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benchmark I adopt a common BVAR specification, including 18 variables, estimated 

shrinkage, and no nonlinearity. Then I entertain alternative specifications of the zero 

lower bound: replace the federal funds rate by its shadow rate, consider a logarithmic 

transformation, feed in monetary policy shocks, or utilize a rejection sampler. The latter 

two are also coupled with interest rate expectations from future contracts. The comparison 

is based on the accuracy of point and density forecasts of major U.S. macroeconomic 

series during the period 2009:1 to 2014:4. The results show that the performance of the 

specifications is greatly different, suggesting that this modeling choice is not innocuous. 

The introduction of the zero lower bound is not beneficial per se, but it depends on how 

it is done and which series is forecasted. With caution, I recommend the shadow rate 

specification and the rejection sampler combined with interest rate expectations to deal 

with the nonlinearity in the policy rate. Since the policy rate will remain low for some 

time, these findings could prove useful for practical forecasters. 
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1 Introduction

Bayesian vector autoregressions (BVARs) are useful tools to forecast major macroeconomic time

series. In contrast to classical VARs, they do not entail the risk of overparameterization and are

hence able to exhaust the information contained in large datasets. A popular approach is that of

Bańbura, Giannone, and Reichlin (2010), who use a variant of the Minnesota prior as proposed

by Doan, Litterman, and Sims (1984) and Litterman (1980, 1986). Their prior shrinks forecasts

towards a random walk for those variables showing substantial persistence and white noise for

those that do not. The degree of shrinkage is controlled by a single hyperparameter, which can

be easily computed or estimated in an optimal fashion.

In a forecast experiment the researcher has to make lots of choices with respect to model

specification, estimation, and forecast construction. Because the specification choices affect the

forecast accuracy of a BVAR, the literature has discussed issues such as: the appropriate number

of variables included, whether variables should enter in (log-)levels or growth rates, whether a

(log-)level specification should be complemented with priors favoring unit roots and cointegra-

tion, the treatment of the residual covariance matrix, the lag length, the selection of the shrink-

age parameter, whether a recursive or rolling window estimation scheme should be used, and

whether forecasts should be computed by iteration or the direct-step approach (see, e.g., Koop,

2013; Berg and Henzel, 2015; Carriero, Clark, and Marcellino, 2015, among others).

This paper discusses a further specification choice, which has not been addressed carefully

in the literature. In particular, I investigate how the forecast accuracy of a BVAR is affected by

introducing the zero lower bound on the federal funds rate. Researchers have dealt with the

fact that the monetary policy instrument is constraint from below by 0% by either ignoring it or

by adjusting their evaluation period such that the recent era of exceptionally low interest rates

is avoided. For instance Clark and McCracken (2014) write: “We stop our forecast evaluation

in 2007:Q4 to avoid possible complications of the zero lower bound constraints that became

relevant in subsequent years.” (see p. 27, ll. 25-26).

What Clark and McCracken (2014) mean by the relevance of the zero lower bound constraint

becomes obvious when inspecting Figure 1. The figure shows the federal funds rate and fore-

casts thereof one quarter and four quarters ahead. While the federal funds rate is stuck between

0% and 0.25% since 2009, the BVAR attaches a lot probability mass to negative policy rates. And

the BVAR also suggests a federal funds rate liftoff as early as mid-2011, despite the Federal Re-

serve’s repeated promise to keep interest rates low for an “extended period.” Such statements

were part of the central bank’s policy to anchor longer-term interest rate expectations during

the zero lower bound period, known as forward guidance (see Bernanke, 2013).
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Figure 1: Federal Funds Rate – Forecast and Realization. Notes: this figure shows the point
forecast (dashed line) together with the realization (solid line) and a 90% error band (shaded area) for the
periods 2000:1 to 2014:1 (left panel) and 2000:4 to 2014:4 (right panel). x-axis: year; y-axis: percent.

The zero lower bound constraint and the Federal Reserve’s forward guidance are challenges

for any forecast model. However, ignoring them or discarding years of observations are no good

options. And since the federal funds rate will most likely remain low for some time even after a

liftoff, the results in this paper could prove useful for practical forecasters and researchers alike.

Hence I focus on the period from 2009 to 2014 and entertain alternative specifications of the

zero lower bound. Also, I include interest rate expectations from future contracts to account for

the Federal Reserve’s forward guidance. Accordingly, most BVAR specifications considered in

this paper are not linear and forecasts have nonstandard distributions.1

As a benchmark I adopt a common BVAR specification, including 18 variables that enter in

quarterly (growth) rates. The prior is modeled as in Bańbura et al. (2010). Moreover, I use a long

lag specification, while parsimony is achieved by optimal estimation of the shrinkage parameter

as proposed by Giannone, Lenza, and Primiceri (2015). Forecasts are obtained by iteration using

a recursive estimation scheme. My reading of the literature is that such a specification produces

relatively accurate point and density forecasts for major macroeconomic series in normal times.

Then I entertain alternative specifications of the zero lower bound. First, I replace the federal

funds rate by the shadow rate of Wu and Xia (2015). Second, I substitute the federal funds rate

by its natural logarithm. Third, I feed shocks to monetary policy into the BVAR to prevent the

policy rate from falling below zero. Fourth, I utilize the rejection sampler of Waggoner and Zha

(1999) to truncate the predictive density of the federal funds rate at 0%. Finally, I couple the latter

1For linear models with Gaussian shocks, predictive densities are approximately multivariate normal
(see Gelman, Hwang, and Vehtari, 2014).
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two specifications with interest rate expectations from future contracts to rule out federal funds

rate predictions that appear too high. As a first result I obtain that the alternative specifications

produce very different predictive densities for the federal funds rate.

In the next step I discuss how this finding impacts on the forecast accuracy of the BVAR with

respect to other key variables. Particularly, I rank the alternative specifications according to their

point and density forecast accuracy for GDP growth, the unemployment rate, CPI inflation, and

the treasury rate during the period from 2009:1 to 2014:1 up to four quarters ahead. For a robust

assessment I consider several relative and absolute forecast metrics.

I obtain a large set of empirical results that can be summarized as follows. First, introducing

the zero lower bound hardly affects the forecast accuracy of the BVAR for GDP growth, CPI in-

flation, and the unemployment rate one quarter ahead but does four quarters ahead. While this

is by construction for the policy shock specifications, it is also observed for the other specifica-

tions. A practical forecaster should thus be more concerned about the zero lower bound when

she is interested in long-term forecasts. Except for the treasury rate, for which this specification

choice also matters in the short-term. Second, the performance of the alternative specifications

is greatly different four quarters ahead, suggesting that this modeling choice is not innocuous.

In particular, the introduction of the zero lower bound is not beneficial per se, but it depends on

how it is done and which series is forecasted.

With caution, I recommend the shadow rate specification. Except for GDP growth, this spec-

ification shows a satisfactory forecast ability in absolute terms and relative to the benchmark. In

contrast, both policy shock specifications are no good choices, while the logarithmic specifica-

tions is accurate for the treasury rate, but inflates forecast errors for any other series. Finally, the

soft condition specification is useful only in combination with the financial market expectations,

but then helps to achieve a better calibration of predictive densities.

The paper is organized as follows. Section 2 develops the BVAR and discusses major speci-

fication choices. Furthermore, I explain how the model is estimated and forecasts are obtained.

Section 3 presents alternative specifications that introduce the zero lower bound into the BVAR.

I also discuss how the predictive density of the federal funds rate is affected. Section 4 presents

the data and explains the forecast experiment. Then I compare the alternative specifications in

terms of forecast accuracy measures. Section 5 provides a summary of the results and concludes.
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2 Forecasting with a BVAR

In this section I develop the BVAR and discuss major specification choices. Moreover, I explain

how the model is estimated and forecasts are obtained.

2.1 BVAR

Consider the following VAR

yt = c+B1yt−1 + ...+Bpyt−p + ut, (1)

where yt is a n× 1 vector of endogenous variables; c is a n× 1 vector of intercepts; Bi are n× n

matrices of coefficients; i = 1, ..., p denotes the lags included; ut is a n × 1 vector of normally

distributed residual terms with zero mean and covariance matrix Σ; and data are available

for t = 1 − p, ..., T . Let us denote y = (y1, ..., yT )
′, xt =

(

y′t−1, ..., y
′
t−p, 1

)′
, x = (x1, ..., xT )

′,

B = (B1, ..., Bp, c)
′, and u = (u1, ..., uT )

′. The VAR in (1) can thus be written as y = xB + u.

Moreover, let β = vec (B) with vec (·) being the column stacking operator and k = n (1 + np).

Then β is a k × 1 vector containing all coefficients of the model.

In the forecast experiment the VAR is estimated on n = 18 variables including p = 4 lags of

each (hence k = 1, 314).2 Such a large dimensional system of multivariate regressions is, how-

ever, not estimable without imposing additional prior beliefs on the parameters. Hence I follow

common practice and use a variant of the Minnesota prior to deal with the dense parameteriza-

tion of the model. The basic idea is that a white noise process is a reasonable description of the

data generating process behind most macroeconomic series once transformed to stationarity.

The VAR is hence centered around the prior mean yt = c + ut and imposing the white noise

prior amounts to shrinking all elements of Bi towards zero.

In contrast to the original Minnesota prior (see Litterman, 1980, 1986), I do not assume Σ to

be known and diagonal, but use the generalized version of Kadiyala and Karlsson (1993, 1997)

that allows for correlation among residuals. The evidence in Bańbura et al. (2010) suggests that

a generalized Minnesota prior produces accurate forecasts for major macroeconomic series even

though the n (n+ 1) /2 distinct elements of Σ have to be estimated on top of the k coefficients.

In particular, I consider a conjugate Normal-Inverse-Wishart prior of the following form:

Σ ∼ IW (Ψ, d) and β|Σ ∼ N (b,Σ⊗ Ω) , (2)

2The choice for the lag length can be motivated by the frequency of the data, which is quarterly.
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where ⊗ denotes the Kronecker product and the elements Ψ, d, b, and Ω are functions of hy-

perparameters. The conjugate prior implies a likelihood and posterior that come from the same

family of distributions and hence makes Bayesian inference feasible even for large n.

Bańbura et al. (2010) implement the prior by constructing a set of artificial observations:

y+ =









0np×n

diag (σ1, ..., σn)

01×n









, x+ =









diag (1, 2, .., p)⊗ diag (σ1, ..., σn) /λ 0np×1

0n×np 0n×1

01×np ǫ









, (3)

where diag (·) denotes a diagonal matrix. The σj ’s account for the different scale and variability

of the series and are set to the standard deviation of a residual from a univariate autoregression

for the variable yj,t using the same lag length as in the VAR. The parameter ǫ is set to a small

number (10−4), reflecting a diffuse prior for the intercepts. Finally, the parameter λ governs the

degree of shrinkage and hence the tightness of the prior. As λ → ∞ the prior becomes uninfor-

mative and posterior expectations coincide with the ordinary least squares (OLS) estimates. For

λ → 0 the posterior approaches the dogmatic prior. λ is hence the key parameter in the BVAR

and its selection is discussed in detail below.

The artificial observations are added on top of the actual data matrices, and the augmented

regression model is used for inference:

y∗ = x∗B + u∗, (4)

where y∗ =
(

y′, y+
′
)′

, x∗ =
(

x′, x+
′
)′

, u∗ =
(

u′, u+
′
)′

, and u+
′

=
(

u+1 , ..., u
+
T

)

. The latter contains

the corresponding residual terms to y+.

Let Σ̂ and β̂ be the covariance matrix and coefficients from an OLS regression of y∗ on x∗. The

conditional posterior distributions of the covariance matrix and coefficients can be computed in

closed form as a function of the shrinkage parameter:

Σ|λ, y ∼ IW
(

Σ̂, T + n+ 2
)

and β|Σ, λ, y ∼ N

(

β̂,Σ⊗
(

x∗
′

x∗
)−1

)

. (5)

In practice I get draws for the coefficients from the equivalent non-vectorized representation

of their conditional posterior distribution:

B = B̂ + chol

(

(

x∗
′

x∗
)−1

)

× V × chol (Σ)′ , (6)
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where chol (·) denotes the Cholesky decomposition and V is a k × n standard Gaussian matrix.

Drawing coefficients from (6) rather than (5) is much faster for large n since the computation of

the Kronecker product can be avoided (see also Carriero et al., 2015).

2.2 Choice for Shrinkage Parameter and MCMC Estimation

Following Giannone et al. (2015) I treat λ as an additional unknown parameter that is estimated

in an hierarchical fashion. The approach hence accounts for the uncertainty related to this spec-

ification choice and requires to add one more layer to the prior structure by placing a prior on

the shrinkage parameter - a hyperprior p (λ).

The marginal posterior for λ after integrating out the posterior uncertainty about the model’s

parameters is

p (λ|y) ∝ p (y|λ) · p (λ) , (7)

where ∝ denotes proportionality. The marginal likelihood of the model (conditional on λ) has a

well-known analytic form (see also Carriero et al., 2015):

p (y|λ) = ζ−1 × |Ψ+ (y − xb)′
(

I + xΩx′
)−1

(y − xb) |−
T+d

2 , (8)

where

ζ = π
Tn

2 × |
(

I + xΩx′
)−1

|−
n

2 × |Ψ|−
d

2 ×
Γn

(

d
2

)

Γn

(

T+d
2

) , (9)

and Γn (·) denoting the n-variate gamma function. The prior moments are b =
(

x+
′

x+
)−1

x+
′

y+,

Ω =
(

x+
′

x+
)−1

, Ψ = (y+ − x+b)
′
(y+ − x+b), and d = n+ 2.

The hyperprior needs to be chosen and reflects how confident we are about the values for

λ. I follow common practice and choose a diffuse hyperprior. In particular, I consider a Gamma

density with mode equal to 0.2 and standard deviation of 0.4.

Since the joint posterior distribution for the parameters and λ is not available in closed form,

Giannone et al. (2015) recommend a Metropolis-Hastings algorithm to simulate the distribution.

The sampler is a Markov chain Monte Carlo (MCMC) method and generates λ from its marginal

posterior with a Metropolis update. After convergence of the sampler, the covariance matrix

and coefficients can be drawn from their posterior distribution conditional on λ and forecasts

computed in an iterative fashion. In detail, the algorithm works as follows.

Let NB be the number of burn-in-draws and NR the number of retained draws. The maximal

forecast horizon is denoted by H . The steps are:

6



Step 1: Choose a starting point λ0. I use the posterior mode, which is obtained by numerical

optimization.3 For j = 1, ..., NB +NR run a loop over the following steps.

Step 2: Draw a proposal λ∗ from a jumping distribution J
(

λ∗|λj−1
)

= N
(

λj−1, c · σ2
m

)

, where

σ2
m is the inverse of the Hessian computed at the posterior mode, and c is a scaling constant

chosen to obtain an acceptance ratio of about 20%.

Step 3: Compute the acceptance ratio:

r =
p (λ∗|y)

p (λj−1|y)
, (10)

where p (λ|y) is given by Equation (7).

Step 4: Randomly draw ν from U (0, 1).

Step 5: Accept or discard the proposal λ∗ according to the following rule, and update, if neces-

sary, the jumping distribution:

λj =







λ∗ : if ν ≤ r

λj−1 : otherwise
(11)

If j ≤ NB repeat the previous four steps, otherwise continue.

Step 6: Draw Σj |λj , y and βj |Σj , λj , y from their conditional posterior in (5) and (6).

Step 7: Generate ujT+1, ..., u
j
T+H from ut ∼ N

(

0,Σj
)

.

Step 8: Compute the 1-step-ahead forecast as

ŷjT+1 = cj +Bj
1yT + ...+Bj

pyT−p+1 + ujT+1, (12)

while the h-step-ahead forecasts are obtained by iteration:

ŷjT+h = cj +Bj
1ŷ

j
T+h−1 + ...+Bj

pŷ
j
T+h−p + ujT+h, (13)

where h = 1, ..., H and ŷjT+h = yT+h−p for h ≤ p. �

This algorithm yields
(

ŷjT+1, ..., ŷ
j
T+H

)NB+NR

j=NB+1
as a sample of forecasts generated from the joint

posterior distribution for the parameters and λ, where NB = 5, 000 and NR = 25, 000.

Figure A.1 suggests that the posterior distribution for λ is well behaved and NB sufficiently

large to let the Markov chain converge to its ergodic random distribution. The figure also shows

3I use the Matlab routine fmincon.
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that the autocorrelation of the chain dies out quickly. Therefore I do not thin the chain to reduce

dependence, but keep all draws for inference.

3 Alternative Specifications of the Zero Lower Bound

In this section I present alternative specifications that introduce the zero lower bound into the

BVAR. Furthermore, I discuss how the predictive density of the federal funds rate is affected.

3.1 Specifications

In particular, I consider the following specifications:

Benchmark In the first specification I neglect the presence of the zero lower bound and construct

forecasts using the algorithm shown in Section 2.2. This proceeding serves as the benchmark for

all the other specifications. While the federal funds rate is constraint to be nonnegative, forecasts

thereof may take negative values. And with the federal funds rate stuck between 0% and 0.25%

since 2009, the policy instrument progressively loses importance for the U.S. economy over the

evaluation period.

Shadow Rate In the second specification I replace the federal funds rate from 2009:1 onwards by

the shadow short-term interest rate of Wu and Xia (2015)4 and then construct forecasts as usual.

Unlike the federal funds rate, the shadow rate can fall below zero in unconventional monetary

policy environments (see also Figure A.2). Intuitively, it is the nominal interest rate with short-

est maturity that would prevail in the absence of physical currency. Wu and Xia (2015) derive

their shadow rate from a nonlinear term structure model estimated on forward rates and show

that it interacts with the U.S. economy since 2009 in the same fashion as the federal funds rate

did before. The shadow rate also reflects the unconventional monetary policy measures imple-

mented by the Federal Reserve in recent times and is hence a reasonable proxy for the monetary

policy stance during the zero lower bound period. Still, the hybrid federal funds/shadow rate

series is hypothetical since economic agents cannot transact at shadow rates.

Logarithmic In the third specification I substitute the federal funds rate (Rt) by its natural loga-

rithm. While the federal funds rate is bounded between 0 and ∞, the logarithmic transformation

maps this into (−∞,∞). The BVAR is hence estimated including log (Rt), and I obtain the pre-

dictive density for Rt using the inverse log transformation, which makes sure that all posterior

4The Wu-Xia data are available here: https://www.frbatlanta.org/cqer/research/shadow_rate.aspx.
I also experimented with the shadow rate estimates by Krippner (2013) with similar qualitative results.

8

https://www.frbatlanta.org/cqer/research/shadow_rate.aspx


draws for the federal funds rate are nonnegative. Cogley and Sargent (2002) follow a similar

strategy to deal with the boundedness of the unemployment rate. Even though the logarithmic

transformation truncates the predictive density of the federal funds rate at 0%, it also introduces

a nonlinear relation between the monetary policy instrument and the economy, which may not

be supported by the data.5

Policy Shock In the fourth specification I follow the standard procedure of the DSGE forecasting

literature and feed shocks to monetary policy into the BVAR to prevent the federal funds rate

from falling below zero (see, e.g., Del Negro and Schorfheide, 2013, among others). Under this

specification the ordering of the variables in yt hence matters. In particular, I divide the sample

into n1 slow (St) and n2 fast moving (Ft) variables and estimate the BVAR on yt = (St Rt Ft)
′.

The former category includes production, employment, and price data, while the latter contains

financial market variables. The monetary policy shock is then the innovation to Rt. To obtain a

forecast sample, the algorithm above needs to be modified in the following way:

Step 8 (Policy Shock): Compute the 1-step-ahead forecast as

ŷjT+1 = cj +Bj
1yT + ...+Bj

pyT−p+1 + ujT+1. (14)

If R̂j
T+1 ≥ 0 continue. Otherwise add a monetary policy shock (ǫjT+1) such that the federal funds

rate is equal to zero, i.e. ǫjT+1 =
(

−R̂j
T+1/σ

j
n1+1

)

Sje, where σj
n1+1 is the standard deviation of

the shock, Sj = chol
(

Σj
)

, and e = (0n1
1 0n2

)′. Obtain the h-step-ahead forecasts by iteration

and always add a monetary policy shock (ǫjT+h) if needed:

ŷjT+h = cj +Bj
1ŷ

j
T+h−1 + ...+Bj

pŷ
j
T+h−p + ujT+h, (15)

where h = 1, ..., H and ŷjT+h = yT+h−p for h ≤ p. �

Hitting the zero lower bound in T+h hence alters forecasts for slow moving variables in T+h+1

and later, while forecasts for fast moving variables are also affected in T + h. But none variable

is affected in T + h− 1 and earlier since the monetary policy shocks are not anticipated.6

Soft Condition In the fifth specification I conform to Waggoner and Zha (1999), incorporating

the zero lower bound using an acceptance-rejection algorithm. In particular, parameter constel-

5In the logarithmic BVAR a decline of the federal funds rate from 10% to 5% has the same effect on the
economy as a decline from 1% to 0.5%, which is hardly consonant with standard economic theory.

6The DSGE forecasting literature also considers anticipated monetary policy shocks since reaching the
zero lower bound may not come as a surprise to economic agents. However, this is not possible in a VAR.

9



lations that are not consistent with a nonnegative federal funds rate forecast receive zero prior

weight and are discarded.7 The truncated forecast distribution is sampled as follows.

Step 8: (Soft Condition) Compute the 1-step-ahead forecast as

ŷjT+1 = cj +Bj
1yT + ...+Bj

pyT−p+1 + ujT+1, (16)

while the h-step-ahead forecasts are obtained by iteration:

ŷjT+h = cj +Bj
1ŷ

j
T+h−1 + ...+Bj

pŷ
j
T+h−p + ujT+h, (17)

where h = 1, ..., H and ŷjT+h = yT+h−p for h ≤ p. If R̂j
T+h ≥ 0 for h = 1, ..., H accept the draw,

otherwise repeat Steps 6 and 7 and use the alternative draw Σ̃j , β̃j , ũj to compute forecasts. �

The Waggoner and Zha (1999) method can be computationally intense since the acceptance rate

may be low in some periods. Moreover, this specification affects not only the predictive density,

but also the posterior of the coefficients and the composition of the residual vector. For instance,

shocks that imply a decrease in the policy rate, e.g. negative monetary policy shocks, receive a

lower weight than those that lead to an increase, e.g. positive demand shocks.

External Information (EI) Finally, I combine the policy shock and soft condition specifications

with external information, ruling out federal funds rate forecasts that appear too high. To obtain

a reasonable upper bound, I use the expectations inherent in future contracts.8 In particular, I

restrict a federal funds rate forecast for the period T + h to the interval R̂j
T+h ∈

(

0, 2× R̂f
T+h

)

,

where R̂f
T+h denotes the financial market expectation. For example, if financial market partici-

pants expect the federal funds rate to be 0.5% next quarter, I ensure that forecasts from the BVAR

are positive but not larger than 1%, which implies that the predictive mean roughly matches the

market expectations. Conditioning forecasts on external information has become popular and

proved to be beneficial (see, e.g., Clark and McCracken, 2014; Smets, Warne, and Wouters, 2014;

Bańbura, Giannone, and Lenza, 2015, among others). In accordance with the algorithms above,

I implement the upper bound either by adding negative monetary policy shocks such that the

federal funds rate equals the upper bound (policy shock specification) or by discarding draws

that violate the restriction (soft condition specification).

7This condition is soft in the sense that future values of the federal funds rate are restricted to a certain
range, whereas a hard condition would fix forecasts at a single point, say at 1%.

8Federal funds rate future contracts are traded on the Chicago Board of Trade and historical prices are
available from Datastream. For example, the mnemonic for the January 2012 contract is “CFF0112”. See
also Figure A.2 for a times series plot.
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3.2 Discussion

Before the different specifications are ranked according to forecast accuracy, I discuss how they

affect the predictive density of the federal funds rate, which is shown in Figure 2 for h = 1 and

the period 2012:1 based on the 25,000 draws.9 The figure suggests that the density is symmetric

for the benchmark BVAR, while the dispersion is quite large. The benchmark also assigns a high

probability to a negative federal funds rate. Replacing the federal funds rate by its shadow rate

neither affects the shape nor the dispersion of the density, but shifts it completely into negative

territory, which is consonant with the shadow rate concept. Under both specifications the BVAR

is linear and densities approximately Gaussian. Simulating the BVAR with log (Rt) rather than

Rt introduces a nonlinearity. The density is approximately log-normal, right-skewed, and takes

only nonnegative values. It is also more condensed than those of the other two specifications.

While the shadow rate and logarithmic specification build on replacing or transforming the

policy rate before estimation, the policy shock and soft condition specifications include the fed-

eral funds rate, but manipulate its predictive density. For instance, the policy shock specification

generates a density that is that of the benchmark, but truncated at zero. All negative draws are

shifted by adding positive monetary policy shocks, producing a density with a lot probability

mass at zero. When combined with external information, all draws above the upper bound are

also shifted, and the density may be bimodal. The density under the soft condition specification

is also truncated at zero, but less right-skewed. In combination with external information this

specification leads to a density that appears uniform with mean close to the market expectations.

In sum, the alternative specifications produce very different predictive densities for the fed-

eral funds rate, and I provide a summary of their main properties in Table 1. Below I assess how

this finding impacts on the forecast accuracy of the BVAR with respect to other key variables.

4 Forecast Comparison

In this section I first present the data and explain the forecast experiment. Thereafter I compare

the alternative specifications in terms of point and density forecast accuracy measures.

4.1 Data and Forecast Experiment

The dataset includes 18 quarterly U.S. macroeconomic series for the period 1985:1 to 2014:4. The

starting point coincides roughly with the beginning of the Great Moderation era and is also cho-

9I use this period as an example. The densities are qualitatively similar for other periods and horizons.
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Figure 2: Predictive Density of Federal Funds Rate. Notes: this figure shows the predictive
density of the federal funds rate (or its shadow rate) for h = 1 and the period 2012:1 under alternative
specifications of the zero lower bound. The vertical lines denote the predictive mean (dashed) and median
(solid), respectively. x-axis: percent; y-axis: number of posterior draws.
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Table 1: Alternative Specifications of the Zero Lower Bound

Predictive Density of Rt (or St)

Specification Policy Instrument Density Support Symmetry Skewness

Benchmark Rt Normal (−∞,∞) Yes None
Shadow Rate St Normal (−∞,∞) Yes None
Logarithmic log (Rt) Log-Normal (0,∞) No Right
Policy Shock Rt n/a (0,∞) No Right
Policy Shock (EI) Rt n/a (0, b) No Right/Left
Soft Condition Rt n/a (0,∞) No Right
Soft Condition (EI) Rt n/a (0, b) No Right/Left

Notes: this table summarizes the main properties of the predictive density of the federal funds rate (Rt) or

its shadow rate (St) under alternative specifications of the zero lower bound. n/a means that the density

is nonstandard, while b denotes an upper bound derived from external information (EI).

sen to avoid the monetarist experiment of the early 1980s. In most cases the series are obtained

from the Federal Reserve Economic Database (FRED) and cover the following categories that

are particularly relevant for all policymakers: national accounts, business activity, employment,

prices, financial markets, and the federal funds rate as the monetary policy instrument. Except

for those variables that are already expressed in rates (e.g. the unemployment rate) or assumed

to be stationary in levels (e.g. the consumer sentiment), I transform all of them into quarterly

growth rates, approximated by the first difference of their logarithm. This proceeding is consis-

tent with the white noise prior imposed on the VAR coefficients. I provide a detailed description

of the series and their exact transformation in Table 2. The table also shows the ordering of the

variables, which is relevant for the policy shock specification.

For each specification I produce forecasts up to H = 4. Thanks to differencing I lose the first

observation. Thus I begin with the estimation sample 1985:2 to 2008:4 and generate forecasts for

2009:1 to 2009:4. I then iterate forward, always updating the estimation sample one quarter at a

time, until 2013:4, producing forecasts for 2014:1 to 2014:4.10 This procedure yields a sequence

of 21 forecast sets for each specification. The evaluation period hence runs from 2009:1 to 2014:1

for the shortest forecast horizon (h = 1) and from 2009:4 to 2014:4 for the longest (h = 4), and

coincides with the recent zero lower bound period.

10Berg and Henzel (2015) show that BVARs benefit a lot in terms of forecast accuracy from recursive es-
timation schemes that use all available observations up to period T compared to rolling window schemes
that discard the most distant observations. Therefore I prefer the former to the latter.
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Table 2: Dataset

No. Mnemonic Label Category Source S/R/F Code

01 GDPC1 Real Gross Domestic Product National Accounts FRED S 1
02 PCECC96 Real Personal Consumption Expenditures National Accounts FRED S 1
03 GPDIC1 Real Gross Private Domestic Investment National Accounts FRED S 1
04 INDPRO Industrial Production Index Business Activity FRED S 1
05 TCU Capacity Utilization: Total Industry Business Activity FRED S 3
06 NAPM ISM Manufacturing: PMI Composite Index Business Activity FRED S 3
07 USUMCONSH University of Michigan: Consumer Sentiment Business Activity TRDS S 3
08 PAYEMS All Employees: Total Nonfarm Employment FRED S 1
09 UNRATE Civilian Unemployment Rate Employment FRED S 3
10 COMPRNFB Real Compensation Per Hour: Nonfarm Employment FRED S 1
11 PCECTPI PCE: Chain-type Price Index Prices FRED S 1
12 CPIAUCSL CPI for All Urban Consumers: All Items Prices FRED S 1
13 PPIACO Producer Price Index: All Commodities Prices FRED S 1
14 FEDFUNDS Effective Federal Funds Rate Policy Instrument FRED R 3
15 DGS10 10-Year Treasury Constant Maturity Rate Financial Markets FRED F 3
16 BAA Moody’s Seasoned Baa Corporate Bond Yield Financial Markets FRED F 3
17 S&PCOMP S&P 500 Composite - Price Index Financial Markets TRDS F 2
18 TWEXBPA Real Trade Weighted U.S. Dollar Index: Broad Financial Markets FRED F 2

Notes: Mnemonic, label, and category as used in database. Source: FRED = Federal Reserve Economic Database; TRDS = Thomson
Reuters Datastream. S = Slow moving; R = Policy instrument; F = Fast moving. Transformation code: 1 = 400 · log (xt/xt−1); 2 =
100 · log (xt/xt−1); 3 = None.

4.2 Forecast Metrics

The different specifications are compared in terms of several point and density forecast accuracy

measures. Each metric represents an alternative loss function and computing all of them allows

for a robust assessment of forecast performance. I summarize their main properties in Table 3.

For point forecasts I begin with the mean forecast error (MFE). Let ȳji,T |T−h be the predictive

mean for variable i produced by approach j and yi,T the realization. The MFE is computed as

Table 3: Forecast Metrics

Metric Short Reference Forecast Evaluation Measure

Mean Forecast Error MFE Point Mean Absolute pp
Root Mean Squared Forecast Error RMSFE Point Mean Relative pp
Mean Absolute Forecast Error MAFE Point Median Relative pp
Log Predictive Density Score LPDS Density PDF Relative n/a
Continuous Ranked Probability Score CRPS Density CDF Relative pp
Probability Integral Transform PIT Density CDF Absolute n/a

Notes: this table summarizes the main properties of the forecast accuracy measures. The acronyms mean:

PDF = Probability density function; CDF = Cumulative density function; pp = Percentage points.
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MFEj
i,h =

1

T1 − T0 + 1

T1+h
∑

T=T0+h

(

ȳji,T |T−h − yi,T

)

, (18)

where T0 = 95 and T1 = 115 denote the last observation of the first (2008:4) and final (2013:4)

estimation sample, respectively. The MFE allows for an absolute assessment of the point forecast

accuracy because it detects any systematic bias of the predictive mean. Whenever the MFE is

positive (negative) the BVAR overpredicts (underpredicts) a particular variable.

For a forecaster with a quadratic loss function the predictive mean is also the optimal fore-

cast and the root mean squared forecast error (RMSFE) is the appropriate measure to discrimi-

nate among forecast models (see Weiss, 1996):

RMSFEj
i,h =

√

√

√

√

1

T1 − T0 + 1

T1+h
∑

T=T0+h

(

ȳji,T |T−h − yi,T

)2
. (19)

The predictive mean is, however, not an informative measure of the location of a distribution

if the forecast approach is nonlinear. For instance, the skewness of the predictive density of the

federal funds rate may translate to the densities of other variables, and their predictive mean

then differs from the mode and median. Hence I also compute the mean absolute forecast error

(MAFE), for which the predictive median (ym,j
i,T |T−h) is the optimal forecast:

MAFEj
i,h =

1

T1 − T0 + 1

T1+h
∑

T=T0+h

|ym,j
i,T |T−h − yi,T |. (20)

While the MFE is a useful measure to evaluate the absolute accuracy of a point forecast, the

RMSFE and MAFE are informative only when compared across models. Thus I will report them

for each specification j relative to the benchmark B:

(

RMSFEj
i,h/RMSFEB

i,h

)

and
(

MAFEj
i,h/MAFEB

i,h

)

. (21)

For density forecasts I start with the log predictive density score (LPDS), which is a standard

metric to compare forecast models in a Bayesian setting (see, e.g., Geweke and Amisano, 2010,

among others). The LPDS is obtained by computing the height of the predictive density at the

realization, and I report its average across evaluation periods:

LPDS
j
i,h =

1

T1 − T0 + 1

T1+h
∑

T=T0+h

log pji,T |T−h (yi,T ) , (22)
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where pji,T |T−h (·) is the predictive density, which is obtained by smoothing the forecast samples

using a kernel density estimator.11

Some authors argue that the LPDS is sensitive to extreme observations and propose the con-

tinuous ranked probability score (CRPS) as a robust alternative (see, e.g., Ravazzolo and Vahey,

2014; Clark and Ravazzolo, 2015, among others). Hence I also compute the CRPS and document

its average across evaluation periods:

CRPS
j
i,h =

1

T1 − T0 + 1

T1+h
∑

T=T0+h

CRPSj
i,T |T−h, (23)

with

CRPSj
i,T |T−h =

∫ ∞

−∞

(

P j
i,T |T−h (y)− I [y ≥ yi,T ]

)2
dy, (24)

where P j
i,T |T−h (·) is the cumulative density function (CDF) to pji,T |T−h (·). The CDF of the real-

ization is given by the indicator function I [y ≥ yi,T ] taking value 1 if y ≥ yi,T and 0 otherwise.

In practice, I follow Gneiting and Raftery (2007) and calculate the CRPS using its alternative

representation:

CRPSj
i,T |T−h = E|Y − yi,T | −

1

2
E|Y − Y ′|, (25)

where Y and Y ′ are independent draws from pji,T |T−h (·). The expectation terms (E) are approx-

imated using the forecast samples.12

Since the LPDS and CRPS are both silent about the absolute density forecast accuracy, I again

report them for each specification relative to the benchmark:

(

LPDS
j
i,h − LPDS

B
i,h

)

and
(

CRPS
j
i,h/CRPS

B
i,h

)

. (26)

Finally, I assess the absolute calibration of the predictive densities using the probability inte-

gral transform (PIT). For a given predictive density, the PIT is the corresponding CDF evaluated

at the realization:

PITj
i,T |T−h = P j

i,T |T−h (yi,T ) . (27)

11I use the Matlab routine ksdensity with default options. The frequently used Gaussian approximation
of Adolfson, Lindé, and Villani (2007) is not applicable since densities may be asymmetric.

12Note that the CRPS can be viewed as the distributional analogue of the MAFE, since for Y = Y ′, i.e.
for point forecasts, the CRPS is the same as the MAFE (see also Arora, Little, and McSharry, 2013).
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If the proposed predictive density is consistent with the (unobserved) true density, the sequence
{

PITj
i,T |T−h

}T1+h

T=T0+h
has an uniform distribution. I follow Diebold, Gunther, and Tay (1998) and

provide a graphical assessment of the PITs. In particular, I divide the unit interval into n̂ = 5

equally sized bins and depict the number of PITs falling into any bin. If the predictive density

would be calibrated correctly, each bin should contain p̂ = 100%/n̂ = 20% of the PITs. To detect

any significant departure from uniformity, I compute 90% confidence bands utilizing a normal

approximation, i.e. p̂± 1.645
√

p̂ (1− p̂) / (T1 − T0 + 1) (see also Rossi and Sehkposyan, 2014).

For all other forecast accuracy measures I consider the test of unconditional predictive ability

of Giacomini and White (2006) to check for significance at the 1%, 5%, and 10% level. Asymp-

totic standard errors are calculated with the Newey and West (1987) method that accounts for

heteroskedasticity and autocorrelation in forecast errors. While I could provide evidence for all

variables, I restrict the forecast comparison to four major macroeconomic series: GDP growth,

the unemployment rate, CPI inflation, and the treasury rate.13

4.3 Point Forecasts

I begin the forecast comparison by analyzing the MFE, which are reported for each specification

and variable in Table 4. In each case, the MFE is in percentage points (pp). The table shows that

the benchmark specification overpredicted GDP growth during the zero lower bound period,

but not significantly. Replacing the federal funds rate by its shadow rate reinforces this bias, as I

would expect additional stimulus to do. Simulating the BVAR with log (Rt) rather than Rt also

inflates the MFE. At h = 4 the logarithmic specification significantly overpredicts GDP growth

by 1.6 pp. The small movements in the federal funds rate are large once the logarithm is taken,

leading to substantial increases in growth forecasts that are not supported by the data. Further-

more, both policy shock specifications show MFE that are similar to those of the benchmark.

Restricting the policy rate from below and/or above does not affect the location of the predic-

tive mean in this case. In contrast, the soft condition specification produces point forecasts that

are significantly above actual growth rates at all horizons. This bias could be the result of a large

number of positive demand shocks added to the BVAR to prevent the policy rate from falling

below 0%. Indeed, if the soft condition specification is combined with external information, and

the size of the demand shocks limited, the MFE are close to zero.

Consistent with an overprediction of GDP growth, the specifications underpredict the un-

employment rate. Yet, the MFE are small and in no case significantly different from zero. Similar

13In fact, I could not provide a complete forecast comparison for the federal fund rate since the shadow
rate BVAR does not include the policy instrument.

17



Table 4: Mean Forecast Errors

Forecast Horizon h (in Quarters)

Specification 1 2 3 4

GDP Growth

Benchmark 0.15 0.12 0.32 0.46
Shadow Rate 0.35 0.35 0.64 0.90∗

Logarithmic 0.87∗ 0.81 1.13 1.60∗∗

Policy Shock 0.15 0.06 0.27 0.42
Policy Shock (EI) 0.15 0.07 0.30 0.44
Soft Condition 0.97∗∗ 0.84∗ 1.10∗∗ 1.06∗∗

Soft Condition (EI) 0.10 −0.14 −0.08 0.10

Unemployment Rate

Benchmark −0.10 −0.16 −0.20 −0.24
Shadow Rate −0.11 −0.17 −0.23 −0.30
Logarithmic 0.02 0.04 0.02 −0.05
Policy Shock −0.10 −0.17 −0.23 −0.29
Policy Shock (EI) −0.10 −0.17 −0.22 −0.28
Soft Condition −0.17 −0.33 −0.50 −0.65
Soft Condition (EI) −0.11 −0.16 −0.18 −0.18

CPI Inflation

Benchmark −0.68 −0.43 −0.10 0.14
Shadow Rate −0.83 −0.69 −0.39 −0.11
Logarithmic −0.40 −0.71 −0.61 −0.22
Policy Shock −0.69 −0.42 −0.01 0.40
Policy Shock (EI) −0.69 −0.44 −0.11 0.18
Soft Condition −0.18 0.10 0.62 1.16∗∗∗

Soft Condition (EI) −0.42 −0.26 −0.07 0.19

Treasury Rate

Benchmark 0.25∗∗∗ 0.52∗∗∗ 0.84∗∗∗ 1.15∗∗∗

Shadow Rate 0.22∗∗∗ 0.46∗∗∗ 0.75∗∗∗ 1.03∗∗∗

Logarithmic 0.08 0.16 0.21 0.26
Policy Shock 0.32∗∗∗ 0.63∗∗∗ 0.98∗∗∗ 1.31∗∗∗

Policy Shock (EI) 0.29∗∗∗ 0.55∗∗∗ 0.85∗∗∗ 1.13∗∗∗

Soft Condition 0.54∗∗∗ 1.01∗∗∗ 1.41∗∗∗ 1.78∗∗∗

Soft Condition (EI) 0.28∗∗ 0.49∗∗ 0.72∗∗ 0.98∗∗

Notes: this table shows the mean forecast errors for the period 2009:h to 2014:h. ∗∗∗, ∗∗, and ∗ indicate

that the errors are significantly different from zero at the 1%, 5%, and 10% level, respectively.
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results are obtained for CPI inflation. Except for the soft condition specification, which produces

point forecasts that are well above actual rates at longer horizons. This finding confirms the idea

that the soft condition specification puts a large weight on positive demand shocks to ensure a

nonnegative policy rate. As for GDP growth, the bias can be removed when this specification is

coupled with external information.

Finally, almost all specifications significantly overpredict the treasury rate at all horizons.

For the benchmark the predictive mean is on average 1.15 pp higher than the realization at h = 4.

Replacing the federal funds rate by its shadow rate or using the policy shock specifications does

not help to achieve correct calibration. The soft condition specification even amplifies the bias, if

not combined with external information. In fact, the logarithmic specification is the only way to

produce point forecasts that are consonant with actual values, which could be due to a plausible

predictive density for the federal funds rate influencing the treasury rate (see Figure 2 again).

I continue the forecast comparison by discussing the RMSFE, which are reported in Table 5

for the benchmark in levels (pp) and the other specifications as ratios relative to the benchmark.

A ratio below unity means that a specification outperforms the benchmark. The table suggests

that replacing the federal funds rate by its shadow rate delivers RMSFE for GDP growth that are

slightly above those of the benchmark, but ratios are not significantly different from unity at any

horizon. In contrast, the logarithmic approach shows RMSFE ratios that are significantly larger

than one at long horizons. At h = 4 the RMSFE is 47% higher as compared to the benchmark.

Moreover, both policy shock specifications produce similar RMSFE ratios of around unity. And

despite its biased predictive mean, the soft condition specification does not significantly worse

than the benchmark. In fact, if coupled with external information, the soft condition specifica-

tion is the only model that delivers RMSFE ratios below unity at all horizons.

For the unemployment rate I detect a small but significant improvement of the shadow rate

specification over the benchmark for h = 2 and later. In contrast, both soft condition specifi-

cations inflate the RMSFE a lot for the unemployment rate, while performing satisfactory for

CPI inflation. The logarithmic specification does significantly worse for both at h = 4. Further-

more, the policy shock specification, with and without external information, is not significantly

different from the benchmark in terms of RMSFE.

With respect to the treasury rate, the RMSFE vary a lot across specifications. Relative to the

benchmark, the shadow rate specification displays small but significant gains at all horizons,

while including log (Rt) rather than Rt is even more profitable. The logarithmic specification

cuts the RMSFE by 31% at h = 4. In contrast, the soft condition specification inflates the RMSFE

a lot, with ratios between 1.34 and 1.50. Conditioning on financial market expectations is again
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Table 5: Root Mean Squared Forecast Errors

Forecast Horizon h (in Quarters)

Specification 1 2 3 4

GDP Growth

Benchmark 2.55 2.44 2.75 2.18
Shadow Rate 1.03 1.03 1.04 1.08
Logarithmic 1.06 1.10 1.17∗ 1.47∗∗

Policy Shock 1.00 1.02 1.03 1.01
Policy Shock (EI) 1.00 1.03 1.03 1.02∗

Soft Condition 1.03 0.96 1.02 1.09
Soft Condition (EI) 0.95 0.89 0.91 0.96

Unemployment Rate

Benchmark 0.31 0.54 0.70 0.90
Shadow Rate 0.99 0.98∗ 0.96∗∗ 0.96∗∗∗

Logarithmic 0.85 0.92 1.02 1.11∗

Policy Shock 1.00 1.03 1.05 1.06
Policy Shock (EI) 1.00 1.02 1.04 1.05
Soft Condition 1.25 1.34 1.42 1.42
Soft Condition (EI) 1.20 1.25 1.28∗ 1.27∗∗

CPI Inflation

Benchmark 2.56 3.14 2.80 1.96
Shadow Rate 1.00 0.99 0.96 0.93∗∗

Logarithmic 0.99∗ 1.07 1.11 1.19∗

Policy Shock 1.00 1.01 1.00 0.92
Policy Shock (EI) 1.00 1.01∗∗ 1.01 0.89
Soft Condition 0.88 0.92 0.91 1.01
Soft Condition (EI) 0.88 0.90 0.88 0.86

Treasury Rate

Benchmark 0.48 0.88 1.20 1.52
Shadow Rate 0.96∗∗∗ 0.94∗∗∗ 0.94∗∗∗ 0.93∗∗∗

Logarithmic 0.91∗ 0.84∗ 0.74∗ 0.69∗

Policy Shock 1.09 1.04∗ 1.04∗∗ 1.05
Policy Shock (EI) 1.05 0.97 0.96 0.96
Soft Condition 1.50∗∗ 1.41∗∗ 1.38∗∗ 1.34∗∗

Soft Condition (EI) 1.17 0.99 0.93 0.92

Notes: this table shows the root mean squared forecast errors for the period 2009:h to 2014:h. The errors

are provided in levels for the benchmark and as ratios relative to the benchmark for the other specifica-

tions. A ratio below unity means that the respective specification outperforms the benchmark. ∗∗∗, ∗∗, and
∗ indicate that errors are significantly different from each other at the 1%, 5%, and 10% level, respectively.
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helpful in this case, leading to small but not significant gains at longer horizons compared to the

benchmark. Moreover, the point forecast accuracy of the policy shock specification is similar to

that of the benchmark, while introducing an upper bound for the federal funds rate improves

its performance slightly. All in all, these RMSFE are in line with the MFE, which detected a large

variation in the location of predictive means across specifications.

To conclude, I briefly comment on the MAFE, which are reported in Table 6. By and large,

the findings are qualitatively similar to those based on RMSFE and differences between them

concern significance only. For instance, the shadow rate specification shows significantly higher

MAFE for GDP growth at longer horizons, while the benefits of this specifications regarding the

unemployment rate are not significant anymore. Yet, the superior forecast ability of the shadow

rate specification for CPI inflation and the treasury rate is confirmed. Moreover, the logarithmic

specification still shows significantly lower errors for the latter at h = 2 and later.

4.4 Density Forecasts

Next I extend the forecast comparison to the predictive density by presenting the LPDS in Table

7. The scores are in levels for the benchmark and in differences to the benchmark for the other

specifications. A positive difference thus means that a specification outperforms the benchmark.

The table shows that all specifications produce similar LPDS for GDP growth, except the loga-

rithmic specification that delivers low scores. At h = 4 its LPDS is 30% lower than that of the

benchmark and the difference significant. Due to a biased predictive mean and a large variance,

the logarithmic specification attaches a too low probability to actual growth rates.

For the unemployment rate I obtain very different LPDS that are also surrounded by a lot un-

certainty. On the one side, both soft condition specifications deliver LPDS that are much smaller

than those of the benchmark. At h = 4 their score is 59% lower with external information and

42% without, while only the former difference is significant. On the other side, the logarithmic

specification outperforms the benchmark at h = 1 by 13%. However, its density forecast accu-

racy is deteriorating over time, showing an underperformance of 18% for the longest horizon.

The logarithmic specification often shows this pattern of relatively accurate forecasts at h = 1

and poor performance at longer horizons, suggesting that the nonlinear relation between the

federal funds rate and other macroeconomic variables is not supported by data, inflating fore-

cast errors over time. Moreover, I find that both policy shock specifications produce scores that

are a bit lower, while the shadow rate specification shows small but insignificant gains. For CPI

inflation the scores are similar across specifications. Only the logarithmic specification shows a

significantly lower LPDS at h = 4, while the shadow rate specification delivers significant gains.
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Table 6: Mean Absolute Forecast Errors

Forecast Horizon h (in Quarters)

Specification 1 2 3 4

GDP Growth

Benchmark 1.88 1.96 1.93 1.62
Shadow Rate 1.01 1.02 1.02∗ 1.07∗∗∗

Logarithmic 1.14 1.12 1.27 1.50∗

Policy Shock 1.00 1.02 1.01 1.02
Policy Shock (EI) 1.00 1.03 1.01 1.03
Soft Condition 1.13 0.94 1.13 1.15∗

Soft Condition (EI) 1.04 0.89 1.06 1.04

Unemployment Rate

Benchmark 0.25 0.39 0.52 0.69
Shadow Rate 0.99 0.97 0.94 0.91
Logarithmic 0.87 0.99 1.11 1.17
Policy Shock 1.00 1.01 1.03 1.03
Policy Shock (EI) 1.00 1.01 1.03 1.04
Soft Condition 1.16 1.28 1.33 1.28
Soft Condition (EI) 1.13 1.24 1.33 1.36

CPI Inflation

Benchmark 2.01 2.07 1.84 1.35
Shadow Rate 1.02 1.02 0.94 0.89∗

Logarithmic 0.89 1.00 0.98 1.17
Policy Shock 1.00 1.01∗ 1.01 0.98
Policy Shock (EI) 1.00 1.01 1.01 0.93
Soft Condition 0.89 0.92 0.96 1.07
Soft Condition (EI) 0.88 0.95 0.96 0.97

Treasury Rate

Benchmark 0.40 0.70 0.98 1.27
Shadow Rate 0.94∗∗ 0.93∗∗∗ 0.92∗∗∗ 0.92∗∗∗

Logarithmic 0.85 0.81∗ 0.70∗∗ 0.66∗∗

Policy Shock 1.07 1.07∗∗ 1.05∗∗ 1.08∗∗

Policy Shock (EI) 1.02 1.00 0.96 0.98
Soft Condition 1.45 1.47∗ 1.43∗∗ 1.39∗∗

Soft Condition (EI) 1.04 1.01 0.94 0.93

Notes: this table shows the mean absolute forecast errors for the period 2009:h to 2014:h. The errors are

provided in levels for the benchmark and as ratios relative to the benchmark for the other specifications.

A ratio below unity means that the respective specification outperforms the benchmark. ∗∗∗, ∗∗, and ∗

indicate that errors are significantly different from each other at the 1%, 5%, and 10% level, respectively.

22



Table 7: Average Log Predictive Density Scores

Forecast Horizon h (in Quarters)

Specification 1 2 3 4

GDP Growth

Benchmark −2.39 −2.34 −2.43 −2.33
Shadow Rate −0.01 −0.02 −0.01 −0.05∗∗

Logarithmic −0.06 −0.11 −0.18∗ −0.30∗∗

Policy Shock 0.01 −0.00 −0.01 −0.01
Policy Shock (EI) 0.00 −0.00 −0.00 −0.01
Soft Condition −0.04 −0.02 −0.02 −0.01
Soft Condition (EI) 0.07 0.05 0.04 0.06

Unemployment Rate

Benchmark −0.24 −0.75 −0.96 −1.21
Shadow Rate 0.03 0.02 0.03 0.04
Logarithmic 0.13 0.00 −0.11 −0.18∗∗

Policy Shock 0.00 −0.03∗ −0.04 −0.04
Policy Shock (EI) 0.00 −0.03∗ −0.03 −0.04∗

Soft Condition −0.28 −0.40 −0.46 −0.42
Soft Condition (EI) −0.29 −0.52∗ −0.58∗∗ −0.59∗∗

CPI Inflation

Benchmark −2.18 −2.28 −2.15 −2.04
Shadow Rate −0.02 0.01 0.03 0.04∗∗

Logarithmic −0.05 −0.10 −0.06 −0.08∗∗

Policy Shock −0.01 0.00 0.00 0.00
Policy Shock (EI) −0.01 −0.01 −0.00 0.03
Soft Condition 0.05 0.01 −0.01 −0.05
Soft Condition (EI) 0.06 0.04 0.02 0.05

Treasury Rate

Benchmark −0.71 −1.33 −1.69 −1.96
Shadow Rate 0.04∗∗ 0.07∗∗∗ 0.10∗∗∗ 0.10∗∗∗

Logarithmic 0.09 0.21∗ 0.37∗∗ 0.47∗∗

Policy Shock −0.04 −0.03 −0.05∗ −0.08∗∗

Policy Shock (EI) 0.00 0.04 0.04 0.05
Soft Condition −0.41∗∗∗ −0.53∗∗∗ −0.58∗∗∗ −0.60∗∗∗

Soft Condition (EI) 0.00 0.08 0.13 0.13

Notes: this table shows the average log predictive density scores for the period 2009:h to 2014:h. The

scores are provided in levels for the benchmark and in differences to the benchmark for the other specifi-

cations. A positive difference means that the respective specification outperforms the benchmark. ∗∗∗, ∗∗,

and ∗ indicate that scores are significantly different from each other at the 1%, 5%, and 10% level.
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Replacing the federal funds rate by its shadow rate or logarithm is also profitable for the

treasury rate in terms of LPDS. Both specifications produce significantly larger scores than the

benchmark, and this benefit increases with the forecast horizon. In contrast, the soft condition

specification displays significantly lower LPDS at all horizons. This incorrect calibration can be

avoided by including external information. In this case, the soft condition specification delivers

even higher scores than the benchmark, but not significantly. As before, the policy shock speci-

fication (EI) is as accurate as the benchmark, while excluding the external information leads to

an inferior performance at longer horizons.

Before I assess the density forecast accuracy of the different specifications in absolute terms

using PIT histograms, I briefly comment on the CRPS, which are shown in Table 8 for the bench-

mark in levels (pp) and the other specifications as ratios relative to the benchmark. A ratio below

unity thus means that a specification outperforms the benchmark. Overall, the ratios are similar

to those obtained under the LPDS, suggesting that the scores are not distorted by outliers, but

are a reasonable description of the density forecast accuracy of the specifications.

I conclude the forecast comparison by presenting the PIT histograms in Figures 3 and 4 for

h = 1 and h = 4, respectively. This proceeding is useful since the shape of the histograms allows

me to explore the reasons behind the poor density forecast accuracy of some specifications. In

particular, I obtain that most of them significantly overpredict GDP growth at h = 4. Except

for the soft condition specification with external information, not a single observation falls into

the fifth bin for any specification. However, this miscalibration is limited to the longest forecast

horizon. For the shortest the densities are largely consistent with true densities, while the soft

condition specification with external information again shows a particularly realistic calibration,

in line with its low MFE and relatively strong performance in terms of LPDS and CRPS.

For the unemployment rate, I obtain u-shaped PIT histograms for all specifications at h = 1,

meaning that a too low probability is assigned to average values. Noteworthy, the densities are

often calibrated better for h = 4 than h = 1. For instance, the benchmark and both policy shock

specifications produce histograms that seem to be uniform for h = 4. In contrast, the densities

generated by both soft condition specifications are poorly calibrated, which is consistent with

their underperformance in terms of LPDS and CRPS. The PIT histograms also suggest that all

specifications underpredict CPI inflation at h = 1, but tend to overpredict the series at h = 4. In

particular, the policy shock and soft condition specification show a strong overprediction.

Finally, the PIT histograms detect a poor calibration of nearly all specifications with respect

to the treasury rate. At h = 1 the benchmark significantly overpredicts the series, while replac-

ing the federal funds rate by its logarithm or using the soft condition specification (EI) helps to
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Table 8: Average Continuous Ranked Probability Scores

Forecast Horizon h (in Quarters)

Specification 1 2 3 4

GDP Growth

Benchmark 1.42 1.38 1.50 1.30
Shadow Rate 1.02 1.02 1.02 1.06∗

Logarithmic 1.07 1.11 1.19∗ 1.40∗∗

Policy Shock 1.00 1.01 1.02 1.01
Policy Shock (EI) 1.00 1.02 1.02 1.02
Soft Condition 1.05 0.98 1.03 1.05
Soft Condition (EI) 0.97 0.93 0.96 0.97

Unemployment Rate

Benchmark 0.17 0.29 0.38 0.48
Shadow Rate 0.99 0.98∗ 0.96∗ 0.95∗

Logarithmic 0.87 0.96 1.06 1.15
Policy Shock 1.00 1.02 1.05 1.06
Policy Shock (EI) 1.00 1.02 1.05 1.06
Soft Condition 1.21 1.31 1.40 1.41
Soft Condition (EI) 1.18 1.27 1.37∗ 1.41∗∗

CPI Inflation

Benchmark 1.35 1.52 1.34 1.02
Shadow Rate 1.01 0.99 0.96 0.94∗∗

Logarithmic 0.99 1.04 1.05 1.13∗

Policy Shock 1.00 1.01∗ 1.01 0.97
Policy Shock (EI) 1.00 1.01∗∗ 1.01 0.94
Soft Condition 0.92 0.96 0.97 1.07
Soft Condition (EI) 0.91 0.94 0.95 0.94

Treasury Rate

Benchmark 0.28 0.51 0.71 0.92
Shadow Rate 0.96∗∗ 0.94∗∗∗ 0.93∗∗∗ 0.93∗∗∗

Logarithmic 0.91 0.83∗ 0.71∗∗ 0.65∗∗

Policy Shock 1.07 1.04∗∗ 1.05∗∗ 1.06∗∗

Policy Shock (EI) 1.02 0.97 0.96 0.96
Soft Condition 1.49∗∗ 1.47∗∗∗ 1.45∗∗ 1.42∗∗

Soft Condition (EI) 1.07 0.98 0.92 0.90

Notes: this table shows the average continuous ranked probability scores for the period 2009:h to 2014:h.

The scores are provided in levels for the benchmark and as ratios relative to the benchmark for the other

specifications. A ratio below unity means that the respective specification outperforms the benchmark.
∗∗∗, ∗∗, and ∗ indicate that scores are significantly different from each other at the 1%, 5%, and 10% level.
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Figure 3: Probability Integral Transform Histograms (h = 1). Notes: this figure shows the
probability integral transform histograms for h = 1 and the period 2009:1 to 2014:1. The solid line denotes
uniformity. The dashed lines are a 90% confidence band. x-axis: quantile; y-axis: number of realizations.
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Figure 4: Probability Integral Transform Histograms (h = 4). Notes: this figure shows the
probability integral transform histograms for h = 4 and the period 2009:4 to 2014:4. The solid line denotes
uniformity. The dashed lines are a 90% confidence band. x-axis: quantile; y-axis: number of realizations.
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achieve correct calibration. For h = 4, both specifications are, however, as inapt as the bench-

mark in producing a realistic predictive density for the treasury rate. Across both horizons, the

logarithmic specification is the one that generates PIT histograms that come at least closest to

uniformity, explaining why it performs relatively well in terms of LPDS and CRPS.

5 Summary and Conclusion

In this paper I discuss how the forecast accuracy of a BVAR is affected by introducing the zero

lower bound on the federal funds rate. As a benchmark I adopt a common BVAR specification,

including 18 variables, estimated shrinkage, and no nonlinearity. Then I entertain alternative

specifications of the zero lower bound: replace the federal funds rate by its shadow rate, con-

sider a logarithmic transformation, feed in monetary policy shocks, or use a rejection sampler.

The latter two are also coupled with interest rate expectations from future contracts. The com-

parison is based on the accuracy of point and density forecasts of GDP growth, the unemploy-

ment rate, CPI inflation, and the treasury rate during the period 2009:1 to 2014:4. For a robust

assessment I consider several relative and absolute forecast metrics.

I obtain a large set of empirical results in this paper. To condense the material, I provide a

qualitative summary of them in Tables 9 and 10 for the shortest and longest forecast horizon,

respectively. My interpretation of the results is as follows. First, the introduction of the zero

lower bound hardly affects the forecast accuracy of the BVAR with respect to real activity and

prices at h = 1 but does at h = 4. While this is by construction for the policy shock specifica-

tions, it is also observed for the other specifications. A practical forecaster should thus be more

concerned about the zero lower bound when she is interested in long-term forecasts. Second,

the performance of the alternative specifications is greatly different at h = 4, suggesting that

this modeling choice is not innocuous. In particular, the introduction of the zero lower bound

is not beneficial per se, but it depends on how it is done and which series is forecasted.

With caution, I recommend the shadow rate specification. Except for GDP growth, this spec-

ification shows a satisfactory forecast ability in absolute terms and relative to the benchmark. In

contrast, both policy shock specifications are no good choices, while the logarithmic specifica-

tions is accurate for the treasury rate, but inflates forecast errors for any other series. Finally, the

soft condition specification is useful only in combination with external information, but then

helps to achieve a better calibration of predictive densities. Since the policy rate will remain low

for some time, these findings could prove useful for practical forecasters.
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Table 9: Summary of Results (h = 1)

Forecast Metric

Specification MFE RMSFE MAFE LPDS CRPS PITS

GDP Growth

Benchmark ✓ ✓

Shadow Rate ✓ ✗

Logarithmic ✗ ✓

Policy Shock ✓ ✓

Policy Shock (EI) ✓ ✓

Soft Condition ✗ ✓

Soft Condition (EI) ✓ ✓

Unemployment Rate

Benchmark ✓ ✗

Shadow Rate ✓ ✗

Logarithmic ✓ ✓

Policy Shock ✓ ✗

Policy Shock (EI) ✓ ✗

Soft Condition ✓ ✗

Soft Condition (EI) ✓ ✗

CPI Inflation

Benchmark ✓ ✗

Shadow Rate ✓ ✓

Logarithmic ✓ ✓ ✓

Policy Shock ✓ ✗

Policy Shock (EI) ✓ ✗

Soft Condition ✓ ✓

Soft Condition (EI) ✓ ✓

Treasury Rate

Benchmark ✗ ✗

Shadow Rate ✗ ✓ ✓ ✓ ✓ ✗

Logarithmic ✓ ✓ ✓

Policy Shock ✗ ✗

Policy Shock (EI) ✗ ✗

Soft Condition ✗ ✗ ✗ ✗ ✗

Soft Condition (EI) ✗ ✓

Notes: this table shows a summary of the results for h = 1. Absolute metrics: ✓ = correct calibration, ✗ =

incorrect calibration. Relative metrics: ✓ = gains over benchmark; ✗ = losses over benchmark; blank =

no gains/losses over benchmark. Significance level is 10% in each case.
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Table 10: Summary of Results (h = 4)

Forecast Metric

Specification MFE RMSFE MAFE LPDS CRPS PITS

GDP Growth

Benchmark ✓ ✗

Shadow Rate ✗ ✗ ✗ ✗ ✗

Logarithmic ✗ ✗ ✗ ✗ ✗ ✗

Policy Shock ✓ ✗

Policy Shock (EI) ✓ ✗ ✗

Soft Condition ✗ ✗ ✗

Soft Condition (EI) ✓ ✓

Unemployment Rate

Benchmark ✓ ✓

Shadow Rate ✓ ✓ ✓ ✓

Logarithmic ✓ ✗ ✗ ✗

Policy Shock ✓ ✓

Policy Shock (EI) ✓ ✗ ✓

Soft Condition ✓ ✗

Soft Condition (EI) ✓ ✗ ✗ ✗ ✗

CPI Inflation

Benchmark ✓ ✗

Shadow Rate ✓ ✓ ✓ ✓ ✓ ✗

Logarithmic ✓ ✗ ✗ ✗ ✗

Policy Shock ✓ ✗

Policy Shock (EI) ✓ ✗

Soft Condition ✗ ✗

Soft Condition (EI) ✓ ✗

Treasury Rate

Benchmark ✗ ✗

Shadow Rate ✗ ✓ ✓ ✓ ✓ ✗

Logarithmic ✓ ✓ ✓ ✓ ✓ ✗

Policy Shock ✗ ✗ ✗ ✗ ✗

Policy Shock (EI) ✗ ✗

Soft Condition ✗ ✗ ✗ ✗ ✗ ✗

Soft Condition (EI) ✗ ✗

Notes: this table shows a summary of the results for h = 4. Absolute metrics: ✓ = correct calibration, ✗ =

incorrect calibration. Relative metrics: ✓ = gains over benchmark; ✗ = losses over benchmark; blank =

no gains/losses over benchmark. Significance level is 10% in each case.
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A Additional Figures
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Figure A.1: Posterior Distribution of Shrinkage Parameter. Notes: this figure shows the pos-
terior distribution of the shrinkage parameter. Top left: Median and 90% error band for all periods. Top
right: Posterior distribution (solid) in final period and prior distribution (dashed). Bottom left: Markov
chain in final period. Bottom right: Autocorrelation function in final period.
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Figure A.2: Data. Notes: this figure shows the Wu-Xia shadow rate and the federal funds rate expec-
tations from future contracts. The shaded area is the evaluation period. x-axis: year; y-axis: percent.
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