Figure 1 here]

Table 8 shows that the used criteria assign 6,563 of 8,789 shill bids to a specific strategy.

Around two fifths (39%) of the shill bids are identified as (Aggressive) Competitive Shill bids

and about one fifth (22%) of the shill bids follow the (Conservative) Discover-and-Stop Shilling

strategy. Insider Shilling was observed 16 time and even these occurrences might meet the

criteria by chance. Therefore, the information leakage about the current maximum bid seems

to be unknown to the identified shill bidders. Around one quarter (25.3%) of the identified shill

bids do not match one strategy’s criterion and are categorized as Others. This value would have

been considerably higher without the more tolerant strategies Conservative Discover-and-Stop

and Aggressive Competitive.

[Table 8 here]
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Even though Discover-and-Stop Shilling is not possible on ricardo, about one fifth of the shill

bids are classified as (Conservative) Discover-and-Stop Shills. Table 8 shows that (Aggressive)

Competitive Shilling occurs most often. However, the facts that other shill bidding strategies are

also important and a large share of shill bids cannot be categorized hinders reliable identification

of the shill bidders based on their behavior.

(c) Ricardo’s Attempt to Prohibit Shill Bidding

Shill bidding violates ricardo’s terms and conditions. Shill bidders, as well as individuals who

place bids for reasons other than winning the auction, get cautioned for their first offense. For

a second offense, they are barred from the platform. The numerous attempts to identify shill

bidders based on public information indicates that the auction house’s effort to fight shill bidders

is challenged by these authors. Previous studies estimate that the share of auctions influenced

by shill bidder ranges between 1% and 10 % (Ockenfels and Roth, 2006). Through identity

details, I prove that shill bids are placed in at least 0.3% of all auctions on ricardo.ch. I am not

able to certainly identify shill bidders who use third-party accounts and, therefore, I do not try

to estimate their influence.

Table 9 shows that in my observation period, shill bids were placed by 1,382 different bid-

ders. In total, 55% of these accounts shilled in one single auction. Either they were cautioned

and abstained from further shill bids or the observation period did not capture further shills.

However, more important than this percentage, are the remaining 45%. According to ricardo’s

terms and conditions, these bidders as well as the corresponding sellers should have been barred

from further auction participation. Only 10% of the buyers’ accounts who placed shill bids were

either suspended or closed at the end of April 2014. Whether these accounts were barred as a

result of their shill bidding behavior or owing other offenses is unknown to me. Accounts from

other buyers who themselves influence over 80 auctions were not barred.

[Table 9 here]

Identifying shill bids through personal details was the easiest case, as this could be automa-

tized and, therefore, would not entail much effort from the auction house. If the auction house
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does not even make an serious effort to fight the shill bidders who are clearly identifiable, then

I doubt that the auction house tries to prevent shill bidding placed by third-party accounts.

(d) Shill-Bidder Identification Algorithms

In this subsection, I adopt two algorithms, one suggested by Trevathan and Read (2005) and

the other by Engelberg and Williams (2009), and I check whether their suggested methods can

reliably identify the proven shill bidder accounts in my data set.

(d).1 Algorithm suggested by Trevathan and Read (2005)

Trevathan and Read (2005) identify shill bidders based on the weighted average of six shilling

variables, namely:

α: The participation rate of the bidder in auctions provided by a particular seller.

β: The bidder’s average bid as a proportion of all the auctions he participated in.

γ: The share of auctions the bidder won (normalized value).

δ: The bidder’s average inter-bid time (normalized value).

ε: The bidder’s average inter-bid increment (normalized value).

ζ: The bidder’s average commencing time (normalized value).

The bidders’ behavior is summarized in a shill score: SS = w1α+w2β+w3γ+w4δ+w5ε+w6ζ

w1+w2+w3+w4+w5+w6
×10. All

shilling variables’ values range between 0 and 1. A higher value implies a higher probability

that this bidder is shilling. Decisive for the calculation of β, δ and ε are the entered maximum

bids and not the bids placed by the proxy bidding system. If a bidder won the auction, his

α, β, δ, ε and ζ values for this auction are set to zero. Further details on the shilling values’

calculation and their associated weights are provided in Trevathan and Read (2005).

Trevathan and Read (2007) further increase the algorithm’s accuracy by adding a graph theory

approach in order to detect shills when a seller uses multiple shill bidders in a particular auction.

However, such a behavior has rarely been observed on ricardo.ch.

I check their method on a subset for which the algorithm should perform best. This subset

includes only auctions from shill bidding sellers. I further exclude 16 sellers who used more
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than one shill bidder accounts in a specific auction and another 78 sellers who used more than

one shill bidder over all auctions. Therefore, if a bidder is not marked as shill bidder, then this

bidder is almost certainly not a shill bidder. Finally, the analyzed subset contains 1,285 sellers

who sold 35,892 articles. 58,164 pairs of sellers and buyers are rated.

For each pair of sellers and buyers, I calculate: the shill score; the absolute shill score ranking

of a bidder compared to the other bidders who bid on articles of this seller; and, the relative shill

score ranking of a bidder compared to the other bidders who bid on articles of this seller. Figure

2 shows, on the left-hand side, the score’s or ranking’s distribution for shill bidders as well as

honest bidders. The Student’s t-test as well as the Kolmogorov-Smirnov-test are significant to

the 1 percent level and therefore imply that the types’ score distributions differ. The right-hand

side of the Figure 2 shows the algorithm’s false-positive rate and false-negative rate for different

threshold values.

[Figure 2 here]

Even though the shill score and the ranking provide an indication of whether the bidder’s

behavior is suspicious, the type II error prevents a reliable identification of the proven shill

bidders in this subset. For example: If bidders whose absolute shill score ranking equals 1

are incriminated as shill bidders, then 215 (15.1%) of the actual shill bidders will be correctly

incriminated, while 1,040 (1.8%) of the honest bidders will be falsely incriminated. The type II

error would become even higher if the auctions of honest sellers were included.

(d).2 Algorithm suggested by Engelberg and Williams (2009)

Engelberg and Williams (2009) identify shill bidders by using their newly identified Discover-

and-Stop strategy as a proxy for shill bidding. They estimate a probit regression model that

is based on six publically observable variables in order to identify bidders who follow the

Discover-and-Stop strategy. These shilling variables are:

BidderCount: The number of bidders in an auction.

ClosingPrice: The sales price at which the auction ended.

BRating: The user rating as a proxy for experience.
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NumAuctions: The number of auctions provided by a particular seller in which the bidder

participated.

FracBid: The participation rate of the bidder in auctions provided by a particular seller.

FracLose: The share of auctions the bidder lost.

In order to separate the calculation of NumAuctions, FracBid and FracLose from the Discover-

and-Stop identification, Engelberg and Williams (2009) split their sample into two distinct time

periods. Engelberg and Williams (2009) considered only Event Ticket auctions, because they

expected heterogeneous private values and considerable bid amount dispersion in this category.

I am able to use my whole observation period to calculate the variable values, because shill

bidders are identified according to their personal details and not according to their behavior.

Table 10 shows the probit regressions’ output based on several subsets of my ricardo.ch data

set.

[Table 10 here]

Column (4) refers most closely to the subsets used by Engelberg and Williams (2009) which

are shown in Column (5) and Column (6). For this subset, the algorithm is able to reliably

identify shill bidders. However, the coefficients of the regression output differ with regard

to their value and significance. The coefficient values for BidderCount and FracBid are not

significant for the ricardo sample, but ClosingPrice and FracLose are. The positive coefficient

value for ClosingPrice might imply that shill bidding is not anticipated by the other bidders and

has a price-pushing effect or that shill bids occur more often on valuable Event Tickets.

The coefficient values in Column (3) refer to a subset which includes all identified shill bids

and not only Discover-and-Stop Shills. The regression value of the ClosingPrice is significantly

negative. However, the OLS regression which I ran as a robustness check found no significance

for the ClosingPrice. A higher number of involved bidders in an auction reduces the possibility

that a pair of sellers and buyers is shilling. Therefore, the negative influence of BidderCount

can be reasoned by the fact that a higher number of bidders increases competition and leads to

a more aggressive bidding behavior. In such an environment, shill bids are not as profitable as

they are in auctions with only a few bidders.
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The subsets used for the regression results in Column (1) and Column (2) contain auctions

from all categories. In contrast to Column (1), Column (2) is based on auctions which were

solely offered by shilling sellers.

The regressions’ coefficient values differ with regard to their significance as well as whether

they increase or decrease the bidder’s probability of being a shill bidder. In addition, the type

II error incriminates more honest bidders of shilling than actual shill bidders are caught. Figure

3 shows the distribution of the estimated probability that a bidder shills as well as the type I

and type II error of the bidder’s identification. Only the carefully selected subset used for the

regression in Column (4) provides reliable evidence of shill bidders.

[Figure 3 here]

The differences in these regression outputs might be explained by the fact that the Discover-

and-Stop Shilling strategy cannot be used on ricardo and, therefore, these shill bidders do solely

behave as if this strategy were available.

IV ANALYZING BIDDERS’ BEHAVIOR

This section compares selected characteristics of the bidders’ behavior across eBay and the

four platforms provided by the ricardo Group. The comparative figures for 11,495 USA-based

auctions on eBay originate from Hayne et al. (2003). This transnational comparison in Table

11 aims to assess whether or not the previous results on ricardo.ch can be applied to other

platforms. In this section, I use only data from auctions with at least two bidders. On the one

hand, these auctions are more interesting as they allow observations, such as multiple bids per

bidder in an auction. On the other hand, since Hayne et al. (2003) calculated his values for

auctions with more than one bidders I therefore adopt this restriction.

Only one tenth of all auctions on ricardo.gr received bids from more than one bidder. In

contrast to this, on ricardo.ch, qxl.dk and qxl.no one half of all auctions had more than one

bidder. The highest share of auctions with multiple bidders, around two thirds, has eBay. Table

11 shows that each individual (unique bidders) recorded in ricardo’s data placed around 10

bids on average, whereas only a few individuals in the data provided by Hayne et al. (2003)

placed bids in more than one auction. The total number of bidders sums up the number of
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unique bidders in an auction over all auctions. The average bidders’ experience is very different

across the platforms. The lowest value is reported for ricardo.gr. The ratings on ricardo.gr

most likely resulted from fixed price offers or auctions with only one bidder. Therefore, these

bidders’ experience in competitive auctions tends to be considerably smaller. The mean number

of bids and of unique bidders is almost identical for all platforms. My data set contains the

information about the winning bidder’s maximum bid that he entered in the proxy bidding

system. Therefore, all bids, or respectively bidders, can be classified for ricardo. In addition,

Table 11 shows that the winner’s mean entered proxy bid is between 20% and 50% higher than

the mean sales price.

[Table 11 here]

Table 11 shows that the five platforms are almost identical regarding the frequency clas-

sification whether a bid is a single or multi-bid and whether bidders tend to place single or

multiple bids. However, on qxl.dk and qxl.no, single and multiple bidders are equally experi-

enced, whereas on the other platform single bidders exhibit a 50% higher experience rating than

multiple bidders.

Ricardo as well as eBay recommend proxy bidding to the bidders (entering their article’s val-

uation), as this behavior is the weakly dominant strategy in a second-price auction. Incremental

bidding is often associated with inexperienced bidders who behave as if the articles are auc-

tioned in a first-price auction. This argument could explain the large difference in the bidders’

behavior on ricardo.gr compared to the other platforms. The share of bids classified as proxy is

similar, ranging from 60% to 75%, on ricardo.ch, qxl.dk, qxl.no and eBay. The share of bidders

who placed both proxy and incremental bids is higher on ricardo, at the expense of bidders who

only placed proxy bids. The auction designs of ricardo and eBay differ in their ending rules (see

Section II) which might explain this behavioral difference. If bidders place proxy bids which

are lower than their valuation (or if they adjust their valuation over time), then the time expan-

sion rule on ricardo might tempt proxy bidders to react to other bidders’ late bids. In contrast to

this, eBay’s hard close ending rule favors sniping which does not allow for further (incremental)

bids and results in the higher success rate of proxy bids on eBay. Finally, the data set does not
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support the supposition that incremental bidders are inexperienced because these bidders have

the highest average experience rating compared with proxy bidders and bidders who place both,

proxy and incremental bids.

V CONCLUSION

In contrast to the existing literature, I was able to exploit an information leakage in order to

record a data set that contains personal details along with bidding histories. These personal

details allowed me to correctly assign multiple user accounts to individuals. Moreover, the

data set contains the highest bidders’ maximum bids which were entered into the proxy bidding

system. This information is necessary in order to fully analyze the behavior of the two highest

bidders.

I have provided evidence that 0.3% of all auctions on ricardo.ch were influenced by obvious

shill bids. In these auctions, either the phone number or the address (including the user’s last

name) were identical for the seller and at least one bidder. I detected neither shill bidders who

use different phone numbers and addresses for their accounts, nor persons who use third-party

accounts to place bids. Therefore, more cautious shill bidders remained unidentified. However,

this is the first study that does not need to infer shill bidders from a specific kind of behavior.

I assigned the proven shill bids to shill-bidding types which have been characterized in previ-

ous studies. Competitive Shilling, where the seller continuously outbids the highest bidder up to

a certain amount, occurred most often. However, around one quarter of the identified shill bids

did not match any type’s criterion. This share would have been considerably higher without the

more tolerant strategies Conservative Discover-and-Stop and Aggressive Competitive.

I adopted two methods which aim to identify shill bidders based on public information in

order to check whether the proven shill bidders can be reliably identified according to the sug-

gested algorithms. Both algorithms, one suggested by Trevathan and Read (2005) and the other

by Engelberg and Williams (2009), assign actual shill bidders a higher probability of being a

shill bidder on average. Using a subsample from my data that corresponds to the criteria of the

data set used by Engelberg and Williams (2009), I am able to show that their algorithm reliably

identifies shill bidders based on public information. Notwithstanding this case, both algorithms
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incriminate a greater number of truthful bidders than actual shill bidders are identified. Al-

though these approaches may indicate suspicious accounts, their type II errors are too high. If

shill bidding is perceived as a severe enough in-auction fraud, then this data set might be used

as a training data set for the purpose of extending these detection algorithms. However, the

auction house is still in an optimal position to prohibit obvious shill bids, and, thereby, enforce

its terms and conditions.

The transnational comparison of bidder’s behavior shows that bidding behavior is almost the

same over all platforms provided by the ricardo Group and eBay (USA). Therefore, the results

of this paper should be generally applicable to other auction platforms.
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TABLE 1
SUBMITTED VARIABLES UPON A SERVER REQUEST ON USER DETAILS

ricardo. qxl.
Variable Name Description ch gr dk no
userNr unique user ID x x x x
nickName user nickname x x x x
* firstName user first name x x
* lastName user last name x x
* street user address: street x x
* streetNr user address: street number x x
* compStreet user address: street complementary x x
* zip user address: ZIP code x x
* city user address: city x x
* country user address: country x x
* phoneNr user (mobile) phone number x x
* company company’s name x x
memberSince registration date x x x x
rating positive ratings minus negative ratings received x x x x
sharePosRating share of positive ratings received x x x x
boughtItems total number of items bought x x x x
soldItems total number of items sold x x x x
pos_2 positive ratings received during the last 2 months x x x x
pos_6 positive ratings received during the last 6 months x x x x
pos_12 positive ratings received during the last 12 months x x x x
pos_all overall positive ratings received x x x x
pos_diffUser pos_all received from heterogeneous users x x x x
neu_2 neutral ratings received during the last 2 months x x x x
neu_6 neutral ratings received during the last 6 months x x x x
neu_12 neutral ratings received during the last 12 months x x x x
neu_all overall neutral ratings received x x x x
neu_diffUser neu_all received from heterogeneous users x x x x
neg_2 negative ratings received during the last 2 months x x x x
neg_6 negative ratings received during the last 6 months x x x x
neg_12 negative ratings received during the last 12 months x x x x
neg_all overall negative ratings received x x x x
neg_diffUser neg_all received from heterogeneous users x x x x
* buyerStatus values: 0-4 (interpretation unknown) x x x x
* hasGlasses values: TRUE and FALSE (interpretation unknown) x x x x
* isCertified values: TRUE and FALSE (interpretation unknown) x x x x
* memberClass values: 0-4 (interpretation unknown) x x x x
* sellerStatus values: 0-4 (interpretation unknown) x x x x
* sellerType values: 0-4 (interpretation unknown) x x x x
* stats values: 0-640 (interpretation unknown) x x x x
* userRating rating the user gave x x x x
suspended account has been blocked or suspended x x
suspendedDate date when the account has been blocked or suspended x x

Notes
This table lists and describes the variables which were recorded for each account. At this time, un-
fortunately, the interpretation of seven variables could not be revealed. The variables’ values were
submitted and recorded for the platforms marked with an ‘x’.
* indicates non-public information.
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TABLE 2
SUBMITTED VARIABLES UPON A

SERVER REQUEST ON AUCTION DETAILS

Variable Name Description
articleID referred article ID
requestDate request date
startPrice auction’s starting price
fixPrice auction’s fixed-price
sellPrice final sales price
* maxBidPrice the winner’s maximum bid entered
bidIncrement minimal bid increment
it_highestBidder winner’s nickname
highest_bidder_id winner’s user ID
endDateLong auction’s end date
* startDateLong auction’s start date
timeLeftLong time left until the auction ends
seller_id seller’s user ID
it_sellerNick seller’s nickname
it_condition article’s condition
it_availability number of items available
it_pageViews number of page requests
it_delivery_link delivery expenses
it_ArticleDescription article’s description

Notes
This table lists and describes the variables which were recorded
for each auction. The variables’ values were submitted and
recorded for ricardo.ch, ricardo.gr, qxl.dk and qxl.no.
* indicates non-public information.
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TABLE 3
SUBMITTED VARIABLES UPON A

SERVER REQUEST ON THE AUCTION HISTORY

Variable Name Description
articleID referred article ID
userNr unique user ID
nickName user nickname
BidPrice bid
* MaxBidPrice maximum bid
BidDate bid’s date
BidStatus values: 0,1,4,8
BiddedQuantity number of items desired

Notes
This table lists and describes the variables which
were recorded for each auction. The vari-
ables’ values were submitted and recorded for
ricardo.ch, ricardo.gr, qxl.dk and qxl.no. The
userNr has not been recorded for qxl.dk and
qxl.no.
The values for the variable BidStatus mean: (0)
this bidder placed a higher bid later on; (1) win-
ning bid; (4) retrieved bid; and, (8) this bidder’s
highest bid.
* indicates non-public information.
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TABLE 4
SUBMITTED VARIABLES UPON A

SERVER REQUEST ON USER RATINGS

Variable Name Description
nickNameReceiver rating receiver’s nickname
nickNameSender rating sender’s nickname
rating rating value (positive, neutral or negative)
ratedAs was the sender a buyer or seller
ratingDate date when the rating was given
message reason for the rating
articleID referred article ID

Notes
This table lists and describes the variables which were recorded for
each rating. The variables’ values were submitted and recorded for
ricardo.ch, ricardo.gr, qxl.dk and qxl.no.
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TABLE 5
DATA SET SUMMARY

Domain (PartnerNr) ricardo.ch (2) ricardo.gr (14) qxl.dk (12) qxl.no (20)
Number of auctions 1,754,895 11,334 97,896 92,529
Number of bids 6,559,027 17,692 296,497 245,564
Number of accounts 3,054,104 516,206 17,7961 12,5331

Number of ratings 19,068,780 60,148 492,9171 521,5451

Average bids per auction 3.74 1.56 3.03 2.65
Average bidders per auction 2.39 1.30 2.08 1.89
Average page views per auction 131 44 30 27
Median page views per auction 65 20 21 16
Auctions without reserve price (%) 37.7% 59.9% 14,7% 11.3%
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TABLE 6
IDENTIFICATION OF MULTIPLE ACCOUNTS

ricardo.ch ricardo.gr
Accounts Individuals Accounts Individuals

phoneNumber 814,312 348,361 299,979 134,653
fullAddress 378,862 171,198 33,715 15,514
shortAddress 726,753 305,366 42,254 19,169
potentialShillBidAccounts 1,414,609 487,986 330,043 140,318

Notes
This table shows: the number of individuals who own multiple accounts, the number of ac-
counts these individuals own; and through which personal details variable the assignment
occurs. As some accounts might be identified through more than one of these criteria, poten-
tialShillBidAccounts counts the number of accounts that fulfill at least one criterion.
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TABLE 7
IDENTIFIED SHILL BID ACCOUNTS

ricardo.ch ricardo.gr
Accounts Individuals Accounts Individuals

identicalUser none none
phoneNumber 2,452 1,178 2 1
fullAddress 281 139 none
shortAddress 1,900 940 2 1
shillBidAccounts 3,795 1,382 4 2

Notes
This table shows: the number of individuals who are proven shill bidders, the
number of accounts these individuals used for their shills (seller and buyer ac-
counts); and through which personal details variable the they are identified. As
some accounts might be identified through more than one of these criteria, shill-
BidAccounts counts the number of accounts that fulfill at least one criterion.

32



TABLE 8
IDENTIFIED STRATEGY BEHIND SHILL BIDS

ricardo.ch
Reserve-Price 507
Buy-Back 619
Insider 16
Competitive 1,978
Aggressive Competitive 1,429
Discover-and-Stop 870
Conservative Discover-and-Stop 1,054
Auxiliary Bids 90
Others 2,226

Total 8,789

Notes
This table shows the categorization of the identified
shill bids. Discover-and-Stop reports bids which meet
this strategy’s criteria even though Discover-and-Stop
Shilling is not possible on ricardo.
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TABLE 9
INFLUENCE OF SINGLE SHILL BIDDERS

influenced auctions number of bidders thereof blocked thereof suspended
1 760 48 35
2 251 14 4

3-20 347 32 8
21-40 15 3 0
41-60 4 0 0
61-80 2 0 0

over 80 3 1 0

Total 1,382 98 47

Notes
This table shows how many auctions a single bidder has influenced through a shill bid account.
On April 22, 2014, about 10% of these shill bid accounts were blocked or suspended.
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TABLE 11
TRANSNATIONAL COMPARISON OF BIDDERS’ BEHAVIOR IN AUCTIONS

ricardo.ch ricardo.gr qxl.dk qxl.no eBay1 (USA)
Data Summary

number of auctions, 828,847 1,189 43,870 37,842 11,495
total number of bids 5,632,829 7,552 242,471 190,877 77,926
total number of uniques bidders 377,131 360 12,484 10,092 40,754
total number of bidders 3,258,257 4,539 149,565 119,998 45,797
average experience rating 754 71 2,491 2,283 112
mean number of bids 6.80 6.35 5.53 5.04 6.78
mean number of unique bidders 3.93 3.81 3.41 3.17 3.98
mean starting price 40.89 29.81 40.95 96.51 19.36
mean winning bid amount 106.66 53.94 125.25 252.09 63.10
winner’s mean entered proxy bid 158.77 63.16 153.00 323.00 NA

Bids Classified by Frequency
single bid (%) 37.21 39.66 39.69 40.87 38.63
multi-bid (%) 62.79 60.34 60.31 59.13 61.37

Auction Success of Bidders Classified by Frequency
single bid bidders (%) 64.33 65.98 64.34 65.00 65.72

auctions won (%) 56.67 67.75 54.62 57.67 57.93
success rate (%) 61.16 70.71 60.04 63.17 NA
average experience rating 947 80 2,593 2,815 155

multi-bid bidders (%) 35.67 34.02 35.66 35.00 34.28
auctions won (%) 43.33 32.25 45.38 42.33 42.07
success rate (%) 66.57 41.44 67.86 65.56 NA
average experience rating 640 64 2,568 2,048 100

Bids Classified by Bid Strategy
proxy bids (%) 73.55 30.77 61.72 62.27 75.01
incremental bids (%) 26.45 69.23 38.28 37.73 20.06
unclassifiable bids (%) 0 0 0 0 4.93

Auction Success of Bidders Classified by Bid Strategy
only proxy bidders (%) 53.82 12.40 39.42 40.12 73.14

auctions won (%) 59.35 14.45 54.81 60.49 72.10
success rate (%) 78.92 30.79 73.66 76.30 81.23
average experience rating 658 44 2,116 2,202 145

only incremental bidders (%) 16.40 32.49 22.31 21.82 13.58
auctions won (%) 15.04 52.41 15.08 11.85 5.57
success rate (%) 20.82 55.60 20.06 16.52 12.61
average experience rating 1,112 107 3,004 3,315 133

proxy and incremental bidders (%) 29.20 54.82 38.26 38.06 10.05
auctions won (%) 21.99 2.61 30.11 27.65 9.46
success rate (%) 47.76 42.24 54.86 52.42 29.35
average experience rating 744 58 2,894 2,118 78

unclassifiable bidders (%) 0 0 0 0 3.23

Notes
This table shows a transnational comparison of bidder’s behavior in auctions with more than one bidder.
1 The comparative figures for 11,495 USA-based auctions on eBay originate from Hayne et al. (2003).
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FIGURE 1
CATEGORIZING IDENTIFIED SHILL BIDS

Identified Shill Bids
is an Auxiliary

Shill Bid
Auxiliary Shill Bids

follows an
Auxiliary
Shill Bid

is auction’s
first bid

relative
bid time

Reserve-Price

is winning bid
inc_min ≥ 1
and winninginc_max = 0

Buy-Back

inc_max

Insider

Conservative Discover-and-Stop

Discover-and-Stop

Competitive

Aggressive Competitive

Others

8,789

yes
90

no 8,699

no
8,615

yes
84

yes
673

no 7,942 >0.7 166

<0.7 507

yes
104

no
62

no
7,427

yes 515

no
7,411

yes 16

[-10,-1)
1,054

[-1,0]
870

(0,1]
1,978

(1,10]
1,429

else
2,164

Notes
This figure shows how I categorize identified shill bidders into different shill bidding types. The bid’s increment
compared to the lowest possible bid is labeled as inc_min. The bid’s increment compared to the current maxBid is
labeled as inc_max. The italic numbers express how many bids feature a specific characteristic.

38



FIGURE 2
PERFORMANCE OF THE TREVATHAN AND READ (2005) IDENTIFICATION ALGORITHM

(A)
Shill Score: Distribution

(B)
Shill Score: Identification Errors

(C)
Absolute Shill Ranking: Distribution

(D)
Absolute Shill Ranking: Identification Errors

(E)
Relative Shill Ranking: Distribution

(F)
Relative Shill Ranking: Identification Errors

Notes
The histograms on the left-hand side show the score’s or, respectively, the ranking’s distribution for shill bidders
and honest bidders. The figures on the right-hand side show the type I and type II error of the bidder’s identification
for different threshold values.
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FIGURE 3
PERFORMANCE OF THE ENGELBERG AND WILLIAMS (2009) IDENTIFICATION

ALGORITHM

(A)
Distribution: Table 10, Column (2)

(B)
Identification Errors: Table 10, Column (2)

(C)
Distribution: Table 10, Column (3)

(D)
Identification Errors: Table 10, Column (3)

(E)
Distribution: Table 10, Column (4)

(F)
Identification Errors: Table 10, Column (4)

Notes
The histograms on the left-hand side show the distribution of the estimated probability that a bidder shills, for both;
shill bidders and honest bidders. The figures on the right-hand side show the type I and type II error of the bidder’s
identification for different threshold values.
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