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SPECIFYING NODES AS SETS OF CHOICES

Peter A. Streufert
Department of Economics

University of Western Ontario

Abstract. Osborne and Rubinstein (1994) specify each node in
a game tree as a sequence of actions. It is well-known that such ac-
tions can be replaced by choices (i.e. agent-specific actions) without
loss of generality.

I find that this sequential formulation is redundant in the sense
that nodes can be equivalently specified as sets of choices. The
only cost of doing so is to rule out absent-mindedness. My analy-
sis encompasses both ordered and unordered information sets and
both finite and infinite horizons. (This specification of nodes as
sets of choices differs from the literature’s specification of nodes as
sets of outcomes.)

1. Introduction

1.1. Motivation

Osborne and Rubinstein (1994) specify each node in a game tree by

the sequence of actions leading to it. For simplicity, assume that each

agent (i.e. information set) has its own actions, and let these agent-

specific actions be called choices. It is well-known that this entails no

loss of generality.

This paper introduces and justifies the idea of formulating each node

as a set of choices rather than a sequence of choices. This differs from

Date: September 6, 2015. Keywords: extensive form, game form. JEL Classi-
fication: C72. Contact information: pstreuf@uwo.ca, 519-661-2111x85384, Depart-
ment of Economics, University of Western Ontario, London, Ontario, N6A 5C2,
Canada.
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ence participants at the Midwest Economic Theory meetings in Bloomington, the
Canadian Economic Association meetings in Calgary, the game theory conference
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2 1. Introduction

formulating each node as a set of outcomes, as is done by von Neumann

and Morgenstern (1944) and Alós-Ferrer and Ritzberger (2005, 2008,

2013). The relation between this paper’s choice-set formulation and

their discrete outcome-set formulation is explored in Streufert (2015b).

There are circumstances in which this paper’s choice-set formulation

is especially useful. These circumstances arise when choices or actions

are more convenient than outcomes, and sets are more convenient than

sequences.

For example, such circumstances arise when Streufert (2015a) sets

up to characterize the supports of consistent assessments (Kreps and

Wilson (1982)). The critical step is to find an ordering that (a) extends

the assessment’s infinite-relative-likelihood relation among nodes and

(b) has a representation that is additive across the choices leading to

each node. Similar steps in the literature have been relatively obscure.

Since each node can now be regarded as a set of choices, this step re-

duces to finding an ordering that (a) extends a partial ordering among

sets of choices and (b) has a representation that is additive across the

choices in each set. More abstractly, it reduces to finding an ordering

that (a) extends a partial ordering among sets and (b) has an additive

representation. That abstract problem was addressed by Kraft, Pratt,

and Seidenberg (1959) while laying the foundations of probability the-

ory. Its solution requires nothing more than Farkas’ Lemma. Thereby,

an aspect of Kreps-Wilson consistency becomes more transparent.

1.2. Overview

Section 2 merely restates the definition of an extensive form that ap-

pears in Osborne and Rubinstein (1994). I call my restatement an “OR∗

choice-sequence form”. The purpose of my restatement is to conserve

notation. For example, I implicitly specify agents (i.e. information sets)

by mimicking an analogous construction in the outcome-set formula-

tion of Alós-Ferrer and Ritzberger (2005). In spite of such notational

streamlining, an OR∗ choice-sequence form is at the full generality of

Osborne and Rubinstein (1994). In particular, it admits continuum

choice spaces, unordered agents (i.e. information sets), and both finite

and infinite horizons.1

1This paper extends an earlier version (Streufert (2012)) that only admitted
finite horizons.
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Section 3 then introduces the concept of a “choice-set form” in which

the nodes are choice sets rather than choice sequences. This new for-

mulation is specified so as to highlight its many similarities with an

OR∗ choice-sequence form.

Section 4 begins with Proposition 4.1, which shows that an OR∗

choice-sequence form has no-absent-mindedness (Piccione and Rubin-

stein (1997)) iff there is a one-to-one correspondence between the form’s

choice sequences and the sets of choices that they list. Thus the or-

der explicit in the sequential notation is redundant in any OR∗ choice-

sequence form with no-absent-mindedness. This suggests that any such

form can be converted into an equivalent choice-set form simply by con-

verting each of its sequences into the set of choices that it lists.

Theorem 1(a) does this. Then the remainder of the theorem shows

a number of ways in which the original no-absent-minded OR∗ choice-

sequence form is “equivalent” to the derived choice-set form. Part (b)

uses Proposition 4.1 to show that there is a one-to-one correspondence

between the original choice-sequence nodes and the derived choice-set

nodes. Part (c) shows that finite choice-sequence nodes coincide with

finite choice-set nodes. Then (d) shows that choices play similar roles

in the two formulations, and finally, (e) and (f) naturally translate

feasible choices and immediate predecessors from one formulation into

the other.

Theorem 2 shows that the conversion process itself is a bijection from

the class of no-absent-minded OR∗ choice-sequence forms onto the class

of choice-set forms. This one-to-one correspondence further strength-

ens the notion that no-absent-minded OR∗ choice-sequence forms are

“equivalent” to choice-set forms.

Section 5 derives several corollaries for choice-set forms. Corol-

lary 5.1 characterizes the predecessors of a finite node. Corollary 5.2

characterizes the nonterminal nodes. Corollary 5.3 characterizes the

predecessors of an infinite node. And finally, Corollary 5.4 shows that

every pair of nodes has a greatest common subnode, which in turn

implies that the collection of nodes is a sublattice. These natural but

nontrivial results are used extensively by Streufert (2015b).
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This section merely restates the definition of an extensive form that

appears in Osborne and Rubinstein (1994, page 200). Nodes are spec-

ified as sequences, and Osborne (2008, Section 3) credits Rubinstein

with the important idea of doing so. Accordingly, I call my restate-

ment an “OR∗ choice-sequence form”. The purpose of my restatement

is to conserve notation.

2.1. Choices and nodes

Let C be an arbitrary set and call a member c of the set C a choice.

Then let s̄ denote an arbitrary sequence in C. In other words, let s̄ be

a choice sequence. Such an s̄ can be an infinite sequence of the form

(s̄1, s̄2, ...), a nonempty finite sequence of the form (s̄1, s̄2, ...s̄L(s̄)), or

the empty sequence {}. Note that the length of a finite sequence s̄ is

denoted L(s̄), and that the length L({}) of the empty sequence {} is

defined to be zero.

For any nonempty sequence s̄, let

1s̄` := (s̄1, s̄2, ... s̄`)

be the sequence consisting of the first `≥1 elements of s̄, where `≤L(s̄)

if s̄ is finite. By convention, let 1s̄0 be the empty sequence {} regardless

of s̄. Call 1s̄` a subsequence if either (a) s̄ is infinite or (b) s̄ is finite

and ` < L(s̄). Further, for any finite sequence s̄, let

s̄⊕(c) := (s̄1, s̄2, ... s̄L(s̄), c)

be the concatenation of s̄ with the one-element sequence (c). Finally,

for any sequence s̄, let

R(s̄) := { c | (∃`) s̄`=c }
be the range of s̄. For example, R takes (s̄1, s̄2, ...) to {s̄1, s̄2, ...}. Sim-

ilarly, R takes (s̄1, s̄2, ... s̄L(s̄)) to {s̄1, s̄2, ... s̄L(s̄)}.
An OR∗ choice-sequence preform is a pair (C, N̄) such that

N̄ is a nonempty collection of sequences in C ,(1a)

C ⊆∪R(N̄) ,(1b)

N̄rT̄ = { s̄ | (∀`≥1) 1s̄` ∈ T̄ } ,(1c)

(∀t̄6={}) 1t̄L(t̄)−1 ∈ T̄ , and(1d)

(∀t̄ 1, t̄ 2) F̄ (t̄ 1)=F̄ (t̄ 2) or F̄ (t̄ 1)∩F̄ (t̄ 2)=∅ .(1e)
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where

T̄ := { n̄ | n̄ is finite } and(2)

F̄ := { (t̄, c) | t̄⊕(c)∈T̄ } .(3)

Call a member n̄ of the set N̄ a node.2 Further, call F̄ the feasibil-

ity correspondence. Accordingly, call F̄ (t̄) the set of choices that are

feasible at t̄.

(1a) states that nodes are choice sequences. It also specifies that

there is at least one node. Accordingly, {} must be a node by an

elementary argument using (1c) and (1d). The smallest OR∗ choice-

sequence preform is specified by C = ∅ and N̄ = {{}}.3
(1b) states that every choice appears in at least one node. This is

accomplished by C ⊆ ∪R(N̄) since R(N̄) = {R(n̄)|n̄∈N̄} is the collec-

tion of the ranges of all the choice sequences in N̄ . This assumption

entails no loss of generality in applications, for if it were violated, one

could simply remove the superfluous choices from C.

(1c) in the ⊆ direction states that all the subsequences of an infinite

node are themselves nodes. Conversely, the ⊇ direction states that if

all the subsequences of an infinite sequence are nodes, then that infinite

sequence is itself a node.

(1d) requires that another node results when the last element of a

nonempty finite node is removed. By repeated application, this implies

that all the subsequences of a finite node are themselves nodes.

(1e) permits the implicit specification of agents (i.e. information

sets). In particular, let

H̄ := { F̄−1(c) | c } ,(4)

and call an element h̄ of H̄ an agent. Thus an agent h̄ is specified as

a collection of nodes F̄−1(c) from which some choice c is feasible. This

implicit specification of agents mimics a similar construction in Alós-

Ferrer and Ritzberger (2005, page 791, Definition 7(i)). The following

lemma shows how it is related to an explicit specification of agents. I

use the implicit specification to conserve notation.

2Osborne and Rubinstein (1994) refer to such a sequence as a “history” and
denote it by h. I reserve “h” for an agent (i.e. information set).

3As a matter of convention, I denote the empty set by {} when it is regarded
as a node. Elsewhere I denote it by ∅.
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Lemma 2.1. Suppose that (C, N̄) satisfies (1a)–(1d). Derive its T̄

(2) and F̄ (3).

(a) Assume (1e) and define H̄ by (4). Then

H̄ partitions F̄−1(C) ,(5a)

[(∃h̄){t̄1, t̄2}⊆h̄] ⇒ F̄ (t̄1)=F̄ (t̄2) , and(5b)

h̄1 6=h̄2 ⇒ F̄ (h̄1)∩F̄ (h̄2)=∅ .4(5c)

(b) Conversely, (1e) holds if there is an H̄∗ that satisfies (5). Fur-

ther, any H̄∗ that satisfies (5) equals the H̄ defined by (4). (Proof A.3.)

(5a) states that H̄ partitions the collection of nonterminal nodes. To

conserve notation, I do not define a special symbol for the collection

F̄−1(C) = { t̄ | F̄ (t̄)6=∅ } of nonterminal nodes.

(5b) states that the same choices are feasible from any two nodes in

an agent h̄. This condition is standard, and it allows one to interpret

F̄ (h̄) as the set of choices feasible for agent h̄.4

(5c) states that different agents have different choices. This condition

entails no loss of generality in applications because one can always

introduce enough choices so that agents never share choices (this is

only a matter of notation).

2.2. Players

Let I be an arbitrary set, and call an element i of the set I a player.

An OR∗ choice-sequence form is a pair ((Ci)i, N̄) such that

(∪iCi, N̄) is an OR∗ choice-sequence preform (1) ,(6a)

(∀i6=j) Ci∩Cj = ∅ , and(6b)

(∀i)(∀t̄) F̄ (t̄)⊆Ci or F̄ (t̄)∩Ci=∅ .(6c)

(6a) and (6b) state that the choices in the preform (∪iCi, N̄) are

allocated to the players i by means of their choice sets Ci. Accordingly,

a preform can be understood as a one-player form. To be precise,

(C, N̄) is a preform iff ((C), N̄) is a form, provided that (Ci)i = (C) is

taken to mean I = {1} and C1 = C.

(6c) permits the implicit assignment of agents and nodes to players.

In particular, define (H̄i)i by

(∀i) H̄i = { F̄−1(c) | c∈Ci } .(7)

4As with any correspondence, the value F̄ (h̄) of the correspondence F̄ at the
set h̄ is defined to be {c|(∃t̄∈h̄)c∈F̄ (t̄)}. (5b) implies that (∀t̄∈h̄) F̄ (t̄) = F̄ (h̄).
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Then H̄i is the set of agents belonging to player i, and ∪H̄i is the set of

nodes belonging to player i. In the following lemma, a prepartition of

a set A is a collection of disjoint subsets of A whose union is A. Note

that the empty set can be an element of a prepartition.

Lemma 2.2. Let ((Ci)i, N̄) be an OR∗ choice-sequence form (6) with

its C=∪iCi, F̄ (3), H̄ (4), and (H̄i)i (7). Then

(a) {H̄i|i} is a prepartition of H̄ and

(b) {∪H̄i|i} is a prepartition of F̄−1(C). (Proof A.4.)

The above admits the possibility of a vacuous, as opposed to nonex-

istent, chance player. Accordingly, one could require that the player

set I always contains a chance player io, and then set Cio = ∅ to model

the special case of no randomness. In this special case, one would have

(a) H̄io = ∅ (that the chance player has no agents) and (b) ∪H̄io = ∅
(that the chance player has no nodes). This very minor innovation can

simplify notation, as in Streufert (2015a, page 38, last paragraph).

Finally, note that an OR∗ choice-sequence game could be specified by

augmenting an OR∗ choice-sequence form with (1) chance probabilities

and (2) preferences. For (1), one would specify, for each chance agent

h̄∈H̄io , a probability measure over F̄ (h̄). For (2), one would specify, for

each nonchance player i∈Ir{io}, a binary relation over lotteries over

the set N̄rF̄−1(C) of terminal nodes.

2.3. Discussion

An OR∗ choice-sequence form (6) conserves notation by implicitly

specifying agents and by implicitly assigning agents and nodes to play-

ers.

Nonetheless, an OR∗ choice-sequence form is at the full generality of

Osborne and Rubinstein (1994, Definition 200.1). (1) It admits con-

tinuum choice spaces. Thus, since a type is a chance choice, it admits

continuum type spaces. (2) It admits unordered agents (i.e. informa-

tion sets). Thus it admits arbitrarily arranged agents that cannot be

specified in multistage formulations such as von Neumann and Mor-

genstern (1944, Sections 9 and 10) and Myerson (1991, page 296). (3)

It admits both finite and infinite horizons.

There are also two minor differences. (1) An OR∗ form imposes (5c),

which states that each agent has its own choices. As is well-known,
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this imposes no loss of generality. (2) An OR∗ form allows the chance

player, like any other player, to have nonsingleton agents.

Although difference (1) is inconsequential technically, it does corre-

spond to a difference in nomenclature: while an Osborne-Rubinstein

form has “actions” a, an OR∗ form has “choices” c. Thus an OR∗ form

conforms with the standard nomenclature in the outcome-set literature,

where a property like (5c) is implicit (von Neumann and Morgenstern

(1944, Sections 9 and 10), Ritzberger (2002, Section 3.2), Alós-Ferrer

and Ritzberger (2005, 2008, 2013)).

3. Introducing choice-set forms

This section introduces a new kind of extensive form in which the

nodes are sets of choices rather than sequences of choices.

3.1. Choices and nodes

As before, let C be an arbitrary set, and call a member c of the set

C a choice. A choice-set preform is a pair (C,N) such that

N is a nonempty collection of subsets of C ,(8a)

C ⊆ ∪N ,(8b)

NrT = { ∪T ∗ | T ∗ is an infinite chain in T } ,(8c)

(∀t6={})(∃!c) c∈t and tr{c}∈T , and(8d)

(∀t1, t2) F (t1)=F (t2) or F (t1)∩F (t2)=∅ ,(8e)

where

T := { n | n is finite } and(9)

F := { (t, c) | c/∈t and t∪{c}∈T } .(10)

Call a member n of the set N a node, and call F the feasibility corre-

spondence.

(8a) states that nodes are choice sets. It also states that there is at

least one node. Accordingly, {} must be a node by Lemma B.5. The

smallest choice-set preform is specified by C = ∅ and N = {{}}.
(8b) states that every choice appears in at least one node. This

assumption entails no loss of generality in applications, for if it were

violated, one could simply remove the superfluous choices from C.

(8c) relates infinite nodes to finite nodes. By definition, a chain in T

is a subcollection T ∗ ⊆ T such that any two distinct nodes t and t′ in
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{} {a} {a,r}

{a,d} {r,d}

a r

d

Figure 1. C = {a, r, d} and N = {{}, {a}, {a,r}, {a,d}, {r,d}}.
This violates (8d) because {r,d} has no last choice.

{} {r}

{d} {r,d}

r

d

r

d

Figure 2. C = {r, d} and N = {{}, {r}, {d}, {r,d}}. This vio-
lates (8d) because {r,d} has two last choices.

T ∗ satisfy t ⊂ t′ or t ⊃ t′. The union of an infinite chain of finite nodes

is obviously an infinite set. The ⊇ direction of (8c) further stipulates

that such a union must be a node. The ⊆ direction of (8c) requires that

every infinite node is the union of at least one chain of finite nodes.5

(8d) is discussed in this and the next two paragraphs. To begin, let

a last choice of a finite node t be any choice c∈t such that tr{c} is also

a node. In other words, let a last choice of a finite node be any choice

in the node whose removal results in another node. (8d) requires that

every nonempty finite node has a unique last choice.

Figures 1, 2, and 3 provide three examples. In each case, the figure’s

caption defines (C,N), and accordingly, the definition of the example

is complete without the illustration itself. Each illustration links two

nodes with a choice-labelled line exactly when (a) that choice is a last

choice of the larger set and (b) the smaller set is the larger set without

that choice. The example of Figure 1 violates (8d) because {r, d} does

not have a last choice. The example of Figure 2 violates (8d) because

{r, d} has two last choices. Meanwhile, the example of Figure 3 satisfies

(8d) because each of its four nonempty nodes has a unique last choice.

5Later, Corollary 5.3(b) will show the sense in which this chain is unique.
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{}

{b}

{a}

{a,d}

{a,r}

b

a

d

r

Figure 3. C = {a, b, r, d} and N = {{}, {a}, {a,r}, {b}, {a,d}}.
This is a choice-set preform (8).

For notational ease, define

p := { (t, tr{c}) | c∈t and tr{c}∈T } .(11)

By (8d), p is a function from Tr{{}} into T . Call p the immediate

predecessor function.6 By inspection, the range p(Tr{{}}) of p equals

the domain F−1(C) of F .7

(8e) permits the implicit specification of agents. In particular, let

H := { F−1(c) | c } ,(12)

and call an element h of H an agent. Thus an agent h is specified

as a collection of nodes F−1(c) from which some choice c is feasible.

This implicit specification of agents is directly analogous to the implicit

specification (4) of agents in an OR∗ choice-sequence preform. Accord-

ingly, the following lemma is directly analogous to Lemma 2.1, and the

discussion of that lemma applies here as well.

Lemma 3.1. Suppose that (C,N) satisfies (8a)–(8d). Derive its T

(9) and F (10).

(a) Assume (8e) and define H by (12). Then

H partitions F−1(C) ,7(13a)

[(∃h){t1, t2}⊆h] ⇒ F (t1)=F (t2) and(13b)

h1 6=h2 ⇒ F (h1)∩F (h2)=∅ .(13c)

6Section 5 will define the concept of one node “preceding” another. Then
Corollaries 5.1(b) and 5.3(b) will characterize the predecessors of a node in terms
of the immediate predecessor function p.

7Section 5 will define the concept of a “terminal” node. Then Corollary 5.2(c)
will show that the collection of nonterminal nodes is F−1(C).
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(b) Conversely, (8e) holds if there is any H∗ that satisfies (13).

Further, any H∗ that satisfies (13) equals the H defined by (12).

(Proof B.3.)

3.2. Players

Let I be an arbitrary set, and call a member i of the set I a player.

A choice-set form is a pair ((Ci)i, N) such that

(∪iCi, N) is a choice-set preform (8) ,(14a)

(∀i6=j) Ci∩Cj = ∅ , and(14b)

(∀i)(∀t) F (t)⊆Ci or F (t)∩Ci=∅ .(14c)

(14a) and (14b) state that the choices in the preform (∪iCi, N) are

allocated to the players i according to their choice sets Ci. They are

directly analogous to (6a) and (6b) for OR∗ choice-sequence forms.

(14c) permits the implicit assignment of agents and nodes to players.

In particular, define (Hi)i by

(∀i) Hi := { F−1(c) | c∈Ci } .(15)

Then Hi is the set of agents belonging to player i, and ∪Hi is the set of

nodes belonging to player i. This specification of (Hi)i is directly anal-

ogous to the specification (7) of (H̄i)i in an OR∗ choice-sequence form.

Accordingly, the following lemma is directly analogous to Lemma 2.2.

Lemma 3.2. Let ((Ci)i, N) be a choice-set form (14) with its

C=∪iCi, F (10), H (12), and (Hi)i (15). Then

(a) {Hi|i} is a prepartition of H and

(b) {∪Hi|i} is a prepartition of F−1(C).7 (Proof B.4.)

The last two paragraphs of Section 2.2 showed how to augment an OR∗

choice-sequence form with (a) chance probabilities and (b) preferences

over terminal nodes. The choice-set analog is straightforward given

Section 5’s definition of terminal choice-set nodes (in accord with Note

7, the collection of terminal choice-set nodes is NrF−1(C)).
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Let ((Ci)i, N̄) be an OR∗ choice-sequence form (6) with its T̄ (2) and

H̄ (4). As in Piccione and Rubinstein (1997, page 10), an agent h̄ is

absent-minded if there exist t̄ and 0 ≤ ` < L(t̄) such that {1t̄`, t̄} ⊆ h̄.

In other words, an agent is absent-minded if it contains both a node and

one of this node’s predecessors. Accordingly, no-absent-mindedness is

the property that

(∀h̄)(∀t̄)(∀0≤`<L(t̄)) {1t̄`, t̄} 6⊆ h̄ .(16)

No-absent-mindedness is weak. It is strictly weaker than perfect re-

call, and perfect recall is assumed by many authors including Kreps

and Wilson (1982). Specifically, they define perfect recall as the com-

bination of their equations (2.2) and (2.3). Their equation (2.2) is

equivalent to no-absent-mindedness (16).8 Meanwhile, their equation

(2.3) imposes the additional assumption that players recall what their

own past agents knew and did. This second component of perfect recall

plays no role in this paper.

Proposition 4.1. Suppose ((C)i, N̄) is an OR∗ choice-sequence form

(6) with its T̄ (2). Then the following are equivalent.

(a) ((Ci)i, N̄) has no-absent-mindedness (16).

(b) R|T̄ is injective.

(c) R|N̄ is injective. (Proof A.6.)

Proposition 4.1 relates no-absent-mindedness to the injectivity of

R|N̄ , where R (by its definition in Section 2.1) takes any sequence to

its range, and R|N̄ is the restriction of R to the form’s N̄ .

First note that R|N̄ must be injective when the agents of ((Ci)i, N̄)

are ordered. To see this, consider any n̄. Since a choice determines the

agent that plays it, the choices in R(n̄) must be played in the order of

their agents. Hence the set R(n̄) determines the sequence n̄.

But Proposition 4.1(a⇒c) goes further. It shows that R|N̄ is injective

even when the agents of ((Ci)i, N̄) are unordered, provided only that

no-absent-mindedness holds. For example, consider Figure 4,9 which

8Their x∈H(x′) translates to (∃h̄) {t̄, t̄′}⊆h̄ and their x 6≺x′ translates to
(/∃`≤L(t̄′)) t̄=1t̄

′
`.

9Imagine that Spy 1 and Spy 2 are racing to recover a document from a safe
deposit box. En route one spy realizes that if she reaches the box first, she can



4. Equivalence 13

(f 1, ℓ1, ℓ2)ℓ2

(f 1, ℓ1, d2)

d2

(f 1, ℓ1)ℓ1

(f 1, d1)

d1

(f 1)

f 1

(f 2, ℓ2, ℓ1)ℓ1

(f 2, ℓ2, d1)

d1

(f 2, ℓ2)ℓ2

(f 2, d2)

d2

(f 2)

f 2

{}
h̄1

h̄2

Figure 4. An OR∗ choice-sequence form with no-absent-
mindedness. In accord with Proposition 4.1, R|N̄ is injective.

replicates the classic example of unordered agents from Kuhn (1953,

Figure 1), Gilboa (1997, Figure 2), Ritzberger (1999, Figure 1), and

Ritzberger (2002, Figure 3.8). Unordered agents give rise to choices

that can be played in different orders. Accordingly, the choices `1

and `2 in Figure 4 have been played in different orders at the nodes

(f 1, `1, `2) and (f 2, `2, `1). However, the choices in

R((f 1, `1, `2)) = {f 1, `1, `2}
can only be played in the order (f 1, `1, `2), and the choices in

R((f 2, `2, `1)) = {f 2, `1, `2}
can only be played in the order (f 2, `2, `1). Intuitively, this happens

because the set {f 1, `1, `2} contains f 1, and because the set {f 2, `1, `2}
contains f 2. This suggests that if a form has two choices whose order

is not exogenously determined, then any sequence that lists the two

choices must also list another choice (or set of choices) that determines

install a bomb that will explode when the other spy reaches the box after her. But
then she realizes that the other spy will be thinking the same thing, and hence,
if she opens the box when she reaches it, she will find either the document or an
exploding bomb. So, she considers destroying the bank without opening the box in
hopes of keeping the document from the other spy. Figure 4 specifies this situation.
Chance determines whether Spy 1 (f1) or Spy 2 (f2) arrives first. Then the two
spies either look (`) in the box or destroy (d) the bank.
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h̄

(a, a)a

(a, d)

d

(a)a

(d)

d

{}

Figure 5. An OR∗ choice-sequence form with absent-
mindedness. In accord with Proposition 4.1, R|N̄ is not injective
(consider (a) and (a, a)).

their order. Showing that this can be done, whenever there is no-

absent-mindedness, is the interesting part of the proposition’s proof.

Conversely, Proposition 4.1(a⇐b) shows that no-absent-mindedness

is necessary for injectivity. For example, consider Figure 5, which

replicates the classic example of absent-mindedness in Piccione and

Rubinstein (1997, Figure 1). Here R takes both the sequence (a) and

the sequence (a, a) to the set {a}. Thus, R|T̄ is not injective. The

proposition’s proof shows that something similar happens whenever

no-absent-mindedness is violated.

4.2. Converting choice-sequence forms to choice-set forms

The previous subsection concerned only OR∗ choice-sequence forms.

Yet Proposition 4.1(a⇒c) showed that the order explicitly specified in

choice sequences is redundant whenever no-absent-mindedness holds.

This suggests that every no-absent-minded OR∗ choice-sequence form

can be converted into an “equivalent” choice-set form.

The following theorem does so. In particular, part (a) shows how to

convert a no-absent-minded OR∗ choice-sequence form into a choice-set

form. Then the remaining parts of the theorem describe several senses

in which the original choice-sequence form and the new choice-set form

are “equivalent” to one another.

Theorem 1. Suppose ((Ci)i, N̄) is an OR∗ choice-sequence form (6)

with no-absent-mindedness (16). Let N = R(N̄). Then

(a) ((Ci)i, N) is a choice-set form (14).

Further, derive C=∪iCi, T̄ (2), F̄ (3), T (9), F (10), and p (11). Then

the following hold.
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(b) R|N̄ is a bijection from N̄ onto N .

(c) R(T̄ ) = T .

(d) (∀t̄, c, t̄ ]) t̄⊕(c)=t̄ ] ⇔ ( c/∈R(t̄) and R(t̄)∪{c} = R(t̄ ]) ).

(e) F = { (R(t̄), c) | (t̄, c)∈F̄ }.
(f) p = { (R(t̄), R(1t̄L(t̄)−1)) | t̄6={} }. (Proof C.4.)

Since N = R(N̄) by definition, part (b) of the theorem merely re-

states Proposition 4.1(a⇒c). The remaining conclusions are natural

but not trivial.

In particular, part (a) shows that the axioms defining an OR∗ choice-

sequence form imply the axioms defining a choice-set form. Part (c)

relates the finite choice sequences in T̄ to the finite choice sets in T .

Then part (d) shows that nodes and choices play parallel roles in the

two formulations. Accordingly, concatenation in the context of choice

sequences corresponds to union in the context of choice sets. Part (e)

relates the feasibility correspondences of the two formulations. And

finally, part (f) relates the choice-set immediate-predecessor function p

to its choice-sequence counterpart.

4.3. Bijection

Theorem 1(a) allows us to define the operator R̂ that takes no-absent-

minded OR∗ choice-sequence forms to choice-set forms by the rule

R̂ : ((Ci)i, N̄) 7→ ((Ci)i, R(N̄)) .(17)

Proposition 4.1(a⇐b) shows that the domain of R̂ cannot be mean-

ingfully extended to include OR∗ choice-sequence forms with absent-

mindedness.

The following theorem establishes that R̂ is a one-to-one correspon-

dence between (1) the class of no-absent-minded OR∗ choice-sequence

forms and (2) the class of choice-set forms. This result and Theo-

rem 1(b–f) both support the claim that no-absent-minded OR∗ choice-

sequence forms are “equivalent” to choice-set forms.

Theorem 2. R̂ (17) is a bijection from the class of OR∗ choice-

sequence forms (6) with no-absent-mindedness (16) onto the class of

choice-set forms (14). (Proof D.3.)

Since Theorem 1(a) already showed that R̂ maps into the class of

choice-set forms, the proof of Theorem 2 must only show that R̂ is

injective and surjective.
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The proof of the injectivity of R̂ resembles the proof of the injectivity

of R|N̄ in Proposition 4.1(a⇒c). However, the argument here is at a

deeper level. There, an OR∗ choice-sequence form ((Ci)i, N̄) was taken

as given, and it was shown that R cannot take two choice sequences

in N̄ to the same choice set. In contrast, it is shown here that R̂

cannot take two OR∗ choice-sequence forms ((C1
i )i, N̄

1) and ((C2
i )i, N̄

2)

to the same choice-set form. So, at this deeper level as well, the order

explicitly specified in sequences is redundant.

To prove the surjectivity of R̂, I take an arbitrary choice-set form and

convert it into an OR∗ choice-sequence form. The proof’s most difficult

step shows that the infinite choice-set nodes correspond to the infinite

choice-sequence nodes. Another step shows that the axioms defining

a choice-set form imply the axioms defining an OR∗ choice-sequence

form. Throughout the entire proof, I lean heavily on Lemma B.6,

which shows that all choice-set forms implicitly satisfy a property that

resembles Lemma A.5(a)’s characterization of no-absent-mindedness

for OR∗ choice-sequence forms. This resemblance further reinforces the

notion that choice-set forms are “equivalent” to no-absent-minded OR∗

choice-sequence forms.

5. Corollaries

This section contains several results about choice-set forms. Al-

though these results are natural, they are nontrivial. All are proved

as corollaries of Theorems 1 and 2, and they appear here in the order

in which they are proved in Appendix E. All are used extensively by

Streufert (2015b).

Consider a choice-set form ((Ci)i, N). Say that one node n1 precedes

another node n2 if n1 ⊂ n2. Equivalently, say that n2 succeeds n1.

Corollary 5.1(b) characterizes the predecessors of a finite node. Part

(a) is a useful intermediate result.

Corollary 5.1. Suppose ((Ci)i, N) is a choice-set form (14) with its

T (9) and p (11). Then the following hold.10

(a) t[ ⊂ t iff both |t[| < |t| and t[ = p|t|−|t
[|(t).

(b) {t[|t[⊂t} is the chain {pj(t) | |t|≥j≥1}. (Proof E.1.)

10I use the superscript [ to suggest a predecessor, and the superscript ] to suggest
a successor.
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Let a terminal node be a node without successors. Corollary 5.2(c)

characterizes the nonterminal nodes. In particular, it shows that the

collection of nonterminal nodes equals the collection of finite nodes

with nonempty feasible sets. The latter is expressed as F−1(C), which

is the domain of the feasibility correspondence F . Parts (a) and (b)

are useful intermediate results. In particular, part (b) shows that one

infinite node cannot be included within another infinite node.

Corollary 5.2. Suppose ((Ci)i, N) is a choice-set form (14) with its

C=∪iCi, T (9), and F (10). Then the following hold.

(a) If t⊂n] then F (t)∩n] 6=∅.

(b) { n | (∃n])n⊂n] } ⊆ T .

(c) { n | (∃n])n⊂n] } = F−1(C). (Proof E.2.)

Corollary 5.3(b) characterizes the predecessors of an infinite node.

It does so by part (a), which shows that every infinite node is uniquely

associated with an infinite sequence of finite nodes.

Corollary 5.3. Suppose ((Ci)i, N) is a choice-set form (14) with its

T (9) and p (11). Take any n /∈ T . Then the following hold.

(a) There exists a unique (tk)k≥0 such that

n=∪{tk|k} , t0={} , and (∀k≥1) p(tk)=tk−1 .

(b) {n[|n[⊂n} is the infinite chain {tk|k}, where (tk)k≥0 is defined

in part (a). (Proof E.3.)

Finally, for any choice-set form ((Ci)i, N), define the binary operator

∧ on N by

(∀n1, n2) n1∧n2 := max{ m | m⊆n1∩n2 } ,(18)

where m denotes an arbitrary member of N . Corollary 5.4(a) shows

that ∧ is well-defined, and thus the partially ordered set (N,⊆) is a

sublattice with meet ∧. Further, Corollary 5.4(b) shows that the meet

of any two distinct nodes is finite.

Corollary 5.4. Suppose ((Ci)i, N) is a choice-set form (14). Derive

T (9) and ∧ (18). Take any n1 and n2. Then

(a) n1∧n2 is well-defined, and

(b) n1 6=n2 implies n1∧n2∈T . (Proof E.6.)
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A.1. The implicit specification of agents11

Lemma A.1.
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Suppose (C, N̄) satisfies (1a)–(1d) and derive its F̄

(3). Then (∀c) F̄−1(c) 6= ∅.

Proof. Derive T̄ (2). Take any c. By (1b), there exists n̄ such that

c ∈ R(n̄). Either (a) n̄ ∈ T̄ and n̄ itself is a t̄ such that c ∈ R(t̄), or (b)

n̄ /∈ T̄ and (1c) implies the existence of a t̄ such that c ∈ R(t̄). Hence in

either case, there exist t̄ and ` such that t̄` = c. Thus 1t̄`−1⊕(c) = 1t̄`,

which implies that (1t̄`−1, c) ∈ F̄ . 2

Lemma A.2. If F̄ ⊆ T̄×C, the following are equivalent.

(a) (∀c, c′) F̄−1(c)=F̄−1(c′) or F̄−1(c)∩F̄−1(c′)=∅.

(b) (∀t̄, t̄′) F̄ (t̄)=F̄ (t̄′) or F̄ (t̄)∩F̄ (t̄′)=∅.

Proof. By inspection, the following seven statements are equivalent.

(∃c, c′) F̄−1(c) 6= F̄−1(c′) and F̄−1(c)∩F̄−1(c′) 6= ∅.(19a)

(∃c1, c2) F̄−1(c2)rF̄−1(c1) 6= ∅ and F̄−1(c2)∩F̄−1(c1) 6= ∅.

(∃c1, c2, t̄ 1, t̄ 2) t̄ 1∈F̄−1(c2), t̄ 1 /∈F̄−1(c1), t̄ 2∈F̄−1(c2), and t̄ 2∈F̄−1(c1).

(∃c1, c2, t̄ 1, t̄ 2) (t̄ 1, c1)/∈F̄ and {(t̄ 1, c2), (t̄ 2, c1), (t̄ 2, c2)}⊆F̄ .

(∃c1, c2, t̄ 1, t̄ 2) c1∈F̄ (t̄ 2), c1 /∈F̄ (t̄ 1), c2∈F̄ (t̄ 2), and c2∈F̄ (t̄ 1).

(∃t̄ 1, t̄ 2) F̄ (t̄ 2)rF̄ (t̄ 1) 6= ∅ and F̄ (t̄ 2)∩F̄ (t̄ 1) 6= ∅.

(∃t̄, t̄′) F̄ (t̄) 6= F̄ (t̄′) and F̄ (t̄)∩F̄ (t̄′) 6= ∅.(19b)

(19a) is the negation of (a), and (19b) is the negation of (b). 2

Proof A.3 (for Lemma 2.1).

(a). To prove (5a), I must show that H̄ is a partition of F̄−1(C).

First, by the definition of H̄,

∪H̄ = ∪{F̄−1(c)|c} = F̄−1(C) .

Second, (1e) and Lemma A.2(b⇒a) imply that

(∀c, c′) F̄−1(c)=F̄−1(c′) or F̄−1(c)∩F̄−1(c′)=∅ .

11The agents of OR∗ choice-sequence forms are needed for the definition of
no-absent-mindedness (16). However, Lemma A.5 will characterize no-absent-
mindedness without the use of agents. Thereafter, the agents of OR∗ choice-sequence
forms play no role in the appendices. (The agents of choice-set forms appear briefly
in Appendix B.1.)
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Thus by the definition of H̄, the members of H̄ are disjoint. Third, by

Lemma A.1 and the definition of H̄, each member of H̄ is nonempty.

To prove (5b), suppose t̄ 1, t̄ 2, and h̄ satisfy {t̄ 1, t̄ 2} ⊆ h̄. By the

definition of H̄, there exists some c such that h̄ = F̄−1(c). Thus by

the next-to-last sentence, {t̄ 1, t̄ 2} ⊆ F̄−1(c). Hence c ∈ F̄ (t̄ 1)∩F̄ (t̄ 2).

Thus (1e) implies F̄ (t̄ 1) = F̄ (t̄ 2).

To prove the contrapositive of (5c), suppose F̄ (h̄1)∩F̄ (h̄2)6=∅. Then

there exists t̄ 1, t̄ 2, and c∗ such that

t̄ 1∈h̄1 , t̄ 2∈h̄2 ,(20a)

c∗∈F̄ (t̄ 1) and c∗∈F̄ (t̄ 2) .(20b)

(20b) implies that {t̄ 1, t̄ 2}⊆F̄−1(c∗). Thus by the definition of H̄, t̄ 1

and t̄ 2 belong to a common h̄. This, (20a), and the already proved fact

(5a) that H̄ is a partition, imply that both h̄1 and h̄2 equal h̄. Thus

h̄1 = h̄2.

(b). Assume H̄∗ satisfies (5).

This paragraph shows that (C, N̄) satisfies (1e). Accordingly, take

any t̄ and t̄′. Either there exists an h̄∈H̄∗ containing both t̄ and t̄′ or

there does not. In the first case, (5b) for H̄∗ implies that F̄ (t̄)=F̄ (t̄′).

In the second case, (5a) for H̄∗ implies the existence of {h̄, h̄′}⊆H̄∗
such that h̄6=h̄′, h̄3t̄, and h̄′3t̄′. Here h̄6=h̄′ and (5c) for H̄∗ imply

F̄ (h̄)∩F̄ (h̄′)=∅. Thus h̄3t̄ and h̄′3t̄′ imply F̄ (t̄)∩F̄ (t̄′)=∅.

Since the previous paragraph established (1e), part (a) implies that

the H̄ defined by (4) satisfies (5). Similarly, the H̄∗ assumed by this

part (b) satisfies (5) by definition. Thus we can show that H̄∗ = H̄ by

showing that no more than one partition of F̄−1(C) can satisfy (5b)

and (5c).

Accordingly, suppose that H̄1 and H̄2 are two distinct partitions

of F̄−1(C) that satisfy (5b) and (5c). Then H̄1rH̄2 or H̄2rH̄1 is

nonempty. Without loss of generality, assume the former and take

h̄1∈H̄1rH̄2. Since H̄1 is a partition, h̄1 is nonempty and thus we may

take t̄∈h̄1. Further, since H̄2 is a partition, there is an h̄2∈H̄2 such

that t̄∈h̄2. Since h̄1∈H̄1rH̄2, it must be that h̄1 6=h̄2. Also note that

t̄ ∈ h̄1∩h̄2 by the definitions of t̄ and h̄2.

This paragraph shows that having h̄1 6=h̄2 and t̄∈h̄1∩h̄2 leads to a con-

tradiction. Since h̄1 6=h̄2, it must be that h̄1rh̄2 or h̄2rh̄1 is nonempty.

Without loss of generality, suppose the former and take t̄ 1∈h̄1rh̄2.
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Since (a) t̄∈h̄2, (b) t̄ 1 /∈h̄2, and (c) H̄2 is a partition, t̄ and t̄1 belong to

different members of the partition H̄2. Hence (5c) for H̄2 implies that

F̄ (t̄)∩F̄ (t̄ 1)=∅. Yet, since h̄1 contains both t̄ and t̄ 1, (5b) for H̄1 im-

plies that F̄ (t̄)=F̄ (t̄ 1). Further, F̄ (t̄) is nonempty since t̄∈h̄1⊆F̄−1(C),

where the set inclusion holds because H̄1 partitions F̄−1(C). The last

three sentences are logically inconsistent. 2

Proof A.4 (for Lemma 2.2).

(a). Note

∪{H̄i|i}
= ∪{ {F̄−1(c)|c∈Ci} |i}
= {F̄−1(c)|c∈∪iCi}
= {F̄−1(c)|c}
= H̄ ,

where the first equality holds by the definition of (H̄i)i, the third holds

by the definition of C, and the fourth is the definition of H̄.

It remains to be shown that the members of (H̄i)i are disjoint. Ac-

cordingly, suppose that H̄i1∩H̄i2 6= ∅. Then by the definition of (H̄i)i,

there exists c1 ∈ Ci1 and c2 ∈ Ci2 such that F̄−1(c1) = F̄−1(c2). Thus

by Lemma A.1, there exists t̄ such that

(t̄, c1) ∈ F̄ and(21a)

(t̄, c2) ∈ F̄ .(21b)

(21a), the definition of c1, and (6c) together imply F̄ (t̄) ⊆ Ci1 . Sim-

ilarly, (21b), the definition of c2, and (6c) imply F̄ (t̄) ⊆ Ci2 . Since

F̄ (t̄) 6= ∅ by (21a), the last two sentences imply Ci1∩Ci2 6= ∅. This

violates (6b).

(b). Note

∪{∪H̄i|i}
= ∪{∪{F̄−1(c)|c∈Ci}|i}
= ∪{F̄−1(Ci)|i}
= F̄−1(∪iCi)

= F̄−1(C) ,
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where the first equality holds by the definition of (H̄i)i, and the last

holds by the definition of C.

It remains to be shown that the members of {∪H̄i|i} are disjoint.

Accordingly, suppose that (∪H̄i1)∩(∪H̄i2) 6= ∅. Then by the definition

of (H̄i)i

(∪{F̄−1(c1)|c1∈Ci1}) ∩ (∪{F̄−1(c2)|c2∈Ci2}) 6= ∅ .

Thus there exists t̄, c1∈Ci1 , and c2∈Ci2 , such that t̄ ∈ F̄−1(c1)∪F̄−1(c2).

Hence

(t̄, c1) ∈ F̄ and(22a)

(t̄, c2) ∈ F̄ .(22b)

(22a), the definition of c1, and (6c) together imply F̄ (t̄) ⊆ Ci1 . Sim-

ilarly, (22b), the definition of c2, and (6c) imply F̄ (t̄) ⊆ Ci2 . Since

F̄ (t̄) 6= ∅ by (22a), the last two sentences imply Ci1∩Ci2 6= ∅. This

violates (6b). 2

A.2. Preliminary results for theorems

Lemma A.5. Suppose ((Ci)i, N̄) is an OR∗ choice-sequence form (6)

with its T̄ (2) and F̄ (3). Then each of the following is equivalent to

no-absent-mindedness (16).

(a) (∀t̄)(∀n̄) |{ ` | n̄`∈F̄ (t̄) }| ≤ 1.

(b) (∀t̄) |R(t̄)| = L(t̄).

Proof. Define H̄ by (4). Since the negation of no-absent-mindedness

is (23), since the negation of (a) is (24), and since the negation of (b)

is (25) because |R(t̄)| > L(t̄) is inconceivable, it suffices to show the

equivalence of

(∃h̄)(∃t̄)(∃0≤k<L(t̄)) {1t̄k, t̄}⊆h̄ ,(23)

(∃t̄)(∃n̄) |{ ` | n̄`∈F̄ (t̄) }| ≥ 2 , and(24)

(∃t̄) |R(t̄)| < L(t̄) .(25)

(23) implies (24). Let h̄, t̄, and 0≤ k <L(t̄) be such that {1t̄k, t̄}⊆ h̄.

Since k <L(t̄), t̄k+1 exists and satisfies

t̄k+1 ∈ F̄ (1t̄k) .(26)
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Thus, by {1t̄k, t̄}⊆ h̄, and by (5b) of Lemma 2.1(a), we have t̄k+1 ∈ F̄ (t̄).

Thus we may construct n̄ = t̄⊕(t̄k+1). Then

|{ ` | n̄`∈F̄ (1t̄k) }| ≥ |{ ` | n̄`=t̄k+1 }| ≥ |{ k+1, L(t̄)+1 }| = 2 ,

where the first inequality holds by (26), the second inequality holds by

the construction of n̄, and the equality holds by k < L(t̄).

(24) implies (25). Let t̄ and n̄ such that |{ ` | n̄`∈F̄ (t̄) }| ≥ 2. Then

there exist k and ` such that k < ` and {n̄k, n̄`} ⊆ F̄ (t̄). Thus

t̄ ∈ F̄−1(n̄k) ∩ F̄−1(n̄`) .(27)

By the definition of H̄, both of these inverse images are agents. Hence

by (27), and by (5a) of Lemma 2.1(a),

F̄−1(n̄k) = F̄−1(n̄`)

Thus, since 1n̄`−1 ∈ F̄−1(n̄`), we have 1n̄`−1 ∈ F̄−1(n̄k). In other words,

we have n̄k ∈ F̄ (1n̄`−1). Hence we may construct t̄∗ = 1n̄`−1⊕(n̄k).

Since k < `, t̄∗k is well-defined and equals n̄k. Since both t̄∗k and t̄∗`
equal n̄k, |R(t̄∗)| < L(t̄∗).

(25) implies (23). Let t̄ be such that |R(t̄)| < L(t̄). Then there are

k and ` such that 1 ≤ k < ` and t̄k = t̄`. Since 1t̄k−1 ∈ F̄−1(t̄k), since

1t̄`−1 ∈ F̄−1(t̄`), and since t̄k = t̄`, we have

{1t̄k−1, 1t̄`−1} ⊆ F̄−1(t̄k) .(28)

By the definition of H̄, let h̄ = F̄−1(t̄k). Then (28) implies

{1t̄k−1, 1t̄`−1} ⊆ h̄ .(29)

Further, let t̄∗ = 1t̄`−1. Then 1 ≤ k < ` and (29) imply

0 ≤ k−1 < `−1 = L(t̄∗) and

{1t̄
∗
k−1, t̄

∗} ⊆ h̄ .

2

Proof A.6 (for Proposition 4.1). It suffices to prove the equivalence

of

((Ci)i, N̄) has absent-mindedness ,(30)

(∃t̄1, t̄2) t̄1 6=t̄2 and R(t̄1)=R(t̄2) , and(31)

(∃n̄1, n̄2) n̄1 6=n̄2 and R(n̄1)=R(n̄2) .(32)
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(30) implies (31). Suppose ((Ci)i, N̄) has absent-mindedness. Then

Lemma A.5(b) implies the existence of a sequence t̄ such that |R(t̄)| <
L(t̄). Thus there exist indices 1 ≤ k < ` ≤ L(t̄) such that t̄k = t̄`.

Hence R(1t̄`−1) = R(1t̄`).

(31) implies (32). This is obvious since T̄ ⊆ N̄ .

(32) implies (30). Assume that n̄1 and n̄2 are distinct elements of N̄

such that R(n̄1) = R(n̄2). Define

K 6= = { 1≤` | n̄1
` 6= n̄2

` ,

`≤L(n̄1) if n̄1 is finite,

`≤L(n̄2) if n̄2 is finite } .
On the one hand, suppose K 6= is empty. Then the distinctness of

n̄1 and n̄2 implies that one is a subsequence (Section 2.1) of the other.

Without loss of generality, suppose n̄1 is a subsequence of n̄2. Hence

n̄1 is finite,

n̄1 = 1n̄
2
L(n̄1) , and(33a)

( L(n̄1)<L(n̄2) or n̄2 is infinite ) .(33b)

By (33b), n̄2
L(n̄1)+1 exists and is an element of R(n̄2). Thus since

R(n̄1) = R(n̄2) by assumption, there exists some k ≤ L(n̄1) such that

n̄1
k = n̄2

L(n̄1)+1. Thus by (33a), n̄2
k = n̄2

L(n̄1)+1. So, since k ≤ L(n̄1),

both the k-th component and the last component of 1n̄
2
L(n̄1)+1 equal n2

k.

Hence |R(1n̄
2
L(n̄1)+1)| < L(1n̄

2
L(n̄1)+1). This inequality implies absent-

mindedness by Lemma A.5(b).

On the other hand, suppose K 6= is nonempty. Define k = minK 6=.

Then

n̄1
k 6= n̄2

k and(34a)

1n̄
1
k−1 = 1n̄

2
k−1 .(34b)

Since n̄1
k ∈ F̄ (1n̄

1
k−1) and n̄2

k ∈ F̄ (1n̄
2
k−1), (34b) implies

{n̄1
k, n̄

2
k} ⊆ F̄ (1n̄

1
k−1) .(35)

Further, (34a) and R(n̄1) = R(n̄2) imply the existence of some k′ 6= k

such that n̄1
k′ = n̄2

k. Thus by (35),

{n̄1
k, n̄

1
k′} ⊆ F̄ (1n̄

1
k−1) .

This and k′ 6= k imply absent-mindedness by Lemma A.5(a) at t̄ =

1n̄
1
k−1. 2
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Lemma A.7 (The “zipper” lemma).12 Suppose ((Ci)i, N̄) is an OR∗

choice-sequence form (6) with no-absent-mindedness (16). Derive its

T̄ by (2). Then10

(∀t̄ [, t̄) R(t̄ [) ⊆ R(t̄) ⇒ [ L(t̄ [) ≤ L(t̄) and t̄ [ = 1t̄L(t̄ [) ] .

Proof. Take any t̄ [ and t̄ such that R(t̄ [) ⊆ R(t̄). By Lemma A.5(b),

by R(t̄ [) ⊆ R(t̄), and by Lemma A.5(b) again, we have

L(t̄ [) = |R(t̄ [)| ≤ |R(t̄)| = L(t̄) .

This is the first of the lemma’s two conclusions. The next two para-

graphs will show by induction on `∈{1, 2, ... L(t̄ [)} that (∀`≤L(t̄ [))

1t̄
[
` = 1t̄`.

For the initial step at n = 1, suppose that t̄ [1 6= t̄1. Note that

{t̄ [1, t̄1} ⊆ F̄ ({}). Since R(t̄ [) ⊆ R(t̄), it must be that t̄ [1 ∈ R(t̄), and

hence there exists a k > 1 such that t̄ [1 = t̄k. The last two sen-

tences imply that there exists a k > 1 such that {t̄k, t̄1} ⊆ F̄ ({}).
By Lemma A.5(a) at its n̄ equal to the t̄ here, this contradicts no-

absent-mindedness.

For the inductive step at ` ∈ {2, 3, ...L(t̄ [)}, assume that 1t̄
[
`−1 =

1t̄`−1 and suppose that t̄ [` 6= t̄`. The equality implies that {t̄ [` , t̄`} ⊆
F̄ (1t̄`−1). Also, since R(t̄ [) ⊆ R(t̄), it must be that t̄ [` ∈ R(t̄), and

hence there exists a k 6= ` such that t̄ [` = t̄k. The last two sen-

tences imply that there exists a k 6= ` such that {t̄k, t̄`} ⊆ F̄ (1t̄`−1).

By Lemma A.5(a) at its n̄ equal to the t̄ here, this contradicts no-

absent-mindedness.

Therefore (∀`≤L(t̄ [)) 1t̄
[
` = 1t̄`. In particular, at ` = L(t̄ [), we have

1t̄
[
L(t̄ [)

= 1t̄L(t̄ [). The left-hand side is t̄ [. 2

Appendix B. For choice-set forms only

B.1. The implicit specification of agents

This Appendix B.1 can stand alone, without referring to any other

appendix. Further, no appendix refers to it.

Lemma B.1. Suppose that (C,N) is a choice-set preform (8) with

its F (10). Then (∀c) F−1(c) 6= ∅.

12The lemma’s two sequences are like the two sides of an unusual zipper whose
sides may have different lengths. The lemma’s inductive proof starts with the
sequences’ first choices and works its way up. Lemma E.4(a,c) extends this lemma
to accommodate infinite sequences.
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Proof. Derive T (9) and p (11). Then take any c. By (8b), there

exists n such that c ∈ n. Further, there exists t such that c ∈ t because

either (a) n ∈ T and n itself is a t such that c ∈ t, or (b) n /∈ T and

(8c) implies the existence of a t such that c ∈ t. Hence by the definition

of p, there exists a j such that |t| ≥ j ≥ 1, c /∈ pj(t), and pj(t)∩{c} =

pj−1(t). Hence (pj(t), c) ∈ F . 2

Lemma B.2. If F ⊆ T×C, the following are equivalent.

(a) (∀c, c′) F−1(c)=F−1(c′) or F−1(c)∩F−1(c′)=∅.

(b) (∀t, t′) F (t)=F (t′) or F (t)∩F (t′)=∅.

Proof. This proof is directly analogous to that of Lemma A.2. Re-

place T̄ with T , and F̄ with F . 2

Proof B.3 (for Lemma 3.1).

This proof is directly analogous to Proof A.3 for Lemma 2.1. Replace

T̄ with T , F̄ with F , H̄ with H, (1) with (8), (4) with (12), (5) with

(13), Lemma A.1 with Lemma B.1, and Lemma A.2 with Lemma B.2.

2

Proof B.4 (for Lemma 3.2).

This proof is directly analogous to Proof A.4 for Lemma 2.2. Replace

T̄ with T , F̄ with F , H̄ with H, (6) with (14), and Lemma A.1 with

Lemma B.1. 2

B.2. Preliminary results for theorems

Lemma B.5. If (C,N) is a choice-set preform (8), then {}∈N .

Proof. Define T by (9). By (8a), there is an n. Thus there is a t

because (1) if n ∈ T then n itself is a t, and (2) if n /∈ T then (8c)

implies the existence of a t ⊂ n. If t = {}, we are done because T ⊆ N

by the definition of N . If not,

{} = p|t|(t) ∈ T ⊆ N ,

where the equality and set membership both follow from (8d) and the

definition of p, and where the set inclusion follows from the definition

of T . 2
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Lemma B.6. Suppose that (C,N) is a choice-set preform (8) and

derive its T (9) and F (10). Then (∀t)(∀n) |F (t)∩n| ≤ 1.13

Proof. Take any to and no, and suppose that c1 and c2 are distinct

elements of F (to)∩no.

This paragraph defines t such that {c1, c2} ⊆ t. On the one hand,

if no ∈ T , let t = no. On the other hand, if no /∈ T , (8c) implies the

existence of an infinite chain T ∗ such that ∪T ∗ = no. Since {c1, c2} is

finite, there is a t ∈ T ∗ such that {c1, c2} ⊆ t.

Now define

t2 := min { pj(t) | |t|≥j≥0 and {c1, c2}⊆pj(t) } ,
where p0(t) := t (the set contains at least p0(t) by the definition of t).

Note that t2rp(t2) is a singleton containing either c1 or c2. Without

loss of generality, assume t2rp(t2) = {c2}. Note that

c1 ∈ p(t2) and(36a)

c2 ∈ F (p(t2)) .(36b)

By the first paragraph and (36b), c2 is an element of both F (to) and

F (p(t2)). Thus by (8e), F (to) = F (p(t2)). Thus since c1 ∈ F (to) by

the first paragraph, c1 ∈ F (p(t2)). This, (36a), and the definition of F

contradict one another. 2

Lemma B.7. Suppose that (C,N) satisfies (8a) and derive its T by

(9). Then for any s ⊆ C,

(∃T ∗) T ∗ is an infinite chain in T and ∪T ∗=s .

⇔ (∃(tk)k≥1) (∀k)tk⊂tk+1 and ∪kt
k=s .

Proof. The ⇐ direction is proved by setting T ∗ = {tk|k}.
To prove the ⇒ direction, take any s and assume T ∗ is an infinite

chain in T such that ∪T ∗= s. By the definition of T , T ∗ is a chain

of finite sets. Thus any nonempty subcollection of T ∗ has a minimum.

Accordingly, define (tk)k≥1 recursively by t1 = minT ∗ and (∀k≥2) tk =

minT ∗r{t1, t2,...tk−1}. Note that

(∀k≥1) tk ⊂ tk+1 .(37)

13The property here resembles that of Lemma A.5(a). Accordingly, the property
here can be loosely regarded as the “no-absent-mindedness” that is implicit in a
choice-set form.
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Thus it remains to show ∪ktk = s. Note that ∪ktk ⊆ ∪T ∗ = s, because

the set inclusion holds by (∀k) tk ∈ T ∗ and because the equality holds

by assumption. Conversely, the next two paragraphs show s ⊆ ∪kt
k.

This paragraph shows by induction that

(∀k≥1) k−1 ≤ |tk| .(38)

The initial step at k=1 is 0 ≤ |t1|, which holds trivially. Now take any

k≥1 and assume k−1 ≤ |tk| . Then

k = (k−1)+1 ≤ |tk|+1 ≤ |tk+1| ,
where the first inequality holds by the inductive hypothesis and the

second inequality holds by (37).

Finally take any c ∈ s. Since s = ∪T ∗ by assumption, there exists

some u ∈ T ∗ such that c ∈ u. Because T ∗ is a chain and (∀k) tk∈T ∗,
either u ⊆ t|u|+1 or u ⊃ t|u|+1. The latter would imply |u| > |t|u|+1|,
which is equivalent to k−1 > |tk| for k = |u|+1. Since this would con-

tradict (38), it must be that u ⊆ t|u|+1. Hence c ∈ u ⊆ t|u|+1 ⊆ ∪kt
k.

2

Appendix C. For Theorem 1

Lemma C.1.14 Take any (Ci)i. Suppose

(i) N̄ is a nonempty collection of sequences in C,

(ii) N is a nonempty collection of subsets of C,

(iii) R|T̄ is a bijection from T̄ onto T , and

(iv) (∀t̄, c, t̄ ]) t̄⊕(c)=t̄ ] ⇔ ( c/∈R(t̄) and R(t̄)∪{c}=R(t̄ ]) ),

where C is defined by ∪iCi, T̄ by (2), and T by (9). Then the following

hold.

(a) F = { (R(t̄), c) | (t̄, c)∈F̄ }, where F̄ is defined by (3) and F is

defined by (10).

(b) p = { (R(t̄), R(1t̄L(t̄)−1)) | t̄6={} }, where p is defined by (11).

(c) (1e) is equivalent to (8e).

(d) (6c) is equivalent to (14c).

Proof. (a). Take any t̄ and any c. Then

(R(t̄), c) ∈ F

⇔ c/∈R(t̄) and R(t̄)∪{c}∈T
14This lemma has an unusual appearance because it is used in both Appendix C

and Appendix D.
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⇔ (∃t]) c/∈R(t̄) and R(t̄)∪{c}=t]

⇔ (∃t̄]) c/∈R(t̄) and R(t̄)∪{c}=R(t̄])

⇔ (∃t̄]) t̄⊕(c) = t̄]

⇔ t̄⊕(c) ∈ T̄

⇔ (t̄, c) ∈ F̄ ,

where the first equivalence is the definition of F , the third follows

from (iii), the fourth follows from (iv), and the sixth follows from the

definition of F̄ .

(b). I argue

p = { (t, tr{c}) | c∈t and tr{c}∈T }
= { (t, tr{c}) | (∃t[) c∈t and tr{c}=t[ }
= { (t, t[) | (∃c) c∈t and tr{c}=t[ }
= { (t, t[) | (∃c) c/∈t[ and t[∪{c}=t }

= { (R(t̄), R(t̄[)) | (∃c) c/∈R(t̄[) and R(t̄[)∪{c}=R(t̄) }
= { (R(t̄), R(t̄[)) | (∃c) t̄[⊕(c)=t̄ }
= { (R(t̄), R(t̄[)) | t̄ 6={} and t̄[=1t̄L(t̄)−1 }
= { (R(t̄), R(1t̄L(t̄)−1)) | t̄6={} } .

The first equality is the definition of p. The fifth equality holds by (iii).

The sixth equality holds by (iv).

(c). I argue that

(1e)

⇔ (∀t̄ 1, t̄ 2) F̄ (t̄ 1)=F̄ (t̄ 2) or F̄ (t̄ 1)∩F̄ (t̄ 2)6=∅
⇔ (∀t̄ 1, t̄ 2) F◦R(t̄ 1)=F◦R(t̄ 2) or F◦R(t̄ 1)∩F◦R(t̄ 2)6=∅
⇔ (∀t1, t2) F (t1)=F (t2) or F (t1)∩F (t2)6=∅
⇔ (8e) .

The second equivalence holds by part (a), and the third equivalence

holds by (iii).

(d). Take any i. I argue that

(6c) at i

⇔ (∀t̄) F̄ (t̄)⊆Ci or F̄ (t̄)∩Ci=∅
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⇔ (∀t̄) F◦R(t̄)⊆Ci or F◦R(t̄)∩Ci=∅
⇔ (∀t) F (t)⊆Ci or F (t)∩Ci=∅
⇔ (14c) at i .

The second equivalence holds by part (a), and the third equivalence

holds by (iii). 2

Lemma C.2. Suppose ((Ci)i, N̄) is an OR∗ choice-sequence form

(6) with no-absent-mindedness (16). Let N = R(N̄). Further, derive

C=∪iCi, T̄ (2), F̄ (3), T (9), F (10), and p (11). Then the following

hold.

(a) N is a nonempty collection of subsets of C.

(b) R|N̄ is a bijection from N̄ onto N .

(c) R(T̄ ) = T .

(d) (∀t̄, c, t̄ ]) t̄⊕(c)=t̄ ] ⇔ ( c/∈R(t̄) and R(t̄)∪{c} = R(t̄ ]) ).

(e) F = { (R(t̄), c) | (t̄, c)∈F̄ }.
(f) p = { (R(t̄), R(1t̄L(t̄)−1)) | t̄6={} }.

Proof. (a). N is a nonempty collection of subsets of C because (1)

N = R(N̄) by definition and (2) N̄ is a nonempty collection of se-

quences in C by (1a).

(b). Since N = R(N̄) by definition, R|N̄ is onto N . Injectivity

follows from Proposition 4.1(a⇒c).

(c). To show the ⊆ direction, take any t̄. By the definition of N ,

R(t̄) ∈ N . Further, |R(t̄)| ≤ L(t̄). By the last two sentences, R(t̄) ∈ T .

To show the ⊇ direction, take any t. By the definition of N , there ex-

ists n̄ such that R(n̄) = t. It remains to show that n̄ ∈ T̄ . Accordingly,

suppose n̄ /∈ T̄ . Then (1c) would imply (∀`≥1) 1n̄` ∈ T̄ . Hence

(∀`≥1) |R(n̄)| ≥ |R(1n̄`)| = L(1n̄`) = ` ,(39)

where the first equality holds by Lemma A.5(b). (39) implies that

|R(n̄)| is infinite. This contradicts that (a) |t| is finite by the definition

of T and (b) |R(n̄)| = |t| by the definition of n̄.

(d). This paragraph shows

(∀t̄ [, c, t̄) t̄ [⊕(c)=t̄ ⇒ c/∈R(t̄ [) and R(t̄ [)∪{c}=R(t̄) .

Accordingly, take any t̄ [, c, and t̄ such that t̄ [⊕(c) = t̄. Note that

t̄ [⊕(c) = t̄ implies that R(t̄ [)∪{c} = R(t̄ [⊕(c)) = R(t̄), which is the



30 Appendix C

second fact to be derived. Also note that

|R(t̄ [)|+ 1 = L(t̄ [) + 1 = L(t̄) = |R(t̄)|

by Lemma A.5(b), by t̄ [⊕(c) = t̄, and by Lemma A.5(b) again. This

and t̄ [⊕(c) = t̄ yield c /∈ R(t̄ [), which is the first fact to be derived.

Conversely, this paragraph shows

(∀t̄ [, c, t̄) t̄ [⊕(c)=t̄ ⇐ c/∈R(t̄ [) and R(t̄ [)∪{c}=R(t̄) .

Accordingly, take any t̄ [, c, and t̄ such that c /∈ R(t̄ [) and R(t̄ [)∪{c} =

R(t̄). Note

L(t̄ [) + 1 = |R(t̄ [)|+ 1 = |R(t̄)| = L(t̄).

by Lemma A.5(b), by the assumption of the previous sentence, and by

Lemma A.5(b) again. So, trivially, L(t̄ [) = L(t̄)−1. Since R(t̄ [) ⊆
R(t̄ [)∪{c} = R(t̄), the “zipper” Lemma A.7 shows that t̄ [ = 1t̄L(t̄ [).

So the last two sentences yield t̄ [ = 1t̄L(t̄)−1. Therefore, since {c} =

R(t̄)∼R(t̄ [) by assumption, it must be that t̄L(t̄) = c. The last two

sentences yield t̄ [⊕(c) = t̄.

(e,f). This paragraph argues that the assumptions of Lemma C.1

hold. (1a) implies (i). Part (a) implies (ii). Parts (b) and (c) imply

(iii). And finally, part (d) implies (iv).

Consequently, Lemma C.1(a) implies part (e), and Lemma C.1(b)

implies part (f). 2

Lemma C.3. Suppose ((Ci)i, N̄) is an OR∗ choice-sequence form (6)

with no-absent-mindedness (16). Let N = N̄ . Then the following hold.

(a) (∪iCi, N) is a choice-set preform (8).

(b) ((Ci)i, N) is a choice-set form (14).

Proof. (a). (8a). This follows from Lemma C.2(a).

(8b). C ⊆ ∪R(N̄) = ∪N because the set inclusion holds by (1b) and

because the equality holds by the definition of N .

(8c). To prove the ⊆ direction, take any n /∈ T . By the definition of

N , we may define n̄ to satisfy n = R(n̄). Since n /∈ T , n̄ /∈ T̄ simply

because a finite sequence cannot have an infinite range. Hence, by

(1c), we may define T ∗ = {R(1n̄`)|`≥1}. T ∗⊆T simply because finite

sequences have finite ranges. Further, T ∗ is an infinite chain because
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(∀`) |R(1n̄`)| = ` by Lemma A.5(b). Finally,

n = R(n̄) = R(∪{1n̄`|`}) = ∪{R(1n̄`)|`} = ∪T ∗ ,

where the first equality is the definition of n̄, the second equality fol-

lows from n̄ being an infinite sequence, the third equality holds by

manipulation, and the last equality follows from the definition of T ∗.

To prove the ⊇ direction, let T ∗ be an infinite chain in T . Because

T ∗ is an infinite chain, ∪T ∗ must be an infinite set. Thus, it remains

to be shown that ∪T ∗ ∈ N .

By Lemma B.7, there exists (tk)k≥1 such that (∀k) tk ⊂ tk+1 and

∪ktk = ∪T ∗. Then by Lemma C.2(c), there exists (t̄ k)k≥1 such that

(∀k) tk = R(t̄ k). The last two sentences imply (∀k) R(t̄ k) ⊂ R(t̄ k+1).

This strict set inclusion has two implications. First, by two applications

of Lemma A.5(b), we have

(∀k) L(t̄ k) = |R(t̄ k)| < |R(t̄ k+1)| = L(t̄ k+1) .(40)

Second, by the zipper Lemma A.7, we have

(∀k) t̄ k = 1t̄
k+1
L(tk)

.(41)

(40) and (41) together imply that ∪k t̄k is an infinite sequence. (It need

not be the case that (∀k) L(t̄k)+1 = L(t̄k+1).)

For notational ease, define s̄ = ∪k t̄
k. The remainder of this para-

graph shows

(∀`≥1) 1s̄` ∈ T̄ .(42)

Take any `. By (40), (41), and the definition of s̄, there exists some

k such that 1s̄` = 1t̄
k
` . Hence L(t̄k)−` applications of (1d) yield that

1s̄` = 1t̄
k
` is in T̄ .

To conclude, this paragraph argues

∪T ∗ = ∪ktk = ∪kR(t̄k) = R(∪k t̄
k) = R(s̄) ∈ N .

The first equality holds by the definition of (tk)k. The second equality

holds by the definition of (t̄k)k. The third equality holds by manipula-

tion. The fourth equality holds by the definition of s̄. To see the set

membership, note that (42) and assumption (1c) imply that s̄ ∈ N̄ .

Thus R(s̄) ∈ N by the definition of N .
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(8d). Take any t 6= ∅. Note that (R|T̄ )−1(t) is a well-defined se-

quence in T̄ by Lemma C.2(b,c).

This paragraph argues that

(∀c) c = [(R|T̄ )−1(t)]L((R|T̄ )−1(t))

⇔ (∃t̄ [) t̄ [⊕(c) = (R|T̄ )−1(t)

⇔ (∃t[) (R|T̄ )−1(t[)⊕(c) = (R|T̄ )−1(t)

⇔ (∃t[) c/∈R◦(R|T̄ )−1(t[) and R◦(R|T̄ )−1(t[)∪{c}=R◦(R|T̄ )−1(t)

⇔ (∃t[) c/∈t[ and t[∪{c}=t

⇔ (∃t[) c∈t and tr{c}=t[

⇔ c∈t and tr{c}∈T .

The first equivalence holds by inspection. The second equivalence holds

by Lemma C.2(b,c). The third equivalence holds by Lemma C.2(d) at

t̄=(R|T̄ )−1(t[) and t̄ ]=(R|T̄ )−1(t). The remaining equivalences hold by

manipulation.

The previous paragraph has established that the last elements of the

sequence (R|T̄ )−1(t) are identical to the last choices of the set t. Since

the sequence (R|T̄ )−1(t) belongs to T̄r{{}} by t6={}, the sequence has

a unique last element. Thus by the last two sentences, the set t has a

unique last choice.

(8e). This paragraph argues that the assumptions of Lemma C.1

hold. (1a) implies (i). Lemma C.2(a) implies (ii). Lemma C.2(b–c)

imply (iii). And finally, Lemma C.2(d) implies (iv).

Thus by Lemma C.1(c), (8e) is equivalent to assumption (1e).

(b). (14a). This is identical to part (a).

(14b). This is identical to assumption (6b).

(14c). The assumptions of Lemma C.1 hold by the first paragraph

in the above argument for (8e). Thus by Lemma C.1(d), (14c) is equiv-

alent to assumption (6c). 2

Proof C.4 (for Theorem 1).

Part (a) follows from Lemma C.3(b). The remaining parts of the

theorem follow from Lemma C.2(b–f). 2
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Appendix D. For Theorem 2

Lemma D.1. R̂ (17) is injective.

Proof. Suppose (a) that ((C1
i )i, N̄

1) and ((C2
i )i, N̄

2) are two OR∗

choice-sequence forms (6) with no-absent-mindedness (16), and (b) that

R̂ takes them both to the choice-set form (14) ((Ci)i, N). Then by the

definition of R̂ we have

(C1
i )i = (C2

i )i = (Ci)i and(43a)

R(N̄1) = R(N̄2) = N .(43b)

Since (43a) assures (C1
i )i = (C2

i )i, it remains to show that N̄1 = N̄2.

Given (43a), I will henceforth replace (C1
i )i and (C2

i )i with (Ci)i.

Derive from ((Ci)i, N̄
1) its T̄ 1 (2) and F̄ 1 (3). Derive from ((Ci)i, N̄

2)

its T̄ 2 (2) and F̄ 2 (3). Derive from ((Ci)i, N) its T (9) and F (10). Set

C = ∪iCi. Note that the conclusions of Theorem 1 are available for

both ((Ci), N̄
1) and ((Ci)i, N̄

2).

Suppose N̄1 6= N̄2. By Theorem 1(b) and (43b), R|N̄1 is a bijection

from N̄1 onto N . Similarly, R|N̄2 is a bijection from N̄2 onto N . Thus

N̄1 6= N̄2 implies the existence of distinct n̄1 and n̄2 such that R(n̄1) =

R(n̄2). Define

K 6= = { 1≤` | n̄1
` 6= n̄2

` ,

`≤L(n̄1) if n̄1 is finite,

`≤L(n̄2) if n̄2 is finite } .

On the one hand, suppose K 6= is empty. Then the distinctness of

n̄1 and n̄2 implies that one is a subsequence (Section 2.1) of the other.

Without loss of generality, suppose n̄1 is a subsequence of n̄2. Hence

n̄1 is finite,

n̄1 = 1n̄
2
L(n̄1) , and(44a)

( L(n̄1)<L(n̄2) or n̄2 is infinite ) .(44b)

By (44b), n̄2
L(n̄1)+1 is a well-defined element of R(n̄2). Thus since

R(n̄1) = R(n̄2), there exists some k ≤ L(n̄1) such that n̄1
k = n̄2

L(n̄1)+1.

Thus by (44a), n̄2
k = n̄2

L(n̄1)+1. Hence, since k ≤ L(n̄1), both the

k-th component and the last component of 1n̄
2
L(n̄1)+1 equal n̄2

k. So

|R(1n̄
2
L(n̄1)+1)| < L(1n̄

2
L(n̄1)+1). This inequality contradicts the no-

absent-mindedness of ((Ci)i, N̄
2) by Lemma A.5(b).
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On the other hand, suppose K 6= is nonempty. Let k = minK 6=. Then

n̄1
k 6= n̄2

k and(45a)

1n̄
1
k−1 = 1n̄

2
k−1 ,(45b)

where the last equality holds even if k = 1 because then both 1n̄
1
0 and

1n̄
2
0 equal {}. Note

n̄1
k ∈ F̄ 1(1n̄

1
k−1) and(46a)

n̄2
k ∈ F̄ 2(1n̄

2
k−1)(46b)

(F̄ 1 and F̄ 2 need not be equal).

Let t = R(1n̄
1
k−1). By (46a), by Theorem 1(e) for ((Ci)i, N̄

1), and by

the definition of t, we have

n̄1
k ∈ F̄ 1(1n̄

1
k−1) = F (R(1n̄

1
k−1)) = F (t) .

Similarly, by (46b), by Theorem 1(e) for ((Ci)i, N̄
2), by (45b), and by

the definition of t, we have

n̄2
k ∈ F̄ 2(1n̄

2
k−1) = F (R(1n̄

2
k−1)) = F (R(1n̄

1
k−1)) = F (t) .

These two together imply {n̄1
k, n̄

2
k} ⊆ F (t).

Now let n = R(n̄1). Since R(n̄1) = R(n̄2), we also have that n =

R(n̄2). Thus {n̄1
k, n̄

2
k} ⊆ n. This and the last sentence of the previous

paragraph imply that {n̄1
k, n̄

2
k} ⊆ F (t)∩n.

Yet ((Ci)i, N) is a choice-set form by definition. Thus Lemma B.6

implies that |F (t)∩n| ≤ 1. This contradicts (45a) and the conclusion

of the last paragraph. 2

Lemma D.2. R̂ (17) is onto the class of choice-set forms (14).

Proof. Suppose that ((Ci)i, N) is a choice-set form. I will construct

an N̄ such that (a) ((Ci)i, N̄) is an OR∗ choice-sequence form (6) with

no-absent-mindedness (16) and (b) R(N̄) = N . By the definition of R̂

this suffices to show that R̂ takes ((Ci)i, N̄) to ((Ci)i, N).

Step 1 will construct N̄ . Steps 5 and 6 will derive (a) and (b). Steps

2–4 will provide intermediate results.

Step 1: Definition of N̄ .

First, I derive some objects from ((Ci)i, N). As usual, define C by

∪iCi, T by (9), F by (10), and p by (11). Further, (8d) implies the

existence of a function c∗:Tr{{}}→C that takes each nonempty t to its
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unique last choice c∗(t). Note that p(t)∪{c∗(t)} = t for any nonempty

t.

Second, define (Tk)k≥0 by Tk = { t | |t|=k }. By the definition of T ,

∪kTk = T .(47)

Also, since {} ∈ N by Lemma B.5,

T0 = {{}} .(48)

Third, I define a sequence (Qk)k≥0 of functions in which each function

Qk maps each set t∈Tk to some finite sequence in C. I do this recur-

sively. To begin, recall T0 = {{}} by (48) and define the one-element

function Q0 by

Q0({}) := {} .(49)

Thus the empty set t = {} is mapped to the empty sequence {}. Then,

for any k≥1, use Qk−1 to define Qk at each t∈Tk by

Qk(t) := Qk−1(p(t))⊕(c∗(t)) .(50)

Since t ∈ Tk implies p(t) ∈ Tk−1, each Qk−1(p(t)) is well-defined.

Finally, define

N̄ := ∪kQk(Tk) ∪ { s̄ | (∀`≥1)1s̄`∈∪kQk(Tk) } ,(51)

where s̄ denotes an arbitrary sequence in C. From ((Ci)i, N̄) derive T̄

by (2) and, for later use, derive F̄ by (3). Since every value of every

Qk is a finite sequence, the definition of N̄ implies

T̄ = ∪kQk(Tk) and(52a)

N̄rT̄ = { s̄ | (∀`≥1)1s̄`∈T̄ } .(52b)

Step 2: An intermediate result (54) about (Qk(Tk))k.

This paragraph shows by induction that

(∀k)(∀t∈Tk) L(Qk(t)) = k .(53)

This holds at k = 0 because T0 = {{}} by (48) and because L(Q0({}))
= L({}) = 0 by (49). Further, it holds at any k≥1 if it holds at k−1

because

(∀t∈Tk) L(Qk(t) ) = L(Qk−1(p(t))⊕ (c∗(t)) )

= L(Qk−1(p(t)) ) + 1
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= (k−1) + 1

= k ,

where the first equality holds by the definition (50) of Qk, and the third

by the inductive hypothesis.

I now argue from the previous paragraph that

(∀k) { t̄ | L(t̄)=k } = Qk(Tk) .(54)

The ⊇ direction follows from (53) at k. To show the ⊆ direction,

take any t̄ such that L(t̄) = k. By (52a), there exists a k′ such that

t̄ ∈ Qk′(Tk′). Thus (53) at k′ implies L(t̄) = k′. Therefore, k = k′ by

the last and the third-to-last sentences, and hence t̄ ∈ Qk(Tk) by the

second-to-last sentence.

Step 3: An intermediate result (57) showing R|T̄ is a bijection.

This paragraph shows by induction that

(∀k)(∀t∈Tk) R(Qk(t)) = t .(55)

This holds at k=0 because T0 = {{}} by (48) and because R(Q0({})) =

R({}) = {} by (49). Further, it holds at k≥1 if it holds at k−1 because

(∀t∈Tk) R(Qk(t) ) = R
(
Qk−1(p(t))⊕ (c∗(t))

)
= R

(
Qk−1(p(t))

)
∪ {c∗(t)}

= p(t) ∪ {c∗(t)}
= t ,

where the first equality holds by the definition (50) of Qk, and the third

holds by the inductive hypothesis.

By (55) we have that

(∀k) Qk = (R|Qk(Tk))
−1 is a bijection from Tk onto Qk(Tk) .(56)

By the definition of (Tk)k, the members of {Tk|k} are disjoint. Further,

by (54), the members of {Qk(Tk)|k} are disjoint. Thus (56) implies that

∪kQk = (R|∪kQk(Tk))
−1 is a bijection from ∪kTk onto ∪kQk(Tk) .

Hence, since ∪kTk = T by (47) and since ∪kQk(Tk) = T̄ by (52a),

∪kQk = (R|T̄ )−1 is a bijection from T onto T̄ .

Therefore

R|T̄ = (∪kQk)−1 is a bijection from T̄ onto T .(57)
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Step 4: An intermediate result (61) about concatenation.

First, this paragraph argues

(∀k≥1)(∀t[∈Tk−1)(∀c)(∀t∈Tk)(58)

Qk−1(t[)⊕(c) = Qk(t)

⇔ Qk−1(t[)⊕(c) = Qk−1(p(t))⊕(c∗(t))

⇔ Qk−1(t[)=Qk−1(p(t)) and c=c∗(t)

⇔ t[=p(t) and c=c∗(t)

⇔ c/∈t[ and t[∪{c} = t .

The first equivalence holds by the definition (50) of Qk. The second

equivalence holds by breaking the vector equality into two components.

The third equivalence holds by applying R and (57) to the first equality.

The fourth equivalence holds by the definitions of p and c∗.

Next, this paragraph argues

(∀t[, c, t) (∪kQk)(t[)⊕(c) = (∪kQk)(t)(59)

⇔ c/∈t[ and t[∪{c}=t .

Take any t[, c, and t. Assume the left-hand side. By the definition of

(Qk)k and the disjointness of their domains, (∪kQk)(t[) = Q|t[|(t
[) and

(∪kQk)(t) = Q|t|(t). Thus the left-hand side implies

Q|t[|(t
[)⊕(c) = Q|t|(t) .(60)

Two applications of (54) imply L(Q|t[|(t
[)) = |t[| and L(Q|t|(t)) = |t|.

Thus (60) implies |t|≥1 and |t[|=|t|−1. Hence (60) and (58) at k=|t|
imply the right-hand side. Conversely, assume the right-hand side. The

right-hand side implies |t|≥1 and |t[|=|t|−1. Hence the right-hand side

and (58) at k=|t| imply (60). (60) immediately implies the left-hand

side.

Finally, this paragraph argues

(∀t̄ [, c, t̄) t̄ [⊕(c) = t̄(61)

⇔ c/∈R(t̄ [) and R(t̄ [)∪{c} = R(t̄) .

Accordingly, take any t̄ [, c, and t̄. Then define t[ = R(t̄ [) and t = R(t̄).

I argue

t̄ [⊕(c) = t̄

⇔ (∪kQk)(t[)⊕(c) = (∪kQk)(t)
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⇔ c/∈t[ and t[∪{c} = t

⇔ c/∈R(t̄ [) and R(t̄ [)∪{c} = R(t̄) .

The first equivalence holds by (57) and the definitions of t[ and t. The

second equivalence holds by (59). The third equivalence holds by the

definitions of t[ and t.

Step 5: Proving ((Ci)i, N̄) is an OR∗ choice-sequence form with no-

absent-mindedness.

By definition, ((Ci)i, N̄) is an OR∗ choice-sequence form (6) iff (C, N̄)

is an OR∗ choice-sequence preform (1) and ((Ci)i, N̄) satisfies (6b–c).

Accordingly, I will show (1a–e), (6b–c), and no-absent-mindedness.

(1a). Return to the definition (51) of N̄ . Since every Qk(Tk) is a

collection of sequences in C, N̄ is also a collection of sequences in C.

Further, N̄ is nonempty because Q0(T0) is nonempty by (48) and (49).

(1b). To show that C ⊆ ∪R(N̄), take any c. By (8b), there is an n

such that c ∈ n. Thus, either by n ∈ T , or by n /∈ T and (8c), there is

a t such that c ∈ t. By (57), there exists t̄ such that t = R(t̄). Then

c ∈ t = R(t̄) ⊆ ∪R(T̄ ) ⊆ ∪R(N̄) ,

where the set membership follows from the definition of t, the equality

follows from the definition of t̄, and the last inclusion follows from the

definition of T̄ .

(1c). This has been established by (52b).

(1d). Take any t̄ ∈ T̄r{{}}. By (54), t̄ ∈ QL(t̄)(TL(t̄)). Thus there

exists t ∈ TL(t̄) such that t̄ = QL(t̄)(t). Since t̄ 6= {} by assumption,

L(t̄) ≥ 1. By the last two sentences and the definition (50) of QL(t̄)−1,

we have

t̄ = QL(t̄)(t) = QL(t̄)−1(p(t))⊕ (c∗(t)) .(62)

I then argue

1t̄L(t̄)−1 = QL(t̄)−1(p(t)) ∈ QL(t̄)−1(TL(t̄)−1) ⊆ T̄ .

The first equality is the initial component of (62). The set membership

follows from p(t) ∈ TL(t̄)−1, which follows from t ∈ TL(t̄). And finally,

the set inclusion follows from (52a).
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(1e). This paragraph shows that the assumptions of Lemma C.1 are

satisfied. The previously derived (1a) implies (i). The assumed (8a)

implies (ii). (57) implies (iii). (61) implies (iv).

Thus by Lemma C.1(c), (1e) is equivalent to the assumed (8e).

(6b). This is identical to the assumed (14b).

(6c). The third-to-last paragraph showed that the assumptions of

Lemma C.1 are satisfied. Thus by Lemma C.1(d), (6c) is equivalent to

the assumed (14c).

No-absent-mindedness. I have just shown that ((Ci)i, N̄) is an OR∗

choice-sequence form. Further, R|T̄ is injective by (57). Thus Proposi-

tion 4.1(a⇐b) implies no-absent-mindedness.

Step 6: Proving R(N̄) = N .

R(N̄) ⊆ N . By (57) and the definition of T , R(T̄ ) = T ⊆ N . Thus

it suffices to show that R(N̄rT̄ ) ⊆ N . Accordingly, take any n̄ ∈ N̄rT̄ .

Define T ∗ = {R(1n̄`)|`≥1}. The remainder of this paragraph argues

that T ∗ is an infinite chain in T . (1) Every R(1n̄`) is in T , because

every 1n̄` is in T̄ by the derived (1c), and because R(T̄ ) = T by (57).

Hence T ∗ ⊆ T . (2) Note that (∀`) R(1n̄`) ⊆ R(1n̄`+1) simply because

1n̄` ⊆ 1n̄`+1. Hence T ∗ is a chain. (3) By Lemma A.5(b) and the

derived no-absent-mindedness, we have (∀`) |R(1n̄`)| = `. This implies

that T ∗ is infinite.

I argue

R(n̄) = R(∪{1n̄`|`}) = ∪{R(1n̄`)|`} = ∪T ∗ ∈ NrT ⊆ N.

The first equality holds because n̄ is an infinite sequence. The second

quality holds by manipulation. The third equality holds by the defini-

tion of T ∗. The set membership follows from assumption (8c) and the

last paragraph’s result that T ∗ is an infinite chain in T .

R(N̄) ⊇ N . By (57) and the definition of T̄ , T = R(T̄ ) ⊆ R(N̄).

Thus it suffices to show that NrT ⊆ R(N̄). Accordingly, take any

n ∈ NrT .

This paragraph derives an infinite sequence s̄ from the set n. By the

assumed (8c), there exists an infinite chain T ∗ ⊆ T such that ∪T ∗ = n.

Thus by Lemma B.7, there exists (tk)k≥1 such that (∀k) tk ⊂ tk+1 and

∪ktk = n. Then by (57), there exists (t̄k)k≥1 such that (∀k) R(t̄k) = tk.

The last two sentences imply (∀k) R(t̄k) ⊂ R(t̄k+1). This strict inclu-

sion has two implications. First, by two applications of Lemma A.5(b)
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and the derived no-absent-mindedness, we have

(∀k) L(t̄k) = |R(t̄k)| < |R(t̄k+1)| = L(t̄k+1) .(63)

Second, by the zipper Lemma A.7, we have

(∀k) t̄ k = t̄ k+1
L(tk)

.(64)

(63) and (64) together imply that ∪k t̄
k is an infinite sequence. Accord-

ingly, define s̄ = ∪k t̄k. (It need not be the case that (∀k) L(t̄k)+1 =

L(t̄k+1).)

This paragraph argues

s̄ ∈ N̄rT̄ .(65)

By the derived (1c), it suffices to show that

(∀`≥1) 1s̄` ∈ T̄ .

Accordingly, take any `. By (63), (64), and the definition of s̄, there ex-

ists some k such that 1s̄` = 1t̄
k
` . This 1t̄

k
` is in T̄ by L(t̄k)−` applications

of the derived (1d).

This paragraph argues

R(s̄) = R(∪k t̄k) = ∪kR(t̄k) = ∪ktk = n .(66)

The first equality follows from the definition of s̄. The second equality

follows by manipulation. The third equality follows from the definition

of (t̄k)k. The final equality follows from the definition of (tk)k.

Finally,

n = R(s̄) ∈ R(N̄rT̄ ) ⊆ R(N̄) ,

where the equality is (66) and the set membership follows from (65).

2

Proof D.3 (for Theorem 2).

By Theorem 1(a), R̂ is a function, from the class of OR∗ choice-

sequence forms with no-absent-mindedness, into the class of choice-set

forms. By Lemma D.1, it is injective. By Lemma D.2, it is surjective.

2
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Appendix E. For Corollaries

Proof E.1 (for Corollary 5.1).

(a). ⇐. This follows immediately from the definition of p.

⇒. By Theorem 2 and the definition (17) of R̂, there exists an OR∗

choice-sequence form (6) ((Ci)i, N̄), with no-absent-mindedness (16),

such that R(N̄) = N . Derive T̄ by (2).

Now suppose t[ ⊂ t. By Theorem 1(c), there exists t̄ [ and t̄ such

that R(t̄ [) = t[ and R(t̄) = t. Note

R(t̄ [) = t[ ⊂ t = R(t̄) .(67)

I argue

t̄ [ = 1t̄L(t̄ [) = 1t̄|R(t̄ [)| = 1t̄|t[| .(68)

The first equality holds by (67) and the zipper Lemma A.7. The second

equality holds by Lemma A.5(b). The third equality holds by the

definition of t̄ [.

Since t[ ⊂ t, |t[| < |t|. Thus (68) and |t|−|t[| applications of Theo-

rem 1(f) imply that t[ = p|t|−|t
[|(t).

(b). Take any t. Note that (∀t′ 6={}) p(t′) ⊂ t′ by the definition of p.

Thus {pj(t) | |t|≥j≥1} is both a chain and a subcollection of {t[|t[⊂t}.
It remains to be shown that, for all t[, t[ ⊂ t implies the existence of

a j satisfying both t[=pj(t) and |t| ≥ j≥ 1. Accordingly, take some t[

such that t[ ⊂ t. By part (a), t[ = pj(t) for j set equal to |t|−|t[| ≥ 1.

Further, |t[| ≥ 0 implies j ≤ |t|. 2

Proof E.2 (for Corollary 5.2).

Derive p by (11).

(a). This paragraph defines t] such that t ⊂ t] ⊆ n]. On the one

hand, if n] ∈T , let t] = n]. On the other hand, suppose n] /∈ T . Then

by (8c) there exists an infinite chain T ∗ such that ∪T ∗ = n]. Thus

since t is a finite subset of n], there is some t] ∈ T ∗ such that t ⊂ t].

By Corollary 5.1(b), there exists a j≥1 such that t = pj(t]). Thus

there exists a c such that c ∈ F (t) and t∪{c} = pj−1(t]) (where p0(t])

is defined to be t]). Since the second of these statements implies c ∈ t],

the two statements together imply c ∈ F (t)∩t]. Finally, since t] ⊆ n]

by the definition of t], we have c ∈ F (t)∩n].
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(b). Suppose n⊂n]. If n] ∈T , then n∈T follows immediately from

the definition of T . Accordingly, suppose n] /∈T . Then by (8c), there

exists an infinite chain T ∗ such that n] =∪T ∗.
Since n⊂n], we may take c] ∈n]rn. Since n] =∪T ∗, we may then

take some t] ∈T ∗ such that c] ∈ t]. For future purposes, define p0(t]) =

t] and note that p0(t]) 6⊆n by the ends of the last two sentences.

The set { pj(t])⊆n | |t]|≤j≤1 } is a nonempty finite chain because

p|t
]|(t]) = ∅. Thus we may let pj(t]) be its maximum. If j=1, the last

paragraph showed p0(t]) 6⊆n. If j≥2, the definition of j implies that

pj−1(t]) 6⊆n. Thus in either contingency we have

pj(t]) ⊆ n and(69a)

pj−1(t]) 6⊆ n .(69b)

The definition of p allows us to define cj as the sole element of

pj−1(t])rpj(t]) (if j=1, this cj happens to be the c] from the second

paragraph). Thus (69) implies

cj /∈ n .(70)

Further the definition of j and definition of F imply

cj ∈ F (pj(t])) .(71)

And finally, the definition of cj, the definition of p, the definition of t],

and the definition of T ∗ imply

cj ∈ pj−1(t]) ⊆ t] ⊆ ∪T ∗ = n] .(72)

This paragraph shows that pj(t]) = n. By (69a), I need only rule out

pj(t]) ⊂ n. Accordingly, suppose pj(t]) ⊂ n. By part (a), this implies

the existence of a c ∈ F (pj(t])) such that c ∈ n. Since cj /∈ n by (70),

it must be that c 6= cj. Thus c and cj are distinct elements of F (pj(t]))

by (71) and the definition of c. Hence they cannot both belong to the

same node by Lemma B.6. Thus, since cj ∈ n] by (72), we have c /∈ n].

But this contradicts c ∈ n ⊂ n], which must hold by the definition of

c and the initial assumption that n ⊂ n].

Since n = pj(t]) by the previous paragraph, n is an element of T .

(c). Suppose (∃n]) n⊂n]. By part (b), n ∈ T . Thus by part (a) at

t = n, F (n)∩n] 6= ∅. This implies that F (n) 6= ∅, or in other words,

that n ∈ F−1(C).
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Conversely, suppose t ∈ F−1(C) (the notation t is not restrictive

since F−1(C) ⊆ T ). Then there exists c ∈ F (t) and we may set n] =

t∪{c}. 2

Proof E.3 (for Corollary 5.3).

By Theorem 2 and the definition (17) of R̂, there exists an OR∗ choice-

sequence form (6) ((Ci)i, N̄), with no-absent-mindedness (16), such

that R(N̄) = N . Derive T̄ by (2).

(a). Since R(N̄) = N , there exists n̄ such that R(n̄) = n. By (1c),

(1n̄k)k≥0 is a sequence in T̄ . Thus by Theorem 1(c), we may define

(tk)k≥0 by

(∀k) tk = R(1n̄k) .(73)

Note that

t0 = R(1n̄0) = {} ,

where the first equality follows from the definition of t0, and the second

holds because 1n̄0 was defined to be {}. Further,

(∀k≥1) p(tk) = p(R(1n̄k)) = R(1n̄k−1) = tk−1 ,

where the first and third equalities follow from the definition of (tk)k,

and the second equality follows from Theorem 1(f). Finally, note that

n = R(n̄) = R(∪{1n̄k|k}) = ∪{R(1n̄k)|k} = ∪{tk|k} ,

where the first equality is the definition of n̄, the next two equalities

hold by manipulation, and the last equality holds by the definition

of (tk)k≥1. The equations of the last three sentences establish that

(tk)k≥1 satisfies the three equations of part (a). Thus existence has

been established.

To show uniqueness, suppose that (sk)k≥0 is any sequence of sets in

T that satisfies the three equations of part (a). Then

n=∪{sk|k}, s0={}, and (∀k≥1) p(sk)=sk−1 .(74)

The last two of these equalities and the definition of p together imply

that |s0| = 0 and (∀k≥1) |sk| = |sk−1|+1. Thus (∀k) |sk| = k.

By Theorem 1(c), we may define (s̄k)k≥0 in T̄ by (∀k) sk = R(s̄k).

The last two sentences imply, among other things, that (∀k) |R(s̄k)| =
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k. By the no-absent-mindedness of ((Ci)i, N̄) and Lemma A.5(b), the

last sentence implies

(∀k) L(s̄k) = k .(75)

For use in the next paragraph, note

(∀k) p(R(s̄k+1)) = R(1s̄
k+1
L(s̄k+1)−1

) = R(1s̄
k+1
k ) ,(76)

where the first equality follows from Theorem 1(f) at t̄ = s̄k+1, and the

second equality follows from (75) at k+1.

This paragraph argues

(∀k) s̄k = R|−1
N̄

(sk) = R|−1
N̄

(p(sk+1))(77)

= R|−1
N̄

(p(R(s̄k+1))) = R|−1
N̄

(R(1s̄
k+1
k )) = 1s̄

k+1
k .

The first equality follows from the definition of s̄k and Theorem 1(b).

The second equality follows from the last statement in (74). The third

equality follows from the definition of s̄k+1. The fourth equality follows

from (76). The last equality holds if 1s̄
k+1
k ∈ N̄ , and this set member-

ship holds because (1) s̄k+1∈T̄ by its definition, (2) L(s̄k+1)=k+1 by

(75), and thus (3) 1s̄
k+1
k ∈T̄ by (1d).

(77) implies that ∪{s̄k|k} is a sequence. Denote it m̄ (so as to distin-

guish it from the n̄ defined in the first paragraph of this proof of part

(a)). Since (∀k) L(s̄k) = k by (75), we have

(∀k) 1m̄k = s̄k .(78)

Thus the definition of s̄k implies that (∀k) 1m̄k ∈ T̄ . Hence (1c) implies

that m̄ ∈ N̄ .

Notice that

R(m̄) = R(∪{s̄k|k}) = ∪{R(s̄k)|k} = ∪{sk|k} = n ,

where the first equality holds by the definition of m̄, the second equality

holds by manipulation, the third equality holds by the definition of

(s̄k)k, and the final equality holds by the first statement in (74). Thus,

since R(n̄) also equals n by the definition of n̄, Theorem 1(b) implies

that m̄ = n̄. So

(∀k) sk = R(s̄k) = R(1m̄k) = R(1n̄k) = tk ,

where the first equality holds by the definition of s̄k, the second equal-

ity holds by (78), the third equality holds by the last sentence, and

the last equality is the definition (73) of tk. Therefore, since (sk)k≥0
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was assumed to be any sequence in T solving the three conditions of

part (a), (tk)k≥0 is the only such sequence.

(b). Recall the very first paragraph of this proof, which began before

the proof of part (a). The statement of part (b) uses part (a) to define

(tk)k≥0 as the unique sequence of sets that satisfies

n=∪{tk|k} , t0={} , and (∀k≥1) p(tk)=tk−1 .(79)

By the last two of these three equations, {tk|k} is an infinite chain.

Thus it remains to be shown that

{n[|n[⊂n} = {tk|k} .

To see the ⊇ direction, take any tk. Then tk ⊆ n by the first equality

in the definition (79) of (tk)k. Further, tk ⊂ n since tk is finite and n

is infinite by assumption.

To see the ⊆ direction, take any n[ ⊂ n. Note that n[ ∈ T by Corol-

lary 5.2(b). This and the next paragraph will incorporate n[ into an

infinite sequence (sk)k≥0 in T . First, define (sk)
|n[|
k=0 by sk = p|n

[|−k(n[),

where p0(n[) is set equal to n[. It follows immediately that

s0 = {} , (∀1≤k≤|n[|) p(sk) = sk−1 ,(80a)

and (∀0≤k≤|n[|) sk ⊂ n .(80b)

Second, define (sk)k≥|n[|+1 recursively as follows. [1] Take k≥|n[|+1

and assume

sk−1 ⊂ n .(81)

[2] By Lemma 5.2(a), take ck ∈ F (sk−1)∩n, where F is defined by (10).

[3] Since ck ∈ F (sk−1), define sk = sk−1∪{ck}. Note that

p(sk) = sk−1 .(82)

[4] Also note that sk = sk−1∪{ck} ⊆ n since sk−1 ⊂ n by (81) and since

ck ∈ n by the definition of ck. This implies

sk ⊂ n(83)

because sk is finite by construction and n is infinite by assumption.

This four-step recursion can be initiated at k=|n[|+1 because (81) at

k=|n[|+1 is (80b) at k=|n[|. The recursion can be sustained because
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(81) at k is (83) at k−1. Finally, by (82) and (83) within this recursion,

we have

(∀k≥|n[|+1) p(sk) = sk−1(84a)

and (∀k≥|n[|+1) sk ⊂ n .(84b)

Equations (80a) and (84a) imply that {sk|k} is an infinite chain in T .

Thus by (8c), ∪ksk is an infinite member of N . Meanwhile, (80b) and

(84b) imply that ∪ksk ⊆ n. The last two sentences and Corollary 5.2(b)

imply that ∪ksk = n.

The conclusion of the last paragraph, (80a), and (84a) imply that

n=∪ksk , s0={} , and (∀k≥1) p(sk)=sk−1 .

Thus, by the uniqueness in the definition of (tk)k at the start of this

proof of part (b), (sk)k = (tk)k. So

n[ = s|n
[| = t|n

[| ,

where the first equality is the definition of s|n
[| and the second equality

follows from the previous sentence. Consequently, n[ ∈ {tk|k}. 2

Lemma E.4. 15 Suppose that ((Ci)i, N̄) is an OR∗ choice-sequence

form (6) with no-absent-mindedness (16). Derive its T̄ (2). Then if

R(n̄[) ⊂ R(n̄), the following hold.

(a) n̄[ ∈ T̄ .

(b) If n̄ ∈ T̄ , then L(n̄[) < L(n̄) and n̄[ = 1n̄L(n̄[).

(c) If n̄ /∈ T̄ , then n̄[ = 1n̄L(n̄[).

Proof. (a). Let N = R(N̄). By Theorem 1(a), ((Ci)i, N) is a choice-

set form. Note that R(n̄[) and R(n̄) are nodes in N . Thus, the assump-

tion R(n̄[) ⊂ R(n̄) and Corollary 5.2(b) imply that R(n̄[) ∈ T , where

T is defined by (9). Hence n̄[ ∈ T̄ by Theorem 1(b,c).

15Lemmata E.4 and E.5 are needed by Proof E.6. Incidentally, they also appear
to be new results for choice-sequence forms. They derive conclusions from no-
absent-mindedness. For example, conclusion (a) of Lemma E.4 rules out the exis-
tence of an infinite sequence whose every choice is also made along a distinct second
infinite sequence. [This implies that no sequence (in N̄) is an infinite “subsequence”
of another sequence (in N̄), where in this sentence only, the term “subsequence”
is used as it would be in topology rather than as it was defined in Section 2.1.]
Conclusions (b) and (c) go a step further. They state that if every choice of a
sequence is also made along a distinct second sequence, then the first sequence is a
(finite) “subsequence” of the second in the precise sense of Section 2.1.
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(b). Suppose n̄ ∈ T̄ . By part (a), n̄[ ∈ T̄ . Since both sequences

are finite, two applications of Lemma A.5(b) and the assumption that

R(n̄[) ⊂ R(n̄) imply that

L(n̄[) = |R(n̄[)| < |R(n̄)| = L(n̄) .

Further, the zipper Lemma A.7 implies n̄[ = 1n̄L(n̄[).

(c). Suppose n̄ /∈ T̄ . Since R(n̄[) ⊂ R(n̄) by assumption and since

R(n̄[) is finite by part (a), there is some k such that R(n̄[) ⊆ R(1n̄k).

By part (a), n̄[ ∈ T̄ . By (1c), 1n̄k ∈ T̄ . The last three sentences and

the zipper Lemma A.7 imply

L(n̄[) ≤ L(1n̄k) and(85a)

n̄[ = 1(1n̄k)L(n̄[) .(85b)

Since L(1n̄k) = k, (85a) implies L(n̄[) ≤ k. Thus (85b) simplifies to

n̄[ = 1n̄L(n̄[). 2

Lemma E.5. Suppose that ((Ci)i, N̄) is an OR∗ choice-sequence form

(6) with no-absent-mindedness (16). Take any distinct n̄1 and n̄2, and

let

K := { k≥0 | k≤L(n̄1) if n̄1 is finite and

k≤L(n̄2) if n̄2 is finite } .
Then for any k∗∈K,

k∗ = max{ k∈K | 1n̄
1
k = 1n̄

2
k }

⇔ R(1n̄
1
k∗) = max{ R(m̄) | R(m̄)⊆R(n̄1)∩R(n̄2) } ,

where m̄ is an arbitrary element of N̄ .

Proof.

⇒ Direction. Suppose

k∗ = max{ k∈K | 1n̄
1
k=1n̄

2
k } .(86)

Since k∗∈K, both R(1n̄
1
k∗) and R(1n̄

2
k∗) are well-defined. Clearly

R(1n̄
1
k∗) ⊆ R(n̄1). Also, by (86), R(1n̄

1
k∗) = R(1n̄

2
k∗) ⊆ R(n̄2). Thus by

the last two sentences, R(1n̄
1
k∗) ⊆ R(n̄1)∩R(n̄2).

Hence it remains to be shown that

(∀m̄) R(m̄)⊆R(n̄1)∩R(n̄2) ⇒ R(m̄)⊆R(1n̄
1
k∗) .
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Accordingly, take any m̄ such that R(m̄)⊆R(n̄1)∩R(n̄2). If R(m̄) was

equal both R(n̄1) and R(n̄2), Proposition 4.1 would imply that m̄ was

equal to both n̄1 and n̄2, which would imply n̄1=n̄2 in contradiction

to the assumption that n̄1 and n̄2 are distinct. Accordingly, assume

without loss of generality that R(m̄)⊂R(n̄1) and R(m̄)⊆R(n̄2).

By R(m̄)⊂R(n̄1) and Lemma E.4(a,b,c), m̄ is finite and

m̄ = 1n̄
1
L(m̄) .(87)

The remainder of the paragraph shows

m̄ = 1n̄
2
L(m̄) .(88)

Either R(m̄)=R(n̄2) or R(m̄)⊂R(n̄2). In the first case, Proposition 4.1

implies m̄=n̄2. Thus (88) holds because m̄ is finite by the first sentence

of this paragraph. In the second case, (88) holds by Lemma E.4(b,c).

By (87) and (88), 1n̄
1
L(m̄) = 1n̄

2
L(m̄). Thus by (86), L(m̄) ≤ k∗. So by

(87) and the previous sentence,

R(m̄) = R(1n̄
1
L(m̄)) ⊆ R(1n̄

1
k∗) .

⇐ Direction. Suppose that k∗∈K satisfies

R(1n̄
1
k∗) = max{ R(m̄) | R(m̄)⊆R(n̄1)∩R(n̄2) } .(89)

Then R(1n̄
1
k∗) ⊆ R(n̄2). On the one hand, suppose R(1n̄

1
k∗) = R(n̄2).

Then Proposition 4.1 implies 1n̄
1
k∗=n̄2, which immediately implies

1n̄
1
k∗ = 1n̄

2
k∗ .(90)

On the other hand, suppose R(1n̄
1
k∗) ⊂ R(n̄2). Then Lemma E.4(b,c)

implies 1n̄
1
k∗ = 1n̄

2
L(1n̄

1
k∗ )

, which implies (90) because L(1n̄
1
k∗) = k∗.

Since (90) implies k∗ ∈ { k∈K | 1n̄
1
k=1n̄

2
k }, it remains to show

(∀k∈K) 1n̄
1
k=1n̄

2
k ⇒ k≤k∗ .

Accordingly, take any k∈K such that 1n̄
1
k=1n̄

2
k. Then

R(1n̄
1
k) ⊆ R(n̄1)∩R(n̄2) .

By (89), this implies R(1n̄
1
k) ⊆ R(1n̄

1
k∗), which implies |R(1n̄

1
k)| ≤

|R(1n̄
1
k∗)|. By Lemma A.5(b), this is equivalent to L(1n̄

1
k) ≤ L(1n̄

1
k∗),

which is equivalent to k ≤ k∗. 2
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Proof E.6 (for Corollary 5.4).

By Theorem 2 and the definition (17) of R̂, there exists an OR∗ choice-

sequence form (6) ((Ci)i, N̄), with no-absent-mindedness (16), such

that R(N̄) = N . Derive T̄ by (2).

Take any n1 and n2 in N . If n1 = n2, then both parts of the corollary

hold vacuously. Accordingly, assume n1 6= n2. By the definition of N̄ ,

we may let n̄1 and n̄2 be such that n1=R(n̄1) and n2=R(n̄2). Because

n1 6= n2, Theorem 1(b) implies n̄1 6= n̄2.

Define the set K as in Lemma E.5. Since n̄1 6= n̄2,

k∗ := max{ k∈K | 1n̄
1
k=1n̄

2
k } .

is well-defined. By Lemma E.5,

R(1n̄
1
k∗) = max{ R(m̄) | R(m̄)⊆R(n̄1)∩R(n̄2) } ,

where m̄ is an arbitrary member of N̄ . Thus by the definition of N̄ ,

R(1n̄
1
k∗) = max{ m | m⊆R(n̄1)∩R(n̄2) } .

where m is an arbitrary member of N . Thus

R(1n̄
1
k∗) = max{ m | m⊆n1∩n2 } = n1∧n2 ,(91)

where the first equality holds by the previous sentence and the defini-

tions of n̄1 and n̄2, and the second equality holds by the definition of

∧. This establishes part (a).

Further, since 1n̄
1
k∗ ∈ T̄ , Theorem 1(c) implies that R(1n̄

1
k∗) ∈ T .

Hence by (91), n1∧n2 ∈ T . This establishes part (b). 2
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