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Abstract

We present a regression-based generalization of the calendar time portfolio approach which allows
for the inclusion of continuous and multivariate investor or firm characteristics in the analysis. Our
method is simple to apply and it ensures that the statistical results are heteroscedasticity consistent
and robust to very general forms of cross-sectional and temporal dependence. Furthermore, our
regression-based technique also remedies several well-known weaknesses of the traditional calen-
dar time portfolio approach. By considering a new, unique dataset on more than 40,000 European
private investors, we illustrate empirically that erroneously ignoring cross-sectional dependence
inherent in microeconometric panel data can lead to severely biased statistical results. Moreover
we use our method to validate some of the most popular hypotheses on the performance of private
investors.
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1 Introduction

Due to social norms, corporate timing, and all kinds of psychological behavior patterns, mi-

croeconometric data is likely to be cross-sectionally (or “spatially”) dependent. This potential

dependence constitutes a challenge for the analysis of panel data on the firm or private investor

level, as it is well known that erroneously ignoring spatial correlation can lead to severely bi-

ased statistical results. Empirical scientists have therefore devoted great efforts in developing

methodologies which ensure that statistical inference is valid even in the presence of cross-

sectional dependence. One of the most popular techniques that has emanated from this research

is the calendar time portfolio approach (or the Jensen alpha approach) whose origin goes back

to the work of Jaffe (1974) and Mandelker (1974). The calendar time portfolio approach (sub-

sequently abbreviated as the CalTime approach) as it is employed in recent studies constitutes a

two-step procedure. Thereby, the first step involves computing an average return for the cross-

section of investors or firms, and the second step then measures the risk-adjusted performance

by estimating a multifactor (e.g. the Fama-French three factor) time-series regression model.

In this paper, we present a regression-based generalization of the CalTime approach. Our

methodology relies on estimating, either on the investor or firm level, a linear regression model

with Driscoll and Kraay (1998) standard errors. We show both theoretically and empirically,

that this “GCT-regression model” is capable to replicate the results of the traditional calendar

time portfolio approach in a single step rather than in two. Since Driscoll-Kraay standard errors

are spatial correlation consistent, our methodology further confirms the findings of Lyon, Bar-

ber, and Tsai (1999, p. 193) who report that the calendar time portfolio approach “eliminates

the problem of cross-sectional dependence among sample firms because the returns on sample

firms are aggregated into a single portfolio”.

Although we focus in this study on the performance of private investors, our insights can

be applied to any research that relies on microeconometric panel data. This is important to note

since the CalTime approach is utilized in many different areas of empirical finance. As such,

this methodology is not only popular in studies on the performance of private investors (e.g.
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Barber and Odean, 2000, 2001, 2002; Seasholes and Zhu, 2005, 2006; Ivkovic, Sialm, and

Weisbenner, 2006; Kumar and Lee, 2006), but also in research on the long-run performance

of stocks (e.g. Brav and Gompers, 1997; Fama, 1998; Mitchell and Stafford, 2000; Hertzel,

Lemmon, Linck, and Rees, 2002; Gompers and Lerner, 2003) and in studies on insider trading

(e.g. Jaffe, 1974; Eckbo and Smith, 1998; Jeng, Metrick, and Zeckhauser, 2003).

While Fama (1998) and Mitchell and Stafford (2000) strongly advocate the CalTime ap-

proach, this technique is by no means accepted without criticism. Most prominently, Loughran

and Ritter (2000) complain that analyzing an unbalanced panel with this approach underweights

observations from periods with large cross-sections and overweights observations from periods

with small cross-sections. In private investor research on which we focus on in this study, this

feature of the CalTime approach is problematic because it underweights the investors’ deci-

sion of whether or not to hold stocks in a given month. Correspondingly, Loughran and Ritter

(2000, p. 363) argue that “tests that weight firms equally should have more power than tests that

weight each time period equally”. By relying on the estimation of a linear regression model,

our generalization of the CalTime methodology naturally resolves the critique of Loughran and

Ritter (2000) as it is straightforward to estimate our “GCT-regression model” with OLS.

Even though the CalTime approach allows for valid statistical inference when cross-section-

al dependence is present, its applicability is limited to the analysis of a single, binary investor

characteristic. Although it is sometimes possible to objectively segregate investors into clear-

cut groups such as men and women, some research questions necessitate a subjective specifi-

cation of the characteristics that make an investor belong to a certain group or not. Moreover,

with the CalTime approach it is quite intricate to perform robustness checks. In particular, the

CalTime methodology makes it impossible to include investor specific explanatory variables

(e.g. the portfolio size or the age of an investor) into the time-series regression of the second

step. In contrast, our regression-based generalization of the CalTime approach is not limited to

an analysis of single and binary investor characteristics. On the contrary, it is straightforward

to include continuous and multivariate investor characteristics in the analysis. Therefore, our

GCT-regression model makes it both simple to perform robustness checks and straightforward
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to control for alternative investor characteristics and concurring hypothesis, respectively.

Because the traditional CalTime approach is incapable to deal with continuous and multi-

variate investor characteristics, researchers have recently started to investigate the performance

of private investors with cross-sectional regressions on the investor level. Like the traditional

CalTime approach, this alternative technique (which we refer to as the CrossReg methodology)

constitutes a two-step procedure. However, compared to the calendar time portfolio approach,

the ordering of the two steps that are inherent in the analysis is reversed. Thus, the first step of

the CrossReg procedure involves estimating a Fama and French (1993) type mutifactor model

for each single investor, and the second step then aggregates the investors by regressing the

Fama-French alphas from the first step on a set of investor specific explanatory variables.

In early applications, the CrossReg methodology has been used in research on the perfor-

mance of mutual funds (see e.g. Dahlquist, Engström, and Söderlind, 2000). More recently,

however, this technique has started to become popular in research on the behavior and perfor-

mance of private investors. As such, Ivkovic and Weisbenner (2005) and Korniotis and Kumar

(2006) implement the CrossReg methodology as it is outlined above. Moreover, Feng and

Seasholes (2004b), Goetzmann, Massa, and Simonov (2004), Ivkovic, Sialm, and Weisbenner

(2006), and Massa and Simonov (2006) also estimate cross-sectional (panel) regressions which

in some cases may be shown to belong to the CrossReg class.

In this paper, we show that the coefficient estimates from the CrossReg approach coincide

with those of our “GCT-regression model”. However, this is not the case for the standard

errors because it is impossible to estimate spatial correlation consistent standard errors for a

regression model of a single cross-section (Driscoll and Kraay, 1998). As a result, the second-

step regression of the CrossReg approach will always be based on the (implicit) assumption

that the portfolio returns of the individual investors are cross-sectionally uncorrelated.

Although this presumption might look innocent for a random sample of private investors,

it is not. As such, cross-sectional dependence in the portfolio returns of private investors is

likely to arise due to at least two reasons. Besides the fact that social norms, herd behavior, and

neighborhood effects can lead to contemporaneously correlated actions of the investors (Feng
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and Seasholes, 2004a; Kumar and Lee, 2006; Dorn, Huberman, and Sengmueller, 2005), there

is also a technical reason of why stock returns of private investors are likely to be spatially

dependent. Specifically, Seasholes and Zhu (2005, p. 4) argue that “over a single time period

the return to any household’s portfolio is simply a linear combination of the underlying assets’

returns. The number of independent household returns is thus limited by the number of as-

sets and not the number of households.” Because of the potential consequences of erroneously

ignoring cross-sectional dependence in the data (Driscoll and Kraay, 1998), the CrossReg ap-

proach is therefore at risk of producing severely biased statistical results. Indeed, by analyzing

a unique dataset with account-level data on more than 40,000 private investors we find that

(erroneously) ignoring cross-sectional dependence inherent in the data can result in t-values

that are three and more times higher than the spatial dependence consistent t-values of our

GCT-regression model.

The remainder of this paper is structured as follows. Section 2 formalizes our methodology.

In Section 3 we describe our investor sample. Section 4 empirically illustrates our generaliza-

tion of the calendar time portfolio approach. Furthermore, it validates some of the most popular

hypotheses on the performance of private investors. Section 5 concludes.

2 Methodology

In the first part of this section, we revisit the calendar time portfolio methodology (or the

Jensen-alpha methodology) which has originally been introduced by Jaffe (1974) and Man-

delker (1974). We then present a panel regression based approach which yields as a special

case identical coefficient estimates and standard errors as the CalTime approach. Finally, we

show that our “GCT-regression model” can also be used to replicate the coefficient estimates

of the CrossReg approach. However, because the standard errors and t-stats of the CrossReg

methodology can not be adjusted such that they are robust to cross-sectional dependence in the

data, the standard errors and t-stats of the CrossReg approach are different from those of the

GCT-regression model.
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2.1 The calendar time portfolio approach

In the first step of the CalTime methodology one constructs for each investor group a time-

series of the group’s mean excess return. This is achieved by averaging the month t excess

returns yht of all Njt investors h who belong to group j as1

yjt =
1

Njt

N∑
h=1

z
(j)
ht yht (1)

where z
(j)
ht is a dummy variable which is equal to one if investor h belongs to investor group j

and zero otherwise. The second step of the most recent variants of the CalTime methodology

then measures the performance of the investor groups by aid of a linear k-factor regression

model with yjt from (1) as the dependent variable:

yjt = βj0 + βj1x1t + ... + βjkxkt + εjt . (2)

In most applications, equation (2) is specified as a Jensen (1968), Fama and French (1993), or

Carhart (1997) type regression. Therefore, the coefficient estimate for the intercept term (β̂j0)

is typically of prime interest for judging whether or not investor group j performs well.

The use of the CalTime methodology is by no means limited to an analysis of the investment

performance of single investor groups. It is straightforward to compare the performance of two

investor groups. For instance, if a researcher wants to investigate whether or not women (j =

w) have superior investment skills compared to men (j = m), she may do so by constructing

a zero investment portfolio which is long in the women’s portfolio and short in the portfolio

of the men. Thus, in this case the dependent variable of the second step regression is given by

∆yt = ywt − ymt. If women outperform (underperform) men, then the coefficient estimate for

1The term “investor group” should not be taken too literally. For instance, instead of forming investor group
portfolios one could also construct portfolios of firms or portfolios that are based on certain asset holdings (see
e.g. Seasholes and Zhu, 2006). Furthermore, note that the CalTime methodology is by no means restricted to a first
step aggregation of individual excess returns. In fact, any variable yht which varies over both t and h, respectively,
may be aggregated in the first step of the procedure.
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β∆0 from the k-factor regression model

∆yt = β∆0 + β∆1x1t + ... + β∆kxkt + ε∆t . (3)

should be positive (negative) and significantly different from zero.

2.2 A regression-based replication of the CalTime approach

The two-step version of the CalTime methodology discussed so far is widely applied in em-

pirical finance. However, it is possible to completely replicate the results of the calendar time

portfolio approach by aid of a pooled linear regression model with Driscoll and Kraay (1998)

standard errors as follows:2

yht = d0,0 + d0,1x1t + d0,2x2t + . . . + d0,kxkt

+ d1,0z
(w)
ht + d1,1z

(w)
ht x1t + . . . + d1,kz

(w)
ht xkt + vht (4)

As in expression (1), yht refers to the month t excess return of investor h. Regression (4)

contains three types of explanatory variables. First, the regression includes the same k market

variables xst (s = 1, ..., k) as does the second step regression (3) of the CalTime approach.

The market level variables vary over time but not between the investors. Second, the dummy

variable z
(w)
ht is investor specific (and possibly time-varying). It takes on a value of one if an

investor belongs to investor group j = w which constitutes the long position in ∆yt = ywt−ymt

and zero for investors from group j = m. In our previous example, where the researcher wants

to investigate whether or not women outperform men, z
(w)
ht is 1 for women and zero for men.

Third and finally, regression (4) contains a full set of interaction terms between z
(w)
ht and the k

market level variables xst (s = 1, ..., k).

To replicate the results of the CalTime approach when variable z
(w)
ht is time-varying or when

2Note that the Driscoll and Kraay (1998) covariance matrix estimator does only work for balanced panels.
However, Hoechle (2006) adjusts the Driscoll-Kraay estimator for use with unbalanced panels and it is this ad-
justed estimator which we use in the empirical analysis of Section 4.
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the investor panel is unbalanced, regression (4) has to be estimated by weighted least squares

(WLS). As we illustrate empirically in Section 4.2, choosing observation weights equal to

w
(j)
ht = N−1

jt (with j = m,w) completely reproduces the results of the traditional two-step

version of the CalTime methodology. For mathematical tractability, however, we restrict our

formal treatment of the regression based replication of the CalTime approach to the case of a

balanced panel with N investors, T time periods, and two investor groups j = m, w which are

constant over time. Under these assumptions, ordinary least squares (OLS) regression of (4)

suffices to reproduce the results of the CalTime approach. This is summarized in the following

proposition:

Proposition 1 - coefficient estimates

In a balanced panel with N investors, T time periods, and two investor groups j = m, w which

are constant over time it holds true that:

1. OLS coefficient estimates for β∆s (s = 0, 1, ..., k) in regression (3) are identical to the

OLS coefficient estimates for d1,s in regression (4), i.e. β̂∆s ≡ d̂1,s ∀s = 0, 1, ..., k.

2. For investor group j = m, OLS coefficient estimates for βms (s = 0, 1, ..., k) in regression

(2) are identical to the OLS coefficient estimates for d0,s in regression (4), i.e. β̂ms ≡ d̂0,s

∀s = 0, 1, ..., k.

Proof: See appendix.

In order to replicate for investor group j = w the coefficient estimates of the CalTime approach

in (2), we apply the results of Proposition 1 and use ywt = ymt + ∆yt to obtain the following

corollary:

Corollary 1 β̂ws = β̂ms + β̂∆s = d̂0,s + d̂1,s (s = 0, 1, ..., k).

However, the regression model in (4) not only replicates the coefficient estimates of the Cal-

Time methodology. As we show in the appendix, this regression model may also be used to

reproduce the standard error estimates of the CalTime approach. This brings us to the follow-

ing proposition:
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Proposition 2 - standard errors

For a given lag length choice H and under the assumptions of Proposition 1, it holds true that:

1. Newey and West (1987) standard errors (without degree-of-freedom correction) for the

coefficient estimates of regression (3) are identical with Driscoll and Kraay (1998) stan-

dard errors for the coefficient estimates of d1,s (s = 0, 1, ..., k) in regression (4).

2. For investor group j = m, Newey and West (1987) standard errors (without degree-

of-freedom correction) for the coefficient estimates of regression (2) are identical with

Driscoll and Kraay (1998) standard errors for the coefficient estimates of d0,s (s =

0, 1, ..., k) in regression (4).

Proof: See appendix.

Proposition 2 makes intuitive sense because according to Driscoll and Kraay (1998, p.

552) their “covariance matrix estimator is precisely the standard Newey and West (1987) het-

eroskedasticity and serial correlation consistent covariance matrix estimator, applied to the se-

quence of cross-sectional averages” of the moment conditions. Thus, one might argue that the

calendar time portfolio approach basically replicates Driscoll-Kraay standard errors by aid of a

two-step procedure. Since Driscoll and Kraay (1998) prove that their nonparametric covariance

matrix estimator is robust to very general forms of cross-sectional and temporal dependence,

Proposition 2 therefore confirms the finding of Lyon, Barber, and Tsai (1999, p. 193) that the

CalTime approach “eliminates the problem of cross-sectional dependence”.

2.3 Generalizing the calendar time portfolio approach

The original two-step version of the calendar time portfolio approach discussed in Section 2.1 is

limited to the analysis of clearly specified investor groups. Furthermore, since it is impossible

to include investor specific explanatory variables (such as the portfolio size) into the second

step regression (3) of the CalTime approach, the analysis turns out to be rather one-dimensional
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and it is quite intricate to perform robustness checks. Finally, Loughran and Ritter (2000, p.

362) complain that by equally weighting each time period instead of each observation, the

traditional calendar time portfolio methodology has “low power to identify abnormal returns

for events that occur as a result of behavioral timing”.3

In contrast to the traditional two-step version of the calendar time portfolio methodology,

the regression based replication of the CalTime approach in (4) does not suffer from these short-

comings. In particular, estimating regression (4) with OLS naturally overcomes the critique of

Loughran and Ritter (2000). Furthermore, it is straightforward to generalize regression (4). The

first possibility is to replace the dichotomous variable z
(w)
ht by a continuous variable zht which

makes it unnecessary to segregate investors into clear cut groups. Moreover, one can augment

regression (4) by including additional investor specific variables. This constitutes a possibility

to add control variables to the regression and to perform robustness checks. However, in order

to maintain the fundamental structure of regression model (4), it is important to also include all

interaction terms between the investor characteristics (zqht) and the market variables (xst). To

see this, we rewrite regression (4) by aid of the Kronecker product as4

yht = d0,0 + d0,1x1t + . . . + d0,kxkt + d1,0zht + d1,1zhtx1t + . . . + d1,kzhtxkt + vht

= ([1 zht]⊗ [1 x1t ... xkt])d + vht

= (zht ⊗ xt)d + vht (5)

where the 2(k + 1) × 1 dimensional column vector d contains the regression coefficients, xt

comprises the market level variables, and zht embodies the investor characteristic. From (5)

it is obvious that adding an investor specific variable zµht changes the fundamental structure

of the regression model unless zµht is part of vector zht. However, augmenting zht with zµht

implies that in addition to zµht all interaction terms between zµht and the k market variables xst

(s = 1, ..., k) are included in the regression. As a generalization of the CalTime approach, we

3To circumvent this problem, Fama (1998) and Lyon, Barber, and Tsai (1999) suggest to estimate the time-
series regression in (3) by aid of weighted least squares (WLS) regression with observation weights set equal to
their statistical precision.

4In (5) we exchange dummy variable z
(w)
ht with variable zht which is allowed to be continuous.
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therefore suggest to estimate by OLS the following linear regression model with Driscoll and

Kraay (1998) standard errors:5

yht = ([1 z1ht ... zmht]⊗ [1 x1t ... xkt])d + vht

= d0,0 + d0,1x1t + . . . + d0,kxkt

+ d1,0z1ht + d1,1z1htx1t + . . . + d1,kz1htxkt

+ . . .

+ dm,0zmht + dm,1zmhtx1t + . . . + dm,kzmhtxkt + vht (GCT)

While the k market variables xst in regression (GCT) vary over time but not across investors, the

m investor characteristics zqht can vary across both the time dimension and the cross-section,

respectively. It is interesting to notice that the structure of regression (GCT) to which we

henceforth refer to as the “GCT-regression model” is closely related to the structure of Ferson

and Schadt’s (1996) conditional performance measurement model. However, instead of being

time-varying only, the conditional coefficients of the GCT-regression are allowed to vary over

both the cross-section and the time.

2.4 Relating the CalTime approach to the CrossReg technique

The first step of the CrossReg approach involves estimating for each investor h a time-series

regression of yht on k market variables xst (s = 1, ..., k) as follows:

yht = β0,h + β1,hx1t + ... + βk,hxkt + εh,t (7)

In the second step of the CrossReg approach, one then performs a cross-sectional regression of

the coefficient estimate for βs,h (s ∈ {0, ..., k}) from (7) on a set of m investor characteristics

zqh:

β̂s,h = c0,s + c1,sz1h + ... + cm,szmh + ws,h . (8)

5A Stata program which makes it simple to estimate several variants of the GCT-regression model (GCT) is
available from the authors upon request.
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By letting zqht be constant over time (i.e. zqht = zqh), the relation between the GCT-regression

model and the CrossReg methodology may be stated as follows:

Proposition 3 In a balanced panel with N investors and T time periods, OLS coefficient esti-

mates for cq,s in (8) are identical to OLS coefficient estimates for dq,s in (GCT), i.e. cq,s ≡ dq,s

for q = 0, 1, ...,m and s = 0, 1, ..., k.

Proof: See appendix.

However, because the second step regression of the CrossReg methodology only contains

one single observation for each investor, it is impossible to estimate the standard errors for the

coefficient estimates in (8) such that they are robust to cross-sectional dependence. According

to Driscoll and Kraay (1998, p. 559) this is because “unlike in the time dimension, there is

no natural ordering in the cross-sectional dimension [...] Thus it would appear that consistent

covariance matrix estimation in models of a single cross section with spatial correlations will

have to continue to rely on some prior knowledge of the form of these spatial correlations.”

Put differently, by dividing up the estimation procedure into two steps, the CrossReg approach

abandons valuable information which can be used to ensure that the statistical results are valid

even when cross-sectional dependence is present.6 In contrast, the GCT-regression model pre-

serves any time-series information inherent in the data. This information advantage enables the

GCT-regression model to produce standard error estimates that are robust to very general forms

of cross-sectional and temporal dependence.

3 Data

The primary database used in this study includes the trades, monthly position statements, and

demographic data of 41,719 individual investors. The data comes from a respectable European

wholesale bank and covers the period from March 2000 to June 2005. In this section, we

6Moreover, the CrossReg approach outlined here also fails to adjust the second-stage standard errors for the
fact that the dependent variable is estimated.
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describe the investor database and the procedure to compute the individual investors’ portfolio

returns.

3.1 Description of the investor database

The investors in our dataset constitute a random sample comprising 90% of the bank’s private

clients whose main account is denominated in CHF and whose financial wealth at the bank

exceeded CHF 75,000 at least once prior to December 2003.7 Of the sampled investors, 81.3%

live in Switzerland, 12.4% are domiciled in Germany, 5.3% reside in an other European country,

and 1.0% live outside Europe. Most investors maintain a long-term relationship with the bank.

As such, 81% of the accounts have been opened prior to December 1995. Nevertheless, almost

9% of the bank relationships in our sample have been established during the sample period. The

attrition rate of the investors is relatively stable and amounts to about 0.2% per month. Yet, the

“true” attrition rate is even lower since 2,924 out of 5,370 liquidated bank relationships have

occured due to the account holder’s death. The low monthly rate of account closings stands in

some contrast to the attrition rates observed in comparable studies. Odean (1999), for example,

reports that each month about 0.65% of the investors in his sample close their account at a

large US discount brokerage house. Similarly, for a dataset on investors at a Swedish internet

brokerage, Anderson (2004) finds that each month about 1.4% of the investors liquidate their

account.

The average and median bank wealth of the investors in our database amount to CHF

221,520 and CHF 121,967, respectively.8 In this paper, we focus on the common stock invest-

ments of the investors. As can be inferred from Panel B in Table I, the median shareholding

7The bank did not want to provide a 100% sample for personal reasons. However, for all the sampled investors
the database contains the entirety of the investors’ accounts. A typical investor in our dataset holds two cash
accounts and one security account. We are confident that the sampling criteria do not impact on the results. In
particular, we deem it unlikely that the investors’ stock returns are upward biased as a consequence of the CHF
75,000 threshold. The reason for this is that the sampled investors predominantly invest in Swiss stocks (see Table
II) which lost 22% of their value in the time period from March 2000 through December 2003.

8During the sample period, the USD-CHF exchange rate was quite volatile. On average, one USD cost about
CHF 1.40. Therefore, the mean and median account value of the investors in our database correspond to about
$158,230 and $87,120. On June 2005 (the sample end), the aggregated account value of the investors amounted
to CHF 8.82bn which at the time was equal to $6.89bn.
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investor in our database holds 2.60 distinct stocks worth CHF 45,660. However, both the dis-

tributions of the portfolio value and the number of stock holdings are skewed to the right. As

such, a shareholding investor on average holds 3.98 stocks worth CHF 138,971.

Even though the sampled investors are relatively wealthy, only 27.5% hold month-end po-

sitions in common stocks. Hence, the proportion of equity owners is much lower in our sample

than the 85.2% stockholder fraction reported by Barber and Odean (2000). However, the low

proportion of shareholders in our dataset matches well with the results of Cocca and Volkart’s

(2006) equity ownership study for Switzerland. This study which may be compared to the

US-american Survey of Consumer Finances (SCF) reveals that in spring 2000, 29.6% of all

Swiss households invested in common stocks. But since then, the overall fraction of share-

holding households has declined to a mere 20.0% in spring 2006.9 However, in contrast to

this result for the entirety of Swiss households, the equity ownership study also documents that

for households with financial wealth in excess of CHF 100,000 the fraction of equity owners

was above 30% over the entire sample period. Consistent with this, Figure 1 shows that in our

database shareholders are wealthier on average than investors without stock holdings. Further-

more, Figure 1 reveals that the (median) bank wealth of the sampled investors increases with

age. This pattern is in line with the findings of Poterba (2001, 2004) who observes that con-

sumers accumulate financial assets while they are of working age but that they do not reduce

financial assets thereafter. Together with the requirement that the investors’ total account value

has to exceed CHF 75,000 at least once prior to December 2003, this age-wealth relationship

(Shorrocks, 1975) results in a disproportionate representation of old investors in the dataset.

Correspondingly, Panel A of Table I documents that almost two thirds of the sampled investors

are aged 60 or above in year 2005.

The investors in our database heavily overweight Swiss stocks in their portfolios which con-

firms the well-known home-bias documented in the literature. Table II shows that the average

and median portfolio share of CHF denominated stocks are 74.5% and 97.0%, respectively.

9In Germany the fraction of shareholding households is even lower than in Switzerland. According to the
Deutsches Aktieninstitut (2006), less than 10% of the German households invested in common stocks during the
sample period.
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Amongst Swiss residents the overweight of Swiss stocks is even more pronounced. For this

specific investor group, the average (median) proportion of CHF denominated stocks amounts

to 80.8% (100%). It is popular to measure the degree of the home bias as 1 minus the weight

invested in foreign countries scaled by the world market weight of foreign countries (e.g. see

Kho, Stulz, and Warnock, 2006). Swiss stocks account for roughly 3% of the world market.

Therefore, the average Swiss resident exhibits a home bias of about 80% which corresponds

in magnitude with the home bias observed by French and Poterba (1991) and others. Never-

theless, in absolute terms, the investors in our database diversify more internationally than do

the investors of a large US discount broker. According to Bailey, Kumar, and Ng (2005) the

average investor in their sample only holds 3.87% of her total portfolio value in foreign assets.10

To compute the monthly portfolio turnover of the investors, we employ the methodology

developed by Barber and Odean (2000, p.781). Specifically, we define the portfolio turnover

to be the average of the investor’s buy and sell turnover during a month.11 For the average and

median shareholder in our database, we observe a monthly turnover rate of 3.16% and 1.18%,

respectively. These turnover rates are less than half the size of those reported by Barber and

Odean (2000) for a sample of private investors at a large US discount broker and almost six

times smaller than those found by Anderson (2004) for a sample of Swedish online broker-

age clients. Hence, the investors in our dataset are much more conservative in trading stocks

than those in comparable studies. However, consistent with the findings of these studies, the

investors in our database perform slightly more stock purchases (73,098) than sales (70,874),

and the average value of stocks sold (CHF 29,400) is higher than the mean value of stocks

bought (CHF 24,259).

A total of 41% of the transactions is in currencies other than CHF. These international

trades are slightly smaller than transactions in CHF. For purchases (sales) of international stocks

the average value is CHF 23,144 (CHF 25,675) which is CHF 1,971 (CHF 5,045) less than

10Bailey, Kumar, and Ng (2005) analyze the same dataset as do Barber and Odean (2000, 2001, 2002), Ivkovic,
Poterba, and Weisbenner (2005), Ivkovic and Weisbenner (2005), and Kumar and Lee (2006) among others.

11According to Barber and Odean (2000, p.781), the buy (sell) turnover in month t is computed as the
beginning-of-month t market value of the shares purchased in month t − 1 (sold in month t) divided by the
total market value of the investor’s stock portfolio at the beginning of month t. For details on how to compute the
monthly portfolio turnover, also see Ivkovic, Sialm, and Weisbenner (2006).
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the corresponding transactions in CHF. Bailey, Kumar, and Ng (2005) who analyze the same

dataset as Barber and Odean (2000) argue that the investors in their sample are very unlikely to

diversify internationally by trading directly in foreign markets. In contrast, the investors in our

database have to do so because most of the international stocks they trade are not listed on the

Swiss stock exchange. As a consequence, investors without a cash account denominated in the

transaction currency have to pay two bid-ask spreads, one for the currency conversion and one

for the stock transaction. On average, transaction costs for purchases and sales of international

stocks are therefore significantly higher than for Swiss stocks. As a result, it might well be that

the pronounced home bias of private investors can partially be explained by the high transaction

costs of international stock trades.

Roughly 45% of the sampled investors are female. Amongst shareholders, the proportion

of women is slightly lower but nevertheless amounts to 37%. As a result, the fraction of female

account holders in our dataset is comparable to the 50% share of women observed in samples

from the People’s Republic of China (e.g. see Feng and Seasholes, 2004a, 2006). In contrast,

women are typically underrepresented in datasets on investors from discount and online bro-

kerage houses (see e.g. Barber and Odean, 2001; Dorn and Huberman, 2005; Anderson, 2004).

We observe a similar pattern in our database when looking at the 1,892 investors with online

banking transactions. Amongst this specific investor group, the proportion of female investors

is only 23.2%. Tables I and II which contrast the investment practices of men and women on an

unconditional basis highlight possible gender differences in the investment behavior of private

investors. For instance, women tend to weight CHF denominated stocks more heavily in their

portfolios than men. According to Table II this pattern is robust amongst different investor

groups and it is particularly pronounced for non-Swiss investors. Overall, the weight of Swiss

stocks is 7.8% higher in the stock portfolios of women than in those of men. This finding con-

flicts with the results of Feng and Seasholes (2006) who report that in the People’s Republic of

China the home bias is similar across gender. Admittedly, however, we do not have an expla-

nation for the large weight of Swiss stocks in the portfolios of non-Swiss women compared to

the portfolio weight of Swiss stocks for non-Swiss men. In line with the results of Feng and

Seasholes (2006), men tend to hold bigger and more diversified stock portfolios than women.
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In addition and consistent with Barber and Odean (2001), women turn over their portfolio more

slowly than men and, on average, perform about 35% less stock trades than men. Somewhat

surprisingly, however, the median value of both stock purchases and sales is higher for women

than for men.

3.2 Return computations

We use Thomson Datastream (TDS) to retrieve monthly time-series of stock prices and divi-

dends for all common stocks that are held by the investors.12 Overall, the investors hold a total

of 3,098 distinct stocks of which 1,182 are listed in the United States, 522 in Germany, and

332 in Switzerland. Based on monthly time-series of 61 exchange rates relative to the CHF, we

compute the stocks’ percentage monthly gross return in CHF as follows:

Rgr
i,t = 100

(
Pi,t + Di,t

Pi,t−1

Sx
t

Sx
t−1

− 1

)
(9)

where Pi,t denotes the adjusted closing price of stock i in month t and Di,t contains the sum of

dividends paid from stock i during month t. Both Pi,t and Di,t are expressed in local currency.

Finally, Sx
t refers to the end-of-month t exchange rate (in price notation) between the currency

in which the stock is denominated and the CHF.

To compute the gross return of the individual investors’ stock portfolios we apply the

methodology developed by Barber and Odean (2000). Specifically, for each investor h we

estimate the month t gross return [in %] as the value-weighted average return of the beginning-

of-month stock holdings:

Rgr
h,t =

sh,t−1∑
i=1

wi,t−1R
gr
i,t (10)

12We refer to “common stocks” as assets with TDS datatype TYPE being equal to EQ. We use this simple
definition for common stocks even though Ince and Porter (2004) report that numerous TDS identifiers with
TYPE=EQ are closed end funds, REITs, or ADRs rather than common stocks. However, for our dataset the
conformity between datatype TYPE in TDS and the bank’s own asset classification scheme is very high. For
position holdings with TYPE=EQ, the bank also classifies the asset to be an EQUITY in 99.49% of the cases.
Similarly, conditional on being in the universe of TDS, 99.68% of the EQUITY position holdings are of TYPE EQ
in Thomson Datastream. Overall, TDS contains the closing prices and dividends for 93.79% of all the investors’
EQUITY position holdings.
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where wi,t−1 is the beginning-of-month t weight of stock i in the portfolio of investor h. It

is computed as the beginning-of-month t position value (in CHF) of stock i divided by the

aggregated position value (in CHF) of all sh,t−1 stock holdings at the time. When computing

Rgr
h,t we make the same simplifying assumptions as do Barber and Odean (2000). Specifically,

we presume that all the investors’ stock transactions take place on the last day of the month.

Thus, we do not consider return components earned between the purchase date of a stock and

the end of the month, but we include the stock returns from the actual sale date to the end of

the month. Furthermore, with the exception of short-term trades that result in position holdings

at the end of a calendar month, we ignore any intramonth trading activity of the investors.

Barber and Odean (2000) demonstrate that these simplifying assumptions only cause minor

differences in the return calculations even if the portfolio turnover of the investors is high. In

our dataset, the turnover rate of the investors is low. Therefore, our return calculations should

only marginally be affected by these assumptions.

For each stock transaction, we estimate the transaction costs as the sum of the commissions

and a bid-ask spread component. While the bank provides us with the effective commissions (in

CHF) of the transactions, we have to estimate the bid-ask spread component of the transaction

costs by our own. To do so, we retrieve the stocks’ daily bid and ask prices from TDS and

compute the bid-ask spread (spri,τ ) component of the transaction costs for stock i on day τ as

spri,τ =
P b

i,τ − P s
i,τ

P b
i,τ + P s

i,τ

(11)

where P b
i,τ and P s

i,τ denote the bid and ask price of stock i on day τ , respectively. We use quoted

spreads rather than the price impact measure proposed by Barber and Odean (2000, p. 780)

because the stock transactions of the investors in our database are small compared to the trades

of institutional investors. Therefore, we expect stock prices to be virtually unaffected by the

transactions of the sampled investors. Furthermore, unlike transactions of institutional investors

which are often executed inside the quoted spreads this is much less so for retail investors (Keim

and Madhavan, 1998).13 Across all trades, the average (median) total transaction cost of a stock

13However, if the bid and ask prices are not available from TDS, we compute the bid-ask spread component of

17



purchase amounts to 1.48% (1.19%) for Swiss stocks, and 2.00% (1.46%) for foreign stocks.

For stock sales, the average (median) transaction costs are 1.69% (1.19%) for Swiss stocks, and

3.17% (1.80%) for foreign stocks.

For each investor h, we compute the trade weighted average transaction cost of all purchases

(ch,b
i,t ) and sales (ch,s

i,t ) of stock i in month t. Further, we consider the fact that the sampled

investors sometimes do not purchase and sell complete stock positions but rather they trade

fractions of existing holdings. Therefore, we slightly adjust Barber and Odean’s (2000, p. 782)

methodology of how to compute the month t net return [in %] of stock i in the portfolio of

investor h as follows:

(1 + Rh,net
i,t /100) =

(
1 + RCHF

i,t /100
) (

Nh
i,t − ch,s

i,t Nh,s
i,t

)
(
Nh

i,t + ch,b
i,t−1 Nh,b

i,t−1

) (12)

In (12), Nh
i,t denotes the beginning-of-month t number of stocks i in the portfolio of investor h,

Nh,s
i,t refers to the number of stocks sold in month t, and Nh,b

i,t−1 is the number of stocks bought

in month t− 1.14 If an investor trades the entire stock position in a given month, our definition

of Rh,net
i,t in expression (12) is equal to the one used by Barber and Odean (2000). However,

when only parts of an existing stock position are bought or sold, then the stock’s net return

(Rh,net
i,t ) is closer to its gross return (Rgr

i,t). By using (12), we then obtain the month t net return

[in %] of investor h’s stock portfolio (Rnet
h,t ) as

Rnet
h,t =

sh,t−1∑
i=1

wi,t−1R
h,net
i,t (13)

Finally, we also compute for each investor the monthly gross and net excess return [in %] as

ygr
h,t = Rgr

h,t −Rf,t and ynet
h,t = Rnet

h,t −Rf,t (14)

where Rf,t refers to the month t return [in %] on a short-term Eurodeposit in CHF obtained

the transaction costs as proposed by Barber and Odean (2000, p. 780).
14To properly account for stock splits, we use adjusted values for Nh

i,t, Nh,s
i,t , and Nh,b

i,t−1.
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from TDS.15

4 Empirical Analysis

4.1 An illustration of Propositions 1-3

We begin with an exact empirical validation of Propositions 1 through 3. Since all the propo-

sitions rely on the assumption of a balanced investor panel with two investor groups that are

constant over time, it seems natural to compare the investment performance of women and men.

Therefore, we follow Barber and Odean (2001, p. 277) by hypothesizing that after accounting

for transaction costs the investment performance of men should be worse than that of women

because “men, who are more overconfident than women, trade more than women”. We restrict

the analysis to a balanced panel of 2,724 male and 1,432 female investors with stock holdings

all over the sample period from March 2000 through June 2005.

The CalTime approach. Using the traditional CalTime approach, we test whether or not

women outperform men by evaluating the coefficient estimate for the intercept term α∆ in the

time-series regression

∆ynet
t = α∆ + β∆SPIt + γ∆Worldt + s∆SMBt + h∆HMLt + εt . (15)

Here, SPIt is the monthly excess return of the Swiss Performance Index and Worldt refers to

the monthly excess return of the MSCI World total return index orthogonalized by SPIt. The

SMBt factor denotes the month t return of a zero-investment portfolio which is long in Swiss

small caps and short in Swiss large capitalization stocks. Finally, HMLt refers to the monthly

return difference between Swiss high and low book-to-market stocks.16

15The Datastream-Mnemonic of the Rf,t time-series used in this study is SBWSF3L.
16To compute excess returns, we use the return on short-term Eurodeposits in CHF as a proxy for the risk-free

investment. The data source is TDS and the Datastream-Mnemonic is SBWSF3L. The SMBt factor is obtained
as the return differential of the Vontobel-Datastream Small Cap Index and the Swiss Market Index (SMI). Finally,
the HMLt factor returns are taken from Ken French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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The dependent variable, ∆ynet
t , in regression (15) is the monthly net return of a zero-

investment portfolio which is long in the aggregate stock portfolio of women and short in the

corresponding portfolio of men. It is computed as

∆ynet
t = ynet

wt − ynet
mt (16)

with ynet
wt =

1
Nwt

Nt∑
h=1

Womanh × ynet
ht and ynet

mt =
1

Nmt

Nt∑
h=1

(1−Womanh)× ynet
ht

where Nwt and Nmt refer to the month t number of female and male investors, and Nt =

Nwt + Nmt. Womanh is a dummy variable which is one for women and zero for men and ynet
ht

is the month t net excess return of investor h whose computation has been described in Section

3.2.

The results of estimating the CalTime regression in (15) with OLS are displayed in Table III.

The t-values reported in the two columns with SE-type “NW87” and “NW87a” rely on Newey

and West (1987) standard errors with and without degree-of-freedom correction, respectively.

These t-values are heteroscedasticity and autocorrelation (up to three lags) consistent. The

estimate for the intercept term α∆ is positive and (weakly) significant in all CalTime columns,

and we therefore conclude that after accounting for transaction costs, women outperform men

by about 1.07% per year on average. This result is consistent with the findings of Barber and

Odean (2001).

The GCT-regression model. Propositions 1 and 2 claim that estimating time-series regres-

sion (15) with Newey and West (1987) standard errors (without degree-of-freedom correction)

yields identical results as estimating the following investor-level pooled OLS regression with

Driscoll and Kraay (1998) standard errors:

ynet
ht = αm + βmSPIt + γmWorldt + smSMBt + hmHMLt

+ α∆Womanh + β∆SPIt ×Womanh + γ∆Worldt ×Womanh

+ s∆SMBt ×Womanh + h∆HMLt ×Womanh + vht (17)

20



By exemplifying that the coefficient estimates and t-stats of columns “CalTime NW87a” and

“POLS DK98” in Table III coincide, we empirically demonstrate the validity of Propositions 1

and 2.

In contrast to Driscoll and Kraay (1998) standard errors which are robust to very general

forms of cross-sectional and temporal dependence, Arellano’s (1987) panel-robust standard er-

rors only allow for correlation within clusters but assume independence between the clusters

(e.g. individuals). Thus, in Table III the t-values presented in column “POLS A87” are bi-

ased when cross-sectional dependence is present. Since cross-sectional dependence is likely

to occur in microeconometric panels (e.g. Feng and Seasholes, 2004a; Dorn, Huberman, and

Sengmueller, 2005; Kumar and Lee, 2006), one should be careful with drawing conclusions

from regression models which are based on the assumption of independence between subjects.

Indeed, in this specific case we find that panel-robust t-values for the market level variables

and the Woman dummy are much higher than those in column “POLS DK98”. For instance,

accounting for cross-sectional dependence in the data scales down the t-value of the Woman

dummy, which is of key interest for testing whether or not women outperform men, from

tA87
Woman = 4.347 to tDK98

Woman = 2.021.

The CrossReg approach. In order to reproduce the coefficient estimate for α∆ in (17) using

the CrossReg approach, we first obtain for each investor h the risk-adjusted performance α̂h

from the four-factor time-series regression

ynet
ht = αh + βhSPIt + γhWorldt + shSMBt + hhHMLt + εht . (18)

In the second step, we then test whether or not women outperform men by regressing α̂h from

(18) on the Woman dummy:

α̂h = c0 + c1Womanh + wh (19)

Table III, column “OLS W80”, contains the results from estimating (19) with heteroscedas-

ticity consistent standard errors. As predicted by Proposition 3, the coefficient estimate for c1

coincides with that for α∆ in the GCT-regression (17). However, in contrast to the traditional
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calendar time portfolio approach which replicates Driscoll and Kraay (1998) standard errors,

the CrossReg methodology can at best be used to reproduce panel-robust standard errors for the

GCT-regression in (17). Therefore, statistical inference from the CrossReg approach is valid if

and only if cross-sectional dependence is absent. However, when cross-sectional dependence

is likely to be inherent in the data, then the CrossReg methodology should not be applied. This

is because the two-step algorithm which forms the basis of the CrossReg methodology for-

goes valuable time-series information which can otherwise be used to ensure validity of the

statistical results even when cross-sectional dependence is present.

4.2 Time-varying investor groups and unbalanced panels

So far our analysis is limited to a balanced panel with two investor groups that are constant

over time. In most empirical work, however, these assumptions will not be met. Therefore, we

replicate the analysis from Section 4.1 by analyzing an unbalanced panel of all 7,140 male and

4,200 female investors with end-of-month positions in common stocks. As before, we follow

Barber and Odean (2001) by hypothesizing that after accounting for transaction costs, women

outperform men.

In Table IV, columns labeled with “CalTime”, we present the results for the traditional

CalTime approach. While the first “CalTime” column contains the coefficient estimates and

t-values from estimating regression (15) with ∆ynet
t = ynet

wt − ynet
mt as the dependent variable,

the second “CalTime” column presents the results of estimating (15) with ynet
mt as the depen-

dent variable. Both ∆ynet
t and ynet

mt , respectively, are obtained from equation (16). As for the

balanced panel considered in Section 4.1 and consistent with Barber and Odean (2001), we

find that after accounting for transaction costs, women outperform men by a significant return

difference of 1.14% per year on average.

In an unbalanced panel with time-varying investor groups, the traditional CalTime approach

does not weight each observation equally (Loughran and Ritter, 2000). Therefore, estimat-

ing the GCT-regression (17) with OLS turns out to be inappropriate for replicating the results
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of the calendar time portfolio approach. From Table IV this is apparent by observing that

the coefficient estimates and t-stats in column “POLS” do not match those in the “CalTime”

columns. However, even for the general case of an unbalanced panel with time-varying investor

groups it is possible to reproduce the results of the traditional CalTime approach by aid of the

GCT-regression model in (17). But now we have to explicitly adopt the observation weighting

scheme of the CalTime approach and estimate (17) with weighted least squares (WLS) rather

than with OLS. We therefore set the observation weights equal to17

ωht =

 N−1
wt , if Womanh = 1

N−1
mt , otherwise

(20)

In Table IV, columns labeled with “PWLS”, we present the WLS estimation results of regres-

sion (17). As for the balanced panel case, there is evidence for cross-sectional dependence in

the data: Estimating (17) with Driscoll-Kraay standard errors produces t-values for the market

variables and the Woman dummy which are much smaller (in absolute terms) than those from

estimating the GCT-regression (17) with panel-robust standard errors.

Although column “PWLS DK98” shows that the results of the traditional CalTime approach

may be reproduced with a WLS regression on the investor level, we can not find an econometric

reason why employing the weighting scheme in (20) should yield more appropriate results

than estimating (17) with OLS. On the contrary, the weighting scheme in (20) has even been

criticized by Loughran and Ritter (2000, p.363) who argue that “in general, tests that weight

firms equally should have more power than tests that weight each time period equally”. As a

result, estimating the GCT-regression model in (17) with OLS rather than with WLS naturally

resolves Loughran and Ritter’s (2000) critique.

17Alternatively, we could also multiply both sides of regression (17) with
√

ωht and estimate the transformed
regression model with OLS.
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4.3 Multivariate investor characteristics and performance measurement

In this section, we make use of the GCT-regression model’s capability to handle continuous

and multivariate investor characteristics. Thereby, we utilize the GCT-regression model to

verify some of the most prominent hypotheses on the performance of private investors. All the

regressions analyzed in this section embody the following structure:

yh,t = (zht ⊗ xt)d + vht (21)

where, depending on the specific hypothesis, yh,t denotes the investors’ gross excess return

(ygr
h,t) or net excess return (ynet

h,t ). While the investor characteristics contained in vector zht vary

among the models, the composition of the market variables in vector xt remains unchanged.

As in Sections 4.1 and 4.2, we compute the risk-adjusted performance of the investors by

specifying xt = [1 SPIt Worldt SMBt HMLt].

The first hypothesis to be addressed is derived from Barber and Odean (2000) who find that

“investors who hold common stocks directly pay a tremendous performance penalty for active

trading”. Following Barber and Odean (2000) we therefore expect that18

H1a The portfolio turnover rate is unrelated to the gross performance of an investor.

H1b In contrast, the net performance of an investor decreases with the portfolio turnover.

To empirically examine Hypothesis 1, we estimate regression (21) with zht being specified as

zht = [1 TOh,t] where TOh,t is the month t turnover of investor h’s stock portfolio. From

Table V, columns labeled with “H1a” and “H1b”, it is apparent that both parts of Hypothesis

1 are confirmed. Specifically, the monthly stock turnover has no statistically significant impact

on the gross performance (H1a), but an investor who completely redeploys her stock portfolio

lowers the risk-adjusted net return by a sizable and significant 3.69% on average (H1b).

Our second hypothesis is based on Barber and Odean (2001) who report that “since men

18The hypotheses we state in this section are alternative hypotheses. Therefore, when we “confirm” hypothesis
XYZ, we actually mean that the null hypothesis to hypothesis XYZ has to be rejected and thus hypothesis XYZ is
accepted.
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are more overconfident than women, men will trade more and perform worse than women.” We

therefore test the following hypothesis:

H2a The net performance of men is worse than that of women.

H2b Men underperform women on a net return basis because they trade more than women.

By specifying vector zht as zht = [1 Womanh] and estimating regression (21) with the in-

vestors’ net excess return (ynet
h,t ) as the dependent variable, we find (weak) evidence in favor

of hypothesis H2a. As such, column “H2a” of Table V shows that the risk-adjusted net re-

turn of the average women in our dataset exceeds that of a typical men by 1.06% per year

(= 12 × 0.088%). If hypothesis H2b holds true and women really outperform men simply

because they trade less than men, then the coefficient estimate for the Womanh dummy should

become insignificant when the monthly portfolio turnover is included in the regression. To

empirically validate hypothesis H2b, we therefore re-estimate the GCT-regression model (21)

with zht being specified as zht = [1 Womanh TOh,t]. Column “H2b” of Table V, reveals that

augmenting vector zht with the investors’ portfolio turnover indeed results in an insignificant

coefficient estimate for the Womanh dummy. We therefore conclude that our data (weakly)

support Hypothesis 2.

For our third conjecture, we rely on the findings of Barber and Odean (2002) who show that

online investors “trade more actively, more speculatively, and less profitably” than phone-based

investors. Therefore, we hypothesize that

H3 Both the gross and net performance of online investors is lower than that of phone-based

investors.

In order to verify this hypothesis, we specify vector zht as zht = [1 Onlineh] where Onlineh is

a dummy variable with value one for investors who perform stock transactions over an online

banking account, and zero otherwise. The results from estimating (21) with zht = [1 Onlineh]

strongly confirm the conjecture. Specifically, columns “H3” of Table V reveal that on average

the risk-adjusted gross (net) return of an online investor is a remarkable and highly significant

2.33% (3.25%) per year lower than for a phone-based investor.
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The last hypothesis to be addressed in this section is taken from Ivkovic, Sialm, and Weis-

benner (2006). They report that “skilled investors can exploit information asymmetries by

concentrating their portfolios in the stocks about which they have favorable information.” We

therefore conjecture that

H4a Both the gross and net performance of an investor are negatively related to the number

of stocks in her portfolio.

We test hypothesis H4a by defining zht as zht = [1 NSh,t] where NSh,t is the beginning-of-

month t number of stocks in the portfolio of investor h. From Table V, columns labeled with

“H4a”, one can see that the coefficient estimate for NSh,t is negative and significant. Thus, we

can confirm hypothesis H4a. However, the latter hypothesis is just a part of the story in Ivkovic,

Sialm, and Weisbenner (2006). In particular, the authors also take into consideration that “fixed

costs of trading stocks make it uneconomical for households with limited wealth to hold a large

number of securities directly. Moreover, it is likely that some wealthy households might have

greater access to information and might possess information processing skills superior to those

prevailing among households with smaller accounts, prompting a certain fraction of wealthy

investors to concentrate their portfolios in a few investments.” Therefore, we refine hypothesis

H4a as follows:

H4b Due to fixed costs of trading stocks, concentrated investors perform particularly well if

their portfolio value is large.

To empirically examine this conjecture, we augment vector zht by the natural logarithm

of the investors’ beginning-of-month t portfolio value Vh,t. According to hypothesis H4b we

would expect that the coefficient estimate for Vh,t is positive and statistically significant. How-

ever, as can be seen from Table V, columns labeled with “H4b”, estimating regression (21)

with zht being specified as zht = [1 NSh,t Vh,t] yields a negative and insignificant coefficient

estimate for Vh,t. As a result, for the investors in our database hypothesis H4b can not be

verified.19

19As an alternative test for hypothesis H4b, we specify vector zht as zht = [1 NSh,t Vh,t NSVh,t] and test
if the coefficient estimate for the interaction term NSVh,t = NSh,t ∗ Vh,t is negative and significant. However,
the coefficient estimate for NSVh,t is positive and insignificant. Thus, we must again reject hypothesis H4b.
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Our empirical analysis up to this point was restricted to a sequential test of some of the

most prominent hypotheses on the performance of private investors. As a robustness check for

the (supported) hypotheses at hand, we now want to examine them simultaneously. Therefore,

we specify vector zht as zht = [1 TOh,t Womanh Onlineh NSh,t].

To commence the multi-hypotheses analysis, we first estimate the GCT-regression model

(21) with the investors’ gross excess return (ygr
h,t) as the dependent variable. This allows us to

simultaneously validate hypotheses H1a, H3, and H4a. Even though it follows from Table V,

column “All (ygr
h,t)”, that the coefficient estimate for variable NSh,t is just weakly significant,

it is nevertheless interesting to notice that the results of this multi-hypotheses test turn out to

be very similar to those of the single hypothesis checks performed before. In the second part

of our multi-hypotheses analysis, we re-estimate regression (21) with the investors’ net excess

return (ynet
h,t ) as the dependent variable. The results of this simultaneous test of hypotheses

H1b, H2a, H2b, H3, and H4a are displayed in column “All (ynet
h,t )” of Table V. Although

being slightly less significant than the single hypothesis checks discussed above, the results of

this test nonetheless fully support the previous assertions. We therefore conclude that except

hypothesis H4b, our empirical analysis in this section provides further evidence for some of the

most common hypotheses on the performance of private investors.

4.4 Does cross-sectional dependence matter?

In two recent articles, Ivkovic and Weisbenner (2005) and Massa and Simonov (2006) claim

that the local stock investments of private investors outperform their remote stock holdings.

However, Seasholes and Zhu (2005) challenge the results of these studies because they fail to

account for cross-sectional dependence in the data. To explicitly allow for spatial correlation,

Seasholes and Zhu (2005) who use the same dataset as Ivkovic and Weisbenner (2005) employ

the CalTime approach to investigate whether or not there is information in the local portfolio

choices of private investors. By performing a “back-of-the-envelope calculation”, Seasholes

and Zhu find that their standard error estimates are approximately six times larger than those

of Ivkovic and Weisbenner (2005) who estimate cross-sectional regressions. As a result, they
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conclude “that living near a company does not endow an investor with value-relevant informa-

tion.”

But is cross-sectional dependence really an issue? In order to address this question, we

want to investigate the following hypothesis:

H5a Swiss residents’ investments in Swiss stocks outperform those of non-Swiss residents.

H5b However, this holds true if and only if one does not account for cross-sectional depen-

dence in the data.

In order to test Hypothesis 5, we estimate several variants of regression (21). In doing so we use

the investors’ monthly gross excess return (ygr
h,t) as the dependent variable and specify vector

zht as zht = [1 Swissh WCHFht SWCht]. Here, Swissh is a dummy variable which is 1 for

Swiss residents and zero otherwise and WCHFht refers to the beginning-of-month t weight of

Swiss stocks in the portfolio of investor h. If Hypothesis 5 is appropriate, then the coefficient

estimate for the interaction variable SWCht = Swissh ∗ WCHFht should be positive (H5a).

Moreover, if regression (21) is estimated with OLS or panel-robust standard errors, then the

coefficient estimate for variable SWCht should be significantly different from zero. In contrast,

estimating regression (21) with Driscoll and Kraay (1998) standard errors should result in an

insignificant coefficient estimate for variable SWCht (H5b).

As can be seen from the first three columns of Table VI, the investors in our database fully

support Hypothesis 5. Besides being positive, the coefficient estimate for variable SWCht is

highly significant when cross-sectional dependence is ignored (columns “OLS” and “A87”).20

However, as postulated by hypothesis H5b, the coefficient estimate for SWCht indeed becomes

insignificant when cross-sectional correlation is accounted for (column “DK98”). Put differ-

ently, by allowing for cross-sectional dependence we do not find evidence for an information

advantage of Swiss residents compared to foreigners when investing in Swiss stocks.

Interestingly, cross-sectional dependence does not inflate all t-stats by the same amount.

From Table VI, columns “A87” and “DK98”, we can see that the panel robust t-value for vari-
20Note that estimating regression (21) with panel robust standard errors essentially replicates the results of the

CrossReg approach. See Section 2.4 for details.
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able SWCht in column “A87” is “only” two and a half times as large as the cross-sectional

dependence consistent t-value in column DK98. In contrast, the panel robust t-value for vari-

able WCHFht is almost five times larger than the corresponding Driscoll-Kraay t-stat.

In the last three columns of Table VI, we present the results from a joint test of hypotheses

H1 through H5. Augmenting vector zht with the investor characteristics considered in Section

4.3 does not significantly impact on the coefficient estimates and t-stats for the variables of

Hypothesis 5. In particular, we find that the coefficient estimate for the interaction term SWCht

is again positive and highly significant when cross-sectional dependence is ignored. However,

when cross-sectional correlation is accounted for, then the respective coefficient estimate be-

comes insignificant. Like before, we find that the t-values of columns “OLS” and “A87” are up

to five times higher than the spatial correlation consistent t-values in column “DK98”. Thus,

we conclude that erroneously ignoring cross-sectional dependence inherent in the data can lead

to severely biased statistical results.

5 Conclusion

In this paper, we present a generalization of the calendar time portfolio approach which can

easily be implemented in empirical studies. Our methodology is based on the estimation of a

linear regression model on the investor or firm level. Therefore, it is straightforward to include

continuous and multivariate investor or firm characteristics in the analysis. We show both the-

oretically and empirically that our “GCT-regression model” is capable to perfectly reproduce

the results of the CalTime approach. Furthermore, since it relies on the nonparametric covari-

ance matrix estimator of Driscoll and Kraay (1998), the GCT-regression model assures that its

statistical results are heteroscedasticity consistent and robust to very general forms of temporal

and cross-sectional dependence.

The GCT-regression model resolves or at least mitigates several weaknesses of the calendar

time portfolio methodology. For example, Loughran and Ritter (2000, p. 363) argue against the

CalTime approach since it has low power to identify market anomalies. The reason for this is,
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that “in general, tests that weight firms equally should have more power than tests that weight

each time period equally.” By estimating the GCT-regression model with ordinary least squares

(OLS), all observations are equally weighted. As a result, the GCT-regression model provides

an elegant way to remedy the critique of Loughran and Ritter (2000).

Moreover, Lyon, Barber, and Tsai (1999, p. 198) report that the calendar time portfolio

approach is susceptible to produce misspecified test statistics in nonrandom samples. Their

explanation for this finding is that although it is possible “to control for many sources of mis-

specification, ultimately, the misspecification that remains can be attributed to the inability of

firm size and book-to-market ratio to capture all of the misspecification of the Capital Asset

Pricing Model.” Because of its capability to handle continuous and multivariate investor or

firm characteristics, the GCT-regression model establishes a potential solution to this misspec-

ification issue. Specifically, to assure that the test statistics in a nonrandom sample are well-

specified, a researcher might want to include certain investor or firm specific control variables

in the GCT-regression model.

Our analysis also reveals that the CrossReg approach is at risk of producing seriously bi-

ased statistical results when it is used to analyze microeconometric panel data. The reason

for this deficiency of the CrossReg methodology is its incapability to estimate spatial correla-

tion consistent standard errors. In the empirical part of the paper we investigate by how much

cross-sectional dependence impacts on the statistical results. Analyzing a new, unique dataset

on 41,719 individual investors at a respectable European wholesale bank from March 2000

through June 2005, we find that t-values that are based on the assumption of cross-sectional

independence are often three and more times higher than t-values that are based on Driscoll-

Kraay standard errors (which are spatial correlation consistent). Therefore, we conclude that

cross-sectional dependence indeed can have severe consequences for the statistical results.

Our message is therefore clear. When analyzing microeconometric panel data, we strongly

recommend not to use the CrossReg approach but rather to rely on a technique which explicitly

accounts for likely cross-sectional dependence in the data. In this paper, we discuss two such

methodologies: The traditional CalTime approach and the GCT-regression model.
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Appendix A Proof of Propositions 1 through 3

A.1 Proof of Proposition 1

A.1.1 Part 1

The dependent variable in regression model (3) is ∆yt = Rwt − Rmt = ywt − ymt which by

using matrix algebra can be computed as

∆yt = y′
tZ (Z′Z)

−1
e2 =

[
ymt ∆yt

]
e2 (A-1)

with Z′ =

 1 1 1 · · · 1

z
(w)
1 z

(w)
2 z

(w)
3 · · · z

(w)
N

 =

 ι′N

z′w

 ,

y′
t =

[
y1t · · · yNt

]
, and

e′2 =
[

0 1
]

z′w is a dummy variable which is 1 if investor h belongs to group j = w and zero otherwise.

The second step of the CalTime procedure then estimates the k-factor regression model in (3)

by OLS. This yields the following coefficient estimates

β̂∆ = (X′X)
−1

X′


∆y1

...

∆yT

 = (X′X)
−1

X′


y′

1Z (Z′Z)−1 e2

...

y′
TZ (Z′Z)−1 e2



= (X′X)
−1

X′


y′

1

...

y′
T

Z (Z′Z)
−1

e2

= (X′X)
−1

X′
[

γ1 γ2 · · · γN

]
Z (Z′Z)

−1
e2

= (X′X)
−1

X′YZ (Z′Z)
−1

e2 (A-2)
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where γh =
[

yh1 yh2 · · · yhT

]′
. Now, we turn to the panel regression model in (4) which

we write in matrix notation as follows:



y11

y12

...

y1T

y21

...

yNT


=



1 x11 · · · xk1z
(w)
1

1 x12 · · · xk2z
(w)
1

...
... . . . ...

1 x1T · · · xkT z
(w)
1

1 x11 · · · xk1z
(w)
2

...
... . . . ...

1 x1T · · · xkT z
(w)
N





d0,0

d0,1

...

d0,k

d1,0

...

d1,k


+



v11

v12

...

v1T

v21

...

vNT


or more briefly:

vec(Y) =


γ1

γ2

...

γN


= (Z⊗X)d + v (A-3)

Here, (Z⊗X) denotes the Kronecker product of matrix Z with matrix X. Estimating (A-

3) with OLS and applying the calculus rules for the Kronecker product yields the following

coefficient estimates for d:

d̂ =
(
(Z⊗X)′ (Z⊗X)

)−1
(Z⊗X)′ vec (Y)

= ((Z′ ⊗X′) (Z⊗X))
−1

(Z⊗X)′ vec (Y)

= (Z′Z⊗X′X)
−1

(Z′ ⊗X′) vec (Y)

=
(
(Z′Z)

−1 ⊗ (X′X)
−1

)
(Z′ ⊗X′) vec (Y)

=
(
(Z′Z)

−1
Z′ ⊗ (X′X)

−1
X′

)
vec (Y) (A-4)

Next, we use this well-known Lemma from linear algebra (e.g. see Sydsaeter, Strom, and Berck

(2000, p. 146)):

Lemma 2 For any three matrices A ∈ Rr,r, B ∈ Rr,s, and C ∈ Rs,s it holds true that
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vec(ABC) = (C′ ⊗A) vec(B).

and rewrite expression (A-4) as

d̃ =


d̂0,0 d̂1,0

...
...

d̂0,k d̂1,k

 = (X′X)
−1

X′
[

γ1 γ2 · · · γN

] (
(Z′Z)

−1
Z′

)′

= (X′X)
−1

X′YZ (Z′Z)
−1 (A-5)

Finally, note that the first part of Proposition 1 states that the coefficient estimates from regres-

sion model (3) coincide with the coefficient estimates for d1,s in (4). Therefore, we are only

interested in the second column of matrix d̃ in (A-5). To obtain the second column of matrix d̃

we have to post-multiply (A-5) with e2 = [0 1]′. The resulting expression is identical to (A-2)

which completes the proof. �

A.1.2 Part 2

In order to obtain ymt, we have to post multiply (A-1) by e1 = [1 0]′ rather than by e2 = [0 1]′.

Hence, estimating the the k-factor regression model in (2) produces the following coefficient

estimates for βm:

β̂m = (X′X)
−1

X′YZ (Z′Z)
−1

e1 (A-6)

Next, we consider that the second part of Proposition 1 states that the coefficient estimates from

regression model (2) coincide with the coefficient estimates for d0,s in (4). Therefore, we only

need the first column of matrix d̃ in (A-5). To obtain the respective column, we post-multiply

(A-5) with e1. The resulting expression is identical to (A-6) which completes the proof. �
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A.2 Proof of Proposition 2

A.2.1 Part 1

The formula for computing the Newey and West (1987) covariance matrix with lag length H

for the regression model in equation (3) is

V ∗
{

β̂∆

}
= (X′X)

−1
ŜT (X′X)

−1

with ŜT =
T∑

t=1

ε̂2
∆tx

′
txt +

H∑
j=1

wj,H

T∑
q=j+1

(
ε̂∆qε̂∆q−j

(
x′

qxq−j + x′
q−jxq

))
(A-7)

where xt = [1 x1t ... xkt] is a (k + 1)-dimensional row vector. The modified Bartlett weights

wj,H = 1 − j/(H + 1) ensure positive semi-definiteness of ŜT and smooth the sample auto-

covariance function such that higher order lags receive less weight. Using Corollary 1 we can

rewrite residual ε̂∆q in (A-7) as

ε̂∆q = N−1
w

Nw∑
h=1

ε̂hwq −N−1
m

Nm∑
h=1

ε̂hmq ≡ N−1
w Wq −N−1

m Mq (A-8)

ε̂hjq denotes the period q residual of investor h from group j where the coefficient estimates β̂js

(s = 0, 1, ..., k) are obtained from estimating regression (2) for group j. Wq and Mq refer to

the period q sum of the ε̂hjt for group j = w and j = m, respectively. Replacing ε̂∆q in (A-7)

by the corresponding term from (A-8) yields

ŜT =
T∑

t=1

(
N−1

w Wt −N−1
m Mt

)2
x′

txt (A-9)

+
H∑
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wj,H

T∑
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w Wq −N−1
m Mq

) (
N−1

w Wq−j −N−1
m Mq−j

) (
x′

qxq−j + x′
q−jxq

))
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Next, we turn to the Driscoll and Kraay (1998) covariance matrix estimator for the pooled OLS

regression model in (4). For H lags, it has the following structure:

Ṽ
{
d̂
}

=
(
(Z⊗X)′ (Z⊗X)

)−1
S̃T

(
(Z⊗X)′ (Z⊗X)

)−1

with S̃T = Ω̂0 +
H∑

j=1

wj,H

(
Ω̂j + Ω̂′

j

)
, (A-10)
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q=j+1
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d̂
)
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q−j

(
d̂
)

, and hq

(
d̂
)

= (Z⊗ xq)
′ vq

Matrix (Z⊗X) has been defined in expression (A-3) above. By using the period q row vector

xq = [1 x1q ... xkq] which contains a constant and all the market level variables, we can rewrite

the (2k + 2) moment conditions hq(d̂) as

hq

(
d̂
)

= (Z⊗ xq)
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Next, we define Tq = Wq + Mq and consider the ((2k + 2)× (2k + 2)) matrix Ω̂j:

Ω̂j =
T∑

q=j+1

hq

(
d̂
)
h′

q−j

(
d̂
)

=
T∑

q=j+1

 x′
q x′
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=
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 (A-12)

As a result, matrix S̃T in (A-10) can be written in block form as follows:

S̃T =

 Λ1 Λ2

Λ3 Λ4

 (A-13)

where
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q=j+1 TqTq−j

(
x′

qxq−j + x′
q−jxq

)
Λ2 =

∑T
t=1 TtWtx

′
txt +

∑H
j=1 wj,H

∑T
q=j+1

(
TqWq−jx

′
qxq−j + Tq−jWqx

′
q−jxq

)
Λ3 =

∑T
t=1 TtWtx

′
txt +

∑H
j=1 wj,H

∑T
q=j+1

(
WqTq−jx

′
qxq−j + Wq−jTqx

′
q−jxq

)
Λ4 =

∑T
t=1 W 2

t x′
txt +

∑H
j=1 wj,H

∑T
q=j+1 WqWq−j

(
x′

qxq−j + x′
q−jxq

)

Next, we rewrite matrix
(
(Z⊗X)′ (Z⊗X)

)−1
= (Z′Z)−1 ⊗ (X′X)−1 as

(Z′Z)
−1 ⊗ (X′X)

−1
=

 N−1
m −N−1

m

−N−1
m N−1

w + N−1
m

⊗ (X′X)
−1

=

 N−1
m (X′X)−1 −N−1

m (X′X)−1

−N−1
m (X′X)−1 (N−1

w + N−1
m ) (X′X)−1

 (A-14)
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and insert (A-14) into the Driscoll and Kraay (1998) estimator of (A-10) to obtain

Ṽ
{
d̂
}

=
(
(Z′Z)

−1 ⊗ (X′X)
−1

)
S̃T

(
(Z′Z)

−1 ⊗ (X′X)
−1

)

=

 Θ1 Θ2

Θ3 Θ4

 (A-15)

where
Θ1 = N−2

m (X′X)−1 (Λ1 − Λ2 − Λ3 + Λ4) (X′X)−1

Θ2 = N−1
m N−1

w (X′X)−1 (Λ2 − Λ4) (X′X)−1 −Θ1

Θ3 = N−1
m N−1

w (X′X)−1 (Λ3 − Λ4) (X′X)−1 −Θ1

Θ4 = N−2
w (X′X)−1Λ4(X

′X)−1 −Θ1 −Θ2 −Θ3

To complete the proof of the first part of Proposition 2, we therefore have to show that Θ4

in the Driscoll-Kraay covariance matrix Ṽ
{
d̂
}

from (A-15) coincides with the Newey-West

estimator V ∗
{

β̂∆

}
in (A-7). Thus, we simplify the Λ terms in (A-15) as follows

Λ1 − Λ2 − Λ3 + Λ4 =
∑T

t=1 M2
t x

′
txt +

∑H
j=1 wj,H

∑T
q=j+1 MqMq−j

(
x′

qxq−j + x′
q−jxq

)

Λ2 − Λ4 =
∑T

t=1 (MtWt)x
′
txt +

∑H
j=1 wj,H

∑T
q=j+1

(
(MqWq−j)x

′
qxq−j + (Mq−jWq)x

′
q−jxq

)

Λ3 − Λ4 =
∑T

t=1 (WtMt)x
′
txt +

∑H
j=1 wj,H

∑T
q=j+1

(
(WqMq−j)x

′
qxq−j + (Wq−jMq)x

′
q−jxq

)
and insert the resulting expressions into Θ4 from (A-15) to finally obtain

Θ4 = (X′X)
−1

Q̃T (X′X)
−1
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with

Q̃T =
T∑

t=1

(
N−1

w Wt −N−1
m Mt

)2
x′

txt (A-16)

+
H∑

j=1

wj,H

T∑
q=j+1

((
N−1

w Wq −N−1
m Mq

) (
N−1

w Wq−j −N−1
m Mq−j

)) (
x′

qxq−j + x′
q−jxq

)

Since Q̃T in (A-16) and ŜT in (A-9) are identical, this completes the proof. �

A.2.2 Part 2

To prove the second part of Proposition 2, we have to show that Θ1 from (A-15) is identical to

the Newey-West covariance matrix

V ∗
{

β̂∆

}
= (X′X)

−1
Ŝm

T (X′X)
−1

with Ŝm
T =

T∑
t=1

N−2
m M2

t x
′
txt (A-17)

+
H∑

j=1

wj,H

T∑
q=j+1

(
N−2

m MqMq−j

(
x′

qxq−j + x′
q−jxq

))
for the coefficient estimates of the men’s portfolio in regression (2). By replacing Λ1 − Λ2 −

Λ3 +Λ4 with the corresponding term derived above, we obtain the following expression for Θ1:

Θ1 = (X′X)
−1

Q̃m
T (X′X)

−1

with Q̃m
T =

∑T

t=1
N−2

m M2
t x

′
txt (A-18)

+
∑H−1

j=1
wj,H

∑T

q=j+1
N−2

m MqMq−j

(
x′

qxq−j + x′
q−jxq

)
Since Q̃m

T in (A-18) and Ŝm
T in (A-17) are identical, this completes the proof. �
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A.3 Proof of Proposition 3

Let s be fixed to s = s̃ ∈ {0, ..., k}. Then it follows from (A-5) that for the generalized CalTime

regression model in (GCT) vector d̂′
s̃ =

[
d̂0,s̃ · · · d̂m,s̃

]
which contains the coefficient

estimates for dq,s̃ is given by

d̂s̃ =


d̂0,s̃

...

d̂m,s̃

 =


d̂0,0 · · · d̂m,0

... . . . ...

d̂0,k · · · d̂m,k


′



0

...

1

...

0


= (Z′Z)

−1
Z′Y′X (X′X)

−1
e(s̃+1) (A-19)

Here, e(s̃+1) is a (m + 1) × 1 vector whose (s̃ + 1)-th element is equal to one and all other

elements are zero.

Next, we turn to the CrossReg methodology. Estimating the first step regression for investor

h by OLS yields the following coefficient estimates:

β̂h =


β̂0,h

β̂1,h

...

β̂k,h


= (X′X)

−1
X′γh (A-20)

where γ′
h =

[
yh1 yh2 · · · yhT

]
. Stacking the transpose of all N OLS coefficient vectors

from (A-20) produces


β̂0,1 β̂1,1 · · · β̂k,1

β̂0,2 β̂1,2 · · · β̂k,2

...
... . . . ...

β̂0,N β̂1,N · · · β̂k,N


=


γ′

1

γ′
2

...

γ′
N


X (X′X)

−1
= Y′X (X′X)

−1 (A-21)
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Thus, we obtain the dependent variable for the second step regression of the CrossReg approach

by post-multiplying (A-21) with e(s̃+1). Therefore, the OLS coefficient vector cs̃ from the

second step regression β̂s̃ = Zcs̃ + ws̃ of the CrossReg methodology results to be given by

ĉs̃ =


ĉ0,s̃

ĉ1,s̃

...

ĉm,s̃


= (Z′Z)

−1
Z′Y′X (X′X)

−1
e(s̃+1) ≡ d̂s̃ (A-22)

Since expression (A-22) is identical to (A-19) for each s̃ ∈ {0, ..., k}, this completes the proof.

�
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Table I
Description of the investor database

The investor database contains 41’719 investors at a renowned European wholesale bank from March 2000 to June
2005. Most accounts for whom the sex of the account holder is unknown (n.a.) in fact belong to the inheritors
of an investor who died. The number of balanced bank relationships is the number of accounts that have been
terminated either because an investor decided to move her money to another bank or because the bank wealth of
an investor who died during the sample period was distributed amongst her inheritors. The number of new bank
relationships lists the number of investors who did not maintain an account at the bank prior to March 2000 but
who established an account at the bank between March 2000 and December 2003. The portfolio turnover is the
average of the buy and the sell turnover. The buy (sell) turnover in month t is defined as the beginning-of-month
t market value of the shares purchased in month t − 1 (sold in month t) divided by the total market value of the
investor’s stock portfolio at the beginning of month t.

Panel A. Counts

Men Women n.a. All

# of investors in the database 22,402 18,730 587 41,719
# of balanced bank relationships 2,822 2,431 117 5,370
# new bank relationships 2,055 1,661 22 3,738
# investors who died 1,608 1,537 563 3,708
# investors with online banking transactions 1,443 438 11 1,892

# of investors below 45 3,679 2,069 2 5,750
grouped by age 45 to 59 5,453 3,716 18 9,187
(in 2005) 60 to 74 8,010 5,839 92 13,941

75 and above 5,253 7,099 474 12,826
n.a. 7 7 1 15

Panel B. Value, Turnover, and Trade Size of investors with position holdings in common stocks

Men Women n.a. All

# investors with end-of-month positions in stocks 7,140 4,200 165 11,505

Stock portfolio Mean value (CHF) 147,620 118,615 260,612 138,971
Median value (CHF) 46,596 43,525 59,508 45,660
Mean # of stock holdings 4.29 3.48 3.45 3.98
Median # of stock holdings 2.82 2.18 2.58 2.60
Mean portfolio turnover p.m. (%) 3.40 2.80 2.07 3.16
Median portfolio turnover p.m. (%) 1.33 0.94 0.96 1.18

All stock trades # investors with stock trades 6,114 3,334 138 9,586
# transactions 105,302 37,199 1,471 143,972
Mean value of stock trades (CHF) 26,727 26,531 37,813 26,790
Med. value of stock trades (CHF) 13,597 15,574 17,325 14,150

Stock purchases # investors with stock purchases 4,803 2,205 80 7,088
# transactions 54,976 17,552 570 73,098
Mean value of stock buys (CHF) 24,293 23,773 35,903 24,259
Median value of stock buys (CHF) 12,768 14,686 17,760 13,300

Stock sales # investors with stock sales 5,326 2,944 132 8,402
# transactions 50,326 19,647 901 70,874
Mean value of stock sales (CHF) 29,386 28,994 39,021 29,400
Median value of stock sales (CHF) 14,660 16,700 16,868 15,225
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Table II

The weight of CHF denominated stocks in the portfolios
The table measures the weight of CHF denominated stocks in the portfolios of the investors. The data set consists of 11,340 private investors with stock holdings between
March 2000 and June 2005. Summary statistics are presented for the average weight of Swiss stocks in the investors’ stock portfolio during the sample period. Columns
labeled p50 refer to the median value. * indicates statistical significance at the 1 percent level.

Men Women Men minus Women All

N mean p50 N mean p50 N mean p50 N mean p50

Swiss domiciled investors 5,617 78.3 98.2 3,377 85.0 100.0 2,240 -6.7* -1.8* 8,994 80.8 100.0
Non-Swiss domiciled investors 1,523 46.8 44.3 823 56.0 61.1 700 -9.2* -16.8* 2,346 50.0 51.2
Swiss citizens 5,376 79.0 98.7 3,355 85.0 100.0 2,021 -6.0* -1.3* 8,731 81.3 100.0
Non-Swiss citizens 1,764 48.8 48.3 845 56.9 62.9 919 -8.1* -14.6* 2,609 51.4 53.2
Swiss domicile and citizenship 5,270 79.2 98.8 3,257 85.4 100.0 2,013 -6.2* -1.2* 8,527 81.5 100.0
Non-Swiss domicile and citizenship 1,417 44.8 40.4 725 53.8 55.9 692 -9.0* -15.5* 2,142 47.8 46.6

All investors 7,140 71.6 91.3 4,200 79.3 100.0 2,940 -7.8* -8.7* 11,340 74.5 97.046



Table III

An empirical examination of Propositions 1 through 3
This table reports the coefficient estimates and t-values (in parentheses) for three different techniques of how
to evaluate the performance of private investors. All results are based on a balanced panel of 4,156 private
investors with a complete history of end-of-month stock holdings at a renowned European wholesale bank from
March 2000 to June 2005. Columns labeled with “CalTime” present the results for the calender time portfolio
methodology. The dependent variable is the net return of a zero-investment portfolio which is long (short) in the
aggregated stock portfolio of all female (male) investors. For ease of comparison with the results of the pooled
OLS regression models in the columns labeled with “POLS”, the coefficient estimates and t-values of the time-
series regression of the calendar time portfolio approach are presented in the rows of the interaction terms (e.g.
SPI*Woman) rather than in the rows of the actual variables (e.g. SPI). The dependent variable in the pooled OLS
regression models (Method=“POLS”) is the individual investors’ monthly net excess return. Finally, the column
labeled OLS contains the coefficient estimates of a cross-sectional regression. Here, the dependent variable is
an investor specific ‘alpha’ from a Fama and French (1993) like performance measurement model which has
independently been estimated for each single investor. The explanatory variables are the monthly excess return of
the Swiss Performance Index (SPI), the monthly excess return of the MSCI World index (World) orthogonalized by
SPI, the return of a zero-investment book-to-market portfolio (HML), the return of a zero-investment size portfolio
(SMB), a dummy variable being one if an investor is female (Woman), and all interactions between the Woman
dummy and the aforementioned factor variables. The t-values of the various models are based on the following
covariance matrix estimators (SE type): OLS are OLS standard errors, NW87 and NW87a refer to Newey and West
(1987) standard errors with and without degree-of-freedom correction, DK98 stands for Driscoll and Kraay (1998)
standard errors, A87 denotes clustered or panel robust standard errors, and W80 are White (1980) standard errors.
***,**, and * indicate significance at the 1, 5, and 10 percent levels.

Method CalTime CalTime CalTime POLS POLS OLS
SE type OLS NW87 NW87a DK98 A87 W80

SPI*Woman -0.046*** -0.046*** -0.046*** -0.046*** -0.046***
(-3.499) (-5.174) (-5.389) (-5.389) (-4.346)

World*Woman -0.139*** -0.139*** -0.139*** -0.139*** -0.139***
(-9.966) (-9.748) (-10.152) (-10.152) (-7.855)

HML*Woman -0.034*** -0.034*** -0.034*** -0.034*** -0.034***
(-3.774) (-3.534) (-3.681) (-3.681) (-3.716)

SMB*Woman -0.074*** -0.074*** -0.074*** -0.074*** -0.074***
(-5.235) (-4.746) (-4.943) (-4.943) (-5.778)

SPI 1.065*** 1.065***
(44.641) (165.306)

World 0.446*** 0.446***
(13.186) (38.565)

HML 0.145*** 0.145***
(6.232) (26.291)

SMB 0.040 0.040***
(1.447) (4.733)

Woman 0.089** 0.089* 0.089** 0.089** 0.089*** 0.089***
(2.203) (1.941) (2.021) (2.021) (4.347) (4.347)

Constant -0.050 -0.050*** -0.050***
(-0.386) (-3.625) (-3.625)

# obs. 64 64 64 265,984 265,984 4,156
# clusters 4,156 4,156
R2 0.837 0.837 0.837 0.468 0.468 0.004
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Table IV

A regression-based replication of the traditional calendar time portfolio
approach for unbalanced panels

This table reports the coefficient estimates and t-values (in parentheses) for two techniques of how to evaluate the
performance of private investors. All results are based on an unbalanced panel of 11,340 private investors with
end-of-month stock holdings at a renowned European wholesale bank from March 2000 to June 2005. Columns
labeled with “CalTime” present the results for the traditional calendar time portfolio methodology. The dependent
variable in the time-series regression of the first “CalTime” column is the net excess return of a zero-investment
portfolio which is long (short) in the aggregated stock portfolio of all female (male) investors. In the second col-
umn which is labeled with “CalTime”, the dependent variable is the net excess return of the aggregated portfolio
of all male investors’ stock-holdings. The dependent variable in the pooled OLS (“POLS”) and pooled WLS
(“PWLS”) regression models is the monthly net excess return of the individual investors. In contrast to the pooled
OLS regression where all observations are equally weighted, observation weights for the pooled WLS regressions
are set equal to the reciprocal value of the number of women (men) with stock holdings in month t. The explana-
tory variables in the regressions are the monthly excess return of the Swiss Performance Index (SPI), the monthly
excess return of the MSCI World index (World) orthogonalized by SPI, the return of a zero-investment book-to-
market portfolio (HML), the return of a zero-investment size portfolio (SMB), a dummy variable being one if an
investor is female (Woman), and all interactions between the Woman dummy and the aforementioned factor vari-
ables. The t-values of the various models are based on the following covariance matrix estimation techniques (SE
type): NW87a refers to Newey and West (1987) standard errors (without degree-of-freedom correction), DK98
stands for Driscoll and Kraay (1998) standard errors, and A87 denotes clustered or panel robust standard errors.
***,**, and * indicate significance at the 1, 5, and 10 percent levels.

Method CalTime CalTime PWLS POLS PWLS
SE type NW87a NW87a DK98 DK98 A87

SPI*Woman -0.0344*** -0.0344*** -0.0343*** -0.0344***
(-3.1144) (-3.1144) (-3.1184) (-4.0055)

World*Woman -0.1482*** -0.1482*** -0.1491*** -0.1482***
(-10.7340) (-10.7340) (-10.9954) (-9.9839)

HML*Woman -0.0197** -0.0197** -0.0192** -0.0197**
(-2.2248) (-2.2248) (-2.2340) (-2.1603)

SMB*Woman -0.0645*** -0.0645*** -0.0651*** -0.0645***
(-4.0060) (-4.0060) (-3.9909) (-5.3169)

SPI 1.1046*** 1.1046*** 1.1062*** 1.1046***
(34.2870) (34.2870) (34.6479) (209.5631)

World 0.4957*** 0.4957*** 0.4953*** 0.4957***
(11.0740) (11.0740) (10.9755) (51.1123)

HML 0.2311*** 0.2311*** 0.2328*** 0.2311***
(6.3507) (6.3507) (6.4337) (42.6989)

SMB 0.0261 0.0261 0.0256 0.0261***
(0.7697) (0.7697) (0.7537) (3.4773)

Woman 0.0946** 0.0946** 0.0878* 0.0946***
(2.0644) (2.0644) (1.9379) (3.9098)

Constant -0.0892 -0.0892 -0.0707 -0.0892***
(-0.5599) (-0.5599) (-0.4590) (-5.7045)

# obs. 64 64 539,879 539,879 539,879
# clusters 11,340 11,340 11,340
R2 0.777 0.972 0.350 0.354 0.350
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Table V

What determines the performance of private investors?
This table reports the coefficient estimates and t-values (in parentheses) from pooled OLS regressions with Driscoll-Kraay standard errors. The standard error estimates
are heteroscedasticity consistent and robust to both cross-sectional dependence and autocorrelation up to three lags, respectively. The sample consists of 11,340 private
investors with end-of-month stock holdings at a renowned European wholesale bank from March 2000 through June 2005. In the regressions, the investors’ monthly
gross excess return (ygr

h,t) or their net excess return (ynet
h,t ) is the dependent variable and the explanatory variables are obtained by aid of a Kronecker expansion between

the factors of a Fama and French (1993) like performance measurement model and a set of investor characteristics (see Section 2.3 for details). The factors of the
performance measurement model are the excess return of the Swiss Performance Index (SPI), the excess return of the MSCI World index orthogonalized by the SPI,
the return of a zero-investment book-to-market portfolio (HML), and the return of a zero-investment size portfolio (SMB). The investor characteristics considered are
the monthly stock turnover (Stock turnover p.m.), a dummy variable being one for women (Woman), a dummy variable being one for investors who trade stocks over
an online banking account (Online investor), the beginning-of-month t number of stocks in the investors’ portfolio (# stock holdings), and the natural logarithm of the
beginning-of-month t stock portfolio value in CHF (ln(stock wealth)). For brevity, the table only presents the results for the investor characteristics (which are contained
in vector zht of regression (21)). ***, **, and * indicate significance at the 1, 5, and 10 percent levels.

Hypothesis H1a H1b H2a H2b H3 H3 H4a H4a H4b H4b All All
Dependent variable ygr

h,t ynet
h,t ynet

h,t ynet
h,t ygr

h,t ynet
h,t ygr

h,t ynet
h,t ygr

h,t ynet
h,t ygr

h,t ynet
h,t

Stock turnover p.m. -0.373 -3.693** -3.608** 0.153 -3.164*
(-0.198) (-2.039) (-1.998) (0.081) (-1.758)

Woman 0.088* 0.066 0.034 0.039
-1.938 (1.528) (0.804) (0.923)

Online investor -0.194*** -0.271*** -0.164*** -0.163***
(-2.649) (-3.661) (-3.170) (-3.035)

# stock holdings -0.019** -0.020** -0.015 -0.018 -0.017* -0.017*
(-2.131) (-2.303) (-1.168) (-1.363) (-1.760) (-1.751)

ln(stock wealth) -0.015 -0.009
(-0.180) (-0.111)

Constant 0.038 0.031 -0.071 0.006 0.058 -0.000 0.107 0.044 0.197 0.077 0.109 0.099
(0.317) (0.256) (-0.459) (0.047) (0.436) (-0.001) (0.654) (0.267) (0.215) (0.084) (0.703) (0.636)

# obs. 539,879 539,879 539,879 539,879 539,879 539,879 539,879 539,879 539,879 539,879 539,879 539,879
# clusters 11,340 11,340 11,340 11,340 11,340 11,340 11,340 11,340 11,340 11,340 11,340 11,340
R2 0.356 0.356 0.354 0.357 0.355 0.355 0.354 0.354 0.363 0.363 0.359 0.359
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Table VI

Do CHF denominated stockholdings of Swiss residents outperform those
of non-Swiss residents?

This table reports the coefficient estimates and t-values (in parentheses) from pooled OLS regressions on the
investor level. The sample consists of 11,340 private investors with end-of-month stock holdings at a renowned
European wholesale bank from March 2000 through June 2005. The regression specification is as follows:

ygr
h,t = (zht ⊗ xt)d + vht

where the dependent variable (ygr
h,t) is the investors’ monthly gross excess return, vector xt contains the factors of

a Fama and French (1993) like performance measurement model, vector zht includes a set of investor characteris-
tics, and vector d includes the regression coefficients. The factors of the performance measurement model are the
excess return of the Swiss Performance Index (SPI), the excess return of the MSCI World index orthogonalized
by the SPI, the return of a zero-investment book-to-market portfolio (HML), and the return of a zero-investment
size portfolio (SMB). The investor characteristics considered are a dummy variable which is 1 for Swiss residents
(Swiss), the investors’ beginning-of-month t portfolio weight of Swiss stocks (WCHF), an interaction term be-
tween the Swiss dummy and variable WCHF (Swiss*WCHF), the monthly stock turnover (Stock turnover p.m.),
a dummy variable being one for women (Woman), a dummy variable being one for investors who trade stocks
over an online banking account (Online investor), and the beginning-of-month t number of stocks in the investors’
portfolio (# stock holdings). The t-values of the regressions rely on the following covariance matrix estimators
(SE type): OLS are OLS standard errors, A87 refers to clustered or panel robust standard errors, and DK98 stands
for Driscoll and Kraay (1998) standard errors. For brevity, the table only presents the results for the investor
characteristics (which are contained in vector zht). *** and ** indicate significance at the 1 and 5 percent levels.

Test of Hypothesis 5 Hypotheses 1 through 5

SE type OLS A87 DK98 OLS A87 DK98

Swiss -0.1733*** -0.1733** -0.1733 -0.1290** -0.1290 -0.1290
(-3.2634) (-2.2253) (-1.0947) (-2.4183) (-1.6447) (-0.8343)

WCHF 0.3027*** 0.3027*** 0.3027 0.2977*** 0.2977*** 0.2977
(4.9155) (5.1647) (1.0597) (4.8344) (5.0743) (1.0396)

Swiss*WCHF 0.2247*** 0.2247** 0.2247 0.1853** 0.1853** 0.1853
(3.0569) (2.4546) (1.1134) (2.5253) (2.0196) (0.9322)

Stock turnover p.m. 0.4413 0.4413 0.4413
(1.3122) (0.6020) (0.2327)

Woman 0.0096 0.0096 0.0096
(0.3954) (0.4115) (0.2798)

Online investor -0.1394*** -0.1394*** -0.1394***
(-4.1393) (-3.4633) (-3.2500)

# stock holdings -0.0121*** -0.0121*** -0.0121
(-4.9872) (-5.4726) (-1.3002)

Constant -0.1959*** -0.1959*** -0.1959 -0.1430*** -0.1430*** -0.1430
(-4.8810) (-4.4420) (-0.7273) (-3.2842) (-2.8690) (-0.5073)

# obs. 539,879 539,879 539,879 539,879 539,879 539,879
# clusters 11,340 11,340 11,340 11,340 11,340 11,340
R2 0.376 0.376 0.376 0.380 0.380 0.380
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Figure 1. The relationship between age, sex, and financial wealth.

The figure displays box plots of the investors’ average account value in CHF 1,000 grouped by age (in year 2005),
sex, and whether or not they hold common stocks. The sample period is from March 2000 through June 2005.
“m” and “f” denote male and female investors, respectively. Investors with (without) position holdings in common
stocks are labeled by “S” (“NS”). The middle line in the box plots depicts the median account value of the investor
groups and the lower (upper) border line of the boxes show the lower (upper) quartiles of the investor groups’
bank wealth.
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