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1 Introduction

Motivation

Often pairwise matching is not feasible although it might be desirable. Typical

examples can be found in the market for top managers and firms and in the

marriage market. In the former case, particular matches may not be feasible as

the manager has worked recently for a competitor or may live geographically too

far away.1 In the latter case, segregation of various sorts, be it racial, religious,

political or geographical can make matches infeasible.

Constraints on feasible matches can be given or may be altered. Three processes

that affect the feasibility of matches are particularly important. First, segregation

may simply disappear or become less binding. For instance, globalization does not

only entail integration of product markets, but also triggers integration of specific

subsegments of labor markets such as the market for top managers2 or for scien-

tists. The integration of such markets means that more matches become feasible.

Second, people may take decisions to alter the set of possible matches. This is

most obvious in the marriage market when individuals change their location.

Third, individuals may engage in activities to render a particular match of other

individuals infeasible – possibly to their own advantage. Such sabotage activities

may take several forms. Recommendations or contract clauses developed by firms

whose CEO has left could be used to deter the hiring of the CEO by a particular

competitor. A company may actively try to convince a customer to cancel an

order for an investment good at a rival company.3 In marketing campaigns firms

may stress that a rival is unattractive for particular customers in order to deter

these matches (see, e.g., Lubin (2011) and Chakrabarti and Haller (2011)). In

the marriage market, avoiding meetings or locations which could otherwise bring

people together, or even spreading particular rumors are part of a wide range of

activities aimed at rendering certain matches infeasible. Social media apparently

have enhanced those possibilities.

1In some of our analysis, we consider instances where geographical boundaries cease to con-
strain such matches.

2See Gersbach and Schmutzler (2014) and the references therein.
3See Friedman (1998), p. 577, for a specific example.
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Approach

In this paper, we take first steps towards addressing the consequences of feasibility

constraints on two-sided matching, when these constraints are given or can be

moved – weakened in the case of desegregation or tightened in the case of sabotage.

In the first part of the paper, we are particularly interested in how stable

matchings are affected by feasibility constraints, and whether and which individ-

uals gain when the set of feasible matches is expanded. In the second part of

the paper, we study matching when feasibility constraints are endogenous, result

from individual decisions. We explore two main processes outlined above. First,

we investigate whether and how individuals gain from sabotaging feasible matches

and how restrictive feasibility constraints become when individuals can sabotage

other matches. Second, we study matching cum location choices where the loca-

tion choices determine the feasible matches. Here, we are particularly interested in

the existence and Pareto optimality of stable matchings of persons and locations.

The focus of our paper lies on two-sided pairwise matching as in the seminal

contribution of Gale and Shapley (1962). In the marriage market interpretation,

the population consists of men and women. A matching selects heterosexual cou-

ples such that each individual is matched with exactly one partner of the other

sex or remains unmatched. Stability requires that no matched person prefers to

be single and no pair consisting of a man and a woman prefers being a couple to

the status quo. This presupposes that individuals have preferences over partners,

including having no partner. In the standard setting of two-sided matching, in

principle, a man can be matched with any woman and vice versa – if one disre-

gards preferences.

To study the consequences of feasibility constraints on matchings, we employ a

different notion of two-sided pairwise matching that is based on bipartite graphs.

Again the population (which also constitutes the set of nodes or vertices) is parti-

tioned into two sets, men and women for our specific application. An edge connects

a man and a woman. Formally, it is the unordered pair consisting of the particular

man and woman. Taking the set of men and the set of women as given, a bipar-

tite graph is identified by its set of edges. A matching on the graph is a subset

of its edges, no two of which share an endpoint.4 We are considering two-sided

4For an introduction to matching on (not necessarily bipartite) graphs, see Lovász and Plum-
mer (1986).
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matching à la Gale and Shapley when not all matches are feasible even if they

would be desirable. Feasibility will be described by a bipartite graph (bigraph

for short) whose edges represent the feasible matches. Like in Gale and Shapley

(1962), individuals have preferences over potential partners, including having no

partner. In other words, we combine matching on a bigraph with the stability

requirements of Gale and Shapley.

Results

For the first part of the paper, we do not have to be concerned about existence

of stable matchings, given some constraints on the feasible matches. Indeed we

shall show below, as an immediate consequence of the classical result of Gale and

Shapley (1962), that a stable matching exists for any combination of bigraph and

complete and transitive preferences. The main welfare implications in Sections 3

and 4 of the paper are as follows:

Obviously, if the feasibility constraints for matches are relaxed, that is, if there

are more matching opportunities, then a stable status quo matching need no longer

be stable. We find that if, indeed, the status quo is destabilized, then in every

ensuing stable matching under the relaxed feasibility constraints, at least one in-

dividual is better off than at the status quo. More specifically, if a couple blocks

the status quo, then at least one of the partners will fare better; moreover, in some

stable matching under the relaxed feasibility constraints, none of the partners will

fare worse.

We establish a general result that the number of losers cannot exceed the

number of winners when feasibility constraints for matches are relaxed. Relaxation

of feasibility constraints can affect all individuals, but the number of losers can at

most be as large as the number of winners.

In Section 5, we leave the world of minor changes with potentially drastic con-

sequences and turn to the effects of a large expansion of matching opportunities.

Suppose that two identical hitherto segregated marriage markets become desegre-

gated. Will the stable matchings for the segregated markets give rise to a stable

matching in the desegregated market? The answer is clearly no if individuals have

a strict preference for partners from the “other” subpopulation, partners who were

unavailable under segregation. The answer is clearly yes if individuals have a strict
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preference for partners form the “own” subpopulation, partners who were already

available under segregation. In addition to these polar cases, many intermediate

scenarios exist, in particular the following: Let us label the segregated markets A

and B. Let us assume interchangeability: A person is indifferent between being

matched with an A-partner and being matched with the corresponding B-partner.

Suppose the status quo consists of the men-optimal stable matching in market A

and the women-optimal stable matching in market B. Then in the desegregated

market a man m and a woman w can block the status quo only if m belongs to B

and w belongs to A, that is if each has been in the worst match possible among

all stable matchings of the respective segregated market.

Drawing from our general result regarding winners and losers we observe a stark

contrast between economic integration and integration of marriage markets. When

originally separated pure exchange economies are integrated, almost all consumers

may lose in some instances. The first welfare theorem only guarantees that at least

one consumer gains. While they can also be gainers and losers from the integration

of marriage markets, there cannot be more losers than gainers.

Part 2 deals with endogenous constraints on matching and begins with Section

6 where sabotage by women is investigated. In general, refraining from sabotage

is not in the interest of all women even if we consider the women-optimal stable

matching. Women may lose through sabotaging even if we start with the men-

optimal stable matching. However, it is possible that a stable matching that would

have prevailed without sabotage, reemerges as a Nash sabotage outcome. It is also

worth noting that a woman may gain from sabotaging (preventing) her own match

in the women maximal matching.

In Section 7, location choice means endogenous segregation. In case individ-

uals have preferences for partners only, mobile individuals choose the location of

the partner with whom they prefer to be matched, provided this is possible. In

case individuals have preferences for partners and locations, we show existence of

a stable matching and weak core equivalence.

Outline

After a short elaboration on the marriage theorem, the next section reviews the

two basic concepts of matching, matching on bipartite graphs and pairwise match-
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ing in the tradition of Gale and Shapley (1962). In Section 3, we introduce a model

that incorporates both concepts, where the bipartite graph (bigraph) reflects con-

straints on matching. We show existence of stable matchings and perform some

initial welfare analysis. Section 4 explores the effects of small changes in matching

opportunities. Section 5 deals with some large changes in matching opportunities.

Section 6 is devoted to sabotage. In Sections 7 and 8, we consider the choice of

locations and partners. Section 9 concludes.

2 Preliminaries

2.1 Bipartite Graphs and Matching

We consider a finite population I which constitutes the set of nodes or vertices

of the graphs to be investigated. The population I is partitioned into two non-

empty subsets M and W , with |M | = k and |W | = ℓ. The subpopulation M

stands for men (males). The subpopulation W stands for women (females). A

bipartite graph or bigraph based on the given partition is an undirected graph

whose edges are of the form {m,w} for some m ∈ M and some w ∈ W . For

given sets I,M and W , a graph G = (I, E) is identified by the set of its edges,

E . We simply refer to the graph E if this causes no confusion. Depending on the

application, {m,w} ∈ E can have different meanings. For instance, it could mean

that m and w are mutually acceptable as partners. Or it could mean that they

are acquaintances, etc. The complete bigraph based on M and W is defined as

C = {{m,w} | (m,w) ∈ M ×W}. Then a bigraph given M and W is a subset E
of C.

A matching on a graph E is a subset M of its edges, no two of which share an

element. That is, M ⊆ E and {m,w} ∩ {m′, w′} = ∅ for {m,w}, {m′, w′} ∈ M,

{m,w} ≠ {m′, w′}. Perhaps the first formal treatment of marriage and matching is

found in a combinatorial lemma known as the “marriage theorem”, also known as

Hall’s theorem. It was first stated and shown in its definitive form in Hall (1935)

and Maak (1936). Weyl (1949) introduced the term marriage theorem. Jacobs

(1969), pp. 105-106 provides a proof and statement of the theorem. We state it

in slightly different form:
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Theorem 1 (Marriage Theorem). Let M be a finite non-empty set, W be a

non-empty (possibly infinite) set, and D : M � W be a correspondence. Define

D(N) =
∪

m∈N D(m) for N ⊆ M . Then there exists an injective selection d of D

if and only if |D(N)| ≥ |N | for all N ⊆ M .

The standard interpretation takes M as set of men, W as set of women, and

D(m) as the set of m’s acquaintances. In an injective selection d of D, each man

is matched with exactly one acquaintance and each woman is matched with at

most one man. There are conceivable alternative interpretations of a set D(m) as

the set of women whom m considers acceptable partners or as the set of women

who find m acceptable. Also, D(m) could stand for the set of women whom m

considers acceptable and who consider m acceptable. The correspondence D can

be identified with a bipartite graph E as follows: {m,w} ∈ E ⇔ w ∈ D(m). The

injective selection d defines a matching M in E : {m,w} ∈ M ⇔ w = d(m). In

case |M | = |W |, the marriage theorem provides a necessary and sufficient condition

for a perfect matching, that is a matching where every member of I = M ∪W is

matched with an acceptable partner of the opposite sex.

2.2 Stable Matchings

The fact that {m,w} ∈ E and {m,w′} ∈ E tells us that both {m,w} and {m,w′}
are acceptable (or feasible) matches, but does not convey any information which

one m prefers. In contrast, the two-sided matching model of Gale and Shapley

assumes complete and transitive preferences for partners. Some of the subsequent

notation and terminology is adopted from Roth and Sotomayor (1990). There is

again a finite population I that is partitioned into a non-empty male subpopulation

M = {m1, . . . ,mk} and a non-empty female subpopulation W = {w1, . . . , wℓ}.
A matching is a bigraph M based on the given partition such that no two of

its edges share an element: {m,w} ∩ {m′, w′} = ∅ for {m,w}, {m′, w′} ∈ M,

{m,w} ≠ {m′, w′}. No further a priori restrictions are imposed.

Moreover, individuals have preferences for partners, including the possibility

of not having a partner. Each m ∈ M has complete and transitive preferences on

W ∪ {m}, represented by an ordered list P (m). For example

P (m) = w1, w2,m,w3, . . . , wℓ
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means that m’s first choice is to be married to woman w1, his second choice is to

be married to woman w2, and his third choice is to remain single. Women w3 to

wℓ are not acceptable to m. He would rather be single than be married to one of

them. An abbreviated list contains only the acceptable women:

P (m) = w1, w2.

Similarly, each w ∈ W has complete and transitive preferences on M ∪ {w},
represented by an ordered list P (w). If a person is indifferent between several

possible mates, then those are put in square brackets in the preference list:

P (w) = m2, [m3,m4, w],m1

means that m2 is w’s first choice; to be married to m3, to be married to m4 and

being single tie for second choice while m1 is her third choice. The abbreviated

list is

P (w) = m2, [m3,m4, w].

P = (P (m1), . . . , P (mk), P (w1), . . . , P (wℓ)) denotes a preference profile, that

is a collection of lists, one for each individual. Then a particular marriage market

is specified by a triple (M,W ;P). The notation w >m w′ means that m prefers

woman w to woman w′ and w ≥m w′ means that m likes w at least as much as w′.

m >w m′ and m ≥w m′ are defined in an analogous way. Woman w is acceptable

to man m if he likes her at least as much as remaining single, i.e., w ≥m m.

Analogously, m is acceptable to w if m ≥w w. An individual is said to have strict

preferences if he or she is not indifferent between any two acceptable alternatives.

Following Holzman and Samet (2014), we say that men are universally

ranked if they are ranked the same way by all women, that is P (w1) = P (w2) =

. . . ,= P (wℓ) and similarly, women are universally ranked if they are ranked

the same way by all men, that is P (m1) = P (m2) = . . . ,= P (mk).

A matching M can be identified with a bijection µ : I → I with the properties

that (a) µ−1 = µ; (b) µ(m) /∈ W implies µ(m) = m for m ∈ M ; (c) µ(w) /∈
M implies µ(w) = w for w ∈ W . Namely, set µ(m) = w and µ(w) = m if

{m,w} ∈ M. Set µ(i) = i if there is no j such that {i, j} ∈ M. Conversely, for

m ∈ M,w ∈ W , {m,w} belongs to M if and only if m = µ(w).

Definition 1. A matching M (or, equivalently, µ) in the marriage market (M,W ;P)
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is stable if:

(i) For any m ∈ M, w ∈ W who are matched in M, neither partner wants to go

single. That is, {m,w} ∈ M (or, equivalently m = µ(w)) implies w ≥m m

and m ≥w w.

(ii) There is no pair (m,w) ∈ M × W who both prefer getting married to each

other to the status quo. That is, µ(m) ≥m w or µ(w) ≥w m for all m ∈
M, w ∈ W .

Regardless of the numbers of men and women and their preferences, a stable

matching always exists.

Proposition 1 (Gale and Shapley (1962)).

Every marriage market (M,W ;P) has a stable matching.

There may be several stable matchings. But sometimes, a unique stable match-

ing exists. For later reference, let us consider such a special case.

Example 1. Suppose that k = ℓ, all women are acceptable to all men, all men are

acceptable to all women, all men have identical strict preferences, and all women

have identical strict preferences. Without restriction, we assume that

P (m) = w1, . . . , wk for all m ∈ M ,

P (w) = m1, . . . ,mk for all w ∈ W . ��

For this example, we obtain:

Fact 1. The unique stable matching is given by µ(mi) = wi for i = 1, . . . , k.

Proof. First of all, a stable matching exists, by Proposition 1. Second, since any

man is acceptable to any woman and vice versa, in a stable matching every person

is married to an individual of the other sex.

Now let µ be a stable matching. If µ(m1) ̸= w1, then µ(w1) ̸= m1 and w1 >m1

µ(m1), m1 >w1 µ(w1); consequently, m1 and w1 both prefer to be married to each

other to the status quo, contracting the stability of µ. Hence µ(m1) = w1 (and

µ(w1) = m1). But then, by the same argument, µ(m2) = w2 and µ(w2) = m2.

Iteration of the argument yields µ(mi) = wi for i = 1, . . . , k. �
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Several remarks are in order: The unique stable matching in this example

exhibits positive assortative matching in the sense that more attractive males

marry more attractive women and vice versa. Holzman and Samet (2014) observe

that there is still a unique stable matching — which may not be assortative – if

k = ℓ, all preferences are strict and one side of the marriage market is universally

ranked, say P (w) = m1,m2, . . . ,mk for all w ∈ W . In that case, m1 will be

matched with his top choice, m2 will be matched with his best choice among the

remaining k − 1 women, etc.5

On the other hand, positive assortative matching is preserved while uniqueness

may be lost when each indifference class for men corresponds to an equally sized

indifference class for women, that is

M = {m11,m12, . . . ,m1n1 ,m21, . . . ,m2n2 , . . . ,mk1, . . . ,mknk
},

W = {w11, w12, . . . , w1n1 , w21, . . . , w2n2 , . . . , wk1, . . . , wknk
},

P (m) = [w11, w12, . . . , w1n1 [, [w21, . . . , w2n2 ], . . . , [wk1, . . . , wknk
]∀m∈M ,

P (w) = [m11,m12, . . . ,m1n1 ], [m21, . . . ,m2n2 ], . . . , [mk1, . . . ,mknk
]∀w∈W .

In case k ̸= ℓ, P (m) = w1, . . . , wℓ for all m ∈ M and P (w) = m1, . . . ,mk

for all w ∈ W , there exists a unique stable matching given by µ(mi) = wi for

i = 1, . . . ,min{k, ℓ}.

In general, stable matchings are neither unique nor assortative even if k = ℓ,

all women are acceptable to all men, all men are acceptable to all women, all men

have identical preferences, and all women have identical preferences.

The common usage of the term assortative matching refers to endowments

broadly defined rather than preferences. Becker (1973) pioneered its formal treat-

ment in an economic context whereas earlier informal discussions appeared in the

sociological and economic literature. Becker considers an assignment game where

the surplus generated by a couple {m,w} is of the form Zmw = f(xm, yw) when m

is endowed with the amount xm of a quantitative trait like intelligence, education

or height and w is endowed with the amount yw of another or the same quantita-

tive trait. Positive assortative matching here means that if {m,w} and {m′, w′}
belong to a stable matching, then xm > xm′ if and only if yw > yw′ . This occurs

5These two findings are also stated and shown as Lemmata 1.5.1 and 1.5.2 in Gusfield and
Irving (1989).
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when there is complementarity between the male and the female trait of the form

∂2f

∂x∂y
> 0,

that is f exhibits increasing differences or supermodularity (or strategic comple-

ments in game-theoretic terminology). Becker’s analysis relies in part on the ear-

lier work of Koopmans and Beckmann (1957). The model of an assignment game

developed and studied by Shapley and Shubik (1972) encompasses Becker’s as a

special case. Becker’s additional structure allows to address specific questions such

as assortative matching, propensity to marry, propensity to work.

When preferences are strict, then the stable matchings form a lattice with

respect to the partial order induced by men’s preferences. See Theorem 2.16

in Roth and Sotomayor (1990). In particular, there always exists a unique stable

matching µM that is best for men, that is µM(m) ≥m µ(m) for all stable matchings

µ and all men m ∈ M . The men-optimal stable matching µM is the worst stable

matching for women. There is also a unique best stable matching µW for women

which is the worst stable matching for men. If the model has at least two stable

matchings, then µM and µW necessarily differ. In the following example, there

exist exactly two stable matchings.

Example 2. Let k = ℓ ≥ 3. Consider the following cyclical preferences – with

addition and subtraction modulo k.

P (mi) = wi+1, wi+2, . . . , wi+k for i = 1, . . . , k;

P (wi) = mi,mi−1,mi−2, . . . ,mi−(k−1) = mi+1 for i = 1, . . . , k.

In this example, there is one stable matching µM given by µM(mi) = wi+1 for

i = 1, . . . , k where each man is matched with his most preferred woman (and each

woman is matched with her second choice). There is another stable matching µW

given by µW (wi) = mi for i = 1, . . . , k where each woman is matching with her

most preferred man (and each man is matched with his second choice). These are

the only stable matchings. To show this, let µ be a matching different from µM and

µW . First, consider the case that in µ, in each matched couple, either the man is

matched with his favorite woman or the woman is matched with her favorite man.

Without restriction, we may assume µ(m1) = w2, . . . , µ(mi) = wi+1, µ(mi+1) ̸=
wi+2 with 1 ≤ i < k. But if mi+1 is not matched with his favorite woman, he must
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be the favorite man of his partner µ(mi+1) ∈ {wi+3, . . . , wk, w1}. Consequently,

mi+1 ∈ {mi+3, . . . ,mk,m1}, which is impossible. Hence we can rule out this case.

Second, consider the case that in µ, there is a matched couple where neither partner

is matched with the favorite partner of the opposite sex. Without restriction, we

may assume µ(m1) = wj with j ∈ {3, . . . , k}. But then wj >mj−1
µ(mj−1) and

mj−1 >wj
m1 = µ(wj). This shows that mj−1 and wj prefer each other to their

partners in µ. Therefore, µ is unstable. ��

In Example 2.10 of Roth and Sotomayor (1990), there are two stable matchings,

µM and µW , with µM(m) >m µW (m) for some but not all m ∈ M .
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Part I

Exogenous Feasibility Constraints

3 Stable Matchings on Bipartite Graphs

From now on, we consider marriage markets where individuals have preferences

for mates like in the model of Gale and Shapley (1962), but the set of possible

marriages is restricted. The primitives of the model are given by a quadruple

(M,W ;P; E) where {M,W} is a partition of the population I into two non-empty

subpopulations. The triple (M,W ;P) represents an unrestricted marriage market

à la Gale and Shapley as described in 2.2. E is a bigraph based on M and W as

introduced in 2.1. It imposes a restriction on marriages: A marriage or couple is

only feasible, can only be formed if the corresponding edge belongs to E . E = C
yields an unrestricted marriage market as a special case. E∅ denotes the empty

graph, which has zero edges. We define a matching in an analogous way as in 2.1:

Definition 2. A matching in the marriage market (M,W ;P; E) is a subset M of

E’s edges, no two of which share an element.

That is, M ⊆ E and {m,w} ∩ {m′, w′} = ∅

for {m,w}, {m′, w′} ∈ M, {m,w} ̸= {m′, w′}.

Like before, a matching M can be identified with a bijection µ : I → I with

the properties that (a) µ−1 = µ; (b) µ(m) /∈ W implies µ(m) = m for m ∈ M ;

(c) µ(w) /∈ M implies µ(w) = w for w ∈ W . The previous definition of a stable

matching has to be slightly modified:
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Definition 3. A matching M (or, equivalently, µ) in the marriage market (M,W ;P; E)
is stable if:6

(i) For any m ∈ M, w ∈ W who are matched in M, neither partner wants to go

single. That is, {m,w} ∈ M (or, equivalently m = µ(w)) implies w ≥m m

and m ≥w w.

(ii) There is no pair (m,w) ∈ M×W who can get married to each other and who

prefer the marriage to the status quo. That is, µ(m) ≥m w or µ(w) ≥w m or

{m,w} /∈ E for all m ∈ M, w ∈ W .

In particular, a stable matching µ is individually rational, that is µ(i) ≥i i

for all i ∈ I. If a pair (m,w) renders a potential matching unstable, we say that

(m,w) blocks or destabilizes the particular matching.

When analyzing the marriage market (M,W ;P; E), one can track the restric-

tion M ⊆ E explicitly. Yet instead of treating a couple {m,w} /∈ E as infeasible

or impossible, one could rather treat it as unacceptable, removing w from the list

P (m) and m from the list P (w). After proceeding this way for all {m,w} ∈ C \ E ,
one obtains a reduced profile PE = (P E(m1), . . . , P

E(wℓ)). Most often, it proves

more convenient to analyze the formally unrestricted model (M,W ;PE) than the

restricted marriage market model (M,W ;P; E).

3.1 Existence

Proposition 1 immediately yields existence of stable matchings for any restricted

marriage market (M,W ;P; E).

Proposition 2. Every restricted marriage market (M,W ;P; E) has a stable match-

ing.

Proof. The stable matchings of the restricted marriage market

(M,W ;P; E) and of the unrestricted marriage market (M,W ;PE) coincide. By

Proposition 1, (M,W ;PE) has a stable matching. �
6Diestel (2010), p. 40 gives a definition assuming strict preferences and treating isolated

nodes as edges.
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Notice that in general, the set of matchings of (M,W ;P; E) and the set of

matchings of (M,W ;PE) do not coincide.

3.2 Welfare Analysis

Here we begin to address how the restriction imposed by a bigraph E affects the

stable matching(s) and, consequently, the welfare of individuals in population I =

M ∪W . In some instances, such a restriction does not have any impact at all: Let

E(P) = {{m,w} ∈ C : w ≥m m,m ≥w w} denote the set of mutually acceptable

matches under the preference profile P. If E(P) ⊆ E , then the stable matchings in

(M,W ;P) and the stable matchings in (M,W ;P; E) coincide. However, as a rule,

at least one individual gains from a less restrictive marriage market:

Proposition 3. Let (M,W ;P; E) and (M,W ;P; E ′) be two marriage markets with

E ⊂ E ′. Let µ be a stable matching in (M,W ;P; E). Then either (i) or (ii) holds:

(i) µ is a stable matching in (M,W ;P; E ′).

(ii) For every stable matching µ′ in (M,W ;P; E ′), there exists i ∈ I with µ′(i) >i

µ(i).

Proof. Clearly, if (i) holds, (ii) does not hold: Choose µ′ = µ. Now assume that

(ii) does not hold, that is, we can choose a stable matching µ′ in (M,W ;P; E ′)

such that µ(i) ≥i µ
′(i) for all i ∈ I. We want to show (i). Since µ is a stable

matching in (M,W ;P; E), it is individually rational. Suppose (i) does not hold.

Then µ is stable in (M,W ;P; E) and unstable in (M,W ;P; E ′). Hence there exist

m ∈ M and w ∈ W with w >m µ(m),m >w µ(w), {m,w} /∈ E , {m,w} ∈ E ′. It

follows w >m µ′(m),m >w µ′(w) and {m,w} ∈ E ′. That means that µ′ is not

stable in {m,w} ∈ E ′, a contradiction. Therefore, if (ii) does not hold, (i) has to

hold. �

For instance, let M = {m1,m2}, W = {w1, w2}, E = E∅, and E ′ = C. Prefer-

ences are given by P (m1) = w2, w1; P (w1) = m2,m1; P (m2) = [w1,m2];P (w2) =

[m1, w2]. Then µ(i) = i for all i ∈ I constitutes the unique stable matching in

(M,W ;P; E). µ is not stable in (M,W ;P; E ′), since w1 >m1 m1 and m1 >w1 w1.

There exists a stable matching µ′ in (M,W ;P; E ′) where m1 and w1 are matched

14



and both m2 and w2 remain single. There exists a second stable matching µ′′ in

(M,W ;P; E ′) where the couple that destabilizes µ is not matched; rather m1 is

matched with w2 and w1 is matched with m2. Both m1 and w1 rank µ′′ over µ′

and µ′ over µ.

However, when a couple {m,w} ∈ E ′ destabilizes a stable matching µ in

(M,W ;P; E), it need not be the case that both m and w are better off at a

stable matching µ′ in (M,W ;P; E ′) than at µ. Consider, for example, the case

M = {m1,m2,m3}, W = {w1, w2, w3}, E = {{m2, w3}}, E ′ = C, and preferences

given by P (m) = w1, w2, w3 for m ∈ M , P (w) = m1,m2,m3 for w ∈ W . In the

unique stable matching µ in (M,W ;P; E), m2 and w3 are matched with each other

whereas all others remain single. Now w3 >m1 m1 and m1 >w3 w3 so that µ is

not stable in (M,W ;P; E ′). Yet in the unique stable matching µ′ in (M,W ;P; E ′),

µ′(mi) = wi, hence µ′(w3) <w3 µ(w3).

The question remains whether both members of a couple that can block a

matching µ can do worse in a stable matching µ′ than at µ. The answer is provided

in the following proposition which states that at least one partner will fare better

at µ′ than at µ.

Proposition 4. Let µ be a matching in the marriage market (M,W ;P; E ′). If

{m,w} ∈ E ′ is a possible match that blocks µ, that is

w >m µ(m) and m >w µ(w), (1)

then at any stable matching µ′ in (M,W ;P; E ′),

µ′(m) >m µ(m) or µ′(w) >w µ(w). (2)

Proof. Let (M,W ;P; E ′), µ and {m,w} be as hypothesized and µ′ be a stable

matching in (M,W ;P; E ′). Suppose µ′(m) <m w and µ′(w) <w m. Then {m,w}
blocks µ′, in contradiction to µ′ being a stable matching in (M,W ;P; E ′). Hence

to the contrary,

µ′(m) ≥m w or µ′(w) ≥w m. (3)

(3) and (1) imply (2). �
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Proposition 4 has further implications. First, it yields an alternative proof of

Proposition 3. Second, Demange et al. (1987) have shown

Proposition 5. Let µ be an unstable matching in the marriage market (M,W ;P; E ′).

Then (a) or (b) holds:

(a) µ is not individually rational.

(b) There exist a pair {m,w} ∈ E ′ blocking µ and a stable matching µ̄ in the

marriage market (M,W ;P; E ′) such that µ̄(m) ≥m µ(m) and µ̄(w) ≥w µ(w).

Notice that the original result was formulated for an unrestricted marriage mar-

ket. However, the proposition follows from the fact that the formally unrestricted

model (M,W ;PE ′
) and the restricted marriage market model (M,W ;P; E ′) have

the same set of stable matchings. Actually, Demange et al. (1987) (and Roth

and Sotomayor (1990)) assert that either (a) or (b) holds. Consider, however, the

following

Example 3. Let k = ℓ = 3, E ′ = C, P (m1) = P (m2) = w1, w2; P (w1) = P (w2) =

w1, w2 whereas m3 and w3 prefer to remain single.

Let µ be given by µ(m1) = w2, µ(m2) = w1, µ(m3) = w3. Then

(a) µ is not individually rational, since m3 >m3 µ(m3) and w3 >w3 µ(w3).

(b) {m1, w1} is blocking µ. The unique stable matching in the market (M,W ;P; E ′)

is µ̄ where µ̄(m1) = w1, µ̄(m2 = w2, µ̄(m3) = m3, µ̄(w3) = w3 and µ̄(m1) >m1

µ(m1), µ̄(w1) >w1 µ(w1).

Hence (a) and (b) hold. ��

Propositions 4 and 5 combined yield

Corollary 1. Let µ be a matching in the marriage market (M,W ;P; E ′) that is

individually rational but unstable. Then there exist a pair {m,w} ∈ E ′ blocking

µ and a stable matching µ̄ in the marriage market (M,W ;P; E ′) such that (i)

µ̄(m) >m µ(m) and µ̄(w) ≥w µ(w) or (ii) µ̄(m) ≥m µ(m) and µ̄(w) >w µ(w).
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After focusing on potential gainers from less restrictive marriage markets or

rematching, let us pay attention to potential losers. The key result is the following.

Proposition 6. Let (M,W ;P; E) and (M,W ;P; E ′) be two marriage markets with

strict preferences and E ⊆ E ′. Let µ be a stable matching in (M,W ;P; E) and µ′

be a stable matching in (M,W ;P; E ′). Then

|{i ∈ I : µ′(i) <i µ(i)}| ≤ |{i ∈ I : µ′(i) >i µ(i)}|.

Proof. Let i ∈ I with µ′(i) <i µ(i). Then individual rationality of µ′ implies

µ(i) ̸= i. Set j = µ(i). Then µ(j) = i. µ′(j) <j µ(j) would yield µ′(i) <i j and

µ′(j) <j i, contradicting the stability of µ′. Hence µ′(j) >j µ(j). We have shown

that µ({i ∈ I : µ′(i) <i µ(i)}) ⊆ {i ∈ I : µ′(i) >i µ(i)} holds for the bijection µ.

The assertion follows. �

Hence, when feasibility constraints for matches are relaxed, the number of

losers cannot exceed the number of gainers if preferences are strict. We will apply

this result to the integration of marriage markets in Section 5. Proposition 6 can

also be applied in the special case E = E ′ and it implies then that the number of

winners equals the number of losers when we compare two stable matchings for a

given marriage market.7

4 Adding an Edge

Here we study the effect of adding just one edge {m,w} to an existing bigraph E .
To be precise, we consider a marriage market (M,W ;P; E), m ∈ M , w ∈ W and

a bigraph E ′ such that {m,w} /∈ E and E ′ = E ∪ {{m,w}}.

Suppose first that µ′ is a stable matching of the marriage market (M,W ;P; E ′).

Then there are two possibilities. Either µ′(m) = w in which case µ′ is not a

matching of the marriage market (M,W ;P; E). Or µ′(m) ̸= w in which case µ′ is

a stable matching of the marriage market (M,W ;P; E).

Suppose next that µ is a stable matching of the marriage market (M,W ;P; E).
Then there are again two possibilities. If {m,w} does not block µ, then µ is a

7In the case E = E ′, this result exists already in the literature; see Corollary 2.2.1 in Roth
and Sotomayor (1990).
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stable matching in the marriage market (M,W ;P; E ′). If {m,w} blocks µ, then the

following holds: First, µ is individually rational, since µ is stable in (M,W ;P; E).
Second, {m,w} is the only element of E ′ that blocks µ. Hence by Corollary 1,

there exists a stable matching µ̄ in the marriage market (M,W ;P; E ′) such that

(i) µ̄(m) >m µ(m) and µ̄(w) ≥w µ(w) or (ii) µ̄(m) ≥m µ(m) and µ̄(w) >w µ(w).

In case of strict preferences of m and w, (iii) µ̄(m) >m µ(m) and µ̄(w) >w µ(w).

In general, other individuals may be affected by the reshuffling of matches when

µ is replaced by µ̄. Let us examine several examples.

The first example is a variation of Example 2.19 in Roth and Sotomayor.

Example 4 (Effect of adding an edge). Let k = 3, ℓ = 4, and preferences be given

by the lists

P (m1) = w4, w1, w3; P (m2) = w3, w2; P (m3) = w1, w3;

P (w1) = m1,m3; P (w2) = m2; P (w3) = m3,m2; P (w4) = m2,m1.

Further, let E = C \ {{m1, w4}}. Then

P E(m1) = w1, w3; P
E(m2) = P (m2); P

E(m3) = P (m3);

P E(w1) = P (w1); P
E(w2) = P (w2); P

E(w3) = P (w3); P
E(w4)) = m2.

Then the marriage market (M,W ;PE) and, hence, (M,W ;P; E) has the unique
stable matching µ given by

µ(w1) = m1, µ(w2) = m2, µ(w3) = m3, µ(w4) = w4

whereas the marriage market (M,W,P) has the unique stable matching µ̄ given

by

µ̄(w1) = m3, µ̄(w2) = w2, µ̄(w3) = m2, µ̄(w4) = m1.

Individuals m1 and w4, whose marriage was impossible under the restriction E ,
are both better off without the restriction. So are m2 and m3. All women except

w4 are worse off at the matching µ̄ than at µ. ��

Example 5. Suppose that k = ℓ and like in Example 1,

P (m) = w1, . . . , wk for all m ∈ M ,

P (w) = m1, . . . ,mk for all w ∈ W

Consider an edge {mi, wj} ∈ C, E = C \ {{mi, wj}}, and E ′ = C. The assortative

matching µ̄ given by µ̄(ms) = ws for all s ∈ {1, . . . , k} is the unique stable matching
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in the marriage market (M,W,P) = (M,W,P; E ′). If i ̸= j, then µ̄ is also the

unique stable matching in the marriage market (M,W,P; E). If i = j < k, then

the unique stable matching µ in the matching marriage market (M,W,P; E) is

given by µ(mi) = wi+1, µ(mi+1) = wi and µ(ms) = ws for s ̸= i, i + 1. Hence mi

and wi are positively affected and mi+1 and wi+1 are negatively affected by the

addition of the edge {mi, wj} to the bigraph E . If i = j = k, then the unique stable

matching µ in the matching marriage market (M,W,P; E) is given by µ(ms) = ws

for s = 1, . . . k − 1 while mk and wk remain unmatched. Hence in this case, the

addition of the edge {mk, wk} to the bigraph E benefits mk and wk and does not

affect anybody else. ��

Example 6. Let k = ℓ ≥ 3 and preferences as in Example 2.

Put E ′ = C and E = C \ {{m,w}} for some {m,w} ∈ C. (a) If m = mi, w = wi

for some i ∈ {1, . . . , k}, then µM and µW are the stable matchings in the marriage

market (M,W,P) = (M,W,P; E ′) whereas µM is the only stable matching in

(M,W,P; E). (b) If m = mi, w = wi+1 for some i ∈ {1, . . . , k}, then µM and

µW are the stable matchings in the marriage market (M,W,P) = (M,W,P; E ′)

whereas µW is the only stable matching in (M,W,P; E). (c) If neither (a) nor (b)
applies, then µM and µW are the stable matchings in both the marriage market

(M,W,P) = (M,W,P; E ′) and the marriage market (M,W,P; E). Hence adding

an edge either affects nobody or affects everybody, depending on which stable

matching materializes. ��

5 Segregation and Desegregation

Segregation of various sorts, be it racial, religious or political, restricts the marriage

market. As an example for the latter, consider the case of South and North Korea

or former West and East Germany. How would desegregation affect the marriage

market? We are going to study this question in a simple example.

Conversely, choice of location and, hence, spatial segregation, may in part be

driven by the anticipated matching opportunities. We will consider the possibility

that some or all individuals are mobile whereas the rest of the population resides in

fixed locations. We allow for choice of location as a first step followed by matching

in the second step.
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More specifically, we consider the case where the population I is segregated

into two sub-populations I1 = M1 ∪W1 and I2 = M2 ∪W2, with Mi = M ∩ Ii and

Wi = W ∩ Ii. Marriages are only possible within I1 and within I2. This restriction

corresponds to the bigraph E = C1 ∪ C2 where Ci is the complete bigraph based on

Mi and Wi.

5.1 Desegregation

Example 7 (Effect of desegregation). Let k = ℓ = 8 and as in Example 1,

P (m) = w1, w2, . . . , wk for all m ∈ M ;

P (w) = m1,m2, . . . ,mk for all w ∈ W .

Suppose the population I = M ∪W is segregated into two parts I1 = M1 ∪W1

and I2 = M2 ∪ W2 where M1 = {m1,m2,m3,m4},M2 = {m5,m6,m7,m8},W1 =

{w2, w3, w4, w5},W2 = {w1, w6, w7, w8}. Marriages are only possible within I1

and within I2. This restriction corresponds to the bigraph E = C1 ∪ C2 where

C1 is the complete bigraph based on M1 and W1 and C2 is the complete bigraph

based on M2 and W2. Let P1 denote the restriction of the preference profile PE

to members of I1 and P2 denote the restriction of the preference profile PE to

members of I2. The assumptions underlying Fact 1 hold for the marriage markets

(M1,W1;P1), (M2,W2;P2) and (M,W ;P). Therefore:

Under segregation, there exists a unique stable matching µE given by

µE(m1) = w2, µ
E(m2) = w3, µ

E(m3) = w4, µ
E(m4) = w5,

µE(m5) = w1, µ
E(m6) = w6, µ

E(m7) = w7, µ
E(m8) = w8.

After desegregation, there exists a unique stable matching µ given by

µ(mi) = wi for i = 1, . . . , 8.

Men m1,m2,m3,m4 and woman w1 gain from desegregation whereas male m5

and females w2, w3, w4, w5 lose. ��

In the foregoing example, one may consider limited mobility instead of deseg-

regation. Suppose that I1 and I2 reside in far apart locations and know very little

of each other. But the women in I2 correctly assume that the men in I1 are more

attractive than the ones in I2 and one member of W2 decides to move to I1.
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If w1 joins I1, then at the new stable matching, still men m1,m2,m3,m4 and

woman w1 are better off than before and male m5 and females w2, w3, w4, w5 are

worse off than before, female w5 now remaining single. But there are additional

gainers and losers from w1’s move. m6,m7 and m8 are losers as well: m6 is now

matched with w7, m7 is matched with w8, and m8 now remains single. w6, w7 and

w8 are gainers. Hence everybody is affected by w1’s move.

If w8 instead of w1 joins I1, then only w8 and m8 are affected, both remaining

single. If rather w7 moves, then w7,m7 and m8 lose while w8 gains. If only w6

moves, then w6,m6,m7 and m8 lose while w7 and w8 gain.

5.2 Replica Marriage Markets

It is interesting to consider the special case where two sub-populations are identi-

cal in the sense that the merged marriage market is a two-fold replica of a basic

marriage market (M0,W 0;P0). There are two identical copies (MA,WA;PA) and

(MB,WB;PB) of (M0,W 0;P0) with pairwise disjoint sets MA, WA, MB, WB.

For instance, if M0 consists of males m0
1, . . . ,m

0
k, then MA consists of correspond-

ing males mA
1 , . . . ,m

A
k . mA

i ∈ MA strictly prefers wA
j ∈ WA to wA

j′ ∈ WA

if and only if m0
i strictly prefers w0

j to w0
j′ , etc. Again, we can analyze the

two markets (MA,WA;PA) and (MB,WB;PB) separately and then compare the

outcome with the outcome in the replica marriage market (common market)

(MA ∪ MB,WA ∪ WB;P) where, for example, for G,H ∈ {A,B}, mA
i strictly

prefers wG
j to wH

j′ if and only if m0
i strictly prefers w0

j to w0
j′ . In the common

market, nobody has more attractive potential partners than in their respective

separate market. Therefore, one might expect that stable matchings of the sepa-

rate markets give rise to stable matchings in the common market. However, this

is not necessarily the case.

Let µA be a stable matching in (MA,WA;PA) and µB be a stable matching

in (MB,WB;PB). Define the matching µ = µA × µB by µ(mA) = µA(mA) for

mA ∈ MA and µ(mB) = µB(mB) for mB ∈ MB. Then the question is whether

µA × µB is stable. Obviously, it is if the below interchangeability condition (5.2d)

holds and µA and µB are identical up to labeling, that is µA(mA
i ) = wA

j if and only

µB(mB
i ) = wB

j and µA(iA) = iA if and only µB(iB) = iB. µA × µB need not be

stable in general. Within a given marriage market, the M -optimal stable matching
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and the W -optimal stable matching are the ones that differ the most — in terms

of male preferences or female preferences — among pairs of stable matchings,

provided that they exist (and differ at all). Hence a combination of those two is

possibly unstable. To examine this case, let us assume for the remainder of this

subsection:

(5.2a) Preferences in the basic marriage market are strict.

(5.2b) Everybody finds all potential mates acceptable.

(5.2c) |M0| = |W 0| = k.

(5.2d) Interchangeability : A person is indifferent between being matched with an

A-partner and being matched with the corresponding B-partner.

Then all individuals are matched in a stable matching and the respective M -

optimal stable matchings µA
M , µB

M and the respective W -optimal stable matchings

µA
W , µB

W exist. The first two are identical up to labeling and the second two are

identical up to labeling. Hence µA
M × µB

M and µA
W × µB

W are stable matchings.

Let us focus on µA
M × µB

W from now on. Then the following holds:

Proposition 7. If the couple {m,w} blocks µA
M × µB

W , then (m,w) ∈ MB ×WA.

Proof. We can rule out (m,w) ∈ MA ×WA and (m,w) ∈ MB ×WB because of

the stability of µA and µB, respectively.

Suppose (m,w) ∈ MA × WB. Let µ′ be a stable matching in the common

marriage market, which exists. Then by Proposition 4, µ′(m) >m (µA
M × µB

W )(m)

or µ′(w) >w (µA
M × µB

W )(w). Without loss of generality, assume

µ′(m) >m (µA
M × µB

W )(m) = µA
M(m). (When µ′(w) >w (µA

M × µB
W )(w), we can

proceed in an analogous way.)

Case 1: µ′(m) ∈ WA.

Then we can renumber the individuals in M0 ∪W 0 such that {1, . . . , k} is parti-

tioned into subsets L0 = {1, . . . , ℓ0}, . . . , Ln = {ℓn−1 +1, . . . , ℓn = k} (where L0 or

L1, . . . , Ln may be empty), µ′({mA
i ,m

B
i }) = {wA

i , w
B
i } for i ∈ L0, µ

′({mA
i ,m

B
i }) =

{wA
i , w

B
i+1} for ℓr−1 + 1 ≤ i < ℓr, 1 ≤ r ≤ n, and µ′({mA

ℓr
,mB

ℓr
}) = {wA

ℓr
, wB

ℓr−1+1}
for 1 ≤ r ≤ n. Moreover, if m /∈ {mA

i | i ∈ L0} the renumbering can be such
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that m = mA
ℓ0+1 and µ′(m) = wA

ℓ0+1. Setting µA(mA
i ) = wA

i defines a sta-

ble matching µA in (MA,WA;PA), because of the stability of µ′ in the com-

mon marriage market and the interchangeability condition. By construction,

µA(m) = µ′(m) >m µA
M(m). But this contradicts the fact that µA

M(m) is the

best partner m gets in all stable matchings of (MA,WA;PA).

Case 2: µ′(m) ∈ WB.

Then we can renumber the individuals in M0 ∪W 0 such that {1, . . . , k} is parti-

tioned into subsets L0 = {1, . . . , ℓ0}, . . . , Ln = {ℓn−1 +1, . . . , ℓn = k} (where L0 or

L1, . . . , Ln may be empty), µ′({mA
i ,m

B
i }) = {wA

i , w
B
i } for i ∈ L0, µ

′({mA
i ,m

B
i }) =

{wB
i , w

A
i+1} for ℓr−1 + 1 ≤ i < ℓr, 1 ≤ r ≤ n, and µ′({mA

ℓr
,mB

ℓr
}) = {wB

ℓr
, wA

ℓr−1+1}
for 1 ≤ r ≤ n. Moreover, if m /∈ {mA

i | i ∈ L0} the renumbering can be such that

m = mA
ℓ0+1 and µ′(m) = wB

ℓ0+1. Setting µA(mA
i ) = wA

i defines a stable matching

µA in (MA,WA;PA), because of the stability of µ′ in the common marriage market

and the interchangeability condition. By construction (and the interchangeabil-

ity condition), µA(m) = wA
1 ∼m wB

1 = µ′(m) >m µA
M(m). But this contradicts

again the fact that µA
M(m) is the best partner m gets in all stable matchings of

(MA,WA;PA).

We arrive at a contradiction in both cases. Hence, to the contrary, (m,w) /∈
MA ×WB. (m,w) ∈ MB ×WA is the only remaining alternative. �

Take for instance, similar to Example 2.19 in Roth and Sotomayor (1990),

k = 4 and

P 0(m0
1) = w0

1, w
0
2, w

0
3, w

0
4 P 0(w0

1) = m0
2,m

0
3,m

0
1,m

0
4

P 0(m0
2) = w0

4, w
0
2, w

0
3, w

0
1 P 0(w0

2) = m0
3,m

0
1,m

0
2,m

0
4

P 0(m0
3) = w0

4, w
0
3, w

0
1, w

0
2 P 0(w0

3) = m0
4,m

0
1,m

0
2,m

0
3

P 0(m0
4) = w0

1, w
0
4, w

0
3, w

0
2 P 0(w0

4) = m0
1,m

0
4,m

0
2,m

0
3

Then µA
M(wA

i ) = mA
i for i = 1, 2, 3, 4; µB

W (mB
1 ) = wB

4 , µ
B
W (mB

2 ) = wB
1 , µ

B
W (mB

3 ) =

wB
2 , µ

B
W (mB

4 ) = wB
3 , and the pair {mB

2 , w
A
3 } is blocking µA

M × µB
W .

Next we present two cases in which µA
M × µB

W is stable. First, take Example

2 as the basic marriage market model. In that case, each man gets his most

preferred partner and each woman gets her second most preferred partner in the

M -optimal matching; each woman gets her most preferred partner and each man
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gets his second most preferred partner in the W -optimal matching. If a pair

{m,w} blocks µA
M × µB

W , then (m,w) ∈ MB × WA by Proposition 7. Moreover,

w >m µA
W (m), m >w µB

M(w), and consequently, m and w are mutually most

preferred partners. But then the corresponding pairs would belong to every stable

matching in (MA,WA;PA) and (MB,WB;PB). In particular, they would belong

to µA
M and µB

W . Hence to the contrary, {m,w} does not block µA
M × µB

W .

Second, take Example 2.10 of Roth and Sotomayor (1990) as the basic marriage

market model: k = 3 and

P 0(m0
1) = w0

1, w
0
2, w

0
3 P 0(w0

1) = m0
1,m

0
2,m

0
3

P 0(m0
2) = w0

1, w
0
2, w

0
3 P 0(w0

2) = m0
1,m

0
3,m

0
2

P 0(m0
3) = w0

1, w
0
3, w

0
2 P 0(w0

3) = m0
1,m

0
2,m

0
3

Then µA
M(wA

i ) = mA
i for i = 1, 2, 3, µB

W (mB
1 ) = wB

1 , µ
B
W (mB

2 ) = wB
3 , µ

B
W (mB

3 ) =

wB
2 , and µA

M × µB
W cannot be blocked.

The two cases share several features. Among other things, there exist only two

stable matchings in the basic marriage market, the M -optimal stable matching µ0
M

and the W -optimal stable matching µ0
W which in these cases are obtained via the

following iterative procedure. In a first step, match all pairs consisting of mutually

most preferred partners. If none exist, go to the last step. Else proceed to the

second step and match all pairs consisting of mutually most preferred partners

in the unmatched population. If none exist, go to the last step. Else proceed to

the next step. The procedure continues this way until all individuals are matched

(the remaining population is empty) or the final step is reached. In the former

case, the unique stable matching has been determined. In the latter case, the

unmatched population consists of least two men and two women. µ0
M results

if every remaining man is matched with his best choice among the remaining

women while every remaining woman is matched with her second choice among

the remaining men. In µ0
W , every remaining woman is matched with her best

choice among the remaining men while every remaining man is matched with his

second choice among the remaining women. If µ0
M and µ0

W can be obtained in this

way, then µA
M × µB

W is stable, by the argument given in the first case above.
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5.3 More on Integration of Marriage Markets

In the preceding subsection, we have found that integration of marriage markets

can destabilize local matchings when the integration of marriage markets concerns

merged marriage markets with identical sub-populations, that is, when conditions

(5.a) – (5.d) hold. In this subsection, we show that such destabilizing forces may

be more or less pronounced when we consider an alternative set-up. Local markets

are structurally identical but they are not identical copies: The interchangeability

condition (5.d) fails to hold. We consider the following example.

Example 8. In this example we consider variations based on the local marriage

market
P 0(m0

1) = w0
1, w

0
2

P 0(m0
2) = w0

2, w
0
1

P 0(w0
1) = m0

2,m
0
1

P 0(w0
2) = m0

1,m
0
2

where the men-optimal stable matching µ0
M and the women-optimal stable match-

ing µ0
W are given by

µ0
M(m0

i ) = w0
i for i = 1, 2

µ0
W (w0

1) = m0
2, µ0

W (w0
2) = m0

1.

This constitutes an instance where those two matchings are obtained via the con-

struction outlined at the end of subsection 5.2 and, hence, µA
M ×µB

W and µA
W ×µB

M

are stable matchings in the common marriage market in case the interchangeability

condition (5.d) holds.

We now consider integration of two structurally equivalent local marriage mar-

kets, i.e., integration of two marriage markets with the same preferences when re-

stricted to the local market. The local markets are again denoted by (MA,WA;PA)

and (MB,WB;PB) and stable local matchings are denoted µA and µB.

25



Case A: Stability

Consider the common marriage market

P (mA
1 ) = wA

1 , w
A
2 , w

B
1 , w

B
2 P (wA

1 ) = mA
2 ,m

A
1 ,m

B
2 ,m

B
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P (mA
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B
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B
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A
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B
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B
2

P (mB
1 ) = wB

1 , w
B
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A
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B
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A
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A
1

P (mB
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2 , w
B
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A
2 , w

A
1 P (wB

2 ) = mB
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B
2 ,m

A
1 ,m

A
2 .

There are four possible stable matchings of the form µA × µB given by the cases

where µA and µB are each either the men-optimal or women-optimal stable match-

ings in their respective local markets. These matchings remain stable after market

integration. The same observations hold for the common marriage markets
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and
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B
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A
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B
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B
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Case B: Instability

Consider next the common marriage market

P (mA
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B
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A
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A
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A
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B
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B
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Now, none of the four matchings µA × µB from the previous case is stable after

the integration of the marriage markets. Individuals exhibit a strict preference

for foreign partners. Therefore, the couple {mA
1 , w

B
1 } blocks µA

M × µB
W and the
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assertion of Proposition 7 does not hold in this case.8

Case C: Partial Stability

Consider the common marriage market

P (mA
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A
1 ,m

B
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A
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Here, of the four cases of the form µA × µB considered previously, three are stable

after integration of marriage markets. However, µA
W ×µB

M is unstable after market

integration. It is blocked by the couple {mA
2 , w

B
1 }. ��

5.4 Winners and Losers from Market Integration

We next examine winners and losers from integration of marriage markets. Again,

as in subsection 5.2, previous stable matchings can only be destabilized through

new feasible matches in the global marriage market. In Case B of the last subsec-

tion, all individuals gain from market integration. As a rule, however, there are

gainers and losers. According to Proposition 6, if preferences are strict, then there

cannot be more losers than gainers, which implies that not more than half of the

population consists of losers. The latter conclusion can be strengthened without

any assumption on preferences:

Proposition 8. Suppose the population is segregated into K ≥ 2 non-empty sub-

populations I1, . . . , IK. Let µ be a matching under segregation and µ′ be a stable

matching after desegregation. Then

|{i ∈ Ik : µ
′(i) <i µ(i)}| ≤ |Ik|/2 for k = 1, . . . , K.

Proof. Suppose that |{i ∈ Ik : µ′(i) <i µ(i)}| > |Ik|/2 for some k ∈ {1, . . . , K}.
µ′(i) <i µ(i) implies µ(i) ̸= i for i ∈ Ik. That is, all members of Jk ≡ {i ∈ Ik :

µ′(i) <i µ(i)} were matched under µ. Since |Jk| > |Ik|/2, two members of Jk were

8The proof of Proposition 7 relies on the interchangeability condition (5.d).
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matched with each under µ. Therefore, they can block µ′, contracting the stability

of µ′. Hence to the contrary, the assertion of the proposition has to hold. �

We thus observe a stark contrast between economic integration and the in-

tegration of marriage markets. Under standard assumptions, not all consumers

can lose from the integration of originally separate pure exchange economies —

which is a consequence of the first welfare theorem. However, almost all consumers

may lose in some instances. While there can also be gainers and losers from the

integration of marriage markets, there cannot be more losers than gainers if pref-

erences are strict. Proposition 8 contains a stronger result as it states that the

number of losers in each subpopulation cannot exceed the number of gainers in

this subpopulation.

Integration of marriage markets may be more explicitly modeled as a two stage

process in which local matchings occur in the first stage and global matchings in

the second stage. Indeed the previous considerations can be put into such a two-

stage process. Moreover, one might introduce plausible dependencies of matchings

in the second stage on previous local matchings. An obvious candidate are adap-

tive preferences. Let us consider the previous scenario, but assume that while

local markets are structurally identical, all individuals have adaptive preferences

regarding matches in the following sense. A matched individual in a local market

prefers to be single in the global market rather than to be matched with a partner

they prefer less than their partner in the original local market.9 As a consequence,

no individual will accept a match in the global market that would make him/her

worse off compared to the situation in the local market. Adaptive preferences im-

pose an extra condition for the admissibility of new stable matchings in the global

market, namely the condition that no individual may be worse off in the global

matching than he or she was in her respective status quo local matching.

In the previous situations of Example 8 adaptive preferences would not affect

the conclusions regarding the stability or instability of local matchings. However,

adaptive preferences can determine which type of global matchings arise and how

they depend on the local matchings as we show in the next example.

9The notion of adaptive preferences goes back at least to von Weizsäcker (1971).
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Example 9. The local marriage market is as in Example 8. Consider the common

marriage market

P (mA
1 ) = wA

1 , w
B
1 , w

A
2 , w

B
2 P (wA

1 ) = mB
1 ,m

B
2 ,m

A
2 ,m

A
1

P (mA
2 ) = wA

2 , w
A
1 , w

B
1 , w

B
2 P (wA

2 ) = mA
1 ,m

A
2 ,m

B
1 ,m

B
2

P (mB
1 ) = wA

1 , w
B
1 , w

B
2 , w

A
2 P (wB

1 ) = mA
1 ,m

B
2 ,m

B
1 ,m

A
2

P (mB
2 ) = wB

2 , w
B
1 , w

A
1 , w

A
2 P (wB

2 ) = mB
1 ,m

B
2 ,m

A
1 ,m

A
2 .

Any stable matching in the common market will involve the pair (mB
1 , w

A
1 ). The

other elements of a stable matching10 depend on the initial local matchings. Con-

sider, e.g., the men-optimal stable matchings. Then, the only stable matching in

the common market is (mA
1 ), (m

A
2 , w

A
2 ), (m

B
1 , w

A
1 ), (m

B
2 , w

B
2 ), (w

B
1 ). Since mA

1 can-

not match with wA
1 anymore, he prefers to remain single causing wB

1 also to be

single despite the fact that wB
1 was the second best choice of mA

1 and mB
1 the best

choice of wB
2 . Such phenomena could not occur with standard preferences where

everybody would be matched. ��

10In general, existence of stable matchings in the common market is guaranteed. Local match-
ings affect the preferences in the common market. However, once these preferences are deter-
mined, the standard existence result applies.
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Part II

Endogenous Feasibility Constraints

6 Sabotaging Possible Matches

6.1 Definitions

As already discussed in the introduction, individuals have various ways to make

particular matches difficult or infeasible. In this section, we investigate the conse-

quences when individuals can sabotage a potential match, i.e., render the particular

match infeasible. We consider the following scenario. Suppose a marriage market

Γ = (M,W,P) is given and individuals anticipate that a particular matching might

realize. Then each woman decides whether to sabotage a specific edge (match).

This gives rise to a restricted marriage market. We can embody the restrictions

by way of preferences so that the new market becomes ΓS = (M,W,PS), where

PS arises from P by the elimination of the individuals from a person’s preference

list with whom the person can no longer be matched. We explore which stable

matchings occur in the new market ΓS when sabotage activities are optimally cho-

sen. We focus on sabotage by one side of the market. We start by the following

definition.

Definition 4. A sabotage (of women) is a mapping S : W → E(Γ)∪{∅}, where
S(w) = {m′, w′} means that w chooses to sabotage the edge {m′, w′} and S(w) = ∅
means that w takes no action. The women w for whom S(w) ̸= ∅ will be called

saboteurs and S(w) is called the sabotage strategy of w.

We note that two women may sabotage the same match, which renders one of

their actions redundant. A woman may sabotage matches to which she belongs.

That is, w ∈ S(w) is allowed. We next define best responses regarding sabotage

strategies. For this purpose, we introduce the following notation.

For a sabotage S, let SS denote the stable matchings in (M,W,PS). For a

sabotage S, w′ ∈ W and S ′(w′) ∈ E(Γ) ∪ {∅}, let S|S ′(w′) denote the sabotage

where all women w ̸= w′ choose S(w) and w′ chooses S ′(w′).

We can now define a best response.
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Definition 5. Given a sabotage S and µS ∈ SS, woman w′ plays a best response

if @S ′(w′) ∈ E(Γ) ∪ {∅}, µ′ ∈ SS|S′(w′) such that S ′(w′) ̸= S(w′) and µ′(w′) >w′

µS(w
′).

We next introduce three types of sabotage that involve stable matchings which

are immune against individual incentives to sabotage.

Definition 6.

• A sabotage S is called a Nash sabotage with respect to µS ∈ SS, if every

woman plays a best response given S and µS.

• A sabotage S is a Nash sabotage if it is a Nash sabotage with respect to

some µS ∈ SS.

• A sabotage S is a global Nash sabotage if it is a Nash sabotage with

respect to all µS ∈ SS.

If µS ∈ SS and S is a Nash sabotage with respect to µS, we call µS immune

against further sabotage. If in addition S(w) = ∅ for all w ∈ W , we call µS

immune against (individual) sabotage.

6.2 Examples

We explore the consequences of sabotage with a few illustrative examples.

Example 10. Consider the following marriage market:

P (m1) = w1, w2, w3 P (w1) = m2,m1,m3

P (m2) = w2, w3, w1 P (w2) = m1,m2,m3

P (m3) = w2, w3, w1 P (w3) = m2,m3,m1.

The men-optimal stable matching is µ(mi) = wi for i = 1, 2, 3. Let us consider

whether this matching is immune against sabotage. We observe that w2 can strictly

benefit from sabotaging the match {m1, w1}. Indeed, let us consider the sabotage
S(w1) = ∅, S(w2) = {m1, w1}, S(w3) = ∅. Then, there exists a unique stable

matching in the post-sabotage market: µ(m1) = w2, µ(m2) = w3 and µ(m3) = w1
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which strictly benefits w2. Hence, the men-optimal stable matching is not immune

against sabotage.

We next consider stable matchings that are immune to further sabotage. Let

S(w1) = {m2, w2}, S(w2) = {m2, w3}, S(w3) = ∅ be a sabotage which yields the

post-sabotage market

P (m1) = w1, w2, w3 P (w1) = m2,m1,m3

P (m2) = w1 P (w2) = m1,m3

P (m3) = w2, w3, w1 P (w3) = m3,m1.

In this market, there is one stable matching µS: µS(m1) = w2, µS(m2) = w1, µS(m3) =

w3. Both active saboteurs obtain their best possible match and thus the sabotage

strategies are best responses. Given that the match {m2, w3} is sabotaged, w3 can-

not improve its match {m3, w3} by sabotaging another not yet sabotaged match.

Hence, S is a Nash sabotage with respect to µS. Moreover, since µS is unique, S

is a global Nash sabotage.

��

Example 11. Consider the following marriage market.

P (m1) = w2, w1, w3 P (w1) = m1,m2,m3

P (m2) = w1, w3, w2 P (w2) = m2,m1,m3

P (m3) = w1, w2, w3 P (w3) = m1,m2,m3.

Consider the stable matching µ(m1) = w2, µ(m2) = w1 and µ(m3) = w3 which

is the women- and men-optimal stable matching. Renouncing sabotaging is not

a Nash sabotage with respect to this matching. Indeed, it would be a profitable

deviation for w3 to sabotage {m1, w2} or {m2, w1}. Thus, even if women have their

best possible stable matching in a given market, renouncing sabotaging by women

is not a Nash sabotage.

Consider the sabotage strategies S(w1) = ∅, S(w2) = {m2, w1} and S(w3) =

{m1, w1}. Then, there is a post-sabotage stable matching µS(w1) = m3, µS(w2) =

m2, µS(w3) = m1 that is strictly profitable for saboteurs w2 and w3 compared to

the sabotage-free stable matching. On the other hand, w1 is worse off than in the

stable matching when no sabotage takes place. But she cannot do anything to

prevent this. She could also sabotage some matches, but she would not benefit.
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We note that there is another stable post-sabotage matching, namely µ′(w1) =

m3, µ
′(w2) = m1, µ

′(w3) = m2 which is strictly beneficial only for w3 compared

to the stable matching without sabotage. However, the above Nash sabotage

strategies are also best responses with regard to the second possible stable post-

sabotage matching. Hence, S(w1) = ∅, S(w2) = {m2, w1} and S(w3) = {m2, w1}
is a global Nash sabotage. ��

Example 12. Consider the following marriage market.

P (m1) = w1, w2, w3 P (w1) = m2,m1,m3

P (m2) = w2, w1, w3 P (w2) = m1,m2,m3

P (m3) = w1, w2, w3 P (w3) = m2,m1,m3.

The men-optimal stable matching is given by µ(mi) = wi for i = 1, 2, 3 and the

women-optimal stable matching is µ(w1) = m2, µ(w2) = m1 and µ(w3) = m3.

Let us consider the men-optimal stable matching. Individual w1 or w2 has strict

incentives to sabotage by S(w1) = {w2,m2}, and S(w2) = {w1,m1}, respectively,
to induce their optimal match. Hence, the men-optimal match is not immune

against sabotage. However, S(w1) = {w2,m2} and S(w2) = {w1,m2} together

cannot be part of a Nash sabotage. With S(w3) = {m2, w1} individual w3 can

ensure the post sabotage matching {m1, w2}, {m2, w3}, {m3, w1} which would be

beneficial for w3 but is not a best response for w1.

There is a Nash sabotage S ′ where w2 and w3 act in a complementary way:

S ′(w2) = {m1, w1}, S ′(w3) = {m2, w1}, S ′(w1) = ∅. This forces w1 to match

with her third choice m3 in the resulting market. The unique post-sabotage stable

matching is µS(m1) = w2, µS(m2) = w3 and µS(m3) = w1. Hence, w3 and w2 will

both profit from the sabotage and w1 cannot avoid being harmed by sabotage of

the other two women.

Consider now the women-optimal stable matching. Then, this matching is

immune to further sabotage with S(w1) = {m1, w3}, S(w2) = {m2, w3} and

S(w3) = ∅ being a Nash sabotage. In this situation, the two women who have their

first choice defend their advantageous position in the marriage market through sab-

otage as they force w3 to remain with her least preferred choice. Because each of

the saboteurs keeps her best choice and w3 cannot improve her situation, the above

strategies constitute indeed a Nash sabotage. ��
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Example 13. Consider the following marriage market:

P (m1) = w1, w2, w3 P (w1) = m3,m2,m1

P (m2) = w2, w3, w1 P (w2) = m1,m3,m2

P (m3) = w3, w1, w2 P (w3) = m2,m1,m3.

The men-optimal stable matching is {m1, w1}, {m2, w2}, {m3, w3} while the

women-optimal stable matching is {m1, w2}, {m2, w3}, {m3, w1}. Consider the

men-optimal stable matching. Then, each woman has an incentive to sabotage its

own match. Consider, e.g., S(w1) = {m1, w1}. Then, the women-optimal match

is the unique stable match in the post-sabotage market – and all three women

strictly benefit. Indeed, the sabotage in which one woman destroys the match

she would end up with in the men-optimal matching yields the women-optimal

matching and is a global Nash sabotage.11

Moreover, the complete sabotage S(w1) = {m1, w1}, S(w2) = {m2, w2} and

S(w3) = {m3, w3} of all matches in the men-optimal stable matching also yields the

women-optimal stable matching and this matching is unique in the post-sabotage

market. Hence, S is a global Nash sabotage. ��

6.3 General Considerations

The preceding examples indicate that Nash sabotage can take different forms.

They show that under a Nash sabotage, a woman may be worse off than under

no sabotage; that a women-optimal stable matching need not be immune against

sabotage; that a woman can benefit from sabotaging matches she is involved in.

Obviously, some men may benefit from sabotage by women. Since sabotage re-

stricts matching opportunities, Proposition 6 implies that there cannot be more

gainers than losers from sabotage.

Several open questions remain:

11While we focus on a static analysis of sabotage, these considerations and the other examples
could also be embedded in a dynamic setting. Suppose that in a first-stage, stable matchings are
realized in which sabotage is not possible. Then, in a second stage, women decide on sabotage
activities and a stable matching in the post-sabotage market occurs. If in this set-up, the men-
optimal stable matching is realized in stage 1, some or all women would sabotage their own
match and the women-optimal stable matching would occur in stage 2.
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• Does a Nash sabotage always exist?

• When does no woman lose under a Nash sabotage compared to stable match-

ings without sabotage?

• Can a group of women benefit from coordinating their sabotage strategies?

Two partial results can be established:

Lemma 1. Suppose that µ′
M (µ′

W ) is the status quo matching in the marriage

market (M,W,P ′). Moreover, suppose that P ≤W P ′, and that P arises from P ′

via female sabotage. If µM (µW ) is the matching resulting after sabotage, then the

women do not lose.

In this Lemma, P ≤W P ′ means that P is a sublist of the preference list P ′ by

deleting entries only from the end of P (w) for all w ∈ W . The Lemma follows from

the combination of Theorem 2.24 and the Decomposition Lemma 2.20 in Roth and

Sotomayor (1990) applied to W . We note – as shown in Example 11 – that it can

not be excluded in general that some woman may lose through sabotaging even if

we start from the men-optimal stable matching.

The next property shows that a coalition of women could benefit by coordinat-

ing their sabotage strategies.

Lemma 2. Suppose a women w0 has at most n−1 acceptable men in her preference

list in a marriage market (M,W,P ′). Let (M,W,P ) denote the marriage market

resulting from the deletion of the complete preference list of w0 via coordinated

sabotage from the other n− 1 women. Then µW ≥w µ′
W and µM ≥w µ′

M under P

for every w ̸= w0.

The preceding Lemma is a consequence of Theorem 2.25 in Roth and Sotomayor

(1990), since the coordinated sabotage essentially eliminates a certain woman’s

preference list from the marriage market.

7 Segregation: Location Choice and Matching

We next investigate a second force that endogenously determines feasibility con-

straints on matching. That is, individuals decide in a first stage to which sub-

population they want to belong. In a second stage matching occurs within the
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subpopulation. Let the labels 1 and 2 stand for two endogenously formed groups

or for the endogenous populations of two locations (territories). I1 is the player

population that belongs to group 1 (lives in territory 1) and I2 is the player pop-

ulation that belongs to group 2 (lives in territory 2).

There is a population I, partitioned into a finite non-empty set M consisting

of men and a finite non-empty set W consisting of women. We begin with the

special case where everybody is mobile.

In the first stage, each individual i makes a binary choice si ∈ Si = {1, 2}.
An action profile s = (si)i∈I ∈ S =

∏
i∈I Si determines I1(s) = {i ∈ I : si =

1}, I2(s) = {i ∈ I : si = 2},M1(s) = {i ∈ M : si = 1}, etc. so that I is

partitioned into I1(s) and I2(s), M is partitioned into M1(s) and M2(s), W is

partitioned into W1(s) and W2(s).

In the second stage, matching takes place. Marriages are only possible within

I1(s) and within I2(s). This restriction corresponds to the bigraph E(s) = C1(s)∪
C2(s) where Ci(s) is the complete bigraph based on Mi(s) and Wi(s).

Definition 7. A pair (s, µ) is a Stable Location-Partner Choice (SLPC)

under universal mobility if

(i) s ∈ S;

(ii) µ is a stable matching in the marriage market (M,W,P; E(s));

(iii) there is no i ∈ I so that µ is unstable in the marriage market (M,W,P; E(3−
si, s−i)).

Condition (iii) means that µ is not destabilized when one person switches lo-

cations. Condition (ii) implies that µ is individually rational. Consequently, µ is

destabilized by i switching location if and only if there exists a person j such that

si ̸= sj and the couple {i, j} blocks µ in the marriage market (M,W,P; E(3 −
si, s−i)). But given (ii), the latter is equivalent to {i, j} blocking µ in the marriage

market (M,W,P). Hence (ii) and (iii) imply that µ is a stable matching in the

unrestricted marriage market (M,W,P). The question arises whether an SLPC

rules out any stable matching µ. The answer is no. For take any stable matching

µ in the unrestricted marriage market (M,W,P). Let M1 be any subset of M . Set
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si = 1 if i ∈ M1 ∪ µ(M1) and si = 2 otherwise. Then (s, µ) is an SLPC. Notice,

however, that s and µ have to be consistent in an SLPC (s, µ): si = sµ(i) for i ∈ I.

Next we consider the general case where some individuals may be immobile.

There are two exogenous disjoint subsets Io1 and Io2 of I such that si = 1 for i ∈ Io1

and si = 2 for i ∈ Io2 . Let Io = Io1 ∪ Io2 , the set of immobile individuals. We still

define Si = {1, 2} for i ∈ I. But now the individuals in Io have no choice whereas

each i ∈ I \ Io chooses si ∈ Si in the first stage. We modify the definition of

an SLPC accordingly where S and I1(s), I2(s), . . . , E(s) for s ∈ S are defined as

before.

Definition 8. A pair (s, µ) is a Stable Location-Partner Choice (SLPC) if

(i) s ∈ S, si = 1 for i ∈ Io1 , si = 2 for i ∈ Io2 ;

(ii) µ is a stable matching in the marriage market (M,W,P; E(s));

(iii) there is no i ∈ I\Io so that µ is unstable in the marriage market (M,W,P; E(3−
si, s−i)).

Mutatis mutandis, the analysis of the special case Io = ∅ applies to the general

case. Define M0
1 = M ∩ I01 , M

o
2 = M ∩ Io2 , W

0
1 = W ∩ Io1 , W

o
2 = W ∩ Io2 , E∗ =

{{m,w} : m ∈ M o
1 , w ∈ W o

2 } ∪ {{m,w} : m ∈ M o
2 , w ∈ W o

1 }, and Eo = C \ E∗. E∗

is the set of matches that are a priori impossible given Io1 and Io2 while Eo is the

set of matches that are a priori possible.

Proposition 9. A pair (s, µ) is an SLPC if and only if

(i) s ∈ S, si = 1 for i ∈ Io1 , si = 2 for i ∈ Io2 ;

(iv) µ is a stable matching of the marriage market (M,W,P; Eo);

(v) si = sµ(i) for i ∈ I.

Proof. Suppose (s, µ) satisfies (i) – (iii). By (ii), there does not exist a couple

{m,w} that satisfies m ∈ M , w ∈ W , sm = sw and blocks µ. By (iii), there does

not exist a couple {m,w} that satisfies m ∈ M , w ∈ W , sm ̸= sw, {m,w} /∈ E∗

and blocks µ. Hence there does not exist a couple {m,w} ∈ Eo that blocks µ. By

(ii), µ is individually rational. Moreover, (i) implies E(s) ⊆ Eo. Therefore, (iv)

holds. Finally, (ii) implies (v).
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Conversely, suppose that (s, µ) satisfies (i), (iv) and (v). Since (i) implies

E(s) ⊆ Eo, (i) and (iv) imply that µ is not blocked by any {m,w} ∈ E(s). By

(v), every couple {m,w} that is matched in µ satisfies sm = sµ(m) = sw, hence

{m,w} ∈ E(s). By (iv), µ is individually rational. These properties combined

render (ii). (iv) further implies (iii). �

The proposition shows that the only restriction on matchings that belong to

an SLPC is Eo. Immobile persons can only be matched if they reside in the

same location. Two mobile partners can always be matched if they want to and

choose the same location. A mobile and an immobile partner can also be matched,

provided the mobile individual chooses the partner’s location.

As a corollary, the proposition yields existence of an SLPC. Namely, by Proposition

2, there exists a stable matching of the marriage market (M,W,P; Eo). Set si = 1

for i ∈ Io1 ∪ µ(I01 ) and si = 2 otherwise. Then (s, µ) constitutes an SLPC.

One can view the status quo in Example 7 as a situation where everybody is

immobile. If a particular person, say w1 becomes mobile, then all individuals are

(positively or adversely) affected. Hence a change of mobility of just one person

can have a drastic effect.

At additional notational costs, the foregoing analysis can be extended to models

with more than two locations, with identical qualitative conclusions.

8 Preferences for Partners and Locations

In the previous section, we considered location choice followed by matching. The

sequential treatment facilitates the exposition. Yet the formal analysis of that

model does not depend on the sequencing of events. All that is required in an

SLPC is the consistency condition (v): si = sµ(i) for i ∈ I. Hence we may assume

just as well that location choice and matching occur simultaneously.

The only role of location choice in Section 7 is to restrict the set of feasible

matches to the bigraph E(s). Individuals do not care about their location oth-

erwise. In reality, many people do care about their location, because of regional

attachment, professional, cultural, recreational and social opportunities. That is,

they have preferences for partners and locations. In this section therefore, we con-

sider matching when individuals have preferences for partners and locations but
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can only be matched to partners in the same location.

8.1 Definitions

For the time being we assume that two individuals have to reside in the same

location in order to be matched. Let X denote a non-empty finite set of locations

labeled x1, . . . , xn. There is again a finite population I that is partitioned into

a non-empty male subpopulation M = {m1, . . . ,mk} and a non-empty female

subpopulation W = {w1, . . . , wℓ}. Individuals have preferences for partners and

locations. Each m ∈ M has complete and transitive preferences on (W×X )∪{m},
represented by an ordered list P (m) as before. For instance, the abbreviated list

P (m) = (w1, x2), (w2, x1)

means that m’s first choice is to be married to woman w1 at location x2; his

second choice is to be married to woman w2 at location x1; his third choice is to

remain single.

Similarly, each w ∈ W has complete and transitive preferences on (M ×X )∪{w},
represented by an ordered list P (w). If an individual remains single, the person

still has preferences for locations. But we need not list those preferences explic-

itly, assuming implicitly that the person will reside at one of her most preferred

locations when single. We now say that (m,x) ∈ M × X is acceptable to w ∈ W

if (m,x) ≥w w and that (w, y) ∈ W ×X is acceptable to m ∈ M if (w, y) ≥m m.

For Z ⊆ C × X , define M(Z) = {{m,w} ∈ C | ∃x ∈ X : ({m,w}, x) ∈ Z}, the
projection of Z to C.

Definition 9. Z ⊆ C × X is a matching of persons and locations if

(M1) M(Z) is a matching of men and women;

(M2) ({m,w}, x) ∈ Z implies that

(m,x) is acceptable to w and

(w, x) is acceptable to m.

The personal part of a matching, M(Z) has again an alternative representation

by means of a bijection µ from I to I. Further, for a matching Z and ({m,w}, x) ∈
Z define λ(m) = x and λ(w) = x. For an individual, λ(i) stands for an unspecified
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best location for i as a single person. Next we extend the concept of a stable

matching.

Definition 10. A matching Z is stable if:

(M3) There is no matched individual with i >i (µ(i), λ(i)).

(M4) There is no triple (m,w, x) ∈ M ×W ×X such that (m,x) >w (µ(w), λ(w))

and (w, x) >m (µ(m), λ(m)).

If there is a unique location or if location choice is irrelevant, the concepts of

matching and stable matching coincide with the classical ones of Gale and Shapley

(1962).

8.2 Existence and Core Equivalence

We show in this subsection that much of the earlier analysis can be extended to

the more general case. We demonstrate this for the two most important results,

the existence of stable matchings and the characterization of stable matchings as

core allocations.

Proposition 10 (Existence). There exists a stable matching of persons and loca-

tions.

Proof. We apply an adaptation of the deferred acceptance algorithm with men

proposing. For each individual let us fix an order for the listing of alternatives

between which the individual is indifferent. In the beginning, each man m with

acceptable alternatives makes the proposal (m,x) to woman w if (w, x) is the first

alternative on the man’s preference list. Every woman rejects all proposals that

are not acceptable to her and each woman who receives more than one acceptable

proposal, rejects all but the one that comes first on her list. Any man whose pro-

posal (m,x) is not rejected at this time is “engaged” at these terms.

Any man m whose proposal was rejected in the previous step proposes (m,x′) to

woman w′ if (w′, x′) is first on his list of acceptable alternatives that did not cause

a rejection yet. (If at any step, a man has exhausted his list of acceptable alterna-

tives, he does not issue any more proposals.) Again, every woman rejects all new

proposals that are not acceptable to her. Among the new acceptable proposals
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plus (if applicable) the proposal underlying her engagement in the previous step,

she rejects all but the one that comes first on her list. Any man whose proposal

(m,x) is not rejected at this time is now “engaged” at these terms.

The algorithm stops after any step in which no proposal is rejected. Then ev-

ery man is either engaged or all his proposals based on acceptable alternatives

on his list have been rejected (including the case where there are no acceptable

alternatives). All engaged couples now get married at the terms of the underlying

proposals whereas all other individuals remain single.

The algorithm will eventually stop, since there are only a finite number of men,

women, and locations and no man makes the same proposal more than once to

any woman. The outcome is a matching. Let the matching be described by the

mappings µ and λ. The matching is individually rational in the sense of con-

dition (M3), since if m and w end up engaged, then m’s underlying proposal

(m,x) is acceptable to w and (w, x) is acceptable to m, hence (m,x) ≥w w and

(w, x) ≥m m. The matching produced by the algorithm also satisfies condition

(M4). For suppose there exists (m,w, x) ∈ M×W×X with (m,x) >w (µ(w), λ(w))

and (w, x) >m (µ(m), λ(m)). Then (w, x) precedes (µ(m), λ(m)) on m’s prefer-

ence list. Hence m proposed (m,x) to w prior to proposing (m,λ(m)) to µ(m).

Since (m,x) >w (µ(w), λ(w)) and (µ(w), λ(w)) is acceptable to w, (m,x) is ac-

ceptable to w — and preferred to (µ(w), λ(w)). Hence from some step onward, w

had engagements she preferred to the current match. Hence (µ(w), λ(w)) cannot

stipulate the terms of her final engagement. Therefore, (m,x) >w (µ(w), λ(w))

and (w, x) >m (µ(m), λ(m)) cannot both hold. This demonstrates (M4). �

A standard result on two-sided matching is weak core equivalence. That is, the

set of stable matchings and the weak core coincide. We can establish a weak core

equivalence result for matching of persons and locations.

Let A denote a coalition, that is a non-empty subset of I. Consider two match-

ings Z and Z ′, described by pairs of mappings (µ, λ) and (µ′, λ′), respectively. We

say that the matching Z ′ dominates the matching Z if there exists a coalition A

such that

µ′(i) ∈ A for all i ∈ A;

(µ′(i), λ′(i)) >i (µ(i), λ(i)) for all i ∈ A.

In that case we say that µ′ dominates µ on A. The weak core is the set of undom-

41



inated matchings.

Proposition 11 (Weak Core Equivalence).

The set of stable matchings and the weak core coincide.

Proof. Let Z be a matching that is unstable and described by (µ, λ). Then (M3)

is violated or (M4) is violated. In case (M3) is violated, there exists i ∈ I with

i >i (µ(i), λ(i)). Set µ′(j) = j for all j ∈ I. Then (µ′, λ′) dominates (µ, λ) on

{i}. If (M4) is violated, there exists (m,w, x) ∈ M ×W ×X such that (m,x) >w

(µ(w), λ(w)) and (w, x) >m (µ(m), λ(m)). Set µ′(m) = w, µ′(w) = m,λ′(m) =

λ′(w) = x and µ′(j) = j for j ̸= m,w. Then (µ′, λ′) dominates (µ, λ) on {m,w}.
Hence in any case, Z is dominated and does not belong to the weak core.

Next let Z be a matching described by (µ, λ) that does not belong to the weak

core. Then there exist a coalition A and a matching Z ′ described by (µ′, λ′)

that dominates Z on A. If µ′(i) = i for some i ∈ A, then (M3) is violated. If

µ′(i) ̸= i for all i ∈ A, choose some i ∈ A and j = µ′(i) ̸= i. Then µ′(j) = i, i

and j are of opposite sex and matched in Z ′, λ′(i) = λ′(j) =: x′, and (j, x′) >i

(µ(i), λ(i)), (i, x′) >j (µ(i), λ(j)), a violation of (M4). Hence (M3) or (M4) is

violated which means that Z is unstable. �

It immediately follows from the proposition that each stable matching is weakly

Pareto optimal. However, stable matchings need not be strongly Pareto optimal.

For let M = {m1,m2}, W = {w},X = {x}, P (m1) = [m1, (w, x)], P (m2) =

[m2, (w, x)], P (w) = (m1, x), (m2, x). Then Z = {({m2, w}, x)} constitutes a sta-

ble matching that is not strongly Pareto optimal.

8.3 Discussion

1. Matching with contracts. The model of this section can be reformulated

in terms of matching with contracts à la Hatfield and Milgrom (2005). The set

of contracts is a subset of M × W × X , with generic elements X = (m,w, x).

However, we need not resort to this formulation. For example, due to its abstract

nature, Proposition 10 can be shown directly without any further structure. But a

proof along the lines of Aygün and Sönmez (2012) and Aygün and Sönmez (2013)

is also possible.
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2. Long-distance marriages. We can accommodate the possibility of long-

distance marriages by replacing locations x by pairs of locations (x, y) where x

stands for the location of the male partner and y for the location of the female

partner.

3. Quasi-lexicographic preferences. Matching becomes easier and more

transparent when individuals have quasi-lexicographic preferences as follows. Each

person i has strict preferences for partners, given by lists Q(i) with the proviso that

j appears on i’s Q-list only if there is some location x so that (j, x) is acceptable

to i and (i, x) is acceptable to j. For each j on i’s Q-list, there is a conditional

preference list Rij for locations, weakly ordering the pairs of the form (j, x) accept-

able to i. Then i’s overall preference list is the array P (i) = Rij1 , Rij2 , . . . , Rijr if

Q(i) = j1, j2, . . . , jr. For example, if Q(m) = w1, w2, w3, Rmw1 = (w1, x3), Rmw2 =

(w2, x1), (w2, x3), Rmw3 = (w3, x1), then P (m) = (w1, x3), (w2, x1), (w2, x3), (w3, x1).

Given such quasi-lexicographic preferences, all stable matchings can be obtained

by the following procedure. First, find a stable matching µ for the marriage market

(M,W ;Q). For all m ∈ M and w ∈ W with µ(m) = w, there exists x ∈ X such

that (m,x) is acceptable to w and (w, x) is acceptable to m. Choose such an x

that is weakly optimal for the couple – that is such that there is no x′ ∈ X with

(m,x′) >w (m,x) and (w, x′) >m (w, x) – and set λ(m) = λ(w) = x. Then the

pair (µ, λ) represents a stable matching.

4. Limited mobility. In Sections 3 – 5, an exogenous or endogenous graph

represents a restriction on feasible matches. In the current section, we do not resort

to a bigraph E or E(s) with that quality. Still, we can impose restrictions on feasible

locations and, consequently, feasible matches by way of preferences. For instance,

(w, x) may be absent from m’s preference list because (w, x) is unacceptable to m,

which in turn may stem from the fact that location x is an impossible choice for

m. Suppose that, indeed, m is tied down to the particular location x′ ̸= x. Then

this can be captured by the absence of all alternatives of the form (w, x) from his

preference list.
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9 Concluding Remarks

We represent constraints on matching by a bipartite graph. In Part 1, we perform

comparative statics with respect to the exogenous constraints. Small changes in

the constraints can have consequences for the entire population. Major changes

in the constraints may have widespread, moderate or no effects depending on

preferences. This demonstrates the crucial role of preferences.

In Part 2, we consider endogenous constraints. The examples on sabotage illus-

trate intriguing possibilities. However, we could not show (or disprove) existence

of a Nash sabotage, which remains an open question. The analysis of choice of

partners and location can be viewed as a first step towards the study of multi-

dimensional matching. For instance, the literature on matching of interns and

hospitals tries to allocate couples of interns to the same hospital. That is, matches

in the marriage market are taken as constraints in the matching for interns and

hospitals. But one can look at the situation from the opposite direction as well:

The matching of interns may affect the marriage market. More generally, one

would expect an interaction between the job market and the marriage market.
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