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Convenient Flight Connections vs. Airport Congestion
Modeling the ‘Rolling Hub’

by

Jan K. Brueckner and Ming Hsin Lin*

1. Introduction

After decades of operating hub airports with flight arrivals and departures concentrated

in “banks” that facilitate short layover times for connecting passengers, American Airlines in

2002 “depeaked” its hubs, shifting to what it called a “rolling hub” concept. Starting with

the Chicago hub, flight operations were spread out, lengthening layover times, with the goal of

reducing congestion and improving operational performance, thus saving costs. At the time,

American’s CEO Donald Carty stated that “[o]ur Chicago experience has improved customer

service, reduced costs, improved productivity and allowed us to fly the same schedule with

the equivalent of five fewer aircraft and four fewer gates.” But Mary Fagan, an American

spokesperson, noted that “[if] you’re connecting, it may mean an [extra] delay of 10 to 12

minutes,” pointing to longer layovers (both quotes are from Carey (2012)).

While Delta and United Airlines followed American’s lead in adopting rolling hubs, recent

years have seen a reversal of this trend. Hub carriers have mostly “rebanked” their hubs,

abandoning the rolling-hub concept. Current American CEO Scott Kirby, quoted by Jean

(2015), stated that “although the continuous [rolling] hub lowered operating costs, the lost

revenue outweighed the savings,” with the revenue losses apparently due to the lower number

and timeliness of possible connections. Indeed, Marilyn DeVoe, vice president of American’s

Miami hub, stated that “[o]ur hubs are all about connecting people, and rebanking allows us

to do that more effectively” (Jean, 2015).

Although there is now a large theoretical literature on airport congestion,1 analytical treat-

ment of trade-off underlying the rolling hub (connection convenience vs. airport congestion)

is mostly absent. Mayer and Sinai (2003) argue that hub congestion is the price we pay for

convenient connections, and Katz and Garrow (2014) provide evidence on the cost and revenue
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consequences of depeaking, but no analytical treatment of the rolling hub is available in the

literature.2

The purpose of the present paper is to provide such a treatment. The goal is to develop

formal frameworks where the rolling-hub trade-off is clearly illustrated and to explore the

implications of the resulting models. The paper constructs and analyzes two related models.

The first is a continuous spatial model, where flight departure times are represented by locations

on a circle capturing the daily clock, and where a monopoly carrier serves only two spoke cities

out of the hub. Narrowing the gap between in- and outbound flights reduces layover time for

connecting passengers, but congestion cost per flight rises as the schedule is compressed. The

optimal spacing of flights balances the resulting gain and loss. Although the addition of other

carriers may leave the hub airline’s flight spacing unchanged, a high overall flight density will

cause the carrier to bunch its flights more closely than it would in isolation.

To allow more-interesting interaction effects between carriers to emerge, the analysis then

turns to a discrete spatial model, where flights congest one another only if they operate in the

same discrete period. The model has two periods and n spoke cities, and a layover cost now

arises only if the flights used by a connecting passenger operate in different periods. This cost

can be eliminated if the airline concentrates all its flights in one period, but the resulting high

level of congestion may make this option unappealing. While an increase in the cost per unit of

layover time in the continuous model leads to a marginal reduction in the optimal gap between

flights, the effect of a higher layover cost (now a cost for the entire layover rather than a cost

per unit of time) is discontinuous in the discrete model. The carrier evenly splits its flights

between the periods if this cost is low relative to the costs of congestion, while it concentrates

all its flights in one period if the cost is high.

The addition of fringe carriers, each of which operates a single flight, alters this pattern,

causing the hub airline to fully or partially concentrate its flights, with the fringe carrier’s

flights all operating in the other period. However, the equilibrium when two hub carriers share

the hub airport mirrors the outcome in the monopoly case. When the layover cost is low,

both carriers evenly split their flights between the periods, while a high layover cost leads the

carriers to concentrate their flights in different periods.
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Although, by eliminating market power, the assumption of perfectly elastic demand makes

the monopoly equilibrium efficient, the presence of other carriers leads to inefficient equilib-

ria. The culprit is a congestion externality, which is generated when a carrier shifts a flight

into a period where another carrier is operating. As a result, equilibria where several carriers

are present in the same period are inefficient, with a movement to the social optimum typi-

cally requiring greater separation of the airlines. As usual, congestion tolls can remedy this

inefficiency.

Overall, the paper illustrates the trade-off between convenient connections and airport

congestion, showing that a higher layover cost leads an airline to reduce layover time by

concentrating its flights. The carrier takes self-imposed congestion into account, but since it

ignores congestion imposed on other carriers, corrective action may be needed under certain

conditions.

The plan of the paper is as follows. Section 2 develops the continuous spatial model.

Section 3 develops the discrete spatial model with a monopoly carrier. Section 4 adds fringe

carriers to the model, while section 5 analyzes the case with two hub carriers. Section 6 offers

conclusions.

2. A Continuous Spatial Model

To illustrate the trade-off between convenient connections and airport congestion in simple

fashion, this section of the paper develops a continuous spatial model, where individual flight

times are explicitly captured. Let the daily clock be represented by a circle, with the time of

a flight indicated by its position on the circle, as shown in Figure 1. This figure is based on

the simplest possible hub-and-spoke network, where a monopoly airline serves two endpoint

cities, A and B, out of a hub airport H. Passengers travel in three city-pair markets AH, BH

and AB, with these trips facilitated by aircraft movements among the cities. One plane flies

back and forth between A and H and another plane flies back and forth between B and H, as

seen in Figure 2. For simplicity, all passengers are assumed to make one-way trips, allowing

the analysis to focus on the A-to-H and H-to-B flights. The first flight carries A-originating

passengers whose destinations are H or B, and the second flight carries H-originating passengers
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flying to B as well as connecting A-to-B passengers. A parallel discussion applies to B-to-H

and H-to-A flights (see below).

Suppose the airline operates two A-to-H and two H-to-B flights per day, as shown in Figure

1, with the flights evenly spaced around the circle, which has circumference T . Passengers in

each market, whose desired departure times are uniformly distributed around the circle, will

choose the most convenient departure times. A-to-H passengers whose desired departure times

are located on the upper half the circle will chose the A-to-H flight at the top of the circle,

while the remaining A-to-H passengers will choose the A-to-H flight at the bottom of the

circle. The average schedule delay (the distance between the preferred and actual departure

times) for these passengers is T/8, equal to one half the maximum gap between a preferred

time and the departure time. A-to-B and H-to-B passengers will self-select across flights in

the same fashion. H-to-B passengers with preferred departure times on the left (right) half of

the circle will choose the H-to-B flight on the left (right) of the circle, and A-to-B passengers

with preferred departure times on the upper (lower) half of the circle will choose the A-to-H

flight on the top (bottom) of the circle, with average schedule delay in each case again T/8.

The A-to-B trip involves a connection (with a layover) at the hub, and the connecting

time is given by the gap between the A-to-H and H-to-B flights, which under the even spacing

shown in the figure equals T/4. When the airline instead operates f flights on each spoke

route, leading to 2f flights in total, the schedule-delay and layover-time values are given by

T/4f and T/2f respectively.

Instead of spacing its flights evenly, the airline could move its A-to-H and H-to-B flights

closer together, which would reduce the connecting time of A-to-B passengers. In Figure 1, the

H-to-B flight locations would move counterclockwise, becoming closer to the A-to-H flights and

leading to the creation of two flight “banks.”3 A byproduct of this movement, however, would

be an increase in airport congestion, as the operating times of the two types of flights would be

closer together. To capture this effect in stylized fashion, suppose that the operating cost per

flight is a decreasing function of the distance to the closest flight. With even spacing, flights

are equidistant, separated by T/2f , but if the gap between the A-to-H and H-to-B flights were

reduced by d, the distance to the closest flight becomes T/2f − d ≡ M , a value that applies
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to both A-to-H and H-to-B flights. Note that M also equals the connecting time of A-to-B

passengers.

Let the airline’s congestion cost per flight as a function of this minimum distance be given

by K(M), and let congestion cost per passenger be given by C(M). Both the C(·) and K(·)

functions are decreasing as well as strictly convex. In addition, let β denote a passenger’s

cost per unit of layover time, and let γ denote the cost per unit of schedule-delay time, so

that layover cost is βM and schedule-delay cost is γT/4f . The operating cost per flight, not

including congestion cost, is denoted θ.

The demand for flights in each market is assumed to be perfectly elastic, with travel

benefit equal to a common value b in all markets. Then, for A-to-H and H-to-B passengers,

travel benefit net of the costs of congestion and schedule delay is b − C(M) − γT/4f . For

an A-to-B passenger, travel benefit net of these same costs as well as the layover cost is

b − 2C(M) − γT/4f − βM . Note that a connecting passenger incurs congestion cost twice

since two flights are used.4

The monopoly airline will set the fare in each market equal to the relevant net travel

benefit, so as to exhaust the consumer’s surplus from travel.5 Fares thus reflect passenger

losses from schedule delay, congestion, and layover time, which means that the airline must

reduce the amount it charges when any of these costs rises. As a result, the carrier will take into

account the effects of schedule delay, congestion, and extended layovers on passenger welfare.

Normalizing the number of passengers per market to unity, and setting fares equal to net

travel benefits, the airline’s profit is then

π = 2[b −C(M) − γT/4f ] + [b − 2C(M) − γT/4f − βM ] − 2f [K(M) + θ]. (1)

The first expression in (1) is revenue from A-to-H and H-to-B passengers (whose total volume

equals 2), while the second is revenue from the unitary volume of A-to-B passengers. The last

term is airline costs.

Since the choice of the number of flights f is not relevant to the issues at hand, consider

the choice of d holding f fixed.6 Substituting M = T/2f − d in (1), the first-order condition
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for choice of d is

πd ≡ 4C ′(T/2f − d) + 2fK ′(T/2f − d) + β = 0. (2)

This condition, which is assumed to be satisfied for some d between 0 and T/2f , says that the

increase in passenger congestion costs from closer flight spacing (−4C ′ > 0) plus the increase

in airline congestion cost (−2K ′ > 0) should equal the benefit β from lower layover costs.

Given convexity of the cost functions, the optimal d rises with β, so that the chosen layover

time naturally falls as layover cost rises. In addition, the optimal d falls as f increases, with

the lower d serving to hold M constant at the optimal value M∗ determined by β as f rises.7

While the optimality rule embodied in (2) is unsurprising, its usefulness lies in formalizing

the trade-off between convenient flight connections and airport congestion in a model that

includes some essential features of hub-and-spoke networks. This model could be extended by

introducing additional carriers. “Fringe” carriers, for example, each of which operates a single

flight, could locate their flights between the hub carrier’s banks. To see the effect, suppose

that a single fringe carrier, operating out of H, enters between each of the flight banks of the

hub carrier, locating at the midpoint of the gap to minimize congestion. The fringe carriers

could serve cities A or B or some other cities, but because of perfectly elastic demand, any

competition they provide to the hub carrier has no effect on fares. If, after entry, the distance

between a fringe carrier’s flight and the nearest flight of the hub carrier is greater than M∗,

entry has no effect on the carrier’s flight-spacing choice. On the other hand, if this distance

is less than M∗, then the hub carrier will move the flights within each bank closer together.

Since the gap between the fringe and hub-carrier flights is smaller in this case than the gap

between the hub carrier’s own flights, moving the latter flights closer together has a double

benefit: it increases the distance to the nearest flight (operated by the fringe carrier), thus

reducing congestion, and it reduces the layover time of connecting passengers. However, once

the flights of all the carriers are evenly spaced, there is no further gain to the hub carrier from

narrowing the gap between its flights. The reason is that the resulting M is less than M∗,

making the derivative in (2) negative.
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Similar discussion applies when multiple fringe-carrier flights locate between the hub car-

rier’s banks. In addition, entry by a second hub carrier has an effect similar to that of fringe-

carrier entry. If the gap between the banks of the two hub carriers is greater than M∗, then

entry has no effect on the spacing of the original hub carrier’s flights, with both carriers behav-

ing as if they were operating in isolation. Otherwise, however, the intra-bank flight distance

would fall until all the flights of the two carriers are evenly spaced at a distance smaller than

M∗.

While it illuminates a basic tradeoff, the model thus lacks rich implications regarding the

interaction between different carriers in a setting where layover time matters. The model

developed in the next section leads to more-interesting interaction effects, and it does so by

collapsing the continuous spatial setting into a discrete spatial framework in which flights

operate in discrete periods and must be present in the same period in order to congest one

another. This model also allows a more accurate depiction of airline hub-and-spoke network

operations.

3. A Discrete Spatial Model

To construct the discrete spatial model, let the day be broken up into a series of intervals,

with each interval containing two discrete periods denoted 0 and 1. A monopoly hub airline

serves n spoke cities out of the hub, and it has previously chosen to operate a single flight to

each endpoint during each of the day’s intervals. Its remaining choice is how to allocate the

flights across the 0 and 1 periods within a given interval. This same choice is repeated for each

interval over the day.

Let r denote the number of endpoints served during period 0, with n− r endpoints served

during period 1. Congestion within a period depends on the number of flights operated during

the period. The airline’s congestion cost per flight is assumed to equal a constant k > 0 times

the number of flights operated during the period. Therefore, the airline’s congestion cost per

flight is k(n−r) in period 1 and kr in period 0. The congestion cost experienced by a passenger

takes the same form but with a different constant c > 0. While this linear specification lacks

generality, it facilitates the analysis.
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As usual, passengers traveling between the hub and a spoke city take a single flight, while

passengers traveling between two spoke cities make a connection at the hub. The layover cost

for this connection depends on whether the connecting flights operate during the same period

or different periods. If they operate during the same period, the layover cost is zero. But

if they operate during different periods, the layover cost is given by y > 0. As a result, the

hub airline can eliminate layover costs by concentrating its flights in a single period, but the

downside is a high level of congestion during that period. This trade-off is the focus of the

analysis.

The number of passengers per city-pair market is again normalized to unity. As a result,

the number of hub-to-spoke passengers traveling in period 1 equals n − r, while the number

of spoke-to-spoke passengers using flights that operate in period 1 is (n − r)(n − r − 1)/2.

Similarly, the number of hub-to-spoke passengers in period 0 equals r, while the number of

spoke-to-spoke passengers using flights that operate in period 0 is r(r − 1)/2. The number of

spoke-to-spoke passengers whose flights operate in different periods equals the total number of

spoke-to-spoke passengers, n(n − 1)/2, minus the two previous expressions, a difference that

equals (n − r)r.

Adapting the fare expressions from section 2 while suppressing the schedule-delay terms,

the fares for hub-to-spoke passengers in the two periods are b − c(n − r) and b − cr. For

spoke-to-spoke passengers, the fares are b−2c(n−r) for those traveling in period 1 and b−2cr

for those traveling in period 0. For spoke-to-spoke passengers whose flights operate in different

periods, requiring a layover, the fare is b − cr − c(n − r) − y = b − cn − y. Thus, as in the

continuous spatial model, fares reflect passengers losses from congestion and layover time.

Making use of all this information, the profit of the monopoly carrier is given by

π = (n − r)(b − c(n − r)) + r(b − cr) +

(n − r)(n − r − 1)

2
(b− 2c(n − r)) +

r(r − 1)

2
(b − 2cr) +

(n − r)r(b − cn − y) − (n − r)2k − r2k − nθ. (3)

The first two terms are revenue from hub-to-spoke passengers, the next three terms are revenue
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from spoke-to-spoke passengers, and last three terms are the airline’s costs (congestion cost in

period 0, for example, equals r times cost per flight kr, or r2k). Thus, while passenger and

airline congestion costs per flight are linear in the number of flights, total costs are quadratic

in r and n − r.

The airline’s choice problem is how to allocate its flights between the two periods, which

involves choosing r to maximize (3). The first and second derivatives of (3) with respect to r

are given by

πr = (n − 2r)(2k + 2cn − y) (4)

πrr = −4(k + cn) + 2y. (5)

If y < 2(k + cn) holds, so that the layover cost is low relative to the costs of congestion (as

represented by (k+cn)), then πrr < 0 holds and profit is strictly concave. The solution is then

found by setting πr equal to zero, which yields r = n/2 from (4). However, if y ≥ 2(k + cn)

holds, with layover costs high and πrr ≥ 0, then π is convex, and the optimal r is given by a

corner solution, with r = 0 or r = n.

Figure 3 provides insight into these outcomes. The figure comes from noting that profit

equals travel benefit, given by [n + n(n − 1)/2]b, minus layover costs, which equal (n − r)ry,

minus congestion costs, which are given by the remaining elements in (3). By inspection,

layover costs are concave in r, with the second derivative equal to −2y < 0 (the negative

of second term on the RHS of (5)). This concavity, which is shown in the upper panels of

Figure 3, means that layover costs are minimized at r = 0 or r = n. Congestion costs are

convex, with second derivative 4(k + cn) > 0 (the negative of first term on the RHS of (5)),

a conclusion can also be shown to hold with nonlinear convex cost functions. This convexity,

which is also shown in the upper panels of Figure 3, means that congestion costs are minimized

at r = n/2. Given these differences in curvature, total costs can be either concave or convex,

and the outcome depends on the magnitude of y relative to 2(k + cn). In Figure 3a, y is small

and the convexity of congestion costs dominates, making total cost convex. In Figure 3b, y

is large and the concavity of layover costs dominates, making total costs concave. Finally,
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since profit equals total travel benefit (which is independent of r) minus total costs, these

convexity/concavity conclusions are reversed in Figure 3c, which shows that profit is concave

(convex) when y is small (large), with the maximum lying at r = n/2 (r = 0 or r = n). Since

the profit maximum thus minimizes congestion plus layover costs, the social planner’s goal, it

follows that the monopolist’s choice is socially optimal. Summarizing these results yields

Proposition 1. If the layover cost y is small relative to the costs of congestion,
then the monopoly carrier divides its flights evenly between the periods. Otherwise, the
carrier concentrates all its flights in one period. These outcomes are socially optimal.

Therefore, a high layover cost encourages concentration of flights, as intuition would sug-

gest, but this effect is discontinous, with flights entirely concentrated when y is above the

critical value 2(k + cn), and equally divided between the periods otherwise. Proposition 1 im-

plies that, when layover costs are high, the monopoly carrier will concentrate all of its flights

in banks, which can be assumed (without loss of generality) to be present in period 1 of each

of the day’s intervals (so that r = 0). The banks will be separated by the empty 0 periods in

the various intervals.8

4. Adding Fringe Carriers to the Discrete Model

4.1. The equilibrium

Now suppose that m < n fringe carriers are present, each operating a single flight from the

hub to one of the hub carrier’s spoke cities or some other destination. With perfectly elastic

demand, the presence of the fringe carriers has no effect on fares, as noted above, and both

the hub and fringe carriers can fill all the flights they choose to operate.

Let u denote the number of fringe carriers providing service in period 0, with m − u ≥ 0

carriers providing service in period 1. Assuming these carriers have the same costs as the hub

carrier,9 the profits of the fringe carriers operating in periods 0 and 1 are, respectively, given

by

b − (c + k)(r + u) − θ, b− (c + k)(n − r + m− u) − θ. (6)

The first expression is comprised of the carrier’s revenue from its unitary mass of passengers,
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b − c(r + u), minus its costs, k(r + u) + θ, and similarly for the second expression.

The equilibrium division of fringe carriers across periods is determined by equalization of

profit per carrier between the periods, which (from (6)) requires equal flight totals in the two

periods. Setting r +u and n− r +m−u equal and solving for u yields an equilibrium value of

u = (n+m)/2−r, which yields a common flight total of r+u = n−r+m−u = (m+n)/2 ≡ v.

Note that the equilibrium u is decreasing in r, which means that, as the hub carrier shifts its

flights toward period 0 (raising r), the fringe carriers shift their flights toward period 1 (reducing

u) to maintain equality of profits. This u solution is relevant as long as it lies between 0 and

m, which requires that r lies between (n + m)/2 and (n − m)/2.

To see how the hub carrier’s profit varies with r over this range, the r and n−r terms inside

the fare expressions in the first two lines of (3) are replaced by v, the n term inside the fare

expression in third line of (3) is replaced by 2v, and the airline congestion cost expressions are

replaced by (n − r)kv + rkv = nkv. Once these substitutions are made, the second derivative

of the profit function equals 2y > 0. With the function thus convex over the r interval

[(n − m)/2, (n + m)/2], it follows that the endpoints of this interval (which lead to u values

of m and 0) yield the highest profit, which is equal at both endpoints. The profit maximum

therefore lies at one of the endpoints or at an r value outside the interval. Given symmetry,

let r̂ = (n − m)/2 and focus on r values in the interval [0, r̂]. Over this interval, u = m holds

(generating a kink in the profit function at r̂), with all the fringe carriers operating in period

0.

This convex portion of the profit function is shown in Figure 4. To derive the behavior of

profit over the [0, r̂] interval, flight totals in periods 1 and 0, which equal n− r and r + m, are

substituted into the hub carrier’s profit expression, which then equals

π̃ = (n − r)(b − c(n − r)) + r(b − c(r + m)) +

(n − r)(n − r − 1)

2
(b − 2c(n − r)) +

r(r − 1)

2
(b − 2c(r + m)) +

(n − r)r(b − c(n + m) − y) − (n − r)2k − r(r + m)k − nθ. (7)
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The first and second derivatives of this function are

π̃r = −(k + cn)(m− 2n + 4r) − (n − 2r)y (8)

π̃rr = −4(k + cn) + 2y. (9)

To locate the optimal r, suppose first that y ≥ 2(k + cn) holds, so that profit is convex

over [0, r̂] from (9). Since π̃r evaluated at r̂ equals m(k + cn − y), which is negative under

convexity, it follows that profit is downward sloping at r̂. Since profit is convex, it follows that

r = 0 is optimal in this case (which is not shown in Figure 4).

Next suppose that y < 2(k + cn) holds, so that profit is strictly concave. If y < k + cn also

holds, then profit is upward sloping at r̂, which means that r̂ is optimal. This case is shown in

the lower curve in the [0, r̂] interval in Figure 4. If, on the other hand, k + cn ≤ y < 2(k + cn)

holds, profit is concave and downward sloping at r̂, which means that the optimum lies either

at r = 0 or some interior value in [0, r̂]. Setting π̃r in (8) equal to zero, the resulting value

is negative if y > (2n − m)(k + cn)/n ≡ ŷeq, making the optimal r zero. When the reverse

inequality holds, an interior r is optimal. These cases are shown in the upper and middle

curves in the [0, r̂] interval in Figure 4. Letting req denote the equilibrium value of r and xeq

denote the interior optimum, summarizing yields

req =





0 if 2(k + cn) ≤ y (convex case)

0 if ŷeq ≤ y < 2(k + cn) (concave case)

k(m−2n)+n[c(m−2n)+y]
2y−4(k+cn) ≡ xeq < r̂ if k + cn < y < ŷeq

n−m
2 ≡ r̂ if y ≤ k + cn,

where ŷeq = (2n −m)(k + cn)/n. (10)

This analysis shows that, in the presence of fringe carriers, the hub carrier concentrates its

flights in period 1, either partially or totally, never finding an equal split to be optimal. While

the carrier, as a monopolist, evenly split its flights when y < 2(k + cn), it now continues to

fully concentrate them in period 1 (setting r = 0) when y is as low as ŷeq. For smaller y values,
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the carrier sets r somewhere between zero and (n − m)/2, so that the period 1 flight volume

is never less than (n + m)/2.

To understand these conclusions intuitively, observe that, since the fringe carriers allocate

themselves between periods so as equalize total flights (at a level v), congestion is unaffected

as the hub carrier reduces r past n/2 toward r̂, while the greater period-1 concentration of

flights lowers layover costs. Therefore, the movement toward r̂ unambiguously raises profit.

However, once r reaches r̂ (and u becomes fixed at m), a further reduction affects congestion

in the two periods as well as layover costs. The maximization problem then resembles the one

faced by the monopolist of section 3, except for the presence of m fringe flights in period 0.

Reflecting this similarity, the solution is either an endpoint of the interval [0, r̂] or an interior

point, paralleling the monopoly outcome.10

Note that the resulting traffic concentration by the hub carrier is more realistic than the

outcome in the monopoly model, where concentration is completely absent below an interme-

diate value of y. Note also that the critical value ŷeq above which flights are fully concentrated

is an increasing function of the congestion-cost expression k + cn. Therefore, it remains true

that the hub carrier compares the layover cost to congestion costs in deciding whether to

concentrate its flights.

A final observation is that, in constrast to the monopoly case, the effect of y on r is

continuous rather than discontinuous in the presence of fringe carriers. As y increases up to

k + cn, r is constant at r̂, with the solution shifting to xeq in continuous fashion as y passes

k + cn. As y increases further, r declines smoothly, reaching zero at ŷeq, where it remains as

y increases beyong ŷeq.

4.2. The social optimum

As in section 3, maximizing total airline profit, which now includes the profit of the fringe

carriers, leads to minimization of total cost. Therefore, total profit is the appropriate objective

function for the social planner, and it is given by
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W = (n − r + m − u)(b− c(n − r + m − u)) + (r + u)(b− c(r + u)) +

(n − r)(n − r − 1)

2
(b− 2c(n − r + m − u)) +

r(r − 1)

2
(b− 2c(r + u)) +

(n − r)r(b − c(n + m) − y) − (n − r + m − u)2k − (r + u)2k − (n + m)θ.

(11)

The first line of (11) is the combined fringe and hub-carrier hub-to-spoke revenues, while the

second line is the intraperiod spoke-to-spoke revenue, adjusted for the extra fringe flights. The

last line is interperiod spoke-to-spoke revenue minus the combined costs of the carriers.

The second derivatives of (11) are

Wrr = −4(k + cn) + 2y (12)

Wuu = −4(c + k) < 0. (13)

In addition, Wru = −2(c + 2k + cn) and the Hessian determinant equals −4(c2(n − 1)2 +

2y(c + k)) < 0. With this determinant negative, solutions to the first-order conditions cannot

represent a maximum.

The maximum can be found using an approach similar to the one underlying Figure 4 in

the equilibrium analysis. To begin, observe that since Wuu < 0 holds, an optimal value of

u conditional on r can be found via the first-order condition Wu = 0. This condition yields

u as a downward sloping function of r over an interval of r values with a lower endpoint r̃,

where u = m, and an upper endpoint where u = 0. When this function is used to eliminate

u in the W expression in (11), total profit becomes a complicated function of r. Just as in

the equilibrium analysis, this function is convex, matching the convex curve to the right of r̂

in Figure 4. However, the new curve’s lower endpoint, located at r̃, lies to the right of the

endpoint in Figure 4, with r̃ > r̂.

As in the equilibrium analysis, the socially optimal r lies in the interval [0, r̃] below this

endpoint. To find the optimum, W is evaluated with u = m, with the resulting function denoted

Z(r).11 But since the derivative Zr is negative at r̃, the optimum lies to left of r̃, in contrast

to the equilibrium analysis (where r = r̂ could be an equilibrium). Further computation shows
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that if y ≥ 2(k + cn) holds, then Z is convex and the optimal r is zero, matching a similar

outcome in the equilibrium analysis. However, if y < 2(k + cn) holds instead, Z is concave.

Then, the optimal r, denoted ropt, is either equal to zero, which happens when y lies above a

critical value denoted ŷopt, or equal to an interior value given below. These outcomes parallel

the equilibrium cases corresponding to the upper and middle curves in Figure 4, and details

are provided in the appendix. Summarizing yields

ropt =





0 if 2(k + cn) ≤ y (convex case)

0 if ŷopt ≤ y < 2(k + cn) (concave case)

2k(n−m)+c(2n2
−m(1+n))−ny

4(k+cn)−2y
≡ xopt if y < ŷopt,

where ŷopt =
2k(n − m) + c(2n2 − m(1 + n))

n
. (14)

From (14), ropt equals xopt > 0 when y is small and equals zero otherwise. Note that, while

the critical value ŷopt is not explicitly a function of k + cn, it is increasing in both k and c.

Therefore, the optimality of concentration still depends on a comparison between layover and

congestion costs. The critical value ŷopt in (14) is easily seen to be less than ŷeq from (10).

Figure 5 summarizes the information in (14) without presenting a graph. The figure also

summarizes the information from (10) and Figure 4 in the same format, and it presents a

comparison between the equilibrium and socially optimal r values, allowing an evaluation of

the efficiency of the equilibrium. Drawing on (10) and (14), the contents of Figure 5 are

displayed formally as follows, where the roman numerals label the cases shown at the bottom

of the figure:

req =





0 = ropt if y ≥ ŷeq (i)

xeq > 0 = ropt if ŷopt ≤ y < ŷeq (ii)

xeq > xopt = ropt if k + cn ≤ y < ŷopt (iii)

r̂ ≥ xopt = ropt if c(n − 1) ≤ y < k + cn (iv)

r̂ < xopt = ropt if y < c(n − 1) (v) (15)

As seen from Figure 5 and (15), req ≥ ropt holds, implying the hub carrier’s period 0 flights are

either excessive or optimal, unless y is small (lying below c(n − 1)), in which case req < ropt.
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Summarizing these findings along with those of the equilibrium analysis yields

Proposition 2. In the presence of fringe carriers, the hub carrier fully or partially
concentrates its flights, with its period 1 flight volume at least as large as (n + m)/2.
Unless the layover cost y is small relative to the costs of congestion, the chosen extent
of concentration is either socially optimal or inefficiently low, with r too large in the
latter case.

Since the hub-carrier ignores the congestion imposed on the fringe carriers when it shifts

another flight to period 0, intuition would suggest that its chosen r should be inefficiently

large, reflecting the presence of an externality. While this relationship holds as expected for

intermediate values of y, req < ropt holds instead when y is small. To understand this apparent

anomaly, note that the above intuition applies to a situation in which the equilibrium and social

optimum both correspond to interior solutions, where the externality-induced difference in the

objection-function slopes can have an effect. The anomaly, however, is associated with the

presence of a corner solution for req, where this slope difference may not have the anticipated

impact.

To understand this point, first recall that the curve used in finding the social optimum

has generally the same form as the curve used in finding the equilibrium, shown in Figure 4.

However, the kink point at r̃ on the optimum curve lies to the right of the kink point r̂ on

the equilibrium curve, and the optimum curve is downward sloping immediately to the left of

r̃ (recall that the equilibrium curve may slope up to the left of r̂, as seen in Figure 4). Next,

it can be shown that, to the left of r̂, the equilibrium curve has a slope that is algebraically

larger (less negative or more positive) than the slope of the optimum curve at a common value

of r.12 The reason is that the optimum curve captures the benefits to the fringe carriers of the

lower congestion that comes from a decline in r, a gain that is not captured by the equilibrium

curve. Given this slope difference, it follows that, at an interior equilibrium (an r value where

the hub carrier’s profit slope is zero), the slope of the welfare function Z is negative, implying

that the socially optimal r lies farther to the left, with ropt < req. Note that ropt in this case

could itself be interior, or it could equal zero.

Suppose, on the other hand, that the equilibrium r is the corner solution r̂, where the
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hub carrier’s profit is upward sloping. In this case, Z could either be upward sloping itself at

r̂ (although less steeply), or downward sloping. In the upward-sloping case, concavity of Z

means that its derivative is zero somewhere to the right of r̂, with the optimum thus satisfying

r̂ < ropt < r̃ (recall that Zr is negative at r̃). In this anomalous case, req < ropt holds. Since

the slopes of both curves are decreasing in y, and since this case requires a positive slope for

each curve at r̂, the case emerges for the smallest values of y. In the case where req = r̂ holds

but Z is downward sloping at r̂, ropt lies to the left of r̂ and no anomaly arises. This case

requires somewhat larger values of y, but if y is larger still, then the hub carrier’s profit slope

at r̂ switches from positive to negative, and the cases considered in the previous paragraph

apply.

The second-to-last case above shows that a corner solution for req need not always lead to

an anomalous outcome, with ropt < req being possible. Observe, however, that this outcome

requires the positive profit slope at r̂ to be near zero, so that the Z slope can be negative at

r̂. But the corner solution is then “almost” interior, so that the initial intuition regarding the

relation between req and ropt applies.

The coincidence of the equilibrium and optimum for the highest values of y (where req =

ropt = 0) is also anomalous, but it has an even simpler intuitive explanation. With the hub

carrier completely separated from the fringe in equilibrium, no congestion externality arises,

making the equilibrium socially optimal.

5. The Discrete Model with Two Hub Carriers

5.1. Equilibrium

Suppose that, instead of facing the group of fringe carriers, the original airline shares the

hub with another hub-and-spoke carrier, which serves a collection of spoke cities that may

include some of the n original endpoints. While it is uncommon to see separate hubs sharing

an airport (the Chicago-O’Hare hubs of United and American provide a rare example), the

case is nevertheless interesting.

Let the carriers be denoted 1 and 2, and suppose carrier 1 serves more spoke endpoints

than 2, with n1 > n2 (United is larger than American at Chicago). Letting r1 and r2 denote
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the numbers of cities served by the carriers in period 0, the profit of carrier 1 is given by

π1 = (n1 − r1)(b − c(n1 − r1 + n2 − r2)) + r1(b− c(r1 + r2)) +

(n1 − r1)(n1 − r1 − 1)

2
(b − 2c(n1 − r1 + n2 − r2)) +

r1(r1 − 1)

2
(b − 2c(r1 + r2)) +

(n1 − r1)r1(b − c(n1 + n2) − y) − (n1 − r1)(n1 − r1 + n2 − r2)k − r1(r1 + r2)k − n1θ.

(16)

Note that this profit function parallels that of the fringe case, with r2 = u and n2 = m.

The r1 derivatives of the profit function are

π1
r1

= (k + cn1)(2n1 + n2 − 4r1 − 2r2) − (n1 − 2r1)y (17)

π1
r1r1

= −4(k + cn1) + 2y. (18)

The profit function for carrier 2 is gotten by reversing the subscripts in (16), and its derivatives

come from reversing the subscripts in (17) and (18).

If y < 2(k + cn2) < 2(k + cn1), then both profit functions are strictly concave in their

r arguments. The Nash equilibrium is then found by equating the r derivatives to zero and

solving simultaneously, yielding r1 = n1/2 and r2 = n2/2. Since the reaction functions are

easily seen to be downward sloping, this solution, where each carrier evenly splits its flights

between the periods, is a stable equilibrium.

If, on the other hand, 2(k + cn2) < 2(k + cn1) ≤ y, both profit functions are convex in

their r arguments, and corner solutions are optimal in which a carrier operates in the period

where the other is not present. The Nash equilibrium thus has r2 = n2 and r1 = 0 (assuming

that carrier 2 operates in period 0).

If 2(k + cn2) ≤ y < 2(k + cn1), then carrier 2’s profit function is convex and 1’s function is

concave. Since carrier 2 will then wish to concentrate its flights in the period where carrier 2 has

fewer flights, the Nash equilbrium can be found by setting r2 = n2 and choosing r1 to maximize

π1 under this restriction, assuming that the solution has r1 < n1/2. When this maximization

is carried out, the solution has r1 = 0 provided that n2 > 2n1/3 holds, a condition that will
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be imposed for simplicity (otherwise an interior r1 is optimal). See the appendix for details.

Summarizing yields

(req1, req2) =

{
(0, n2) if 2(k + cn2) ≤ y

(n1/2, n2/2) if y < 2(k + cn2). (19)

Therefore, the carriers concentrate their flights in different periods when y is large relative to

the costs of congestion and evenly split them between the periods when y is small, mirroring

the discontinuous outcome in the monopoly case.

The intuition underlying this outcome is that, with r2 fixed, carrier 1’s problem is similar to

that faced by a monopolist except that the baseline level of flights (those operated by carrier 2)

is not zero in each of the periods. When carrier 2’s flights are evenly split, carrier 1’s problem is

indeed formally identical to the monopoly problem (the flight baseline is equal across periods,

although not zero), so that it will evenly split its flights, mimicking carrier 2, when y is small.

Since carrier 2’s perspective is the same, an even split is the Nash equilibrium when y is small.

When y is large, each carrier will prefer a corner solution regardless of the other carrier’s

choice, with the corner solution that best avoids the other carrier being preferred. Therefore,

when one carrier’s flights are fully concentrated, the other carrier prefers to fully concentrate

its flights in the other period, and this outcome is a Nash equilibrium.

5.2. Social optimum

As before, the social optimum maximizes the combined profit of the two hub carriers, which

is given by

W̃ = (n1 − r1 + n2 − r2)[b− c(n1 − r1 + n2 − r2)] + (r1 + r2)[b− c(r1 + r2)] +
[
(n1 − r1)(n1 − r1 − 1)

2
+

(n2 − r2)(n2 − r2 − 1)

2

]
[b− 2c(n1 − r1 + n2 − r2)] +

[
r1(r1 − 1)

2
+

r2(r2 − 1)

2

]
[b − 2c(r1 + r2)] +

[(n1 − r1)r1 + (n2 − r2)r2] [b − c(n1 + n2) − y] − (n1 − r1 + n2 − r2)
2k −

(r1 + r2)
2k − (n1 + n2)θ. (20)
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The second derivatives of W̃ are

W̃riri
= −4(k + cni) + 2y, i = 1, 2. (21)

The cross partial derivative equals −2(2k + c(n1 + n2)), and the Hessian determinant equals

−4[c2(n1 − n2)
2 + y((2k + 2cn1 − y) + 2k + 2cn2)].

If (21) is positive for both carriers, then W̃ is convex in each of the two r variables, so that

a corner solution with r1 = 0 and r2 = n2 is optimal. If both second derivatives in (21) are

instead negative, then it is easily seen that the Hessian expression is negative, which implies

that a solution to the first-order conditions cannot be optimal.

In this case, an approach similar to that followed in the fringe analysis can be used to find

the solution. Negativity in (21) means an optimal value of r2 can be found conditional on

r1. When this value is substituted in place of r2, W̃ becomes a function r1. This function is

convex, indicating that the endpoints of the r1 interval over which r2 lies between 0 and n2

are preferred to interior values, paralleling the analysis of the fringe case. W̃ is then evaluated

at the lower endpoint of this interval (call it r̂1) and the range below r̂1, where r2 = n2.

The resulting function of r1 (denoted Q(r1)) is concave, and its derivative at r̂1 is negative,

indicating that the optimal r1 value is smaller. The optimal r1 equals a value sopt1 > 0 if

y < y∗ and equals zero if y∗ ≤ y < 2(k + c)n2 (see below for the actual sopt,1 and y∗ values

and see the appendix for details).

The case where 2(k + cn2) ≤ y < 2(k + cn1) remains to be considered. In this case, W̃ is

convex in r2, so that a corner solution is optimal. With r2 set equal to n2, W̃ again reduces to

Q(r1), but since y > 2(k + cn2) > y∗ now holds, the optimal r1 is zero. Summarizing yields13

(ropt1, ropt2) =

{
(0, n2) if y∗ ≤ y

(sopt1, n2) if y < y∗

where y∗ =
(n1 − n2)(2k + c(2n1 + n2))

n1
< 2(k + cn2),

sopt1 =
−2k(n1 − n2) + c(−2n2

1 + n1n2 + n2
2) + n1y

−4(k + cn1) + 2y
<

n1

2
. (22)
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Thus, the smaller hub carrier’s flights are fully concentrated at the social optimum while the

larger carrier’s flights are fully or partially concentrated, with the latter outcome obtaining

when y is small.

Figure 6 summarizes the information in (22) along with the results of the equilibrium

analysis from (19), and it presents a comparison between the equilibrium and socially optimal

ri values. The information in Figure 6 is displayed formally as follows:

req1 =





0 = ropt1 if 2(k + cn2) ≤ y

n1/2 > 0 = ropt1 if y∗ < y < 2(k + cn2)

n1/2 > sopt1 = ropt1 if y ≤ y∗

req2 =





n2 = ropt2 if 2(k + cn2) ≤ y

n2/2 < n2 = ropt2 if y∗ < y < 2(k + cn2)

n2/2 < n2 = ropt2 if y ≤ y∗ (23)

Thus, req1 > ropt1 and req2 < ropt2 hold unless y is large, in which case the equilibrium and

optimum coincide.

Summarizing this information along with the results of the equilibrium analysis yields

Proposition 3. When two hub carriers operate together, both carriers concentrate
their flights in different periods when the layover cost is large relative to the costs of
congestion and divide their flights equally between the periods when it is small. If the
equilibrium has concentration of flights, the outcome is socially optimal. But if the
equilibrium has flights evenly split, the outcome is inefficient, with the large carrier
instead needing to fully or partially concentrate its flights and the small carrier needing
to fully concentrate its own flights in a different period.

The divergence between the equilibrium and the social optimum is again due to the presence

of congestion externalities. Since the carriers congest one another but ignore the externality,

they are insufficiently separated in situations where they are both present in each period. Thus,

moving to optimum from such an equilibrium involves fuller separation of the carriers, with r

falling for carrier 1 and rising for carrier 2.

Note that since the equilibrium, when it is inefficient, has interior r solutions for both

carriers, a reversal (like that in the fringe case) of the expected relation between the equilibrium
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and optimal r values (with ropt > req) does not occur. Moreover, when the equilibrium

involves full separation of the carriers, the intercarrier congestion externality is absent and

the equilibrium is socially optimal, as in the fringe case. Note also that the undesirability of

complete carrier separation when y is small (with ropt1 > 0) reflects the same force that leads

to the even-split equilibrium: avoidance of excessive congestion in period 1.

A final observation is that, if the two hub carriers serve the same number of endpoints,

with n1 = n2, then y∗ in (22) is zero and (ropt1, ropt2) = (0, n2) holds for all y. Thus, with

equal-size carriers, full concentration of flights is always optimal, in contrast to the even split

that characterizes the equilibrium for low values of y.

6. Conclusion

This paper has provided the first analysis of the trade-off between convenient flight con-

nections and airport congestion. A continuous spatial model illustrates this trade-off in a

framework where a small gap between flight operating times raises congestion while also short-

ening a connecting passenger’s layover time. When the passenger’s cost per unit of layover

time rises, the monopoly airline chooses to narrow the gap between its flights, yielding shorter

layovers but more congestion. The discrete spatial model, where flights congest one another

only if they operate in the same discrete period, makes this layover-cost effect discontinuous

in the monopoly case: the carrier concentrates (deconcentrates) its flights when this cost is

high (low) relative to the costs of congestion. The presence of additional carriers may alter

this pattern. When fringe carriers are present, the hub carrier always concentrates its flights,

either partially or fully. But the presence of a second hub carrier leads to an equilibrium mir-

roring the monopoly outcome: the carriers concentrate their flights in different periods when

the layover cost is high and deconcentrate them otherwise.

Welfare analysis of the fringe and 2-hub-carrier cases shows that, when the equilibrium

involves less than full separation of the carriers, it is inefficient due to congestion externalities.

Except for an anomalous outcome in the fringe case due to the presence of a corner solution,

movement to the social optimum requires greater separation of the carriers.

The hub-carrier-plus-fringe case appears to best match reality at most of the world’s hub
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airports, where a hub carrier’s operations coexist with those of many other airlines, none of

which has an appreciable share of the airport’s flights.14 The model predicts that these fringe

carriers fully concentrate their flights between the banks of the hub carrier, with that carrier

either fully concentrating its own flights or alternately choosing to intermix some of its flights

with those of the fringe, operating banks that are not fully concentrated. In the latter case,

the intermixing is most likely excessive, with hub carrier needing to more fully concentrate

its own flights. This verdict, which applies unless the layover cost is very small, is due to

uninternalized congestion, and it overturns any claim that the peaking of flights at hubs is

excessive.

Efficient outcomes in both the fringe and 2-hub-carrier cases could be generated in the

usual way by appropriate tolls. A hub carrier would be charged a toll equal to the external

congestion damage created when it operates an extra flight in a particular period, damage that

would depend on the number of other-carrier flights operating in that period. With tolls being

charged, the profit function of a carrier would become aligned with the social planner’s objective

function. Note that, as in past models, the airline internalizes self-imposed congestion, which

need not be taken into account in a toll system.

Future research could be devoted to extending the current framework in more-realistic

directions. An extension involving two classes of spoke cities (large and small), leading to dif-

ferent market sizes, is unfortunately unworkable due to the added complexity, as are extensions

allowing the hub carrier to choose the number of endpoints served or its flight frequency to

a fixed number of endpoints. An extension that might be feasible, however, would introduce

additional discrete periods beyond two, moving toward a compromise between the two-period

and continuous models. Another extension would be to follow an emerging literature (see, for

example, Czerny (2013)) by introducing airport concessions, which become more attractive

when passengers experience long layovers. If the airline could share concession revenue with

the airport in some fashion (via reduced airport charges, for example), then its incentive to

deconcentrate its flights would increase.

A final question is whether the model can help explain the introduction of the rolling hub

in the early 2000’s and its demise a decade later. The introduction appeared to be spurred
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in part by the general decline in airline traffic after the terrorist attacks in 2001, while the

rebanking of hubs occurred as traffic was rebounding following the Great Recession. While a

decline in travel benefit b could capture such a demand shift, this change has no effect in the

model. Alternatively, the drop in travel demand could be captured by a decline in the number

m of fringe carriers. From (10), a drop in m raises the equilibrium level of r when it is positive,

causing the hub carrier to deconcentrate its flights, as occurred with adoption of the rolling

hub. An eventual rebound in m would explain the later rebanking of hubs. This explanation,

however, holds the number of spoke endpoints fixed, even though a demand decline might have

reduced n along with m. The model could also generate the introduction and demise of the

rolling hub through a cyclical change in the relation between layover cost y and congestion

costs, as captured in k+cn. However, such a cyclical pattern (with y intially falling in relation

to k + cn and then rising), may not be plausible. A final potential explanation for the rolling-

hub cycle is pure experimentation: the airlines tried the rolling hub and eventually decided that

it was no better than the traditional pattern of concentrated banks. This view is consistent

with the findings of Katz and Garrow (2014), which suggest that airline cost savings from

depeaking were roughly matched by revenue losses.
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Appendix

A.1, Steps leading to (14)

The derivative of W with respect to u is

Wu = 2k[m + n − 2(r + u)] + c[2m + n + n2 − 2nr − 2(r + 2u)]. (a1)

Setting Wu = 0 and solving, the optimal u conditional on r is

u(r) ≡
2m(c + k) + cn(1 + n − 2r) + 2k(n − 2r) − 2cr

4(c + k)
. (a2)

This u(r) solution equals m when r = r̃, where

r̃ =
2k(n − m) + c(n2 + n − 2m)

2(c + 2k + cn)
. (a3)

Substituting u(r) into W , the resulting function has derivatives

Wr|u=u(r) = −
(n − 2r)(c2(n − 1)2 + 2y(c + k)

2(c + k)
(a4)

Wrr|u=u(r) =
c2(n − 1)2 + 2y(c + k)

c + k
> 0. (a5)

The function Z(r) equals W with u set equal to m, and its derivatives are

Zr = −2k(m − n + 2r) − c(m(1 + n) − 2n2 + 4nr) − (n − 2r)y (a6)

Zrr = −4(k + cn) + 2y < 0 (a7)

Setting (a6) equal to zero and solving for r yields xopt, an expression that is positive when

y < ŷopt.
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A.2. Steps leading to (19)

The r1 derivative of π1 with r2 = n2 is

(k + cn1)(2n1 − n2 − 4r1) − (n1 − 2r1)y, (a8)

and setting (a8) equal to zero and solving for r1 yields

r1 =
k(2n1 − n2) + n1(2cn1 − cn2 − y)

4(k + cn1) − 2y
. (a9)

The denominator is positive, and the numerator can be shown to be negative when 2(k+cn2) <

y and n2 > 2n1/3 both hold, implying that the optimal r1 equals zero.15

A.3. Steps leading to (22)

The derivative of W̃ with respect to r2 is

c[n2
1 + n1(n2 − 2r1) + 2n2(n2 − r1 − 2r2)] + 2k[n1 + n2 − 2(r1 + r2)] − (n2 − 2r2)y. (a10)

Setting (a10) equal to zero and solving, the optimal r2 conditional on r1 is

r2(r1) ≡
c[n2

1 + n1(n2 − 2r1) + 2n2(n2 − r1)] + 2k(n1 + n2 − 2r1) − n2y

4(k + cn2) − 2y
. (a11)

Substituting r2(r1) into W̃ , the resulting function has derivatives

W̃r1 |r2=r2(r1) = −
(n1 − 2r1)[c

2(n1 − n2)
2 + y((2k + 2cn1 − y) + 2k + 2cn2)]

2(k + cn2) − y
(a12)

W̃r1r1 |r2=r2(r1) =
2[c2(n1 − n2)

2 + y((2k + 2cn1 − y) + 2k + 2cn2)]

2(k + cn2) − y
. (a13)

Inspection shows that the numerator of (a13) is positive when −2(k + cn1) + y < 0, i = 1, 2

(this conclusion also establishes the negativity of Hessian determinant, which has the opposite

sign). Since the denominator is positive, the function W̃ |r2=r2(r1) is thus convex.
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The function Q(r1) equals W̃ with r2 set equal to n2, and its derivatives are

Qr1 = 2k(n1 − n2 − 2r1) + c(2n2
1 − n2

2 − n1(n2 + 4r1) − (n1 − 2r1)y (a14)

Qr1r1 = −4(k + cn1) + 2y < 0. (a15)

Setting (a14) equal to zero yields sopt1, an expression that is positive when y < y∗.
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Footnotes

∗We thank Achim Czerny and Kangoh Lee for helpful comments. Any errors, however, are
ours.

1Following Daniel (1995) and Brueckner (2002), the literature in the area has expanded
substantially. See Basso and Zhang (2007) for a survey.

2Brueckner (2005), Flores-Fillol (2010), and Lin (2013) analyze congestion in hub-and-spoke
networks without considering the layover-time issue.

3Note that schedule delay in the three markets is unaffected by this change.

4Doubling of congestion cost is justified by a flight-delay interpretation of the cost. For a
connecting passenger, the first flight arrival is delayed due to congestion, and the second
flight departure is delayed as well. With the layover time fixed, the total arrival delay is the
sum of the two flight delays.

5Use of the average schedule delay in deriving the fare expressions is justified by assuming
that passengers do not know their preferred departure times until after purchasing the ticket,
which means that the expected schedule delay determines their willingness-to-pay for travel.
See Brueckner (2010) for one of several related scheduling models built on this assumption.

6Were f to be chosen, the first-order condition is T [C ′+K ′/2+(2γ+β)/4])−2f2(K +θ) = 0.

7Flights serving one-way passengers traveling in the other direction (B to H, B to A, and H to
A) can be handled as follows. The plane flying from H to B turns around at B and returns to
H carrying B-originating passengers. The original A-to-H aircraft, which has been waiting
at the hub, then transports the connecting B-to-A passengers along with H-to-A passengers
to city A. The arrival of the B-to-H plane and the departure of the H-to-A plane are close
in time, creating congestion in this directional flow (which could be scheduled between the
banks operating in the other direction).

8Observe that, since the temporal aspect of section 2’s model is suppressed in the current
framework, the issue of directionality of travel can be ignored.

9The fringe carriers are assumed to provide the same service quality as the hub carrier.
Otherwise, a quality discount would be subtracted from b in deriving the fringe carriers’
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fares, with no effect on the analysis.

10The parallel is not exact because the corner solution at r = 0 can emerge when the profit
function is either convex or concave over the [0, r̂] interval, while the corner solution at r̂
emerges when the function is concave.

11As before, the objective function has a kink at r̃.

12The difference between the slopes of the equilibrium and optimum curves is m(c + k) > 0.

13The claim regarding the magnitude of y∗ follows from the assumption that n2 > 2n1/3.
Observe that, when this inequality holds, y∗ − 2(k + cn2) has the sign of 2cn2

1 − 2kn2 −
3cn1n2 − cn2

2 < 2cn2
1 − 2kn2 − 3cn1(2n1/3) − cn2

2 = −2kn2 − cn2
2 < 0.

14Many of these other flights will be operated by network carriers connecting the given airport
to their own hubs. So while the fringe carriers are small at this airport, they need not be
small in a global sense.

15The numerator of (a9) is negative when y > (k(2n1 − n2) + n1(2cn1 − cn2))/n1 ≡ y#. But
since y# − 2(k + cn2) = 2cn1 − 3cn2 − kn2/n1 < 0 when n2 > 2n1/3 holds, it follows that
y > 2(k + cn2) implies y > y#, yielding negativity of (a9)’s numerator.
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