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Abstract 
 
This paper investigates the role that discrimination plays in the educational marginali-
zation of foreign youth commonly observed in European countries with a long guest-
worker tradition. Economic theory offers two basic explanations for discrimination of 
this form: taste-based discrimination arising from personal prejudices and statistical 
discrimination stemming from ability uncertainty. Which theory applies in reality has 
important policy implications. If taste-based discrimination is the source of ethnic se-
gregation, then measures to eliminate prejudice are required to promote integration; 
whereas if statistical discrimination is the cause, then better measures of ability are 
needed. Using Switzerland as a case study, we provide evidence that statistical dis-
crimination is the source of ethnic segregation in schooling. Further we find that 
teachers generally do not grade foreign youth differently than native students. This 
result runs counter to previous research which suggests that disadvantaged pupils are 
graded more leniently. 
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1. Introduction 

 

It is a well-documented fact (cf. OECD, 2007a) that a disproportionate share of young 

foreigners in Europe are concentrated in low-level academic paths of study offering 

little opportunity for educational and economic advancement. This form of ethnic seg-

regation appears to be particularly pronounced in European countries with a long tra-

dition of recruiting low-skilled foreign guest workers such as Germany or Switzer-

land.  

 

A variety of explanations have appeared in the literature to explain the educational 

marginalization of foreign youth. One group of accounts emphasizes individual back-

ground characteristics. FASE (1994), for example, stresses parents’ socio-economic 

status and level of education, which tend to be lower among immigrant families. Oth-

er authors (e.g., FULGINI, 1997) focus on cultural factors such as immigrants’ general 

attitudes towards education or motivation problems, which can hinder educational in-

tegration as well. Still others (e.g., CHISWICK/MILLER, 2003) emphasize the role of 

language skills, arguing that the lack of proficiency in the native language of the host 

country poses a hurdle to educational assimilation.  

 

Another set of explanations emphasizes the importance of the host country’s educa-

tion system. On the basis of this work, it appears that sorting students into different 

levels of schooling at a young age based on previous academic performance, also 

known as “early tracking”, exacerbates the initial educational inequality between for-

eign and native youth [cf. HANUSHEK/WÖSSMANN (2006), ENTORF/LAUK (2007)]. In 

addition, it raises the probability of foreign youth replicating the low educational at-

tainment of their parents (cf. BAUER/RIPHAHN, 2005).  

 

Recently, the OECD (2007a, b) has listed discrimination as an additional cause of the 

lower educational attainment of foreign youth. They base their assessment in part on 
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findings from Switzerland [cf. AMOS ET AL. (2003) and HAEBERLIN ET AL. (2004)] 

which show that a youth’s nationality lowers his or her chances of entering a higher 

level of schooling even after controlling for differences in PISA (Programme for In-

ternational Student Achievement) scores, grade point average, language skills, and 

socio-economic background. The OECD (2007b) also points to work by LANFRANCHI 

(2005), who finds that pupils with foreign-sounding names are more likely to be as-

signed to remedial classes than otherwise identical youth.  

 

Taken at face value, these results suggest that foreign youth are not treated equitably 

in the education system. This need not be the case, however. Whether foreign youth 

are treated impartially depends on the cause of discrimination. Economic literature 

offers two basic explanations.1 The one approach, developed by BECKER (1957) and 

known as taste-based discrimination, posits that gatekeepers in the education system 

hold prejudices against foreign youth, even if they know they are equally able. Ac-

cording to this theory, it is bigoted gatekeepers that are partly to blame for the low 

educational attainment of foreign youth. The other approach, known as statistical dis-

crimination, assumes instead that gatekeepers harbor no animus towards foreigners 

but cannot predict their ability perfectly given the limited information at their dis-

posal. In this case, gatekeepers in assessing a candidate’s ability assign some weight 

to personal attributes such as nationality that are known to correlate with ability, in-

stead of basing their judgments solely on the individual's grades. In contrast to taste-

based discrimination, statistical discrimination arises from imperfect information. 

 

Statistical discrimination is widespread in the business world where it is more com-

monly termed profiling. Insurance companies employ it regularly to assess the risk of 

insurance takers. In the United States, for example, car insurance companies often 

charge students with high grade point averages lower premiums because statistics 

                                                 
1 See CAIN (1986) for a broader overview of the various theoretical approaches. 
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have shown that good students cause fewer accidents on average. Employers, too, of-

ten make use of profiling when assessing a candidate’s employment potential. For ex-

ample, Google uses over 300 correlates, even including whether a jobseeker owns a 

pet, to estimate a candidate’s unknown capabilities -- again because correlation analy-

sis has shown that successful employees typically carry certain traits.2 Basing place-

ment decisions on seemingly unrelated characteristics may seem arbitrary, but it is 

fairer and more meritocratic than if one were to ignore such information altogether 

since including it yields more accurate assessments of an individual’s true abilities 

than discarding it. Hence, the finding that factors other than grades affect the place-

ment of students does not necessarily mean that foreign youth are treated inequitably. 

In fact, if profiling were perfect it would eliminate placement injustices altogether. 

 

Determining the source of ethnic discrimination in education is an important policy 

issue as different causes demand different remedies. If the low educational attainment 

of foreign youth results from prejudice then measures are needed to eliminate bias. If, 

on the other hand, ethnic segregation arises from statistical discrimination then better 

measures of ability are required so that school authorities can make more informed 

placement decisions. 

 

The following paper explores the causes of educational marginalization of foreign 

youth in Switzerland. There are a number reasons for choosing Switzerland as the fo-

cus of our study. For one, educational segregation by ethnicity is particularly pro-

nounced in Switzerland. Foreign youth are roughly twice as likely to be in a low-level 

course of study than their Swiss compatriots.3 For another, a large share of the foreign 

workforce is unskilled, which -- as mentioned above-- tends to serve as a barrier to 

educational integration. Furthermore, sorting pupils into different level schools occurs 

at an early age, viz., after 4 to 6 years of primary school, which -- as previously noted 

                                                 
2 See HANSELL (2007). 
3 Statistisches Jahrbuch der Schweiz (Statistical Yearbook of Switzerland), various issues. 
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-- further exacerbates segregation. In addition, the Swiss education system is quite 

opaque. Essentially it consists of 26 separate and heterogeneous school systems, one 

for each canton. Despite this heterogeneity, Switzerland lacks a uniform measure of 

scholastic ability such as standardized test scores. As a result, school authorities must 

depend on school grades in making their placement decisions. Finally, as noted by the 

OECD (2007b), the under-achievement of foreign students on the PISA test is more 

pronounced in Switzerland than in most other OECD countries. Taken together, all of 

these factors suggests that foreign youth are at a particular disadvantage in Switzer-

land. 

 

Our investigation of the sources of ethnic segregation proceeds in three steps. To start, 

we show that school grades, which according to HAEBERLIN ET AL. (2004) are the 

principal criterion for school placement in Switzerland, are a poor predictor of scho-

lastic ability as measured by PISA test scores. Then we demonstrate that the predic-

tive ability of grades improves significantly when the nationality of a student is also 

taken into account. Together, these results imply that discriminating according to eth-

nicity in school placement decisions is statistically justified on average. Finally we 

demonstrate that teachers do not as a rule discriminate against foreigners in setting 

grades, indicating that at least in this respect ethnic prejudices do not play a role in 

placement. 

 

The work in this paper relates to two current strands of literature. The one pertains to 

grade discrimination. LAVY (2004) investigates whether teachers in Israel favor a cer-

tain sex when setting grades. EMANUALSSON and FISCHBEIN (1986) along with LIN-

DAHL (2007) have performed similar work in Sweden. Lindahl considers ethnicity as 

well. All three studies use a differences-in-differences (DiD) methodology which in-

vestigates whether the difference between a pupil’s school grade and an objective 

measure of his or her academic ability varies systematically across sex or nationality. 

The results of these studies indicate that girls and the foreign-born are more gener-
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ously graded on average. The DiD approach does not lend itself to our data, however, 

as the two grades we compare -- PISA scores and marks -- are scaled differently so 

that any measured differences may simply reflect scale heterogeneity.4 Instead we 

apply the decomposition method introduced by BLINDER (1973) and OAXACA (1973) 

to measure wage discrimination. Unlike the DiD method, the BLINDER/ OAXACA ap-

proach has the advantage of not assuming that grade discrimination has a uniform im-

pact on all affected individuals. It has the disadvantage, however, of not controlling 

for unobserved heterogeneity. 

 

The other strand of literature that relates to our paper pertains to the identification of 

statistical discrimination. In general, there is no set way to test for the presence of this 

form of discrimination. It depends on the particular market setting and the available 

data. YINGER (1998) reports on approaches applied in consumer markets, LADD, H. 

(1998) on those employed in credit markets, and DARITY/MASON (1998) on those 

used in labor markets. Unlike that work, our approach does not provide a direct test of 

statistical discrimination as we lack the required data. Instead we provide evidence 

that strongly suggests the presence of statistical discrimination in school placement 

decisions. To our knowledge, ours is the first study to examine the sources of dis-

crimination in education. 

 

Our paper unfolds as follows. In the next section we present the theoretical model of 

statistical discrimination that underlies our empirical approach. Section 3 describes 

our data. Section 4 explains our empirical methodology. Section 5 presents our re-

sults. And Section 6 summarizes our findings, draws policy conclusions, and suggests 

paths for future research. 

                                                 
4 The centigrade and Fahrenheit temperature scales illustrate our point. Although both scales measure 

the temperature equally accurately, the difference in the number of degrees the two scales report 
nevertheless increases with the distance that the temperature departs from the point where the two 
scales intersect at minus 39. In our case, we compare PISA scores, ranging from 200 to 800, with 
school grades, varying from 1 to 6. 
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2. Theoretical Background 

 

Our model of statistical discrimination is based on the work of PHELPS (1972) and 

AIGNER and CAIN (1977). In line with their approach, we assume that the gatekeepers 

in the education system must base their placement decisions on an inaccurate measure 

y of a candidate’s true scholastic ability q, which we equate with a youth’s grade point 

average (GPA). We model the measurement inaccuracy of y as a linear function of 

true ability q and a measurement error u 
 

α β= + ⋅ +y q u .                      (1) 
 

Further, we assume that u and q are normally and independently distributed random 

variables. The independence assumption implies that average measurement error does 

not vary with ability. In other words, ability is measured equally poorly by grades 

whether ability be high or low. The measurement error u is taken to have mean 0 and 
variance 2σu , and the ability variable q to have mean q  and variance 2σ q . The parame-

ters α and β correct for scale differences between ability y and grades q.  

 

Based on these assumptions, y and q have the following bivariate normal distribution5

 
( ) 2 2 2 2

2    α β σ β σ σ ρ⎡ + +⎣∼ q q uq, y N q , q , , , ⎤⎦ ,            (2) 

 

where ρ is the correlation coefficient between q and y. If grades y were a perfect pre-

dictor of ability q, the correlation coefficient  ρ would equal 1, and the variance 2σu  of 

the measurement error would be 0. 

 

                                                 
5 See e.g. GREENE (2008, p. 1010). 
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Given the above assumptions, the question then arises as to the level of ability q that a 

gatekeeper should expect on average from a youth with a given GPA of y. According 

to (2) the answer is 

 
E q y a by⎡ ⎤ = +⎣ ⎦  ,                     (3) 

 

where 

 

 ( )
2 2

21   and  αρ ρρ
β β

⎡ ⎤
= − − =⎢ ⎥

⎣ ⎦
a q b .  

Equation (3) shows that the conditional expectation of ability q given a GPA of y is 

equivalent to a linear regression of ability on GPA. Furthermore, it indicates that the 

expected value depends critically on the value of ρ, i.e., on the ability of school 

grades to predict scholastic ability. If grades are a perfect predictor (ρ = 1) then no 

measurement error occurs and (3) is simply the inverse of (1), that is 

 

 1   and   a bα
β β

= − = . 

 

If, on the other hand, grades have no predictive power whatsoever (ρ = 0) then the 

expected value of q is equal to the population mean q  no matter what one’s grades 

are. 

 

Now assume that grades are an equally reliable predictor of ability for immigrants (I) 

and natives (N), implying ρN = ρI, and that the scaling parameters α and β apply 

equally to immigrants and natives. Suppose too that immigrants are less capable scho-

lastically than natives on average, i.e., <Iq qN . These assumptions, combined with 

the ones before, imply that the expected capabilities of native and immigrant youth 

with identical GPAs are equal to 

 

 8



   and   ⎡ ⎤ = + ⎡ ⎤ = +⎣ ⎦ ⎣ ⎦N N I IE q y a by E q y a by             (4) 

 

and hence that 

 

( )( )21 ρ⎡ ⎤ − ⎡ ⎤ = − = − −⎣ ⎦ ⎣ ⎦N I N I N IE q y E q y a a q q  .          (5) 

 

In other words, under these circumstances an unbiased estimate of the difference in 

abilities between a native and an immigrant with the same GPA, is equal to the differ-

ence in average abilities of natives and immigrants in the population, weighted with 

the inaccuracy (1 - ρ2) with which grades predict ability. If grades were perfect pre-

dictors (ρ = 1), equal grades would imply equal abilities and no discrimination would 

occur. If, on the other hand, no correspondence existed between grades and ability 

then the best unbiased estimate of the difference in abilities between a native and an 

immigrant with identical GPAs would be the average difference of abilities between 

natives and immigrants in the population. Seen in this way, statistical discrimination 

is a form of stereotyping in which individuals’ capabilities are judged by group aver-

ages up to a degree that depends on the inaccuracy of the capability measure y. 

 

Note in (5) that the difference between the regression constants aN and aI is simply a 

linear transformation of the difference between the mean abilities of natives and im-

migrants. Hence whether gatekeepers base their assessments of the relative abilities of 

natives and immigrants on a linear regression as in (4) or on unbiased estimates of the 

mean abilities of natives and immigrants drawn from personal experience has no ef-

fect on the results. Experienced gatekeepers and statisticians would end up making the 

same choices on average.  

 

Figure 1 illustrates the basics of our model. It views a gatekeeper’s decision-making 

process under the assumption that grades are equally accurate measures of scholastic 

ability for native and foreign youth, i.e., that ρN = ρI, and that the scale parameters ap-
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ply equally to foreigners and natives. These assumptions imply the two curves appear-

ing in Figure 1. They correspond to the equations in (4). The curves show what abili-

ties a gatekeeper should expect from natives and immigrants for given GPAs. Based 

on these curves, a gatekeeper faced with natives and immigrants with a common GPA 

of y' will expect an average ability of q'N for natives and of q'I for immigrants and 

make his or her placement decision accordingly.  

 

Figure 1: Statistical Discrimination with ρN = ρI

Ability
q

E[q N |y' ]
q' N

a N

E[q I |y']
q' I

a I

Ability Indicator yy'  

 

It is important from the background Figure 1 to note that a regression of the gate-

keepers’ placement decisions on youths’ GPA and ethnicity would find that ethnicity 

has an effect on individual placement even after controlling for grades, although 

placement decisions rest here solely on statistical regularities and not on prejudices. 

Hence, the observation that factors other than grades affect school placement is not 

necessarily a sign of inequitable treatment. 

 

Figure 1 should not be construed as implying that gatekeepers make uniform place-

ment decisions for given GPA and nationality. To the contrary, placement decisions 

will vary across gatekeepers as a result of sampling error. To see why, consider the 

following estimates of the mean abilities of native and immigrant youth 
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     and        Ni N Ni Ii I Ii
ˆ ˆq q q qε ε= + = +   

 

by a given gatekeeper i, where a caret denotes an estimate and the error terms εN and 

εI, constituting sampling error, are independent and normally distributed with ex-

pected values 0 and covariance matrix Ω. Given the sampling error, one can only say 

with a certain probability whether the gatekeeper i will judge a native student to be 

more able than a foreign student with the same GPA and thus favor the former over 

the latter. This probability is equal to 

 

( ) N I
Ni Ii

q qˆ ˆP q q
εσ

⎡ ⎤−
> = Φ ⎢

⎣ ⎦
⎥ ,                  (6) 

 

where Φ signifies the standard normal c.d.f. and σε is the standard error of the differ-

ence of the two error terms εN and εI. Equation (6) indicates that, the probability of a 

given gatekeeper favoring natives over immigrants with the same GPA depends not 

only on the mean ability differential between natives and immigrants, but also on the 

accuracy σε of gatekeepers’ estimates of this differential. If Ni Iiq̂ >> q̂  and/or the sam-

pling error varies little then the probability in (6) will approach 100%, indicating that 

most gatekeepers will make the same placement decision for given GPAs, i.e., that 

they will generally favor natives. If, on the other hand, N Iq q=  and/or the sampling 

error varies a lot then the probability in (6) will approach 50%, meaning that gate-

keepers’ placement decisions will differ greatly and that on average neither natives 

nor immigrants will be strongly favored. 

 

Observe that statistical discrimination, by stereotyping individuals for lack of better 

information, does not impose a disadvantage on all the affected. Below-average 

achievers actually profit from statistical discrimination in school placement, be they 

natives or foreigners, since they are treated as being average. Nonetheless, statistical 

discrimination will still lead to ethnic segregation. 
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The above discussion assumes that school grades measure the academic ability of na-

tives and immigrants equally well. Were this not the case, the difference in expected 

abilities given in (5) would vary by GPA (i.e., y). If, for example, school grades 

measure immigrants’ scholastic abilities less accurately (ρI < ρN) and all else is held 

equal, then according to the definition of a and b, the curves in Figure 1 will intersect. 

Moreover, the curve for foreigners will be flatter. That means that gatekeepers will 

pay less heed to grade differences among foreigners since grades reflect differences in 

ability less accurately among foreigners. Under these conditions, gatekeepers will thus 

judge foreigners with low (high) grades as being more (less) capable than natives with 

the same grade. However, as we show below, school grades are equally good meas-

ures of ability for natives and immigrants. Thus we need not pursue this matter fur-

ther. 

 

 

3. Data 

 

We apply our theoretical model to data drawn from the 2000 PISA sample for Swit-

zerland. As is well known, PISA is a standardized achievement test in reading, ma-

thematics and science, administered to 15 year olds and/or ninth graders in over 30 

OECD-member countries at three-year intervals. Our study concentrates on ninth 

graders, regardless of age, in order to compare students with equal amounts of school-

ing. 

 

Besides testing the students, PISA also collects data on the background of the tested 

pupils and on the quality of their schools. Particularly germane in this study is infor-

mation on the tested students’ GPA, their participation in class, and their nationality. 

Nationality in this study is defined principally by country of birth. Natives are indi-

viduals born in Switzerland to parents also born in Switzerland, and immigrants or 
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foreigners are persons either born abroad themselves or to a parent born outside Swit-

zerland. 

 

We use 6,492 or roughly 80 % of the original sample of 7,997 students. Observations 

were dropped due to missing values or inappropriate school levels. 

 

Table 1 presents descriptive statistics of our sample. As the figures indicate, natives 

display higher means both with regard to GPA and PISA scores. Furthermore, the fig-

ures show that immigrants are heavily concentrated in low-level schools. They also 

tend to turn in homework later, to have problems concentrating, and to be absent from 

class more. In our regression analysis, we assume that high PISA scores, turning in 

homework on time, attention in class, and high attendance all contribute to receiving 

high grades in school. 

 

 

4. Empirical Methodology 

 

Our empirical approach consists of three steps. First we subdivide the ninth-graders 

that participated in the PISA study into three groups according to their schooling level 

(advanced, intermediate or low) and regress their PISA scores respectively in reading, 

mathematics and science on their corresponding GPAs in order to determine how well 

school grades predict scholastic ability. In other words, we estimate equation (3) for 

each sub-group, defined by school level and subject, yielding nine sets of estimates. 

As previously stated, school grades are the principal criterion used by the school au-

thorities in Switzerland to place students. If school grades do a good job of reflecting 

scholastic ability, regressing PISA scores on them should yield high R2 statistics, 
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which correspond to ρ2 in Section 2. Our approach assumes that PISA scores measure 

academic ability perfectly.6

 

The second step in our approach consists of estimating the same equations and includ-

ing ethnic background as both a shift factor as well as a slope factor in order (i) to see 

whether ethnic background can aid in predicting cognitive ability and (ii) to explore 

whether the data support the assumptions (equal values for ρ2, α and β for natives and 

immigrants) upon which equation (4) rests. 

 

Finally we investigate whether teachers discriminate against foreigners in setting 

grades by regressing school grades respectively in reading, mathematics and science 

on (i) a constant, (ii) the corresponding PISA scores, (iii) other variables in the PISA 

sample that could contribute to grades, and (iv) interactions of these regressors with 

an individual’s ethnic background. We also include school dummies to control for 

school-specific differences in grading. We then test whether the regression coeffi-

cients vary by ethnicity, i.e., whether the coefficients of the interaction terms are sta-

tistically significantly different from zero. This procedure is equivalent to the decom-

position approach developed by BLINDER (1973) and OAXACA (1973) to measure 

wage discrimination. Our procedure assumes that teachers can accurately assess the 

scholastic ability of a pupil, that they base their grading at least in part on scholastic 

ability, and that the PISA scores accurately measure scholastic ability. If teachers are 

impartial in grading then the interaction terms should have no statistically significant 

effect on grades. The identifying restriction in our approach is that the error terms in 

                                                 
6 Our assumption that standardized test scores measure cognitive ability accurately has appeared in 

the literature before. For example, the test of statistical discrimination conducted by ALTONJI and 
PIERRET (2001) rests on this assumption. Moreover, a number of researchers (see the overview in 
DARITY and MASON, 1998) have shown that including standardized test scores from the Armed 
Forces Qualification Test (AFQT) in an earnings equation virtually eliminates racial differences in 
wages, implying that standardized tests can even capture unobserved differences in ability. To what 
extent PISA scores perform as well is to our knowledge unknown. But given that the purpose of PI-
SA is to measure cognitive ability accurately and that scholastic testing is an advanced science, we 
find assuming that PISA scores give an accurate appraisal of an individual’s ability to be reason-
able. 
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the PISA and GPA regression equations are independent. Otherwise an endogeneity 

problem arises. 

 

 

5. Results 

 

Tables 2 to 10 present the results from regressing PISA scores on GPA and ethnicity. 

The values of R2 in column 1 of the tables show that GPA is a poor predictor of PISA 

scores, explaining between 3 and 12 % of the variation across students depending on 

the level of schooling and subject. Predictive ability generally increases with the level 

of schooling and is higher with respect to reading and math. This implies that grades 

are less informative in low-level schools and in reading. 

 

The values of R2 in column 2 of the tables indicate that including ethnicity in the re-

gression equation increases predictive ability to between 5 and 14 %. The largest in-

creases occur among students from low-level schools where R2 increases by roughly 3 

percentage points or by as much as 75 % in relative terms. The values of R2 in column 

4 of the tables show that distinguishing among foreigners from Western Europe, 

Southern Europe, the Balkans and Turkey further improves predictive ability to be-

tween 7.8 and 14.6 %, the greatest increases of 3 percentage points again occurring 

among students from low-level schools. Including nationality roughly doubles our 

ability to predict the academic ability of students on the basis of grades. 

 

The standard errors of the coefficient estimates in column 3 of the tables generally 

suggest that ethnic background has no statistically significant effect on the slope coef-

ficient. This supports the assumptions underlying (4), i.e., that the predictive ability of 

grades and the scaling coefficient β do not vary by nationality. 
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Furthermore, the coefficient estimates show that the PISA scores of immigrants lie 

between 15 and 31 points below those of natives with the same GPA on average. 

These values correspond to an – al in equation (5). Since the correlation between PISA 

scores and school grades is so low, ethnicity -- as a proxy for the difference between 

the average scholastic abilities of foreign and native youth -- should play a large role 

in school placement according to the theory of statistical discrimination.  

 

Tables 11 to 13 address the question as to whether foreign students are graded differ-

ently than natives. We assume that high scholastic ability (as measured by the PISA 

score), completing homework on time, attention in class, and high attendance all con-

tribute to high grades. The coefficient estimates indicate that this is indeed the case, 

although only PISA scores consistently have a statistically significant effect. This 

suggests that scholastic ability is the main determinant of grades. Getting homework 

in on time seems to be somewhat less important, while attention and high attendance 

appear to be decidedly less germane. This ranking would seem to correspond to what 

one would generally expect. 

 

More importantly, the F tests presented in Tables 11 to 13 provide no evidence that 

immigrants and natives with similar ability and class participation are graded differ-

ently. We also obtain the same results (not presented here to conserve space) when we 

break down the immigrants according to their geographical affiliation, as in Tables 2 

to 10, with albeit two exceptions: Balkan pupils in intermediate-level schools with 

respect to reading and Turkish students in low-level schools in regard to mathematics. 

Yet if one considers the number of Type I errors to be expected in 36 tests (3 levels of 

schooling times 3 subjects times 4 geographical affiliations) of the null (impartial 

grading) then 2 rejections out of a possible 36 or 5.6% seem to provide scant support 

for biased grading. 
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6. Conclusions 

 

Our results indicate that school grades, upon which school placement is principally 

based in Switzerland, are a poor predictor of scholastic ability as measured by PISA 

test scores. This is particularly true at low-level schools. These results show that the 

school authorities are indeed subject to quality uncertainty when making their place-

ment decisions on the basis of marks. Secondly, our findings reveal that the predictive 

power of grades improves significantly when the nationality of a student is also taken 

into account. Hence it is statistically fairer and more meritocratic to consider a stu-

dent’s nationality when trying to assess his or her scholastic abilities on the basis of 

grades than to ignore ethnicity altogether. And finally we discover that teachers do not 

generally discriminate against foreigners in setting grades. Taken together, these re-

sults provide greater support for the statistical-discrimination explanation for the edu-

cational marginalization of foreign youth than for the taste-based theory. 

 

With regard to policy, our results call into question efforts to reduce ethnic segrega-

tion by campaigning to reduce prejudice. Our findings suggest instead that measures 

should be adopted to improve the capability of the placement authorities to assess in-

dividual scholastic ability. In the case of Switzerland, an obvious choice would be the 

introduction of standardized achievement tests nationwide. The results of such tests 

would not only increase transparency and thus support more meritocratic placement. 

They would also at long last provide an output-based measure for comparing the rela-

tive effectiveness and efficiency of the wide variety of local school systems in Swit-

zerland. 

 

Our study of course represents just a first step in the investigation of the sources of 

discrimination in school placement. Further work is needed. For one, it is necessary to 

investigate to what extent our findings hold up in other countries and to examine the 

factors underlying any observed variation in results. Unfortunately, the PISA data 
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available to us lacked the necessary detail to repeat our study for other countries. Sec-

ondly, we need to develop a test to discriminate more conclusively between the taste-

based and statistical-discrimination explanations of educational marginalization. Only 

then will we be in a position to draw more definitive conclusions. 
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Table 1: Sample Summary Statistics 

 

Mean Variance MinimumMaximum Cases Mean Variance MinimumMaximum Cases
GPA

Reading 4.92 0.60 1 6 4116 4.78 0.65 1 6 2346
Math 4.87 0.75 2 6 2293 4.72 0.83 1 6 1292
Science 5.10 0.62 2 6 1590 4.89 0.68 1 6 873

PISA score
Reading 521 84.5 197 884 4116 479 95.9 192 813 2346
Math 551 85.8 205 812 2293 505 97.6 202 816 1292
Science 518 86.2 169 830 1590 472 92.3 170 739 873

School Level
Low 0.24 0.43 0 1 1011 0.41 0.49 0 1 966
Itermediate 0.47 0.50 0 1 1950 0.37 0.48 0 1 866
Advanced 0.28 0.45 0 1 1172 0.22 0.42 0 1 527

Homework late 1.98 0.74 1 4 4079 2.05 0.81 1 4 2328
Inability to concentrate 1.75 0.95 1 4 4098 1.90 0.98 1 4 2331
Truant 1.11 0.43 1 4 4085 1.20 0.58 1 4 2322

Natives Immigrants

 
Notes: GPA (grade point average; 1 = lowest possible grade, 6 = highest possible grade), homework late (1 = never, 2 = some-
times, 3 = usually, 4 = always), inability to concentrate (1 = untrue, 2 = less true, 3 = truer, 4 = true), truant ( 1= never, 2 = 1-2 
times per fortnight, 3= 3-4 times per fortnight, 4 = 5 times or more per fortnight) 

 

 
Table 2: Least Squares Estimates of PISA Scores in Reading: Advanced-Level School-
ing 

 
             (1)              (2)             (3)             (4)

Reading GPA 0.366 *** 0.358 *** 0.336 *** 0.353 ***
(0.028) (0.027) (0.033) (0.026)

Immigrant -0.152 *** -0.456
(0.033) (0.289)

Western Europe -0.046
(0.058)

Southern Europe -0.285 ***
(0.063)

Balkans -0.247 ***
(0.078)

Turkey -0.121 *
(0.049)

Immigrant * reading GPA 0.063
(0.059)

Intercept 3.968 *** 4.057 *** 4.163 *** 4.080 ***
(0.13) (0.134) (0.159) (0.131)

R2 0.102 0.113 0.114 0.119
Adj R2 0.102 0.112 0.112 0.116
No. obs. 1692 1692 1692 1692  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in reading 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; Balkans of Serbia, Croatia, Kosovo, and Albania. 
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Table 3: Least Squares Estimates of PISA Scores in Math: Advanced-Level Schooling 

 
             (1)              (2)             (3)             (4)

Math GPA 0.321 *** 0.314 *** 0.318 *** 0.311 ***
(0.029) (0.029) (0.033) (0.028)

Immigrant -0.237 *** -0.187
(0.054) (0.309)

Western Europe -0.086
(0.087)

Southern Europe -0.303 ***
(0.1)

Balkans -0.345 ***
(0.122)

Turkey -0.290 ***
(0.073)

Immigrant * math GPA -0.011
(0.063)

Intercept 4.448 *** 4.556 *** 4.538 *** 4.574 ***
(0.138) (0.141) (0.162) (0.138)

R2 0.120 0.140 0.140 0.145
Adj R2 0.119 0.138 0.137 0.141
No. obs. 951 951 951 951  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in math and 
ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors in 
parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portugal; 
Balkans of Serbia, Croatia, Kosovo, and Albania. 

 
Table 4: Least Squares Estimates of PISA Scores in Science: Advanced-Level School-
ing 

 
             (1)              (2)             (3)             (4)

Science GPA 0.284 *** 0.276 *** 0.304 *** 0.271 ***
(0.06) (0.062) (0.074) (0.058)

Immigrant -0.203 ** 0.261
(0.088) (0.631)

Western Europe 0.042
(0.144)

Southern Europe -0.697 ***
(0.162)

Balkans -0.341 *
(0.174)

Turkey -0.062
(0.116)

Immigrant * science GPA -0.092
(0.125)

Intercept 4.295 *** 4.390 *** 4.248 *** 4.416 ***
(0.299) (0.314) (0.375) (0.297)

R2 0.055 0.070 0.071 0.105
Adj R2 0.053 0.065 0.064 0.094
No. obs. 401 401 401 401  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in science 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; Balkans of Serbia, Croatia, Kosovo, and Albania. 
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Table 5: Least Squares Estimates of PISA Scores in Reading: Intermediate-Level 
Schooling 

 
             (1)              (2)             (3)             (4)

Reading GPA 0.342 *** 0.335 *** 0.306 *** 0.331 ***
(0.024) (0.024) (0.029) (0.021)

Immigrant -0.185 *** -0.649 **
(0.027) (0.26)

Western Europe -0.053
(0.05)

Southern Europe -0.151 ***
(0.039)

Balkans -0.399 ***
(0.052)

Turkey -0.156 ***
(0.045)

Immigrant * reading GPA 0.094 *
(0.052)

Intercept 3.519 *** 3.608 *** 3.752 *** 3.626 ***
(0.106) (0.12) (0.143) (0.105)

R2 0.084 0.101 0.102 0.108
Adj R2 0.084 0.100 0.101 0.107
No. obs. 2805 2805 2805 2805  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in reading 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; Balkans of Serbia, Croatia, Kosovo, and Albania. 

 
Table 6: Least Squares Estimates of PISA Scores in Math: Intermediate-Level School-
ing 

 
             (1)              (2)             (3)             (4)

Math GPA 0.281 *** 0.266 *** 0.276 *** 0.270 ***
(0.023) (0.023) (0.028) (0.024)

Immigrant -0.245 *** -0.101
(0.039) (0.244)

Western Europe -0.105
(0.072)

Southern Europe -0.268 ***
(0.057)

Balkans -0.480 ***
(0.074)

Turkey -0.123 ***
(0.068)

Immigrant * math GPA -0.030
(0.051)

Intercept 4.102 *** 4.252 *** 4.203 *** 4.228 ***
(0.117) (0.116) (0.138) (0.117)

R2 0.083 0.107 0.108 0.117
Adj R2 0.082 0.106 0.106 0.114
No. obs. 1538 1538 1538 1538  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in math and 
ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors in 
parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portugal; 
Balkans of Serbia, Croatia, Kosovo, and Albania. 
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Table 7: Least Squares Estimates of PISA Scores in Science: Intermediate-Level 
Schooling 

 
             (1)              (2)             (3)             (4)

Science GPA 0.277 *** 0.239 *** 0.270 *** 0.234 ***
(0.037) (0.037) (0.043) (0.035)

Immigrant -0.313 *** 0.172
(0.047) (0.405)

Western Europe -0.207 **
(0.085)

Southern Europe -0.293 ***
(0.069)

Balkans -0.621 ***
(0.098)

Turkey -0.238 ***
(0.076)

Immigrant * science GPA -0.097
(0.081)

Intercept 3.759 *** 4.042 *** 3.882 *** 4.068 ***
(0.179) (0.189) (0.22) (0.18)

R2 0.047 0.080 0.081 0.089
Adj R2 0.046 0.079 0.079 0.086
No. obs. 1292 1292 1292 1292  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in science 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; Balkans of Serbia, Croatia, Kosovo, and Albania. 

 

 
Table 8: Least Squares Estimates of PISA Scores in Reading: Low-Level Schooling 

 
             (1)              (2)             (3)             (4)

Reading GPA 0.226 *** 0.197 *** 0.218 *** 0.186 ***
(0.024) (0.024) (0.033) (0.023)

Immigrant -0.278 *** -0.082
(0.033) (0.228)

Western Europe -0.041
(0.079)

Southern Europe -0.103 ***
(0.045)

Balkans -0.558 ***
(0.044)

Turkey -0.133 **
(0.063)

Immigrant * reading GPA -0.041
(0.048)

Intercept 3.168 *** 3.441 *** 3.340 *** 3.492 ***
(0.114) (0.118) (0.16) (0.115)

R2 0.044 0.077 0.077 0.119
Adj R2 0.043 0.076 0.076 0.117
No. obs. 1965 1965 1965 1965  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in reading 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; Balkans of Serbia, Croatia, Kosovo, and Albania. 
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Table 9: Least Squares Estimates of PISA Scores in Math: Low-Level Schooling 

 
             (1)              (2)             (3)             (4)

Math GPA 0.285 *** 0.266 *** 0.336 *** 0.274 ***
(0.032) (0.032) (0.046) (0.028)

Immigrant -0.303 *** 0.296
(0.046) (0.317)

Western Europe -0.083
(0.11)

Southern Europe -0.162 ***
(0.062)

Balkans -0.551 ***
(0.06)

Turkey -0.142 *
(0.084)

Immigrant * math GPA -0.125 *
(0.064)

Intercept 3.245 *** 3.480 *** 3.139 *** 3.441 ***
(0.141) (0.162) (0.232) (0.14)

R2 0.081 0.117 0.121 0.146
Adj R2 0.080 0.115 0.118 0.142
No. obs. 1096 1096 1096 1096  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in math and 
ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors in 
parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portugal; 
Balkans of Serbia, Croatia, Kosovo, and Albania. 

 

 
Table 10: Least Squares Estimates of PISA Scores in Science: Low-Level Schooling 

 
             (1)              (2)             (3)             (4)

Science GPA 0.196 *** 0.178 *** 0.253 *** 0.162 ***
(0.042) (0.042) (0.056) (0.04)

Immigrant -0.210 *** 0.500
(0.057) (0.412)

Western Europe 0.220
(0.143)

Southern Europe -0.121
(0.077)

Balkans -0.443 ***
(0.076)

Turkey -0.137
(0.114)

Immigrant * science GPA -0.146 *
(0.084)

Intercept 3.428 *** 3.621 *** 3.247 *** 3.700 ***
(0.198) (0.211) (0.28) (0.202)

R2 0.030 0.047 0.051 0.078
Adj R2 0.029 0.044 0.047 0.072
No. obs. 770 770 770 770  
Note: Dependent variable is students’ PISA test scores divided by 100. Independent variables are the students' GPA in science 
and ethnicity. ***, **, and * represent statistical significance at the 1, 5, and 10 percent level, respectively. White standard errors 
in parentheses. Western Europe consists of Germany, Austria, France, and Belgium; Southern Europe of Italy, Spain, and Portu-
gal; and the Balkans of Serbia, Croatia, Kosovo, and Albania. 
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Table 11: Least Squares Estimates of GPA: Advanced-Level Schooling 

 

Intercept 4.222 *** 3.608 *** 3.839 ***
(0.187) (0.351) (0.413)

Immigrant -0.155 0.485 0.436
(0.325) (0.523) (0.665)

PISA score 0.268 *** 0.414 *** 0.255 ***
(0.025) (0.041) (0.056)

Immigrant * PISA score 0.001 -0.101 -0.074
(0.049) (0.074) (0.095)

Homework late -0.074 *** -0.142 *** -0.038
(0.024) (0.048) (0.063)

Homework * Immigrant 0.020 0.037 -0.050
(0.042) (0.090) (0.107)

Homework value missing 0.037 -0.452 0.304
(0.221) (0.313) (0.291)

(Homework value missing) * Immigrant -0.218 -0.235 -0.410
(0.285) (0.520) (0.422)

Concentration problems (CP) -0.025 -0.024 0.019
(0.021) (0.038) (0.045)

CP * Immigrant -0.042 -0.042 0.039
(0.036) (0.087) (0.079)

CP value missing -0.469 -0.792 0.176
(0.561) (1.041) (0.402)

(CP value missing) * Immigrant 0.087 0.622 -
(0.594) (1.097) -

Truancy -0.059 -0.162 ** -0.072
(0.053) (0.073) (0.104)

Truancy * Immigrant 0.131 * 0.134 0.048
(0.070) (0.149) (0.201)

Truancy value missing 0.050 0.251 -0.454
(0.197) (0.273) (0.325)

(Truancy value missing) * Immigrant 0.287 0.122 0.167
(0.366) (0.358) (0.463)

Schools: 52 fixed effects yes yes yes

No. obs. 1692 951 401
F statistic 13.01 *** 10.16 *** 2.61 ***
R squared 0.245 0.292 0.300
Adj R squared 0.204 0.221 0.120

F-tests of joint significance
Immigrant-Interactions, F(5) 1.31 0.79 0.35
School fixed effects, F(52) 4.97 *** 3.27 *** 413.68 ***

MathematicsReading Science

 
Note: Dependent variable is students’ GPAs in the given subject. Independent variables are PISA scores (divided by 100), 
homework late, concentration problems, truancy, immigrant, and immigrant interactions. ***, **, and * represent statistical 
significance at the 1, 5, and 10 percent level, respectively. White standard errors in parentheses. 
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Table 12: Least Squares Estimates of GPA: Intermediate-Level Schooling 

 

Intercept 4.396 *** 4.279 *** 4.367 ***
(0.144) (0.240) (0.188)

Immigrant -0.122 0.253 0.493
(0.217) (0.358) (0.326)

PISA score 0.240 *** 0.325 *** 0.189 ***
(0.022) (0.033) (0.028)

Immigrant * PISA score 0.014 -0.061 -0.096 *
(0.034) (0.057) (0.050)

Homework late -0.067 *** -0.117 *** -0.071 **
(0.018) (0.031) (0.030)

Homework * Immigrant 0.040 -0.033 -0.015
(0.03) (0.056) (0.052)

Homework value missing -0.345 ** -0.290 -0.170
(0.171) (0.293) (0.140)

(Homework value missing) * Immigrant 0.333 -0.383 0.307
(0.256) (0.394) (0.253)

Concentration problems (CP) -0.049 *** 0.003 -0.040 *
(0.013) (0.023) (0.023)

CP * Immigrant -0.007 0.023 0.018
(0.025) (0.046) (0.043)

CP value missing 0.245 ** 0.407 *** -0.134
(0.113) (0.140) (0.220)

(CP value missing) * Immigrant -0.108 -0.648 ** 0.020
(0.171) (0.327) (0.302)

Truancy -0.018 -0.065 0.075
(0.041) (0.071) (0.050)

Truancy * Immigrant -0.011 0.077 -0.123
(0.06) (0.090) (0.095)

Truancy value missing 0.058 -0.229 0.101
(0.125) (0.215) (0.233)

(Truancy value missing) * Immigrant -0.290 0.123 -0.270
(0.201) (0.302) (0.348)

Schools: 97 fixed effects yes yes yes

No. obs. 2805 1538 1292
F statistic 20.36 *** 12.07 *** 6.61 ***
R squared 0.228 0.239 0.254
Adj R squared 0.179 0.147 0.147

F-tests of joint significance
All ethnic groups, F(5) 0.52 0.58 1.25
School fixed effects, F(97) 18.7 *** 2.5 *** 3.26 ***

Reading Mathematics Science

 
Note: Dependent variable is students’ GPAs in the given subject. Independent variables are PISA scores (divided by 100), 
homework late, concentration problems, truancy, immigrant, and immigrant interactions. ***, **, and * represent statistical 
significance at the 1, 5, and 10 percent level, respectively. White standard errors in parentheses. 
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Table 13: Least Squares Estimates of GPA: Low-Level Schooling 

 

Intercept 3.838 *** 3.819 *** 4.615 ***
(0.182) (0.304) (0.277)

Immigrant -0.128 0.610 * 0.252
(0.226) (0.327) (0.368)

PISA score 0.242 *** 0.354 *** 0.192 ***
(0.030) (0.043) (0.049)

Immigrant * PISA score -0.007 -0.101 * -0.060
(0.042) (0.058) (0.069)

Homework late -0.080 *** -0.061 -0.065
(0.025) (0.042) (0.046)

Homework * Immigrant 0.049 -0.053 -0.016
(0.037) (0.065) (0.066)

Homework value missing 0.048 0.033 -0.268
(0.177) (0.212) (0.538)

(Homework value missing) * Immigrant 0.100 -0.380 0.424
(0.251) (0.329) (0.571)

Concentration problems (CP) -0.044 ** 0.014 -0.032
(0.022) (0.032) (0.037)

CP * Immigrant 0.005 0.044 0.065
(0.03) (0.046) (0.052)

CP value missing -0.002 0.253 0.427 *
(0.137) (0.210) (0.220)

(CP value missing) * Immigrant 0.234 0.489 0.017
(0.232) (0.348) (0.492)

Truancy 0.005 0.043 0.085
(0.055) (0.06) (0.069)

Truancy * Immigrant 0.021 -0.080 -0.083
(0.069) (0.078) (0.107)

Truancy value missing 0.051 -0.033 -0.265
(0.191) (0.186) (0.470)

(Truancy value missing) * Immigrant -0.393 0.240 -0.205
(0.247) (0.208) (0.564)

Schools: 76 fixed effects yes yes yes

No. obs. 1965 1096 770
F statistic 11.3 *** 8.9 *** 2.99 ***
R squared 0.277 0.321 0.401
Adj R squared 0.207 0.196 0.237

F-tests of joint significance
All ethnic groups, F(5) 0.58 1.06 0.60
School fixed effects, F(76) 22.62 *** 12.57 *** 353.61 ***

ScienceReading Mathematics

 
Note: Dependent variable is students’ GPAs in the given subject. Independent variables are PISA scores (divided by 100), 
homework late, concentration problems, truancy, immigrant, and immigrant interactions. ***, **, and * represent statistical 
significance at the 1, 5, and 10 percent level, respectively. White standard errors in parentheses. 
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