Konrad, Kai A.

Article
A note on depreciation allowances, taxation and risk-taking

Finnish economic papers

Provided in Cooperation with:
WZB Berlin Social Science Center

This Version is available at:
http://hdl.handle.net/10419/122982
WZB–Open Access Digitalisate
WZB–Open Access digital copies

Das nachfolgende Dokument wurde zum Zweck der kostenfreien Onlinebereitstellung digitalisiert am Wissenschaftszentrum Berlin für Sozialforschung gGmbH (WZB). Das WZB verfügt über die entsprechenden Nutzungsrechte. Sollten Sie sich durch die Onlineveröffentlichung des Dokuments wider Erwarten dennoch in Ihren Rechten verletzt sehen, kontaktieren Sie bitte das WZB postalisch oder per E-Mail: Wissenschaftszentrum Berlin für Sozialforschung gGmbH Bibliothek und wissenschaftliche Information Reichpietschufer 50 D–10785 Berlin E-Mail: bibliothek@wzb.eu

The following document was digitized at the Berlin Social Science Center (WZB) in order to make it publicly available online. The WZB has the corresponding rights of use. If, against all possibility, you consider your rights to be violated by the online publication of this document, please contact the WZB by sending a letter or an e-mail to: Berlin Social Science Center (WZB) Library and Scientific Information Reichpietschufer 50 D–10785 Berlin e-mail: bibliothek@wzb.eu

Digitalisierung und Bereitstellung dieser Publikation erfolgten im Rahmen des Retrodigitalisierungsprojektes OA 1000+. Weitere Informationen zum Projekt und eine Liste der ca. 1 500 digitalisierten Texte sind unter http://www.wzb.eu/de/bibliothek/serviceangebote/open-access/oa-1000 verfügbar.

This text was digitizing and published online as part of the digitizing-project OA 1000+. More about the project as well as a list of all the digitized documents (ca. 1 500) can be found at http://www.wzb.eu/en/library/services/open-access/oa-1000.
A NOTE ON DEPRECIATION ALLOWANCES, TAXATION AND RISK-TAKING

KAI A. KONRAD*

University of Munich, D-8000 Munich 22, Federal Republic of Germany

Incentive effects of depreciation rules for risk-taking are considered. If true economic depreciation is stochastic, profit taxes with expected-value depreciation allowances decrease risk-taking. However, if real capital is used only in the risky sector, more generous depreciation allowances increase risk-taking. It is also shown that the incentive effect of risk-taking-revenue taxes to increase the risky fraction of investment is stronger in the case of more generous depreciation allowances.

1. Introduction

The impact of depreciation and depreciation allowances on the investment behavior of firms under conditions of certainty is well known (cf., e.g. Sandmo (1974)). If depreciation allowances exceed true economic depreciation, the optimal stock of capital is higher than it is with equal rates. Sinn (1985), (1988) shows that this effect carries over to an intertemporal general equilibrium setting. Do these results carry over to the case of uncertain profits?

Since the seminal paper by Domar and Musgrave (1944), there have been several treatments of the effect of profit taxation on the portfolio choice of a risk averse expected-utility maximizing investor. (cf. Allingham (1972), Koskela (1984), Koskela and Kannianen (1984), Mossin (1968), Sandmo (1969), (1977), Stiglitz (1969) and Atkinson and Stiglitz (1980) for some earlier major contributions and Sandmo (1985) and Buchholz (1987) for further references). Depreciation allowances are not treated in these models, although they have sometimes been interpreted as not only describing portfolio choice problems, but also choices between bonds and real investment. Obviously, portfolios consist of holdings of cash or bonds and holdings of real assets, e.g., shares of firms, and the profits of firms crucially depend on depreciation allowances.

This paper concentrates on the effect of capital depreciation and depreciation allowances on risk-taking under uncertainty.

2. The benchmark case

Consider the problem of an investor in the Domar-Musgrave model. Let \((A - a) \) be the amount that the investor holds as cash, and \(a \) be the amount of risky investment. The risky investment yields a stochastic net return \(Z_a \), i.e. \(Z \) per unit of investment, and this return depends on profit taxes and depreciation allowances. The investor chooses \(a \) to maximize expected utility of his wealth at the end of the
holding period, \(Y = A + aZ \). Maximization of expected utility \(U(Y) \) with respect to the investor's decision variable \(a \) requires

(1) \(E[U'(Y)Z] = 0 \),

(2) \(E[U''(Y)Z^2] < 0 \),

if both assets are held. Equation (2) holds because of risk aversion. Assume that \(a \) is used to buy a capital good. Each unit of capital good may yield gross return \(X \), which is generally stochastic. The rate of true economic depreciation of the capital good may be \(\delta \), that of depreciation allowances for tax purposes may be \(\delta_t \). The riskless asset, typically cash or bonds, does not depreciate. A proportional profit tax \(t \) is levied on profits. Therefore, the rate of net return, \(Z \), can be described by

(3) \[Z = X - \delta - (X - \delta)_t \]

If true economic depreciation and depreciation allowances are equal, (3) becomes

(4) \[Z = (X - \delta) (1 - t) \]

The determination of \(da/dt \), the optimal reaction of the investor to a change of the profit tax, is a standard problem, yielding (cf. Mossin (1968), p. 75)

(5) \[da/dt = a / (1 - t) \]

An increase in profit taxes induces the investor to increase his relative share invested in the risky activity. In sections 3 and 4 this reaction will be compared with the reaction in the case where true economic depreciation and depreciation allowances differ.\(^1\)

3. Stochastic depreciation and expected-value depreciation allowances

The breakdown of machines and the unforeseeable devaluation of capital goods as a result of technological change or the invention of new technologies make depreciation a random variable but, in many countries, depreciation allowances are determined by ex-ante rules: allowances are equal to the expected value of true economic depreciation.

To derive the impact of such non-equivalence of stochastic true economic depreciation and depreciation allowances, consider the following case. True economic depreciation \(\delta \) is a random variable. Government cannot monitor true economic depreciation, but it knows the expected rate \(E\delta \) and sets depreciation allowances \(\delta_t = E\delta \).

In this case the rate of return is

(6) \[Z = X - (X - E\delta)_t - \delta \]

Inserting (6) into (1) and using the implicit function theorem, one gets

(7) \[da/dt = E[U'(Y) (X - E\delta)]/E[U''(Y)Z^2] + E[U''(Y)Za (X - E\delta)]/E[U''(Y)Z^2], \]

which cannot be signed without further restrictions. If, e.g., depreciation is non-random, (7) reduces to the Domar-Musgrave result (5). True economic depreciation and depreciation allowances are equal in this case. To see that even the opposite reaction is plausible, consider the particular case where true depreciation is the only source of randomness. In this case \(\delta \) is a random variable and \(X \) is not stochastic, i.e. \(X \equiv x \in \mathbb{R} \). Equation (7) can be transformed to

(8) \[da/dt = -a(x - E\delta) \partial a/\partial A + (x - E\delta)E[U'(Y)]/E[U''(Y)Z^2] \]

model is very different, as they exclude by assumption tax-induced changes in the willingness to assume risk. The analysis is more in the spirit of the Domar-Musgrave literature and takes the income effects of taxation on this willingness to assume risk into account. In a framework with only two possible states of nature, some manipulations can show that the effects of depreciation rules which have been considered in this paper are equivalent to combinations of state dependent taxes and subsidies. State dependent taxes have been analysed by Buchholz (1987, pp. 102–120).
As $E[U''(Y)Z^2] < 0$ and $E[U'(Y)] > 0$, the second term in (8) has a negative sign. Moreover, $\partial a/\partial \lambda \geq 0$, if U exhibits constant or decreasing absolute risk aversion (cf. Arrow 1970). This permits the conclusion:

Proposition 1 If depreciation is the only source of uncertainty and U exhibits constant or decreasing absolute risk aversion, and if depreciation allowances equal the expected value of true economic depreciation, profit taxes induce a decrease in the proportion of capital invested in the risky activity.

This result is the inverse of the Domar-Musgrave result, where profit taxes induce investors to increase risk taking. The intuition of this result is that, with risky depreciation, proportional profit taxation with expected value depreciation allowances is similar to a proportional tax on expected profits. Government appropriates some revenues, but it does not participate in risk bearing, as it does in the benchmark case.

4. Investment tax credits

Now turn to the question of excessive depreciation allowances. Firms have to pay a profit tax on »taxable profit« with a proportional tax rate. Taxable profits are defined as gross profits aX minus true economic depreciation δ and some additional depreciation allowances $a\delta_c$ with $\delta_c \in \mathbb{R}_+$. These allowances are proportional to the amount a of risky capital. Allowances are higher than true economic depreciation.

Notice that only the additional allowances are non random. Gross profits and true economic depreciation, X and δ, are both assumed to be random variables here. Depreciation allowances are similar to the benchmark case, i.e. they reflect the randomness of true economic depreciation, but there is an additional non random depreciation allowance. The rate of return becomes

$$Z = (X - \delta - \delta_c) (1 - t) + t\delta_c.$$

Consider now the investor's decision. Inserting equation (9) in conditions (1) and (2) yields the following conditions

$$E[U'(Y) [(X - \delta - \delta_c) (1 - t) + t\delta_c)] = 0,$$

$$E[U''(Y) [(X - \delta - \delta_c) (1 - t) + t\delta_c^2]] < 0.$$

Again, (10) is the first order condition, and (11) is the second order condition for a maximum. (11) is met as the household is assumed to be risk averse. By the implicit function theorem it can be shown that a slight change of profit taxes implies

$$\partial a/\partial t = [a/(1 - t)] [1 + \Phi_1] + \Phi_2,$$

with $\Phi_1 = \delta_c a/\partial \lambda$ and $\Phi_2 = E[U'(Y) [(X - \delta - \delta_c)]/E[U''(Y) [(X - \delta) (1 - t) + t\delta_c]]$. The term $\Phi_1 > 0$ if U exhibits constant or decreasing absolute risk aversion, and $\Phi_2 > 0$ (for details cf. appendix).

Proposition 2 If $U(Y)$ exhibits constant or decreasing absolute risk aversion, if profits are uncertain and depreciation allowances exceed true economic depreciation by an amount that is proportional to the amount of risky capital stock, then profit taxes increase the proportion of risky assets by more than in the case with depreciation allowances that equal true economic depreciation.

To put it differently, a subsidy on risky real investment ($\delta_c > 0$) increases the incentives for risk taking from a profit tax. Under plausible assumptions the increase of δ_c itself also induces more risk taking:

Proposition 3 If $U(Y)$ exhibits constant or decreasing absolute risk aversion, for $t \in (0,1)$ an increase in depreciation allowances increases the optimal share of risky investment ($\partial a/\partial \delta_c > 0$).

To prove the result, differentiate (10) with respect to δ_c to get

3 This kind of »additional depreciation allowances« is a frequently used approximation (see, e.g., Burow and Summers (1984) and Dammon and Sembeth (1988)) to accelerated depreciation allowances. For a discussion of these two concepts see, e.g., Boadway and Bruce (1979, pp. 99n.).
\[\frac{\partial a}{\partial c} = \frac{\partial a}{\partial A} + \left[-E[U'(Y)t]/E[U''(Y)((X-\delta)(1-t) + t\delta)^2] \right] \]

(for details cf. appendix). Using (11) and \(U'(Y) > 0 \) for all \(Y \) reveals that the term in curved brackets in (13) is positive. The term \(\partial a/\partial A \) proves to be non-negative if \(\partial a/\partial A \geq 0 \), i.e. in the case of constant or decreasing absolute risk aversion.

5. Conclusions

This paper considers the effect of depreciation allowances on the investment behaviour under uncertainty. The main conclusion is that government has to consider carefully whether true economic depreciation is stochastic or not. If depreciation is the main source of randomness, and if government wants to increase risky real investment via increasing profit taxes, then depreciation allowances should reflect the randomness of true economic depreciation. If they do not, increasing profit taxes might induce investors to reduce risk-taking, contrary to the ordinary Domar-Musgrave case. The effects of increased depreciation allowances were also analysed. It was shown that increased depreciation allowances induce firms to choose higher levels of risky real investment and increase the effect of profit taxes.

References

Appendix

Derivation of (7) and (8): differentiation of (1) with respect to \(t \) using \(Y = A + aZ \) and equation (6) yields

\[
(C1) \quad E[U''(Y)Z^2] \frac{\partial a}{\partial t} - E[U''(Y)Za(X - E\delta) - E[U'(Y)(X - E\delta)] = 0
\]

\[
(C2) \quad \frac{\partial a}{\partial A} = -E[U''(Y)Z]/E[U''(Y)Z^2].
\]

Differentiation of (1) with respect to \(a \) and \(A \) yields

\[
(C3) \quad E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2] \frac{\partial a}{\partial t} - E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)] a ((X - \delta) - \delta_c) - E[U'(Y) ((X - \delta) - \delta_c)] = 0.
\]

solving for \(\frac{\partial a}{\partial t} \) and decomposing yields

\[
(C4) \quad \frac{\partial a}{\partial t} = [a/(1-t)] E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2]/E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)] - \delta_c E[U'(Y) ((X - \delta) - \delta_c)] / E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2].
\]

Derivation of (12): differentiation of (10) with respect to \(t \) yields

\[
(C5) \quad \frac{\partial a}{\partial A} = -E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)]/E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2].
\]

Cancelling down (C4) and using (C5) yields

\[
(C6) \quad \frac{\partial a}{\partial t} = \frac{a}{1-t} + \frac{[a/(1-t)] \delta_c \frac{\partial a}{\partial A}}{E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2]} + \frac{E[U'(Y) ((X - \delta) - \delta_c)]}{E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2]}
\]

Derivation of the signs of \(\Phi_1 \) and \(\Phi_2 \):

As \(\delta_c \) is non-negative by assumption, \(\Phi_1 \) has the same sign as \(\delta a/\partial A \). A sufficient condition for \(\delta a/\partial A \geq 0 \) is constant or decreasing absolute risk aversion. \(\Phi_2 \) is equal with the third term of (C4). It is positive if the numerator is negative (the denominator is negative from (11)). \(E[U'(Y) ((X - \delta) - \delta_c)] \) can be shown to be negative by following manipulations:

\[
E[U'(Y) ((X - \delta) (1 - t) + t\delta_c)] = 0 \quad \text{(from (10))}.
\]

\[
\Rightarrow E[U'(Y) ((X - \delta) (1 - t)) + E[U'(Y) t\delta_c] = 0.
\]

\[
\Rightarrow E[U'(Y) ((X - \delta) (1 - t))] < 0 \quad \text{as} \ t \in [0,1).
\]

\[
\Rightarrow E[U'(Y) ((X - \delta))] < 0.
\]

\[
\Rightarrow E[U'(Y) ((X - \delta) - \delta_c)] < 0.
\]

Derivation of (13): differentiation of (10) with respect to \(\delta_c \) yields

\[
E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2] \frac{\partial a}{\partial \delta_c} + E[U''(Y) ((X - \delta) (1 - t) + t\delta_c) (at)] + E[U'(Y)t] = 0,
\]

or, solving for \(\frac{\partial a}{\partial \delta_c} \):

\[
\frac{\partial a}{\partial \delta_c} = -atE[U''(Y) ((X - \delta) (1 - t) + t\delta_c)]/E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2] - E[U'(Y)]/E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2] - E[U''(Y) ((X - \delta) (1 - t) + t\delta_c)^2].
\]

using \(\partial a/\partial A \) as given by (C5) yields (13).