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Abstract

We analyze mechanism choices of competing sellers with private valuations and

show the existence of monotone pure strategy equilibria where sellers with higher

reservation value choose mechanisms with a lower selling probability and a larger

revenue in case of trade. As an application we investigate the choice between posted

prices and auctions and demonstrate that sellers refuse to offer posted prices as long

as (risk-neutral) buyers do not differ with respect to their transaction costs in both

trade institutions. If some buyers have lower transaction costs when trading at a

posted price, it is optimal for sellers to offer posted prices if and only if they have

a sufficiently high reservation value. We develop an empirical strategy to estimate

revenues of posted prices and auctions that takes selling probabilities explicitly into

account, and confirm our theoretical predictions with data from the EURO 2008

European Football Championship.
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1 Introduction

Anyone who wishes to sell via an (online) trading platform has to decide upon two issues:

What type of trade mechanism to choose and how to specify this mechanism. At eBay, for

instance, sellers can decide to run an auction or to offer a transaction at a posted price and

have to fix a reserve price for the auction or the posted price.1 Design recommendations

by trading platforms or user-groups2 typically share the following three insights: First,

the higher the reserve price in an auction or the posted price, the lower is the probability

that the good will be sold. Thus, high start prices3 should only be considered if one cares

about the trading price rather than the probability of trade. Second, while auctions are

superior when the uncertainty on the potential buyers’ valuations is high, posted prices

are recommended when a standardized product with a clear-cut reference price is offered.

Third, if a seller highly values the good herself, she may offer a high posted price hoping

for the “lucky punch” to meet someone with an even higher willingness to pay.

All these recommendations read as if they were directly taken from the standard text-

book treatment based on the seminal work by Myerson (1981) on monopolistic mechanism

design, i.e. optimal mechanism design for a given set of buyers: First, the trade-off be-

tween selling probabilities and revenues follows from individual rationality as only the

high- valuation buyers participate when reserve prices or posted prices are high. Second,

incentive compatibility requires that buyers with a high valuation bid more aggressively

in auctions, and this allows for higher revenues due to price discrimination. This advan-

tage of auctions as compared to posted prices, however, decreases when buyers do not

differ much in their valuations, and posted prices may then be optimal due to reduced

uncertainty, immediate payments, or other perceived virtues of posted prices.4 Third, the

advantage of auctions over posted prices is lower for sellers with high valuations since price

discrimination becomes more relevant as the number of buyers with a valuation above the

reserve price gets large.

1In practice, there are several variants of posted price or auction-institutions (e.g. at eBay it is possible

to allow for price suggestions by buyers or to set secret reserve prices in auctions) and hybrid designs

such as buy-it-now options.
2See, for instance, the user guide to eBay on http://ebay.about.com/ by Aron Hsiao.
3Throughout, we will use the general term ”start price” both for reserve prices in auctions and posted

fixed prices. In the latter case, start prices are identical to selling prices in case of a trade.
4See Wang (1993) for a theoretical treatment of monopolistic sellers and e.g. Mathews (2004) who

demonstrate a superiority of posted prices over auctions due to risk aversion or Zeithammer and Liu

(2006) who emphasize the impact of time discounting.
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But while Myerson (1981) and the vast majority of the literature on optimal selling

strategies (see the literature review below) assume a monopolistic seller, the usual online

seller faces considerable competition by other providers of identical or similar products.

We develop a theoretical model to demonstrate that the aforementioned trade-off between

the selling probability and the revenue in case of trade is not only a feature of monopolis-

tic mechanism design, but also ensures the existence of monotone pure strategy equilibria

when sellers compete. In such an equilibrium, sellers of higher type (i.e. with a more

valuable outside option) choose mechanisms with a lower selling probability and a higher

revenue in case of trade. We apply this model to the choice between posted prices and

auctions with reserve prices and use data from secondary ticket sales for the 2008 UEFA

European Football (Soccer) Championship in Austria and Switzerland on German eBay

(EURO 2008) to illustrate its explanatory power for real-life mechanism design. Specif-

ically, we demonstrate that, in line with our theoretical prediction, auctions outperform

posted prices if and only if the (induced) selling probability is high.

We model the strategic choice of a trade mechanism by a set of sellers as a finite

action game with incomplete information as analyzed in Athey (2001). Sellers have quasi-

linear preferences with a private valuation for one unit of a homogenous good drawn

independently from (not necessarily identical) continuous probability distributions with

full support. Sellers are endowed with one unit of the homogenous good and choose a

trade institution. For a given strategy of mechanism choice by the other sellers, any

mechanism is – for the purpose of optimal mechanism choice – fully characterized by the

associated probability of trade P and the expected revenue in case of trade R. The set of

mechanisms at a seller’s disposal (for given strategies of the other sellers) can therefore

be depicted by a set of points in the plain, and we will refer to this set of points as a

(P, R)–plot of mechanisms. For a given strategy of other sellers, a seller will never choose

a mechanism that is dominated in the sense that another mechanism would yield a higher

selling probability with at least the same revenue in case of trade or a larger revenue in

case of trade with at least the same selling probability. Mechanisms that are undominated

in this way can therefore be ordered according to their selling probability, and a seller’s

mechanism choice satisfies single-crossing of incremental returns as defined in Milgrom

and Shannon (1994): If a mechanism with a lower selling probability is better for a seller

with a certain valuation as compared to a mechanism with a higher selling probability,

it is also better for any seller with a higher valuation. Then, (Athey 2001, Theorem 1)

implies the existence of a monotone equilibrium where sellers with a higher type choose
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mechanisms with lower selling probability.

We apply these findings to sellers’ choices between posted prices and auctions. We

follow Peters and Severinov (2006) by assuming that buyers cross-bid such that auctions

determine market clearing prices (for the reserve prices set by sellers). Whenever buyers

face identical transaction costs for auctions and posted prices and traders do not differ too

much with respect to their expectations for market clearing prices, we demonstrate that

there are no mutually beneficial posted prices that sellers are willing to offer and buyers

are willing to accept. In this case, posted prices are dominated mechanisms and sellers will

only offer auctions with reserve prices that are monotone increasing in their valuation.

If, however, some buyers face transaction costs for posted prices that are sufficiently

low relative to transaction costs in an auction, (P, R)–plots, and thereby equilibrium

mechanism choices, exhibit single-crossing in the sense that sellers offer posted prices if

and only if they have a sufficiently high valuation.

Our model yields a set of hypotheses regarding the shape and relative position of

(P, R)–plots for posted prices and auctions. First of all, undominated mechanisms re-

semble a downward sloping graph in the (P, R)–plot as an undominated mechanism with

lower selling probability yields a higher revenue in case of trade. Together with the single-

crossing of undominated mechanisms in (P, R)–plots for posted prices and auctions, this

implies that selling probabilities for posted prices are lower than selling probabilities for

auctions, whereas successfully posted prices are above final auction prices. In line with

the previous literature (see below), we confirm these hypotheses with our data for tickets

to matches of the 2008 UEFA European Football Championship.

But our model does not only allow to draw conclusions regarding the aggregate perfor-

mance of posted prices and auctions. If (P,R)–plots of posted prices and auctions indeed

satisfy single-crossing, there should be an excess revenue of auctions relative to posted

prices for reserve prices and posted prices that yield a large selling probability, but an

excess revenue of posted prices over auctions for reserve prices and posted prices with a

small selling probability. To test this hypothesis, we first develop an empirical strategy

for estimating the selling probability both for auctions and posted prices. We then use

this predicted selling probability in order to explain the excess revenue of an auction over

a hypothetical posted price at which this item would have needed to be offered in order

to be sold with the same probability. We find that the excess revenue of auctions over

posted prices is increasing in the selling probability and that posted prices are indeed

superior for low selling probabilities.
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The remainder of the paper is organized as follows: After relating to the literature, we

present our general model on the choice of mechanisms in section 3. Section 4 turns more

specifically to auctions vs. posted prices and derives our empirically testable hypotheses.

Section 5 presents our empirical analysis. We conclude in section 6.

2 Relation to the Literature

Our analysis regarding the existence of monotone pure strategy equilibria adds to the

literature on competing mechanism designers that establishes the superiority of auctions

and addresses the convergence of optimal reserve prices to the sellers’ costs in a compet-

itive equilibrium setting (see McAfee (1993) or Peters (1997)) or for a restricted set of

mechanisms (see Peters and Severinov (1997), Burguet and Sakovics (1999), Peters and

Severinov (2006), Hernando-Veciana (2005), or Virag (2010)). As this literature focuses

on the emergence of efficient trade institutions as the result of competition between sell-

ers, it is typically assumed that sellers have identical or publicly observable costs (for an

exemption see Peters (1997)). In contrast, our paper analyzes the impact of unobservable

seller heterogeneity on mechanism choice and thereby addresses the question of optimal

mechanism design for different types of sellers. Specifically, the representation of a seller’s

choice set by (P, R)–plots visualizes how straightforward trade-offs between selling prob-

ability and revenue in case of trade ensure the existence of pure strategy equilibria.

The specific model for the comparison between posted prices and auctions offers a

simple and tractable environment to establish the superiority of auctions in the absence

of transaction costs as also demonstrated in the competitive setting of McAfee (1993)

or Peters (1997). The optimality of posted prices for sellers with high outside options

has also been found by the structural estimations in Hammond (2013) for compact disc

sales and Bauner (2010) for baseball tickets. In Hammond (2013), buyers decide upon a

trade mechanism before they actually observe the available offers, and in Bauner (2010)

buyers learn their valuation after their choice of a mechanism. Our model suggests that

the superiority of posted prices for sellers with large valuations does not rely on these

frictions (as soon as some buyers have sufficiently different transaction costs in the two

mechanisms).

The predictions of the model regarding the aggregate performance of auctions and

posted prices has been confirmed by the empirical literature: posted prices sell less often,

but yield higher revenues in case of trade (see Halcoussis and Mathews (2007) for a study
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on concert tickets and Hammond (2010) for compact discs.5 This revenue-probability

trade-off is an interesting observation, but if observed posted prices and reserve prices are

the result of sellers’ self-selection into trade institutions, it cannot answer the question

which sales mode is superior for a given seller. Our main empirical contribution is to

close this gap. Econometrically, we identify posted prices and reserve prices that yield

identical selling probabilities and then compare the revenues for a given selling probability.

We find that auctions are superior if and only if the selling probabilities are high. This

identification technique allows to compare the relative performance of auctions and posted

prices (i.e. their position in the (P, R)–plot) without assuming equilibrium behavior (as

in Hammond (2013) and Bauner (2010)), without the need to observe experiments by

(possibly price-discriminating) sellers who sell the same commodity multiple times as in

Einav et al. (2013), and without a reference to inventories as a proxy for a seller’s valuation

as in Hammond (2010).

3 Competing Trade Mechanisms

3.1 A Finite Action Game with Incomplete Information

In this section, we analyze a game of mechanism choice by players who, based on the

anticipated strategy profile of other players, form expectations regarding the probabil-

ity that a given mechanism is accepted and the expected payoff in case of acceptance.

Throughout this section, we do not model the behavior of individuals who participate in

the mechanisms offered by the players. All we need for the analysis is the acceptance

probability of a mechanism and its expected return for a given profile of mechanisms

chosen by the other players. For the particular example in Section 4 we will also describe

how these features of a mechanism emerge from the participants’ (i.e. buyers’) behavior.

Consider the following game with s ≥ 2 players: Player i ∈ S ≡ {1, ..., s} observes

her own type ti ∈ Ti = [ti, ti] ⊂ R and chooses a mechanism mi ∈ Mi where Mi is a

finite set. Let t = (t1, . . . , ts) be a profile of types and m = (m1, . . . , ms) a profile of

mechanisms. A pure strategy αi of player i specifies a mechanism choice for every type,

i.e., αi : Ti → Mi. Let T = T1 × . . . × Ts, M = M1 × . . . × Ms, and α = (α1, . . . , αs).

5However, Ariely and Simonson (2003) and Malmendier and Lee (2011) find that auction prices fre-

quently exceed simultaneous posted prices within or outside the auction platform, which the latter authors

attribute to limited attention to posted prices by those who participate in auctions. In our dataset, 15.2%

of auction prices are above at least one posted-price offer that was active at the same time.
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The type of player i is distributed with a continuous density hi(ti) with full support, and

types are private information in the sense that players only know their own type and the

distributions of other types.6 Player i’s payoff function is ui : M × Ti → R.

Mechanisms We describe a mechanism by the probability with which the mechanism

is accepted and the expected revenue that is generated in case of acceptance. For a profile

of chosen mechanisms m, player i’s mechanism is accepted with probability qi(m) ∈ [0, 1]

and is rejected with probability 1 − qi(m). If player i anticipates strategies α−i = α\αi

by the other players, we denote the probability that player i assigns to the event that

mechanism mi is accepted by Pi(mi, α−i). If the mechanism is rejected, player i enjoys a

(reservation) utility ri(ti) where ri is a strictly monotone increasing function of ti. If the

mechanism is accepted, player i’s expected revenue will be denoted by Ri(mi, α−i).

(P,R)–plots To represent player i’s expectations regarding the choice of different mech-

anisms, we plot the expected return in case of acceptance for player i (of type ti) when

choosing mechanism mi and anticipating strategies α−i, Ri(mi, α−i), against the expected

probability of acceptance Pi(mi, α−i).
7 Note that a point in this plot fully captures player

i’s expected payoff

Pi(mi, α−i)Ri(mi, α−i) + (1 − Pi(mi, α−i)) ri(ti)

from offering mechanism mi when she expects the other players to play strategies α−i.

Formally, for player i who expects the other players to play the profile α−i, a (P, R)–plot

is a set

PR(α−i) = {(Pi(mi, α−i), Ri(mi, α−i)) | mi ∈ Mi}.

Observe that – for private valuations – the (P,R)–plot does not depend on the players

type ti but only on the strategy profile α−i she anticipates.

Applications This set-up captures a variety of situations where players compete with

the mechanisms they choose and the profile of chosen mechanisms determines when a

player’s mechanism is accepted and what the expected return in case of acceptance will

be. Consider, for instance, sellers who choose a trade institution such as a certain posted

6We will discuss the extension towards a joint density of types – i.e. interdependent valuations – at

the end of this section.
7See Figure 1 for an illustration. If expectations are simply based on past observations, (P, R)–plots

coincide with the demand plots in Einav et al. (2013).
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Ri(., α−i)

Pi(., α−i)

◦

◦

◦
◦ ◦ ◦

◦ ◦◦ ◦◦ ◦ ◦◦
◦ ◦◦◦ •mi

Pi(mi, α−i)

Ri(mi, α−i) ◦ ◦ ◦◦ ◦
◦ ◦◦ ◦ ◦◦◦ ◦◦◦

Figure 1: An example of a (P,R)–plot PR(α−i) of player i who anticipates strategies α−i.

price or an auction of a particular format with certain reserve prices or buy-it-now options

etc. The profile of competing mechanisms then determines the probability with which a

particular seller manages to sell the good and what her expected revenue will be. In

general, a mechanism mi at player i’s disposal can thereby capture various aspects of the

corresponding interaction between player i and agents who participate in mechanism mi.

Next to mi being a mapping from the set of participants (and their reported valuations)

to the set of allocations and payments (as in the classical literature on mechanism design),

mi can also capture the point in time when the mechanism is offered or characteristics

of a mechanism that may induce behavioral biases such as anchoring or an endowment

effect.

As an illustration and for further reference, let us introduce the following two examples.

Example 1 (Competing posted prices) A mechanism mi offered by player i (i.e. a

seller) is the offer to purchase the good of player i at a price fi. Agents (i.e. potential

buyers) apply or try to purchase at a subset of sellers and the good is sold at price fi to

a randomly chosen buyer among those who are willing to purchase. For other players’

strategies α−i, Pi(mi, α−i) therefore depicts the probability that at least one buyer selects

seller i who offers posted price fi as indicated by mechanism mi and the corresponding

revenue Ri(mi, α−i) is fi.

Example 2 (Competing auctions) Assume that a mechanism mi is an auction with

a reserve price si and suppose that – as in the Perfect Bayesian Equilibrium discussed in

Peters and Severinov (2006) – bidders cross-bid until a market clearing price is reached.

Then, Pi(mi, α−i) is the probability that the market clearing price is above reserve price

si as indicated by mechanism mi and Ri(mi, α−i) is the expected market clearing price
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Ri(., α−i)

Pi(., α−i)

◦

◦

◦
◦ ◦ ◦

◦ ◦◦ ◦◦ ◦ ◦◦
◦ ◦◦◦ •mi ◦ ◦ ◦◦ ◦

◦ ◦◦ ◦ ◦◦◦ ◦◦◦

Figure 2: An undominated mechanism mi ∈ PR(α−i).

(conditional on being at least si) if seller i expects the other sellers to choose reserve

prices according to strategy profile α−i.

3.2 Equilibrium Analysis

Dominated mechanisms Consider a (P,R)–plot PR(α−i) for player i who expects

the other players to play strategies α−i. We call a mechanism dominated for player i

who expects strategies α−i if there is another mechanism m′
i that yields a strictly higher

expected utility with a probability of acceptance that is not below the corresponding

acceptance probability for mi and an expected return in case of acceptance that is not

below the corresponding expected return for mi.
8 Formally,

Definition 1 A mechanism mi ∈ Mi is dominated in PR(α−i) if there is a mechanism

m′
i ∈ Mi with Pi(mi, α−i) ≤ Pi(m

′
i, α−i) and Ri(mi, α−i)) ≤ Ri(m

′
i, α−i)) with one of the

two inequalities being strict.

Graphically, a mechanism mi is dominated in PR(α−i) if there is a mechanism m′
i in

PR(α−i) that does not coincide with mi and is weakly above and weakly to the right of

mi. We denote the set of mechanisms that are dominated in PR(α−i) by PRd(α−i) and

the complement (i.e the set of mechanisms that are not dominated or undominated in

PR(α−i)) by PRu(α−i) (see Figure 2).

8Note that our notion of dominance refers to returns in case of acceptance and acceptance probabilities

for a given strategy profile of all other players. Hence, a dominated mechanisms does not resemble a

dominated strategy in the usual game theoretic sense. We opted for the term “dominated” because of

the graphical similarity to the notion of a dominated portfolio in portfolio choice.
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Note that – as the (P,R)–plot – the set of dominated mechanisms may differ across

beliefs over actions of other players. However, as types are drawn independently, the plot

and the set of undominated mechanisms does not depend on player i’s type. This implies

the following result.

Lemma 1 Player i who expects α−i will always choose a mechanism in PRu(α−i).

Example 3 (Auction vs posted prices) Suppose players are sellers of one unit of a

homogenous good and the set of mechanisms Mi for each player i is comprised of posted

price offers fi and Vickrey auctions with reserve price si. Let posted prices and reserve

prices be taken from the same finite set on [0, 1] and suppose that buyers and sellers have

private valuations for the good that are drawn from a continuous density g(.) on [0, 1].

Now let each buyer j with valuation vj randomly pick one mechanism mi for which vj > fi

or vj > si – and apply for the corresponding posted price transaction or submit their

valuation as a bid in the auction. Then, a posted price fi is dominated by an auction with

reserve price si = fi because both mechanisms have the same probability of acceptance (as

buyers randomize and accept a posted price or start bidding at an auction whenever their

valuation is at least fi) and whenever there is more than one buyer accepting or bidding

(which happens with a positive probability) the auction yields a strictly larger revenue.9

Monotone mechanism choices and single crossing If player i anticipates profile

α−i, the undominated mechanisms can be ordered according to their probability of accep-

tance. I.e., for player i and profile α−i mechanisms in PRu(α−i) = {m1,m2, . . .} can be

ordered in such a way that Pi(m
k, α−i) ≤ Pi(m

k+1, α−i).

Definition 2 A monotone strategy αi(α−i) of player i who expects profile α−i is a

mapping αi(α−i) : Ti → Mi such that for t > t′: Pi(αi(t), α−i) ≤ Pi(αi(t
′), α−i).

Suppose for instance that in Example 1, higher posted prices are less likely to be ac-

cepted. Then, a monotone strategy assigns higher posted prices to higher types. Likewise,

a monotone strategy in Examples 2 and 3 would be a strategy that assigns higher reserve

prices to higher types.

9The dominance of auctions for a seller who anticipates other sellers to conduct auctions (with reserve

prices equal to the sellers valuation) also follows from the results in McAfee (1993) and Peters (1997)

who analyze competitive mechanism choice.
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Monotone equilibria The following theorem indicates that there always is an equilib-

rium in monotone strategies.

Theorem 1 There is a pure strategy Nash equilibrium where each player i’s equilibrium

strategy α∗
i is monotone.

Proof. According to Athey (2001, Theorem 1), there is a pure strategy Nash equilib-

rium in a finite action game with incomplete information whenever the single-crossing

condition for games with incomplete information (SCC) (Athey (2001, Definition 3)) is

satisfied. To translate this single-crossing condition into our framework, take a complete

order ≽i over each player i’s action space Mi, i.e. for any two mechanisms m,m′ ∈ Mi

either m ≽i m′ or m′ ≽i m (or both). For player i, a function h : Mi × Ti → R sat-

isfies the (Milgrom-Shannon) single-crossing property of incremental returns (SCP-IR)

in (mi, ti) if, for all mH ,mL ∈ Mi with mH ≽i mL and all tH , tL ∈ Ti with tH > tL:

h(mH , tL) − h(mL, tL) ≥ (>)0 implies h(mH , tH) − h(mL, tH) ≥ (>)0. For a given order

≽i, a pure strategy of player i, αi : Tj → Mj is called monotone (or, non-decreasing) if

for t > t′, αi(t) ≽i αi(t
′). The game satisfies SCC for a given order ≽ if for each i ∈ S:

Whenever every other player j ̸= i uses a strategy αj : Tj → Mj that is monotone,

player i’s objective function, Ui(mi, ti; α−i) satisfies single crossing of incremental returns

(SCP-IR) in (mi, ti).

To prove the Theorem, we will demonstrate that our game satisfies SCC if actions

(or mechanisms) are ordered according to their acceptance probability. By Lemma 1 we

know that player i when anticipating strategy α−i will never choose a mechanism mi ∈
PRd(α−i). To establish SCC it therefore suffices to order mechanisms in PRu(α−i). Now

order mechanisms in PRu(α−i) according to their acceptance probability: For m,m′ ∈
PRu(α−i), m ≽i m′ whenever Pi(m,α−i) ≤ Pi(m

′, α−i), i.e. mechanisms with a higher

“rank” have a lower probability of acceptance (and a higher expected return).

Anticipating the profile α−i, player i (with type ti) expects

Pi(mi, α−i)Ri(mi, α−i) + (1 − Pi(mi, α−i))ri(ti)

from choosing mi. Now consider any two mechanisms mH ,mL ∈ PRu(α−i)i and suppose

that Pi(m
H , α−i) ≤ Pi(m

L, α−i). As both mechanisms are undominated in PR(α−i),

Pi(m
H , α−i) ≤ Pi(m

L, α−i) implies Ri(m
H , α−i) ≥ Ri(m

L, α−i). Now suppose that mH

yields weakly higher returns than mL if player i is of type tL, i.e.

Pi(m
H , α−i)Ri(m

H , α−i) + (1 − Pi(m
H , α−i))r(t

L)
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≥ Pi(m
L, α−i)Ri(m

L, α−i) + (1 − Pi(m
L, α−i))r(t

L).

Then,

Pi(m
H , α−i)Ri(m

H , α−i) + (1 − Pi(m
H , α−i))r(t

H)

≥ Pi(m
L, α−i)Ri(m

L, α−i) + (1 − Pi(m
L, α−i))r(t

H)

for any tH > tL because r(tH) > r(tL). The same holds for strict inequalities. This implies

SCR-IR for any (mi, ti) and thereby satisfies SCC for any player i and profile α−i. With

Athey (2001, Theorem 1) our Theorem follows as we consider finitely many actions (or

mechanisms) and independently drawn types.10

According to Theorem 1, there is always an equilibrium in pure strategies where every

player chooses a mechanism with (weakly) lower acceptance probability and (weakly)

higher returns in case of acceptance as the player’s type (or reservation value) increases.

Graphically, players move down the set of undominated mechanisms in the (P, R)–plot

that belongs to the equilibrium profile α∗
−i as their type gets smaller. The higher a

players type (and reservation value) the more willing she is to sacrifice selling probability

in exchange for higher revenues in case of selling. This simple and intuitive trade-off that

shapes the set of undominated mechanisms therefore ensures single-crossing and thereby

the existence of a monotone equilibrium.

For instance, in Example 1, there is an equilibrium where sellers with higher reserva-

tion value choose higher posted prices as long as higher posted prices are less frequently

accepted. Likewise, there is an equilibrium such that sellers with higher reservation value

choose auctions with higher reserve prices in Examples 2 and 3.

While the assumption of independently drawn types is not necessary for equilibrium

existence in Athey (2001, Theorem 1) where actions are real numbers and can be ordered

by the usual relation, the type-independence of the acceptance probability and expected

returns in case of acceptance is needed for the Theorem to hold without further restric-

tions on the set of available mechanisms. If a player’s type contains information about

the acceptance probability and the expected returns of a mechanism (as it is the case,

e.g., for interdependent values), (P,R)–plots do not only depend on the profile α−i that

player i anticipates but also on ti. As a consequence, neither the set of undominated

mechanisms nor the ordering of mechanisms has to coincide between (P, R)–plots for the

same anticipated strategy but for different types of player i. In particular, the dominance

10With independently drawn types, Athey (2001, Assumption 1) that ensures a well-defined objective

function for every player is trivially satisfied.
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of a certain mechanism for type tL has not necessarily an implication regarding the dom-

inance for a type tH ̸= tL. However, as long as mechanisms can be easily ordered with

respect to their acceptance probability (consider, for instance, different posted prices or

auctions that only differ in their reserve price), the existence of a monotone pure strategy

equilibrium can be extended to joint densities over types as discussed in Athey (2001,

Assumption 1).

4 Auctions Vs Posted Prices

4.1 The Model

As an application of our framework, consider the following set-up modelling online trade.

s ≥ 2 risk-neutral sellers are endowed with one unit of an indivisible, homogenous good.

Seller i ∈ S ≡ {1, ..., s} has a reservation value ri ∈ [0, 1] for her unit of the indivisible

good. For each i ∈ S, ri is distributed with a continuous density hi(ri) with full support

on [0, 1].

b ≥ s + 1 risk-neutral buyers like to purchase one unit of the indivisible, homogenous

good. Buyer j ∈ B ≡ {1, ..., b} has valuation vj ∈ [0, 1] for one unit of the indivisible

good. For each j ∈ B, vj is distributed with a continuous density gj(vj) with full support

on [0, 1]. I.e., sellers and buyers have independently drawn private valuations for one unit

of the indivisible good. If buyer j fails to trade, his utility is zero, if he trades at a price p,

his utility is vj − p− c. I.e. buyer j faces a transaction cost (e.g. trading fee, waiting cost

etc.) of c from trading. We call a buyer a posted price seeker if he enjoys transaction costs

distributed with full support on [0, c̃] for a posted price and transaction costs distributed

with full support on (c̃, 1] for auctions. All other buyers have constant transaction costs

of 0 ≤ c̃ < 1. Buyers know their own valuation and transaction costs but (as the sellers)

only know the distribution of valuations and transaction costs as well as the fraction of

posted price seekers in the population. We will refer to the vector r = (r1, ..., rs) as the

sellers’ and to the vector v = (v1, ..., vb) as the buyers’ profile. And we call the collection

(B,S) a market.

The set Mi of mechanisms at seller i’s disposal consists of posted price offers fi and

English auctions with reserve price si where fi, si ∈ P ⊂ [0, 1] with P = {0, δ, 2δ, . . . , 1}
being a grid with grid step δ ≤ 1

2
.

First, all sellers simultaneously choose a mechanism and then buyers compete for the

offered units as follows.
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Buyer competition After the sellers’ mechanism choice, buyers observe all mechanisms

offered by sellers 1, . . . , s. Then, buyers decide whether to apply for any of the posted

prices offered. Let BF
i be the set of buyers who apply for the posted price offered by seller

i. The good of seller i who offers posted price fi is randomly allocated to a buyer in BF
i

who then pays fi to seller i. Regarding the choice between posted prices, we assume an

incentive consistent behavior as in Peters (1997). I.e., a buyer j has a threshold price f̂j

such that (i) he never applies to a posted prices f with f > f̂j and (ii) applies to each f

with f ≤ f̂j with a type-independent positive probability.11 Then, all buyers who have

not or unsuccessfully applied to a posted price participate in the auctions.

Denote the set of buyers who participate in the auctions by BA and denote their

profile of valuations by vA. Further denote the set of sellers who offer auctions by SA

and their profile of reserve prices by sA. The identities of transacting buyers and sellers

as well as transaction prices are now determined as in a sellers’ offer double auction (see

Satterthwaite and Williams (1989)). I.e., buyer j submits a threshold value wj and with

a profile of reserve prices sA and a profile of threshold values wA, the transaction price

p is the |BA|th highest value in (sA,wA). All sellers with a reservation value not larger

than p trade with all buyers with a threshold strictly larger than p. As at price p the

market clears (according to the profiles of reserve prices sA and thresholds wA) there is

a well-defined pairwise exchange of goods.

We model the interaction between sellers and buyers at the auctions by a simple

sellers’ offer double auction because Peters and Severinov (2006) have shown in a model

with a finite grid of valuations that cross-bidding in a competing auction setting (i.e.

overbidding the lowest current standing bid by an increment until no-one overbids or the

buyer’s valuation is reached) forms a Perfect Bayesian Equilibrium for the buyers that

yields the same allocation as a sellers’ offer double auction for given reserve prices and is

– as a result – considered as strategically equivalent to a sellers’ offer double auction by

the sellers.

With the sellers’ choices of mechanisms and the buyers’ decisions to apply for a posted

price or to participate in the auctions, we have defined a finite action game with incomplete

information of sellers and buyers. To determine equilibrium selling and purchasing strate-

gies, we proceed in four steps. First, we analyze equilibrium behavior in the auctions, i.e.

the buyers’ optimal threshold values and the sellers’ optimal reserve prices whenever they

11We only require incentive consistency to simplify the exposition. Our central findings will only rely

on the existence of mutually beneficial posted prices and are therefore independent of the specific way in

which buyer’s choose between multiple posted prices.
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choose to offer an auction. Second, we analyze the buyers decision between posted prices

and auctions. Third, we discuss (P, R)–plots for different design choices by the sellers.

And fourth, we discuss equilibrium mechanism choices by the sellers with and without

posted price seekers using these (P, R)–plots and our Theorem 1.

4.2 Analysis

Auction The buyers’ threshold values wA are easily analyzed, as buyers have a weakly

dominant strategy to reveal their valuation in a sellers’ offer double auction with con-

tinuous action space (see e.g. Satterthwaite and Williams, 1989). With a finite grid of

admissible prices, this weakly dominant strategy to reveal the valuation translates into

a weakly dominant strategy to pick the admissible price which is the largest among all

admissible prices that do not exceed the buyer’s valuation net of transaction costs.

Lemma 2 Buyer j has a weakly dominant strategy to set wj = maxp∈P:p≤vj−c p.

Intuitively, buyers cannot gain from another threshold as a buyer does not trade

whenever he influences the price (recall that only buyers whose threshold strictly exceed

the |BA|th highest value in (sA,wA) actually trade). Hence, lower thresholds would only

reduce the number of instances where the good is purchased at a profitable price and higher

thresholds would only add instances where the good is purchased at a non-profitable price.

In contrast, there is a positive probability that a seller determines the price at which

she trades so that there is an incentive to overstate the reservation value. Optimal reserve

prices are determined by the trade-off between this incentive to overstate the reservation

value and the corresponding reduction of the probability to sell the item.

Lemma 3 When seller i with reservation value ri offers an auction, her optimal reserve

price s∗
i (ri) (i) satisfies s∗

i (ri) ≥ ri and (ii) is a non-decreasing function of ri.

Choosing reserve prices (and expecting buyers to act according to Lemma 2) estab-

lishes a finite action (sub)game with incomplete information between the sellers. We

adopt the following notation. When choosing a reserve price, seller i expects mA other

sellers and nA buyers to be active at the auctions with probability ai(mA, nA). Setting

reserve price si herself and considering the case of mA other sellers and nA buyers at the

auctions, the seller expects price p to be the final price at the auctions with probability
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li(p, si,mA, nA).12 Accordingly, her expected utility UA
i (ri, si) from having reservation

value ri and setting a reserve price si reads

UA
i (ri, si) =

∑

0≤mA≤s−1,0≤nA≤b

ai(mA, nA)
∑

p≥si

(p − ri)li(p, si,mA, nA).

Proof of Lemma 3. Part (i). If seller i sets reserve price si and at least one buyer

is active at the auctions (recall that b ≥ s + 1) there is a strictly positive probability that

the final auction price at which seller i trades is indeed si. Hence, si < ri is dominated

by si = minp∈P:p≥ri
p.

Part (ii). For the proof of this part, we will utilize Athey (2001, Theorem 1). For inde-

pendently drawn reservation values and a finite action space as in our model, this theorem

indicates that there exists a pure strategy Nash equilibrium in non-decreasing strategies

s∗
i (ri) whenever the single crossing condition for games of incomplete information (SSC)

(see Athey (2001, Definition 3)) is satisfied for every seller i. SSC is satisfied for seller

i if her objective function satisfies single-crossing of incremental returns (SCP-IR) (see

Athey (2001, Definition 1)) whenever all other sellers k ̸= i use a non-decreasing strategy

sk(rk). Seller i’s objective function UA
i (ri, si) satisfies SCP-IR if for all sH > sL and

rH > rL, UA
i (rL, sH) ≥ (>)UA

i (rL, sL) implies UA
i (rH , sH) ≥ (>)UA

i (rH , sL). To see that

seller i’s objective function UA
i (ri, si) satisfies SCP-IR, consider rH > rL and sH > sL.

Then,

UA
i (rH , sH) =

∑

mA,nA

ai(mA, nA)
∑

p≥sH

(p − rH)li(p, s
H ,mA, nA)

=
∑

mA,nA

ai(mA, nA)
∑

p≥sH

(p − rL − (rH − rL))li(p, s
H , mA, nA)

≥
∑

mA,nA

ai(mA, nA)
∑

p≥sL

(p−rL)li(p, s
L,mA, nA)−

∑

mA,nA

ai(mA, nA)
∑

p≥sH

(rH−rL)·li(p, sH ,mA, nA)

≥
∑

mA,nA

ai(mA, nA)
∑

p≥sL

(p−rL)li(p, s
L,mA, nA)−

∑

mA,nA

ai(mA, nA)
∑

p≥sL

(rH−rL)·li(p, sL,mA, nA)

=
∑

mA,nA

ai(mA, nA)
∑

p≥sL

(p − rH)li(p, s
L,mA, nA) = UA

i (rH , sL).

The first inequality follows from UA
i (rL, sH) ≥ UA

i (rL, sL). The second inequality is

implied by
∑

p≥sH li(p, s
H ,mA, nA) ≤∑p≥sL li(p, s

L,mA, nA) for all mA and nA. Similarly,

UA
i (rL, sH) > UA

i (rL, sL) implies a strict inequality. Hence, UA
i (ri, si) satisfies SCP-IR for

12Both probability distributions a(., .) and l(., si,mA, nA) certainly depend on the strategy profile of

sellers and buyers that seller i anticipates. We do not mention this dependence for expositional ease.
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every seller i and a given profile of the other sellers’ strategies such that the (sub)game

of reserve price choice satisfies SCC and Athey (2001, Theorem 1) implies Part (ii).

Posted prices The following Lemma characterizes sellers’ optimal choices of posted

prices given that they choose a posted-price mechanism at all:

Lemma 4 When seller i with reservation value ri offers a posted price, her optimal posted

price f ∗
i (ri) (i) satisfies f ∗

i (ri) ≥ ri and (ii) is a non-decreasing function of ri.

Proof. Part (i). If seller i sets posted price fi, her profit is (fi − ri) whenever the

posted price is executed. Hence, fi < ri is dominated by fi = minp∈P:p≥ri
p.

Part (ii). As in the proof of Lemma 3, we will utilize (Athey 2001, Theorem 1) to show

the existence of a pure strategy Nash equilibrium in non-decreasing strategies. For the

optimal choice of a posted price, seller i’s objective function is UF
i (ri, fi) = Q(fi)(fi − ri)

where Q(fi) denotes the probability that a posted price fi is executed. Note that Q(fH) ≤
Q(fL) for any fH > fL. To see that seller i’s objective function UF

i (ri, fi) satisfies SCP-

IR, consider fH > fL and rH > rL, and suppose that UF
i (rL, fH) ≥ (>)UF

i (rL, fL).

Then,

UF
i (rH , fH) = Q(fH)(fH − rH) = Q(fH)(fH − rL − (rH − rL))

≥ Q(fL)(fL −rL)−Q(fH) ·(rH −rL) ≥ Q(fL)(fL −rL)−Q(fL) ·(rH −rL) = UF
i (rH , fL).

The first inequality follows from UF
i (rL, fH) ≥ UF

i (rL, fL) and the second inequality

from Q(fH) ≤ Q(fL). Similarly, UF
i (rL, fH) > UF

i (rL, fL) implies a strict inequality.

Hence, UF
i (ri, fi) satisfies SCP-IR for every seller i and a given profile of the other sellers’

strategies so that the (sub)game of posted price choice satisfies SCC and (Athey 2001,

Theorem 1) implies Part (ii).

Buyers’ Choices Between Auction and Posted Prices When deciding upon the

threshold posted price fj that buyer j is willing to execute, buyer j compares his utility

from a posted price transaction at a posted price f , UF
j = vj − f − c with the expected

utility UA
j (vj) from being active at the auctions (anticipating behavior as described in

Lemma 2)

UA
j (vj) =

∑

0≤nA≤b−1,0≤mA≤s

aj(mA, nA)
∑

p<vj−c

(vj − p − c)lj(p, vj, mA, nA)

where aj(mA, nA) is the probability with which buyer j expects nA other buyers and mA

sellers to be active at the auctions and lj(., vj,mA, nA) is the probability distribution over
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market clearing prices from buyer j’s perspective. Hence, buyer j considers a posted price

f profitable if (vj − c − f) ≥ UA
j (vj).

Likewise, seller i considers a posted price offer f profitable if the expected revenue from

the posted price transaction UF
i = Q(f)(f − ri) (weakly) exceeds her expected optimal

auction revenue UA
i (ri, s

∗
i (ri)). A profitable posted price f of seller i therefore satisfies

f ≥ 1
Q(f)

UA
i (ri, s

∗
i (ri)) + ri.

To summarize, a posted price f is profitable for buyer j and seller i if vj −c−UA
j (vj) ≥

f ≥ 1
Q(f)

UA
i (ri, s

∗
i (ri))+ri. In particular, for a posted price transaction at a price f , mutual

profitability for the pair of buyer j and seller i requires that

vj − c − ri ≥ UA
j (vj) +

1

Q(f)
UA

i (ri, s
∗
i (ri)). (1)

Dominated Mechanisms A necessary condition for a posted price offer to be better

than an auction for seller i is that a positive mass of buyers considers the posted price

profitable such that Ineq. 1 is satisfied for ri and a set of buyers, i.e. a positive measure

of valuations vj.

A potential problem for a clear-cut evaluation of Ineq. 1 is that each trader may

expect a different market clearing price at the auctions because a seller’s reserve price

may actually be the market clearing price and buyers and sellers may hold differing

beliefs regarding the number of traders at the auction. For the results in the remainder

of this section, however, we only have to consider the configuration where a seller expects

all other sellers to conduct an auction and buyers face only one posted price. In this case,

the difference between the expected market clearing price as computed by seller i

pS
i =

∑

mA,nA

ai(mA, nA)
∑

p≥0

p · li(p, si, mA, nA)

and the expected market clearing price as computed by buyer j

pB
j =

∑

mA,nA

aj(mA, nA)
∑

p≥0

p · lj(p, vj,mA, nA)

shrinks as the number of buyers and sellers grows large. For a large market, the probability

that seller i’s reserve price determines the market clearing price tends to zero and so does

the difference between market clearing prices for one more seller or buyer. We regard the

maximal difference between market clearing prices as expected by a seller i and a buyer

j as a measure for the homogeneity of expectations regarding the final auction price.
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Definition 3 A market (B, S) has expectations of heterogeneity ∆p if

∆p = max {|pS
i − pB

j |∥∀i ∈ S, j ∈ B}.

If heterogeneity of expectations is sufficiently small, it is straightforward to see that

no posted price is mutually profitable in the absence of posted price seekers.

Proposition 1 Suppose there are no posted price seekers. If heterogeneity of expectations

is sufficiently small, there is no mutually profitable posted price.

Proof. Would expectations have heterogeneity ∆p = 0, we could rewrite the surplus

of trade between buyer j and seller i as follows

vj−c−ri = (vj−c)·
∑

mA,nA

aj(mA, nA)
∑

p

lj(p, vj,mA, nA)−ri

∑

mA,nA

ai(mA, nA)
∑

p

li(p, si,mA, nA)

= (vj−c)·
∑

mA,nA

aj(mA, nA)
∑

p

lj(p, vj,mA, nA)−pB
j +pS

i −ri·
∑

mA,nA

ai(mA, nA)
∑

p

li(p, si,mA, nA)

=
∑

mA,nA

aj(mA, nA)
∑

p

(vj−c−p)·lj(p, vj,mA, nA)+
∑

mA,nA

ai(mA, nA)
∑

p

(p−ri)·li(p, si,mA, nA)

= UA
j (vj) + UA

i (ri, si)

+
∑

mA,nA

aj(mA, nA)
∑

p≥vj−c

(vj−c−p)·lj(p, vj,mA, nA)+
∑

mA,nA

ai(mA, nA)
∑

p<si

(p−ri)·li(p, si,mA, nA)

< UA
j (vj) +

1

Q(fi)
UA

i (ri, s
∗
i (ri))

For the first equality, we just used the fact that ai, aj, li, and lj are probability distribu-

tions. The last inequality follows from the fact that

∑

mA,nA

aj(mA, nA)
∑

p≥vj−c

(vj−c−p)·lj(p,mA, nA)+
∑

mA,nA

ai(mA, nA)
∑

p<si

(p−ri)·li(p,mA, nA) ≤ 0

with a strict inequality if either ri > 0 (and therefore si > 0) or vj < 1 as p = 0 and p = 1

are in P and occur with positive probability. But if ri = 0, fi = 0 is not profitable as

UA
i (0, 0) > 0 (recall that s ≤ b + 1). Therefore Q(fi) < 1 has to hold for any profitable

posted price because with a strictly positive probability all buyers have a valuation below

fi > 0. Hence, Ineq. 1 is violated for every pair of seller and buyer if the heterogeneity of

expectations is sufficiently small as indicated by the Proposition.
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Figure 3: Posted prices (diamonds) and auctions (bullets) without posted price seekers.

(P, R)–plots With Proposition 1, we can now discuss the structure of (P,R)–plots for

sufficiently small heterogeneity of expectations and in the absence of posted price seekers.

Consider seller i and suppose that she expects all other sellers to offer auctions following a

monotone strategy α−i as depicted in Lemma 3. The auctions (i.e. reserve prices si ∈ P)

that seller i can offer are represented in the (P,R)–plot as the set of points
{(∑

p≥si

li(p, si, s, b), Ri(si, α−i)

)∣∣∣∣∣ si ∈ P
}

where Ri(si, α−i) denotes the expected revenue in case of selling. Note, in particular,

that this set contains the point (0, 1), as the selling probability is zero for a reserve price

of 1, and the point (1, pS
i ) as the selling probability is one for si = 0.

When seller i offers a posted price fi the selling probability is zero for all fi ≥ pS
i as

otherwise a seller with ri = 0 (who expects pS
i from conducting an auction) could establish

mutually beneficial posted price trading with a positive mass of buyers in contradiction

to Proposition 1. For fi < pS
i there may be a positive mass of buyers who consider trade

at fi profitable, but this mass is bounded away from 1 as long as fi > 0. Trivially, the

(P, R)–plot for posted prices contains the point (1, 0) as a posted price of zero is sold

with probability 1. Hence, posted prices are represented in the (P,R)–plot by points with

P = 0 for f ≥ pS
i , 0 ≤ P < 1 for 0 < f < pi

S, and P = 1 for f = 0 (see Figure 3).

As already indicated by Proposition 1, posted prices appear as dominated mechanisms

in the (P,R)–plot and will never be offered according to Lemma 1.

Now suppose that c̃ ≥ δ and that there is a probability ϵ > 0 for a buyer to be a

posted price seeker. Then, any posted price f ≤ 1 − δ will be accepted with a positive

probability: With a positive probability a posted price seeker has transaction costs at the

auction that absorb all his valuation and almost vanishing transaction costs for a posted

20



price. So if he has a valuation exceeding 1 − δ, he is willing to pay a posted price of

1 − δ if all other sellers offer auctions. If c̃ ≥ δ, a seller with 1 − δ ≥ r ≥ 1 − 2δ, i.e.

a seller who has to receive at least 1 − δ will never trade at an auction but sell with

a positive probability at f = 1 − δ. Therefore f = 1 − δ is not dominated if all other

sellers offer only auctions with a positive probability as the revenue of 1 − δ will never

be expected in an auction but f = 1 − δ is sold with a positive probability. Now observe

that posted prices f ≥ pi
S will only be accepted by posted price seekers. Hence, if ϵ > 0

is sufficiently small, we get single crossing of (P,R)–plots by posted prices and auctions

in such a way that posted prices yield a higher revenue in case of trade for sufficiently

small but positive trading probabilities and auctions yield higher revenues in case of trade

for large trading probabilities. By Theorem 1 there exists a pure strategy equilibrium in

monotone strategies such that high valuation sellers offer posted prices and low valuation

sellers offer auctions. We summarize as follows:

Proposition 2 Suppose c̃ ≥ δ and let the heterogeneity of expectations be sufficiently

small. Then, there is ϵ̃ > 0 such that for all ϵ with 0 < ϵ ≤ ϵ̃ there is a r̃(ϵ) ∈ (0, 1) with

seller i offering an auction if ri ≤ r̃(ϵ) and offering a posted price if ri > r̃(ϵ).

4.3 Testable Hypotheses

Our theoretical findings imply the following testable hypotheses.

As buyers choose between posted prices in an incentive consistent way, the probability

that the good is sold at a posted price f , Q(f), is non-increasing in f . Likewise, as buyers

choose the maximal feasible price weakly below their valuation as a threshold value in

the auction, the probability that the good is sold at an auction with reserve price si is

non-increasing in si:

Hypothesis 1 The selling probability of a particular item is decreasing in reserve prices

and posted prices.

Since the envelope of a (P,R)–plot (i.e. the set of undominated mechanisms) is de-

creasing by construction, this also implies that the lower a start price of an undominated

mechanism, the more to the south-east the corresponding mechanism is in the (P, R)–plot.

But the single-crossing of (P,R)–plots as expressed in Proposition 2 also implies several

Hypotheses regarding the relative position of posted prices and auctions in the (P, R)–plot

(for an illustration see Figure 4). If auctions dominate posted prices if and only if the
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Figure 4: Single-crossing (P, R)–plot and Hypotheses 2–4.

selling probability exceeds a threshold P̂ and sellers do not choose dominated mechanisms,

the selling probabilities of auctions and posted prices should differ significantly.

Hypothesis 2 Selling probabilities for posted prices are lower than selling probabilities

for auctions.

Furthermore, the optimality of auctions compared to posted prices beyond a threshold

selling probability P̂ also implies that the two mechanisms should differ in the vertical

dimension, i.e. regarding the revenue in case of trade and as a consequence regarding the

start prices.

Hypothesis 3 Start prices in auctions are below posted prices.

Hypothesis 4 Successful posted prices are above final auction prices.

If it is indeed optimal that high valuation sellers offer posted prices, we should expect

posted prices to be sold more frequently as compared to equally high reservation prices.

Hypothesis 5 Posted prices are more frequently sold than auctions with equally high

reserve prices.

Finally, equilibrium mechanism choice as described in Proposition 2 implies an inter-

action effect between the auction dummy and the selling probability when describing the

revenue difference between auctions and posted prices. Due to the single-crossing prop-

erty of (P,R)–plots, all auctions with selling probabilities below (above) that intersection

of (P, R)–plots are dominated by (dominate) posted prices with the same selling proba-

bility. Hence, Proposition 2 concludes that high valuation sellers (i.e. sellers that prefer
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low selling probabilities and high revenues in case of selling) offer posted prices and low

valuation sellers (i.e. sellers that prefer high selling probabilities and low revenues in case

of selling) offer auctions:

Hypothesis 6 For low selling probabilities, posted prices are superior while for high sell-

ing probabilities, auctions are superior.

5 Empirical Analysis

The main hypothesis derived from our theoretical model is that, when selling probabilities

are the same for both selling modes, auctions lead to higher expected revenues for low

probabilities, while posted prices are superior for high probabilities (see Hypothesis 6).

In the model, this means that the (P,R)–plot for auctions cuts the one for posted prices

from below, so that there exists a cutoff probability p̂ such that auctions are superior if

and only if p > p̂.

In the empirical part of the paper, we proceed as follows: After describing the data

and explaining why we have chosen ticket sales, we first confirm hypotheses 1-5 by simple

t-tests, and we show that all results also hold when we extend to multivariate analyses.

We then turn to our main issue by calculating, for each reserve price observed in an

auction, the posted price that would have matched the auction’s selling probability had

the item been offered under that selling mode. Since auctions and posted prices differ

with respect to start prices and the impact of those start prices on selling probabilities,

this is the appropriate way of making the two selling modes comparable. We can then

regress the difference between the actual auction price and the estimated posted price on

selling probabilities which are identical for both sales modes. This comparison will confirm

Hypothesis 6 that auctions are superior if and only if the selling probability, implemented

via start prices, are low.

5.1 Data

We use data from secondary ticket sales for EURO 2008, the European Football (Soccer)

Championship for national teams. 16 teams participated in this major European sport

event, which took place in Austria and Switzerland from June 7th to June 29th. Tickets

were valid for a particular game of the championship. Altogether, 31 games were played,

including 24 games in the preliminary round of four teams each in four groups playing
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round robin. The best two teams of each group qualified for one of the four quarter finals,

from which on teams succeeded to the semi-final and the final in a knock-out-system.

We have chosen ticket sales for two reasons: First, for many items sold on eBay such

as computer hardware, there is a competitive fringe as they can also be purchased in

retail stores, for instance. This reduces the impact of buyers’ and sellers’ heterogeneity

considerably as, independently of their own valuations, the competitive fringe establishes

an upper bound on the buyers’ willingness to pay, and a lower bound on the sellers’

reservation value. Second, tickets are perishable goods which we consider as an advantage

for investigating the effects we are interested in: A durable good which has not been sold

can immediately be posted again with a similar expected revenue for the seller. Thus, a

seller’s ex ante valuation of not selling the item at an auction has a lower bound at the

expected revenue times the discount factor for the duration of the auction (which is only

a couple of days in eBay). By contrast, in the extreme case of a good that completely

perishes soon after the end of an auction or posted price offer, the seller’s valuation of an

unsold item is equal to her utility when consuming the item herself should there be enough

time left to do so. Since we are interested in the heterogeneity of sellers’ preferences, a

perishable good is, therefore, most suitable for our analysis.

Tickets were originally sold by the United European Football Association (UEFA)

and the regarding national football associations. Because of excess demand, tickets were

distributed in a lottery among the applicants in the end of January 2008.13 In each game,

there were three categories of tickets with regard to the quality of the seats. Original

prices differed between qualities and varied form e45 for quality 3 to e110 (quality 1)

for games in the preliminary round, up to e550 for the highest quality 1 in the final. A

seller’s type ti in the model can be interpreted as the utility from watching the game in

the stadium herself, which is, of course, unobservable to us.

Ebay provided the main platform for re-sales, and created an own category for the

EURO 2008 on their German website (ebay.de, Tickets > Sport > Fußball EM 2008). By

using the software tool BayWotch which automatically archives items offered on Ebay,

we started collecting data at February 1, 2008 and distinguish postings with respect to

the game and the ticket category. Sellers could decide on the selling mode. We restrict

our analysis to the comparison of pure auctions and posted prices and do not take mixed

options into account.14 Our final data set includes more than 12,000 observations with 87%

13Tickets were not auctioned due to distributional issues.
14Our original data set included about 14% of mixed offers where an auction could be terminated by

a buy-now option. These offers are excluded in our analysis.
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auctions and 13% posted prices (see table 1 for an overview of variables and descriptive

statistics). In auctions, sellers could use reserve prices, and we will refer to both the

reserve price in an auction and the posted price as the start price. For making prices for

different games and categories of seat quality comparable, we measure all start prices and

selling prices as multiples of the original price, and we refer to these multiples as (relative)

mark-ups. In the following, we therefore always use the terms start price and selling price

in this relative way.

Insert table 1 about here

The first three lines of Table 1 show the descriptives of the variables that we are mainly

interested in, that is, start prices, fraction of items sold and selling prices. We will refer

to these variables in the subsequent subsection in some more detail. The distribution of

ticket categories represents their relative magnitude in the stadiums. The majority of

offers contains tickets of the medium category 2 and 20 percent those of the top category

1. Most offers encompass more than one ticket. We aggregate sales with three and more

tickets to one category due to the limited number of observations.15 As the final price

is likely to be affected by the number of competing offers, we control for the number of

simultaneous homogeneous offers in terms of tickets for a certain match and a certain

quality running at the same time. On average, there are 72 homogeneous offers at one

point of time.

Furthermore, the buyers’ willingness to pay (wtp) is likely to depend on the days left

to the actual match. Straightforwardly, one might assume that, due to higher attention,

the wtp is first increasing when the match approaches. A few days before the match

starts, however, the wtp decreases as transaction costs for exchanging the tickets in due

time become very high. Therefore, we will also take the square of days left until the start

of the match into account.

For auction duration, one might presume that longer auctions will attract more con-

sumers, but there may be countervailing effects as potential buyers might be reluctant to

enter auctions ending only in some days. Sellers have the choice among one, three, five,

seven and ten days, and both in auctions and with posted prices, about 40% of sellers

15The dominance of packages of two tickets can be attributed to two reasons. First, the likelihood of

receiving more than two tickets in the original allocation by the UEFA was low. Second, most soccer fans

prefer buying at least two tickets in order to share the experience.
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choose either one or three days.16 Finally, the literature has shown that prices may de-

pend on the duration of postings and on the weekday and time when an auction ends.17

It has been argued that bidders may be more active in their leisure time, so that demand

and selling prices should be highest for auctions ending at the weekend and/or in the

evening. In our sample, a majority of postings ends on Sundays (27%) and during the

evening hours between 6 and 10 p.m. (69%).

5.2 A First Look at Start Prices, Selling Probabilities and Sell-

ing Prices

As shown in table 1, the mean posted price amounts to more than the quintuple of the

original price (5.73), while the mean reserve price for auctions is far below one (around

0.34). A usual two-sample t-test shows that the difference is highly significant (p < 0.001).

This is in line with Hypothesis 3 from our theoretical model. The main reason for this

huge difference is that around 86% of auction sellers do not set a reserve price, and the

minimum reserve price of e1 is assigned to these auctions.

When restricting attention to reserve prices weakly above the original ticket price, then

the average mark-up in auctions is about four which means that, if applied at all, reserve

prices are high. Still, the difference to posted prices is highly significant (p < 0.001).

Next, table 1 shows that most tickets offered in auctions are sold (97.1%), while

only 54.6% of all posted prices were successful (t-test, p < 0.001). This is in line with

(Hammond 2010, Table 6, Column (4)) and Hypothesis 2 from our model. If items with

posted prices are sold, however, selling prices are higher with posted prices (average mark-

up of 4.89 compared to 3.96. t-test, p < 0.001), as predicted by Hypothesis 4.

In a next step, we examine whether these differences are robust to multivariate analyses

by using the control variables listed in table 1. As reference categories, we use sales

with one ticket, the highest category of ticket quality (category 1), the shortest auction

duration, and posted prices. We run OLS regressions with regard to start prices (model

1) and selling prices (model 3), and a binary probit for estimating the selling probability

(model 2). All regressions include match dummies.

Insert table 2 about here

16We aggregated periods of one and three days in one variable which we will use as reference category

in our regressions. Disaggregating between one and three days has no impact.
17See, for instance, (Lucking-Reiley et al. 2007, p. 230).
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Model 1 shows that the impression from the descriptive statistics extends to the mul-

tivariate analysis, thereby confirming Hypothesis 3 that reserve prices in auctions are, on

average, below posted prices. As for the control variables, we find that start prices are

higher for tickets of inferior categories and for bundles of tickets, which can be attributed

to the fact that the willingness to pay for watching matches by-oneself is lower. Further-

more, the start price is slightly lower when the number of simultaneous auctions for the

same match is high.

The results of the binary probit estimations on the selling probability in column 2

displays marginal effects, calculated at the mean of all variables. In line with Hypothesis

2, the selling probability is about 40 percentage points higher for auctions. Given that

the selling probability for posted prices is about 57%, this amounts to a large increase by

about 70%. The selling probability is decreasing in the time left to the match and in the

number of simultaneously running offers, and increasing in auction duration.

Confirming Hypothesis 4, regression model 3 in table 2 shows that the selling price

is considerably lower for auctions.18 Selling Prices are decreasing in the remaining time

to the match at a decreasing rate, and also decreasing in the number of simultaneously

running offers for the same match and the same category of tickets. As expected, tickets

of lower quality and bundles of tickets yield higher relative mark-ups. Sales that end in

evening hours and on Sundays gain lower revenues indicating an excess supply at these

times, which has previously been found in Simonsohn (2010), for instance.

Summing up, table 2 is consistent with the standard trade-off stressed in the liter-

ature that posted-price items are sold at higher prices, but with a lower probability.19

It is obvious, however, that start prices, selling probabilities and selling prices are not

independent from each other. We will empirically explore these interdependencies in the

following section.

5.3 A Closer Look at the Probability-Price Trade-Off

The regression analyses in table 2 confirms the impression from the descriptive statistics

that there are large differences between auctions and posted prices with respect to start

18Following the literature (see, for instance Lucking-Reiley et al. (2007) or, more recently, Goncalves

(2013)), we use censored normal regressions with variable censoring point when estimating unconditional

revenue, i.e. here and in table 4. OLS estimations would not take unsold items into account for which

we would observe low prices if it was not for the high start price, so that OLS parameter estimates would

be upwards biased.
19Hammond (2010), Hammond (2013), Halcoussis and Mathews (2007).
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prices, the fraction of successfully sold items, and selling prices. To provide more detailed

information, table 3 shows the number of offered items, the percentage of sold items and

the mean start prices and selling prices for auctions and posted prices within certain

intervals of start prices. This is useful as start prices are considerably higher for posted

prices, so that the disaggregation sheds light on the impact of the selling mode when start

prices are similar.

Insert table 3 about here

For both selling modes, table 3 shows the expected clear inverse relation between the

start price and the selling probability. With one exception for posted prices, the selling

probability is consistently decreasing from category to category. For auctions, the selling

probability is almost 100% for mark-ups below two, which can be attributed to the fact

that most auctions in this category entail the minimum start price of one Euro only.

Selling probabilities then decrease to less than 19% for mark-ups above 6. For posted

prices, the impact of the start price is less pronounced as the selling probability is still

40% even for start prices above six.

Recall that model 3 in table 2 shows that, when considering the whole data set and

without controlling for start prices, the mark ups for successful auctions are considerably

lower compared to posted prices. We now disaggregate the analysis by separating the

regressions for the different categories of start prices in table 3.

Insert table 4 about here

For easier reference, the last column repeats the aggregated regression from table 2,

which shows that auctions sell at lower prices than posted-price offers do. Notably, how-

ever, the coefficients for the auction dummy are largely heterogenous across the intervals

of start prices: For the two intervals with the lowest start prices, the auction dummy

is significantly positive, for the three intermediate intervals it is insignificant, and it is

significantly negative only for the interval with mark-ups above six. Hence, when we

disaggregate by intervals, we no longer find that the mark-ups for sold items are always

higher for posted prices.

Summarizing, table 4 shows that auctions sell at lower prices than posted-price items

do, but that this effect is driven by lower start prices. Consequently, in order to gain a

better understanding on the actual impact of the selling mode on selling probabilities and

revenues, we need to control for the start price.
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Insert table 5 about here

Table 5 reports the results of probit estimations on selling probabilities. For easier

reference, model (1) repeats model (2) of table 2 and does not control for the start price. It

shows a highly significant positive effect of the auction dummy on the selling probability.

However, controlling for the logarithm of the start price in model (2) reverses the result

and yields a significantly negative coefficient.20 Hence, the positive coefficient of the

auction dummy in Model (1) is driven by the fact that, in our data set, the vast majority

of auctions had a very low start price and, consequently, were successful.21 Overall, model

(2) of table 5 confirms Hypothesis 5. Our theory shows that, for posted prices ever to

be profitable for sellers, there must be some buyers who strictly prefer a posted-price

transaction over an auction with the same reserve price. In this respect, model (2) of

table 5 provides evidence that this is indeed the case.

The Probit model (2) in which we control for the selling mode is based on the rather

strong assumption that the regressors have similar effects on the selling probability across

selling modes: The probit model for this regression is given by

pi =





Φ
(
β̂0 + β̂S ln Si + β̂A + β̂xxi

)
, if i is auctioned;

Φ
(
β̂0 + β̂S ln Si + β̂xxi

)
, if i is offered at a posted price,

(2)

where Φ(.) denotes the standard normal distribution, Si is the start price and xi the

observable characteristics of item i, and β̂0, β̂S, β̂A and β̂x are the parameter estima-

tions for the constant, the start price, the auction dummy and the items’ characteristics,

respectively.

In order to avoid the assumption that the impact of the control variables is the same

for both sales modes, models (3) and (4) consider auctions and posted prices in separate

regressions. We will later refer to the notation used in the following formalization of the

estimated selling probabilities for the respective subsamples:

pA
i = Φ

(
β̂A

0 + β̂A
S ln Si + β̂A

x xi

)
= Φ(ŷA

i ) (3)

pF
i = Φ

(
β̂F

0 + β̂F
S ln Si + β̂F

x xi

)
= Φ(ŷF

i ) (4)

20We use the logarithm to account for the nonlinear relationship between the impacts of the start price

and other characteristics of the item: While the start price is irrelevant even for a winning bidder’s utility

as long as there are at least two bidders whose valuations exceed it, the item’s characteristics are always

relevant for the winning bidder, and the selling mode may even be relevant upon mere participation.
21The cheapest item that ever went unsold in our dataset had a mark-up of 0.8333, and 9, 397 out of

our 12, 315 observations had mark-ups below.
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where ŷk
i denotes the predicted argument of the probability function for the regression

based on the data for selling mode k. An important result is that the start price partic-

ularly matters for auctions: increasing the logarithm of the mark-up for the start price

by one reduces the selling probability for auctions by 63 percentage points in auctions

compared to 24 percentage points with posted prices.

5.4 Selling Probabilities and the Ranking of Selling Modes

In our theoretical model, the relationship between expected revenue in the case where

an item is sold and the selling probability was represented by a (P, R)–plot for each

selling mode. The main result of the model is that there is a single cutting point for

the (P,R)–plots for auctions and posted prices, so that posted prices dominate auctions

if an only if the selling probability is below some probability p̂ and vice versa. The

aforementioned empirical finding that the impact of start prices on selling probabilities

is far more pronounced for auctions compared to posted prices already indicates that

auctions may only be superior if one wants to keep the selling probability, implemented

via the start price, at a high level.

In order to analyze the ranking of the two selling modes for given selling probabilities,

our first step is to calculate, for each item offered in an auction, the posted price that

would have matched the auction’s selling probability had the item been offered under

that selling mode. As auctions and posted prices differ both with respect to the selling

probabilities and the selling prices, this is the appropriate way of making the two selling

modes comparable. Whenever an auction yields a higher revenue for a given selling

probability than a posted price does, then a seller would have been better off by choosing

an auction rather than a posted price, and vice versa. In a second step, we then regress

the difference between the actual auction price and the estimated posted price on the

auction’s reserve price, which serves as a proxy for the selling probability. In a way, this

difference is the vertical distance between the (P, R)-plots for auctions and posted prices.

We will see that, in line with the single crossing property of the (P, R)-plots derived in the

theoretical model, this difference is strictly increasing in the selling probability. Hence,

the optimal selling mode indeed depends on the selling probability the seller (implicitly)

wants to implement by choosing the start price in the way predicted by Hypothesis 6.

For the first step, recall the Probit regression in model (2) of table 5. Suppose that

observation i is an auction, so that the upper case of Equation (2) above applies. We

calculate the posted price Fi at which the item would have had to be offered so as to
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keep the selling probability constant by substituting Fi for Si in the lower case of (2), and

equate both cases. Solving for Fi yields

Fi = eβ̂A/β̂SSi. (5)

Hence, if Ri denotes the selling price of the auction observed, the excess selling price of

auction i over a hypothetical posted-price offer with the same selling probability, denoted

by ESPi, is

ESPi = Ri − Fi = Ri − eβ̂A/β̂SSi. (6)

Model (1) of table 6 estimates this excess selling price ESPi for all auctions in our

dataset by using the logarithmic start price as an independent variable along with the

usual control variables.22 The coefficient of the logarithmic start price is highly signif-

icantly negative, that is, the excess return of auctions compared to posted prices with

the same selling probability decreases in the start prices. Thus, the lower the selling

probability a seller is willing to accept by choosing a higher start price, the better is the

performance of posted prices compared to auctions. This confirms our Hypothesis 6 as

derived in the theoretical model.

Insert table 6 about here

As we have just discussed, model (1) of table 6 estimates the impact of the start price

on the difference between the selling price in the auction and the hypothetical posted

price at which an auctioned item would have had to be offered to yield the same selling

probability. For doing so, we use the parameter estimates from a single probit regression

for both types of selling modes. However, this is appropriate only if the independent

variables have the same influence under both selling modes. Comparing the separate

probit regressions for auctions and posted prices (models (3) and (4) of table 5) reveals

that the convex shape of the selling probability in the time remaining until kickoff in model

(2) is entirely driven by the posted prices. For auctions, on the other hand, the weakly

significant coefficient of the quadratic remaining time suggest, if anything, a concave

pattern.

Hence, we redo the whole exercise with estimates from the two separate Probit re-

gressions given in models (3) and (4) of table 5 as a robustness check. As a preliminary

22Note that, since (P, R)-plots are a concept related to revenue conditional on sale, the regressions in

table 6 include only sold items and, thus, do not require a censored normal regression. Doing this, the

number of observations is reduced to n=10,409. For further discussions on estimations of conditional and

unconditional revenue see also Goncalves (2013).
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step, we use the estimates from model (3) to predict the argument ŷA
i of the probability

function in (3) for both auctions and posted prices. Similarly, we use the estimates from

model (4) to predict the corresponding ŷF
i , again both for auctions and for posted prices.

Again, we can calculate the hypothetical posted price F ′
i by equating the right-hand sides

of (3) and (4):

F ′
i = e(ŷA

i −β̂F
0 −β̂F

x xi)/β̂F
S = e(ŷA

i −ŷF
i +β̂F

S ln Si)/β̂F
S (7)

The excess selling price of auction i over a hypothetical posted-price offer with the same

selling probability is then

ESP ′
i = Ri − F ′

i = Ri − e(ŷA
i −ŷF

i +β̂F
S ln Si)/β̂F

S . (8)

Model (2) of table 6 shows that our main result that the excess return of auctions is

decreasing in the start price (and, thus, increasing in the desired selling probability) is

robust.23 The impact of our control variables is also basically the same in both estimations,

with the exception of the remaining time to the match. The difference of this variable

is intuitive as the remaining time is less important for posted prices due to the lower

transaction costs.

We had argued earlier that the difference between actual revenue of an auction and

the hypothetical posted price that would have been sold with the same probability, which

serves as the endogenous variable in the regressions presented in table 6, represents indeed

the vertical distance between the (P, R)-plots of auctions and posted prices. The negative

sign of the coefficient for the reserve price in table 6 confirmed our single crossing result

from the theoretical model. Another way of illustrating how our theoretical model is

confirmed by our data is to directly look at (P,R)-plots generated by our data. For the

specifications of our respective empirical models, our parameter estimates can be used to

derive the shapes of these plots for any combination of item characteristics.

For instance, suppose that selling probabilities for auctions and posted prices are

given by equations (3) and (4), respectively. Then, the (P, R)-plot for posted prices is

immediately given by the inverse of (4), as revenue conditional on sale is equal to the

start price in this case. However, this will typically not be the case for auctions, so that

23Another objection could be that, due to the high number of auctions without any reserve price set,

these auctions may drive the results in a trivial way. However, applying the whole procedure set out

in this Subsection to a subsample that excludes auctions without a reserve price yields qualitatively the

same results, which are given in the appendix in tables 7 (which corresponds to the main table 5) and 8

(corresponding to table 6).
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we need to estimate the relationship between reserve prices and revenue conditional on

sale first. The empirical model for this estimation is:24

Ri = α̂0 + α̂SSi + α̂xxi. (9)

Solving (9) for Si and substituting for Si in (3) yields the inverse of the (P, R)-plot for

auctions.

Figure 5 displays the (P, R)-plots obtained in this way for the case where all continuous

variables are at their means and all categoric variables are at the reference category. Again,

the single crossing result with the (P,R)-plot for auctions cutting that for posted prices

from below is confirmed.

6 Concluding Remarks

The model of competing mechanisms in Section 3 offers a general discussion of the trade-

off between prices conditional on sale and the selling probability, and its implications for

the existence of monotone equilibria in a framework of private values. As the existence

theorem for monotone equilibria in Athey (2001) is formulated for types drawn from an

atomless joint probability distribution (thereby allowing for interdependent values), it is

worthwhile to discuss how essential the assumption of private values actually is. In the

proof of our Theorem 1, we only need the assumption of private values to guarantee that

the set of undominated mechanisms (and its ordering) for a given strategy of other sellers

does not depend on a seller’s type. Consider, for instance, the comparison of posted prices

and auctions in a set-up with correlated valuations of sellers and buyers. A low valuation

seller (who expects buyers to have predominately low valuations) may then consider an

auction with a high reserve price inferior to a high posted price as the auction is unlikely

to be visited by a buyer, whereas the posted price may be attractive to buyers with large

auction specific transaction costs. In contrast, a high valuation seller (who expects buyers

to have high valuations) may consider the same auction superior to the posted price as she

expects multiple high valuation buyers to participate in the auction. However, as long as

all available mechanisms can be easily ordered according to their acceptance probability

(consider, for instance, auctions with different reserve prices), our Theorem 1 can be

extended to joint probability distributions as in Athey (2001), Theorem 1.

The specific model in Section 4 utilizes the existence of monotone equilibria to demon-

strate the superiority of auctions in the absence of auction specific transaction costs and

24The result of this estimation is given in table 9 in the Appendix.
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the single-crossing of optimal mechanisms in the presence of transaction costs. In the

model, these results are based on the ability of competing auctions (with cross-bidding)

to retrieve market clearing prices – and the inability of posted prices to offer mutually

beneficial deals as long as buyers and sellers have sufficiently similar expectations regard-

ing market clearing prices. In this sense, our model gives a “better shot” at auctions than

the usual approach of the literature that assumes a commitment to a particular mecha-

nism of a particular seller either before or after the buyer learns his own valuation (see

McAfee (1993), Peters (1997), Virag (2010), Hammond (2013), or Bauner (2010)).

Admittedly, posted prices appear to have a rather limited appeal to sellers in our

model since they are no longer available after the auction started, and because buyers

cross-bid in auctions and refrain from sniping. However, the same outcome would result

in a model where posted prices remain valid and buyers execute a posted price only if the

market price reaches the posted price, or in a model where buyers and sellers do not differ

too much in their beliefs regarding final auction prices and sellers can costlessly replace

posted prices by auctions. If all buyers engaged in sniping (i.e. wait until the last minute

of an auction and submit a incremental bid above the reservation price), then an auction

with reserve price f and a posted price f + δ would result in identical selling probabilities

and prices in the absence of institution specific transaction costs. But as soon as a fraction

of buyers cross-bid as in our model, our results can be restored. In contrast, however,

posted prices would certainly become more attractive for sellers if buyers systematically

overshot with their expectations of market clearing prices (e.g. due to a representativeness

bias). As long as only a small group of buyers is expected to exhibit this bias, we would

still recover the single-crossing result as obtained in our model and tested with our data.

Empirically, we have used ticket sales for the European Soccer Championship to test

the hypotheses drawn from our model. Our most important result is that, when selling

probabilities are identical for the two sales modes, auctions lead to higher expected rev-

enues if and only if selling probabilities are high. This confirms our main Hypothesis 6

from the theoretical model that the (P, R)–plot for auctions cuts that for posted prices

from below.

To see the value added of our empirical strategy, recall that a large body of empiri-

cal literature has shown that, on average, posted prices yield larger revenues compared

to auctions when the items are actually sold, but at the expense of lower selling prob-

abilities. To the best of our knowledge, our paper is the first to compare the revenues

from posted prices and auctions with identical selling probabilities. Controlling for selling
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probabilities is, in our view, an appropriate way of making the revenues from auctions

and posted prices comparable to each other (without a reference to seller experiments as

in Einav et al. (2013)). Hence, the empirical strategy follows the theoretical model which

identifies the undominated (P, R)–plot and, therefore, the selling mode that maximizes a

seller’s revenues for her individually optimal selling probability, which is determined by

her reservation value.

Let us now add some methodological remarks concerning the link between our model

and the empirical analysis. In our model, the reservation values determine the sellers’

choice of the selling probabilities in the envelope of the (P, R)–plot, and thereby also the

choice of the sales mechanism. For the empirical analysis, this means that the self-selection

to sales modes is driven by a variable that is unobservable to us, and for which we cannot

think of a good proxy or instrument. This raises two issues: First, we cannot directly test

whether reservation values are in fact decisive for the choice of the mechanism. All we can

say is that our empirical results strongly confirm the hypotheses derived from the theory.

Furthermore, other papers using inventories as proxies for reservation values (Hammond,

2010) support that self selection is driven by reservation values. Hence, we might say that

our theory adds to our general understanding of self-selection into different sales modes.

The second potential issue concerns our empirical comparison of the (P,R)–plots for

the two sales modes. Our main result is that a seller who wants to implement a high

selling probability gets higher expected revenue with auctions, while higher revenues are

realized with posted prices for low selling probabilities. For any selling probability that a

seller may prefer, our analysis, therefore, identifies her optimal mechanism choice. Note

that, for such a conclusion, unobserved heterogeneity on reservation values is no problem:

The reservation value determines the optimal selling probability, but for a given selling

probability, the mechanism that yields higher revenue is superior for each seller type.

While unobserved heterogeneity of reservation values themselves is thus no concern for

our empirical strategy, a potential endogeneity problem arises when these reservation val-

ues are correlated with other unobservable attributes of sellers, and when these attributes

influence revenue in the two sales modes in different ways even for identical selling prob-

abilities. To see this, recall that, when we estimate revenue in auctions by controlling

for selling probabilities, we can only use data from sellers who self-selected into auctions.

When we then estimate the hypothetical revenue of a posted-price seller in an auction,

we assume that this seller faces the same (P,R)–plot as auction sellers do. However, we

cannot fully exclude that posted-price sellers would behave in a different way in auctions
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with regards to side factors influencing the revenue, such as the auction duration and

the day on which an auction ends. If the sellers’ attributes which determine these side

factors are correlated with the factors determining their desired selling probabilities, then

the revenue of a posted-price seller switching to an auction can be slightly different from

the average revenue estimated from our auction data, even after controlling for the selling

probability. Note, however, that the main attributes that buyers are interested in, such

as the category and the number of tickets, are observable to us, so that we can control for

them. Hence, the assumption that sellers face identical (P,R)–plots seems reasonable.
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Table 1: Summary Statistics.

Whole sample Auctions Posted prices

(n = 12, 315) (n = 10, 715) (n = 1, 600)

Start price 1.038 0.337 5.728

(5.858) (1.282) (11.217)

Selling frequency 0.916 0.971 0.546

Selling price (if sold) 4.035 3.963 4.892

(4.169) (3.872) (6.917)

Category 1 0.202 0.199 0.221

Category 2 0.509 0.513 0.484

Category 3 0.289 0.288 0.295

1 Ticket 0.142 0.141 0.147

2 Tickets 0.745 0.771 0.575

3+ Tickets 0.113 0.088 0.278

Simultaneous homogenous offers 72.00 72.77 66.86

(4694.97) (4676.01) (4794.57)

Remaining time (until kickoff / days) 20.78 20.48 22.75

Duration 1 or 3 days 0.421 0.423 0.404

Duration 5 days 0.188 0.195 0.144

Duration 7 days 0.241 0.252 0.171

Duration 10 days 0.150 0.130 0.281

End of auction on

Saturday 0.103 0.101 0.116

Sunday 0.271 0.288 0.154

Evening (6 to 10 p.m.) 0.686 0.713 0.504

Variance in brackets.
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Table 2: Determinants of Start Prices, Selling Probabilities and Selling Prices.

(1) (2) (3)

Dep. Variable Start Price Sold (1 = yes) Selling Price

Estimation OLS Probit Censored Normal

Auction (1=yes) -5.2954*** 0.4091*** -0.4824***

(0.0843) (0.0144) (0.0515)

Days left to match 0.0094 -0.0071*** -0.1151***

(0.0226) (0.0027) (0.0206)

Days left to match squared -0.0021 0.0004* 0.0038**

(0.0019) (0.0002) (0.0018)

Number of competing offers -0.0008** -0.0002*** -0.0056***

(0.0003) (0.0000) (0.0003)

End of auction (dummies)

Saturday 0.0582 -0.0095 0.1075**

(0.0475) (0.0062) (0.0423)

Sunday -0.0114 -0.0102** -0.0758***

(0.0344) (0.0046) (0.0273)

Evening (6 to 10pm) -0.1534*** 0.0022 -0.0647**

(0.0331) (0.0037) (0.0259)

Ticket quality (base: top quality)

Medium quality 0.1870*** -0.0078 0.5853***

(0.0337) (0.0050) (0.0318)

Regular seats 0.6629*** -0.0041 2.7447***

(0.0452) (0.0052) (0.0394)

Number of offered tickets (base: 1)

2 tickets 0.1280*** 0.0058 0.6794***

(0.0402) (0.0053) (0.0374)

3 or more tickets 0.2368*** -0.0086 0.5197***

(0.0652) (0.0071) (0.0520)

Duration of posting (base: 3 days)

5 days -0.0236 0.0166*** 0.2935***

(0.0406) (0.0038) (0.0312)

7 days -0.0161 0.0206*** 0.3799***

(0.0380) (0.0040) (0.0343)

10 days 0.0791 0.0159*** 0.4928***

(0.0555) (0.0041) (0.0398)

Intercept 5.1128*** 2.9360***

(0.2560) (0.1536)

Match Dummies Yes Yes Yes

Observations 12,315 12,315 12,315

Robust standard errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and 1-percent levels,

respectively. For model (2), marginal effects calculated at the mean of all variables are reported.
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Table 4: Estimations on Selling Prices by Start Price Categories.

S < 2 2 ≤ S < 3 3 ≤ S < 4 4 ≤ S < 5 5 ≤ S < 6 6 ≤ S All

Auction (1=yes) 1.1087*** 0.3205** 0.1354 0.1822* -0.1085 -1.0428* -0.4824***

(0.1624) (0.1276) (0.1139) (0.0977) (0.0858) (0.5547) (0.0515)

Days left to match -0.1045*** 0.0182 -0.0522 -0.1338** -0.1256*** -0.8242*** -0.1151***

(0.0221) (0.0928) (0.0622) (0.0633) (0.0443) (0.1738) (0.0206)

Days left to match squared 0.0034* -0.0031 -0.0007 0.0078 0.0063** 0.0545*** 0.0038**

(0.0019) (0.0084) (0.0043) (0.0048) (0.0029) (0.0144) (0.0018)

Number of competing offers -0.0051*** -0.0025* -0.0034*** -0.0037*** -0.0030*** -0.0205*** -0.0056***

(0.0003) (0.0015) (0.0013) (0.0012) (0.0011) (0.0039) (0.0003)

End of auction (dummies)

Saturday 0.0826** 0.0728 0.1753 0.2309 0.0104 0.1973 0.1075**

(0.0393) (0.1592) (0.1902) (0.1631) (0.1057) (0.5303) (0.0423)

Sunday -0.0628** -0.0436 -0.0712 -0.0094 -0.1151 -0.6678 -0.0758***

(0.0284) (0.1453) (0.1067) (0.1170) (0.1005) (0.4501) (0.0273)

Evening (6 to 10pm) -0.0606** 0.1209 -0.0773 0.0732 0.0624 -0.5784* -0.0647**

(0.0264) (0.0974) (0.0826) (0.0793) (0.0681) (0.2989) (0.0259)

Ticket quality (base: top quality)

Medium quality 0.6052*** 0.1134 0.2681*** 0.1933* 0.2358** 0.1234 0.5853***

(0.0302) (0.1161) (0.0993) (0.0998) (0.1056) (0.7275) (0.0318)

Regular seats 2.7382*** 1.4344*** 1.4105*** 0.8409*** 0.9959*** 2.7233*** 2.7447***

(0.0391) (0.2255) (0.2122) (0.1893) (0.1565) (0.5977) (0.0394)

Number of offered tickets (base: 1)

2 tickets 0.6547*** -0.0914 0.5014** 0.3880*** 0.4773*** 1.3441** 0.6794***

(0.0364) (0.1637) (0.2300) (0.1277) (0.1136) (0.6024) (0.0374)

3 or more tickets 0.4792*** 0.0174 0.4790** 0.3343*** 0.4107*** 0.6720 0.5197***

(0.0522) (0.2142) (0.2264) (0.1258) (0.1104) (0.5817) (0.0520)

Duration of posting (base: 3 days)

5 days 0.2820*** 0.4139** 0.3988** 0.1178 0.3174** -0.5968* 0.2935***

(0.0320) (0.2038) (0.1557) (0.0968) (0.1570) (0.3464) (0.0312)

7 days 0.3519*** 0.3571** 0.0963 0.2560** 0.2709*** 0.1956 0.3799***

(0.0339) (0.1577) (0.1324) (0.1093) (0.0938) (0.4213) (0.0343)

10 days 0.4415*** 0.5989** 0.5327*** 0.1584 0.3830*** 0.4485 0.4928***

(0.0414) (0.2398) (0.1323) (0.1060) (0.0946) (0.3304) (0.0398)

Intercept 1.5135*** 2.4889*** 2.6176*** 3.4805*** 4.9319*** 4.0718*** 2.9360***

(0.2265) (0.1848) (0.3597) (0.2126) (0.1754) (1.0255) (0.1536)

Match Dummies Yes Yes Yes Yes Yes Yes Yes

Observations 10,106 434 433 347 302 693 12,315

The dependent variable is the selling price, and the estimations are censored normal. Robust standard errors in parentheses.

*, ** and *** denote significance at 10-percent, 5-percent and 1-percent levels, respectively.
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Table 5: Probit Estimations on Selling Probabilities (1=sold).

(1) (2) (3) (4)

Selling mode All All Auctions only Posted Prices only

Auction (1=yes) (d) 0.4091*** -0.1169***

(0.0144) (0.0144)

ln Start Price -0.5735*** -0.6258*** -0.2455***

(0.0298) (0.0453) (0.0387)

Days left to match -0.0071*** -0.0427*** 0.0400** -0.0367***

(0.0027) (0.0107) (0.0197) (0.0106)

Days left to match squared 0.0004* 0.0023*** -0.0036** 0.0022***

(0.0002) (0.0009) (0.0016) (0.0007)

Number of competing offers -0.0002*** -0.0016*** -0.0004 -0.0010***

(0.0000) (0.0002) (0.0003) (0.0002)

End of auction (dummies)

Saturday -0.0095 -0.0207 0.0152 -0.0222

(0.0062) (0.0239) (0.0366) (0.0154)

Sunday -0.0102** -0.0588*** -0.0194 -0.0480***

(0.0046) (0.0209) (0.0328) (0.0182)

Evening (6 to 10pm) 0.0022 -0.0379*** -0.0577** -0.0069

(0.0037) (0.0136) (0.0231) (0.0079)

Ticket quality (base: top quality)

Medium quality -0.0078 0.1036*** 0.0454 0.0575***

(0.0050) (0.0220) (0.0409) (0.0154)

Regular seats -0.0041 0.2645*** 0.2870*** 0.1108***

(0.0052) (0.0182) (0.0290) (0.0186)

Number of offered tickets (base: 1)

2 tickets 0.0058 0.1098*** 0.0633 0.0551***

(0.0053) (0.0256) (0.0421) (0.0151)

3 or more tickets -0.0086 0.0586*** 0.0415 0.0322***

(0.0071) (0.0189) (0.0424) (0.0109)

Duration of posting (base: 3 days)

5 days 0.0166*** 0.0625*** 0.0837*** 0.0210**

(0.0038) (0.0165) (0.0251) (0.0093)

7 days 0.0206*** 0.0974*** 0.1009*** 0.0306***

(0.0040) (0.0172) (0.0290) (0.0107)

10 days 0.0159*** 0.1000*** 0.0562 0.0508***

(0.0041) (0.0149) (0.0420) (0.0129)

Match Dummies Yes Yes Yes Yes

Observations 12,315 12,315 10,565 1,600

The dependent variable is Sold (1 = yes). The table displays marginal effects calculated at ln Si = 1 and at the mean of

all other variables. Robust standard errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and

1-percent levels, respectively.
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Table 6: OLS Estimations on Excess Selling Prices (ESP) of Auctions for Sold Items.

(1) (2)

Dep. Variable ESP ESP ′

ln Start Price -0.4628*** -0.4299***

(0.0093) (0.0098)

Days left to match -0.1102*** -0.0307

(0.0229) (0.0232)

Days left to match squared 0.0033 -0.0024

(0.0020) (0.0021)

Number of competing offers -0.0050*** -0.0039***

(0.0003) (0.0003)

End of auction (dummies)

Saturday 0.1076*** 0.1329***

(0.0413) (0.0416)

Sunday -0.0760*** -0.0465

(0.0294) (0.0290)

Evening (6 to 10pm) -0.0553** -0.0901***

(0.0281) (0.0279)

Ticket quality (base: top quality)

Medium quality 0.7175*** 0.6557***

(0.0318) (0.0320)

Regular seats 3.0046*** 2.9657***

(0.0409) (0.0407)

Number of offered tickets (base: 1)

2 tickets 0.3330*** 0.3048***

(0.0391) (0.0385)

3 or more tickets -0.0664 -0.0492

(0.0568) (0.0563)

Duration of posting (base: 3 days)

5 days 0.3041*** 0.2989***

(0.0344) (0.0335)

7 days 0.3544*** 0.3713***

(0.0355) (0.0348)

10 days 0.4664*** 0.4244***

(0.0428) (0.0430)

Intercept 0.2715 0.4520**

(0.2073) (0.1884)

Match Dummies Yes Yes

Observations 10,409 10,259

Estimations are OLS. Robust standard errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent

and 1-percent levels, respectively.
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Table 7: Probit Estimations on Selling Probabilities Excluding Auctions without Reserve

Price.

(1) (2) (3) (4)

All All Auctions only Posted Prices only

Auction (1=yes) (d) 0.2646*** -0.1226***

(0.0178) (0.0154)

ln Start Price -0.4469*** -0.7548*** -0.2455***

(0.0190) (0.0493) (0.0387)

Days left to match -0.0674*** -0.0333*** 0.0482** -0.0367***

(0.0139) (0.0085) (0.0242) (0.0106)

Days left to match squared 0.0043*** 0.0018*** -0.0043** 0.0022***

(0.0012) (0.0007) (0.0019) (0.0007)

Number of competing offers -0.0014*** -0.0012*** -0.0004 -0.0010***

(0.0002) (0.0001) (0.0003) (0.0002)

End of auction (dummies)

Saturday -0.0256 -0.0163 0.0184 -0.0222

(0.0281) (0.0188) (0.0447) (0.0154)

Sunday -0.0941*** -0.0476*** -0.0234 -0.0480***

(0.0244) (0.0174) (0.0396) (0.0182)

Evening (6 to 10pm) -0.0364** -0.0302*** -0.0723** -0.0069

(0.0178) (0.0110) (0.0290) (0.0079)

Ticket quality (base: top quality)

Medium quality -0.0016 0.0814*** 0.0550 0.0575***

(0.0259) (0.0171) (0.0498) (0.0154)

Regular seats -0.0277 0.1951*** 0.3209*** 0.1108***

(0.0266) (0.0132) (0.0279) (0.0186)

Number of offered tickets (base: 1)

2 tickets 0.0282 0.0841*** 0.0749 0.0551***

(0.0264) (0.0191) (0.0487) (0.0151)

3 or more tickets -0.0141 0.0461*** 0.0511 0.0322***

(0.0311) (0.0149) (0.0530) (0.0109)

Duration of posting (base: 3 days)

5 days 0.0701*** 0.0473*** 0.1026*** 0.0210**

(0.0239) (0.0125) (0.0311) (0.0093)

7 days 0.1102*** 0.0722*** 0.1225*** 0.0306***

(0.0243) (0.0127) (0.0348) (0.0107)

10 days 0.0851*** 0.0779*** 0.0685 0.0508***

(0.0263) (0.0119) (0.0520) (0.0129)

Match Dummies Yes Yes Yes Yes

Observations 3,096 3,096 1,476 1,600

The dependent variable is Sold (1 = yes). The table displays marginal effects calculated at ln Si = 1 and at the mean of

all other variables. Robust standard errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and

1-percent levels, respectively.
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Table 8: OLS Estimations on Excess Selling Prices (ESP) of Auctions for Sold Items,

Excluding Auctions without Reserve Price.

(1) (2)

Dep. Variable ESP ESP ′

ln Start Price -0.8003*** -0.7569***

(0.0458) (0.0476)

Days left to match -0.1226 0.4513***

(0.0789) (0.0852)

Days left to match squared 0.0023 -0.0393***

(0.0071) (0.0082)

Number of competing offers -0.0035*** 0.0045***

(0.0011) (0.0012)

End of auction (dummies)

Saturday 0.1411 0.4152***

(0.1169) (0.1235)

Sunday -0.1325 0.1631

(0.1039) (0.1039)

Evening (6 to 10pm) -0.0741 -0.2439***

(0.0860) (0.0884)

Ticket quality (base: top quality)

Medium quality 0.3079*** -0.0965

(0.1012) (0.1056)

Regular seats 1.4411*** 1.6234***

(0.1391) (0.1457)

Number of offered tickets (base: 1)

2 tickets 0.3384*** -0.0311

(0.1255) (0.1189)

3 or more tickets 0.2034 -0.1156

(0.1759) (0.1706)

Duration of posting (base: 3 days)

5 days 0.4028*** 0.4620***

(0.1235) (0.1200)

7 days 0.2210* 0.3419***

(0.1291) (0.1243)

10 days 0.4010** 0.0779

(0.1598) (0.1587)

Intercept 0.4933 0.6262

(0.7163) (0.5392)

Match Dummies Yes Yes

Observations 1,190 1,170

Estimations are OLS. Robust standard errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent

and 1-percent levels, respectively.
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Table 9: OLS Estimation on Revenue for Sold Items.

Start Price 0.0767**

(0.0371)

Days left to match -0.1138***

(0.0218)

Days left to match squared 0.0040**

(0.0019)

Number of competing offers -0.0053***

(0.0003)

End of auction (dummies)

Saturday 0.0978**

(0.0389)

Sunday -0.0627**

(0.0283)

Evening (6 to 10pm) -0.0459*

(0.0265)

Ticket quality (base: top quality)

Medium quality 0.6071***

(0.0301)

Regular seats 2.7241***

(0.0385)

Number of offered tickets (base: 1)

2 tickets 0.6549***

(0.0365)

3 or more tickets 0.4918***

(0.0525)

Duration of posting (base: 3 days)

5 days 0.2845***

(0.0323)

7 days 0.3552***

(0.0336)

10 days 0.4615***

(0.0408)

Intercept 2.5962***

(0.1694)

Match Dummies Yes

Observations 10,409

The dependent variable is revenue conditional on sale, and the estimation is OLS. Robust standard

errors in parentheses. *, ** and *** denote significance at 10-percent, 5-percent and 1-percent levels,

respectively.
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Figure 5: A (P,R)-plot derived from observed bidder behavior.
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hias Sutter: Donations, risk attitudes and time preferences: A study on al-
truism in primary school children forthcoming in Journal of Economic Beha-
vior and Organization

2014-20 Christian Kleiber, Achim Zeileis: Visualizing count data regressions using
rootograms

2014-19 Matthias Siller, Christoph Hauser, Janette Walde, Gottfried Tapp-
einer: The multiple facets of regional innovation

2014-18 Carmen Arguedas, Esther Blanco: On fraud and certification of corporate
social responsibility

2014-17 Achim Zeileis, Christoph Leitner, Kurt Hornik: Home victory for Brazil
in the 2014 FIFA World Cup

2014-16 Andreas Exenberger, Andreas Pondorfer, Maik H. Wolters: Estima-
ting the impact of climate change on agricultural production: accounting for
technology heterogeneity across countries

2014-15 Alice Sanwald, Engelbert Theurl: Atypical employment and health: A
meta-analysis

2014-14 Gary Charness, Francesco Feri, Miguel A. Meléndez-Jiménez,
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