
Fokkema, Marjolein; Smits, Niels; Zeileis, Achim; Hothorn, Torsten; Kelderman,
Henk

Working Paper

Detecting treatment-subgroup interactions in clustered
data with generalized linear mixed-effects model trees

Working Papers in Economics and Statistics, No. 2015-10

Provided in Cooperation with:
Institute of Public Finance, University of Innsbruck

Suggested Citation: Fokkema, Marjolein; Smits, Niels; Zeileis, Achim; Hothorn, Torsten; Kelderman,
Henk (2015) : Detecting treatment-subgroup interactions in clustered data with generalized linear
mixed-effects model trees, Working Papers in Economics and Statistics, No. 2015-10, University of
Innsbruck, Research Platform Empirical and Experimental Economics (eeecon), Innsbruck

This Version is available at:
https://hdl.handle.net/10419/122205

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/122205
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Detecting treatment-subgroup
interactions in clustered data with
generalized linear mixed-effects
model trees

Marjolein Fokkema, Niels Smits, Achim Zeileis,
Torsten Hothorn, Henk Kelderman

Working Papers in Economics and Statistics

2015-10

University of Innsbruck

http://eeecon.uibk.ac.at/



University of Innsbruck
Working Papers in Economics and Statistics

The series is jointly edited and published by

- Department of Banking and Finance

- Department of Economics

- Department of Public Finance

- Department of Statistics

Contact address of the editor:

Research platform “Empirical and Experimental Economics”

University of Innsbruck

Universitaetsstrasse 15

A-6020 Innsbruck

Austria

Tel: + 43 512 507 7171

Fax: + 43 512 507 2970

E-mail: eeecon@uibk.ac.at

The most recent version of all working papers can be downloaded at

http://eeecon.uibk.ac.at/wopec/

For a list of recent papers see the backpages of this paper.



Detecting Treatment-Subgroup Interactions in

Clustered Data with Generalized Linear

Mixed-E↵ects Model Trees

Marjolein Fokkema
Universiteit Leiden

Niels Smits
Universiteit van Amsterdam

Achim Zeileis
Universität Innsbruck

Torsten Hothorn
Universität Zürich
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Abstract

Identification of subgroups of patients for which treatment A is more e↵ective than
treatment B, and vice versa, is of key importance to the development of personalized
medicine. Several tree-based algorithms have been developed for the detection of such
treatment-subgroup interactions. In many instances, however, datasets may have a clus-
tered structure, where observations are clustered within, for example, research centers,
studies or persons. In the current paper we propose a new algorithm, generalized linear
mixed-e↵ects model (GLMM) trees, that allows for detection of treatment-subgroup in-
teractions, as well as estimation of cluster-specific random e↵ects. The algorithm uses
model-based recursive partitioning (MOB) to detect treatment-subgroup interactions,
and a GLMM for the estimation of random-e↵ects parameters. In a simulation study,
we evaluate the performance of GLMM tree and compare it with that of MOB without
random-e↵ects estimation. GLMM tree was found to have a much lower Type I error rate
than MOB trees without random e↵ects (4% and 33%, respectively). Furthermore, in
datasets with treatment-subgroup interactions, GLMM tree recovered the true treatment
subgroups much more often than MOB without random e↵ects (in 90% and 61% of the
datasets, respectively). Also, GLMM tree predicted treatment outcome di↵erences more
accurately than MOB without random e↵ects (average predictive accuracy of .94 and .88,
respectively). We illustrate the application of GLMM tree on a patient-level dataset of
a meta-analysis on the e↵ects of psycho- and pharmacotherapy for depression. We con-
clude that GLMM tree is a promising algorithm for the detection of treatment-subgroup
interactions in clustered datasets.

Keywords: model-based recursive partitioning, treatment-subgroup interactions, random ef-
fects, generalized linear mixed-e↵ects model, classification and regression trees.

1. Introduction

In research assessing the e�cacy of treatments for somatic and psychological disorders, the
one-size-fits-all paradigm is slowly losing ground, and personalized medicine is becoming in-
creasingly important. Stratified medicine presents the challenge of finding which patients
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respond best to which treatments. This can be referred to as the detection of treatment-
subgroup interactions (e.g., Doove, Dusseldorp, Deun, and Mechelen 2014). In most cases,
treatment-subgroup interactions are studied using linear models, such as factorial analysis of
variance techniques, in which potential moderators have to be specified a-priori, have to be
checked one at a time, and continuous moderator variables have to be discretized a-priori.
This may hamper identification of which treatments work best for whom, especially when
there are no a-priori hypotheses about treatment-subgroup interactions. As noted by Krae-
mer, Frank, and Kupfer (2006), there is a need for methods that generate, instead of test,
hypotheses and that are specifically directed at the detection of treatment interactions.

Tree-based methods are such hypothesis-generating methods, as they can automatically de-
tect subgroups which di↵er in the expected outcomes for one or more treatments. Due to their
flexibility, tree-based methods are preeminently suited to the detection of treatment-subgroup
interactions: they can handle many potential predictor variables at once and can automati-
cally detect (higher order) interactions between predictor variables (Strobl, Malley, and Tutz
2009). Several promising tree-based algorithms for the detection of treatment-subgroup inter-
actions have been developed (e.g., Dusseldorp and Mechelen 2014; Dusseldorp and Meulman
2004; Su, Tsai, Wang, Nickerson, and Li 2009; Foster, Taylor, and Ruberg 2011; Lipkovich,
Dmitrienko, Denne, and Enas 2011; Zeileis, Hothorn, and Hornik 2008; see Doove et al. 2014
for an overview). Among these methods, model-based recursive partitioning (MOB; Zeileis
et al. 2008) seems to be the most flexible tool for detecting treatment-subgroup interactions,
as it o↵ers a generic inferential framework that can be coupled with a broad range of para-
metric modeling strategies fitted by M-type estimators (Zeileis et al. 2008). Specifically, this
model class encompasses the generalized linear model (GLM). GLM-based MOB has been
successfully applied by Driessen et al. (2014) in the detection of subgroups of patients with
depression, which di↵er in the e↵ect of two di↵erent psychotherapies. Also, Seibold, Zeileis,
and Hothorn (2015) applied MOB for in the detection of subgroups of patients with amy-
otrophic lateral sclerosis (ALS), which di↵er in the e↵ect of treatment with Riluzole.

In many cases, researchers may want to detect treatment-subgroup interactions in datasets
with a clustered structure. However, none of the aforementioned tree-based algorithms allow
for taking into account the clustered structure of a dataset. For example, in individual-level
patient data meta-analyses, in which datasets of multiple trials evaluating the e↵ects of the
same treatments are pooled (e.g., Koopman, Heijden, Glasziou, Grobbee, and Rovers 2007).
In such analyses, the clustered structure of the dataset should be taken into account by includ-
ing study-specific e↵ects in the model, prompting the need for modeling random e↵ects (e.g.,
Cooper and Patall 2009; Higgins, Whitehead, Turner, Omar, and Thompson 2001). Likewise,
longitudinal datasets, and datasets from multi-center trials typically also require modeling of
random e↵ects. Ignoring the clustered structure of datasets may lead to biased inference due
to underestimated standard errors (e.g., Bryk and Raudenbush 1992; Noortgate, Opdenakker,
and Onghena 2005). More specifically, when the interest is in subgroup detection, ignoring
random e↵ects on the outcome variable may result in the detection of spurious subgroups
(e.g., Sela and Simono↵ 2012).

In the current paper, we present a tree-based algorithm for detecting treatment-subgroup in-
teractions, which takes the clustered nature of datasets into account. The algorithm combines
MOB with random-e↵ects estimates and therefore accounts for both the clustering structure
(which is not done in other tree-based treatment-subgroup interaction detection methods,
e.g., Zeileis et al. 2008; Su et al. 2009; Dusseldorp and Mechelen 2014) and the treatment
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e↵ect estimation in models with continuous and non-continuous response variables (which
is not available in previously suggested regression trees with random e↵ects, e.g., Hajjem,
Bellavance, and Larocque 2011; Sela and Simono↵ 2012).

In Section 2, we will introduce the existing frameworks for estimating treatment e↵ects:
the generalized linear model (GLM), model-based recursive partitioning (MOB), and the
generalized linear mixed-e↵ects model (GLMM). Then, we introduce our new algorithm, which
combines MOB and the GLMM: generalized linear mixed-e↵ects model trees. Subsequently,
in the Section 3, we evaluate the performance of the GLMM tree algorithm in simulated
datasets. In the Section 4, we illustrate the application of the algorithm, using an existing
dataset of a patient-level meta-analysis on the e↵ects of psycho- and pharmacotherapeutic
treatments for depression of Cuijpers et al. (2014). But before we discuss the frameworks for
estimating treatment e↵ects, we will introduce an artificial motivating data set with which
the frameworks and methods to be discussed, will be illustrated.

1.1. Artificial motivating dataset

We created a simulated dataset of 150 observations, which were randomly assigned to Treat-
ment 1 or Treatment 2. Every observation has a value for the response variable, with which
the e↵ect of treatment is assessed: the posttreatment total score on a depression inventory.
Further, all observations have values for three covariates: duration of depressive symptoms
prior to treatment in months (range 0–15); age in years (range 18–75); anxiety inventory total
score (range 3–18).

The simulated dataset has 3 subgroups with di↵erent treatment e↵ectiveness. The first sub-
group consists of observations with duration  6 and anxiety  10. In this subgroup, Treat-
ment 1 is more e↵ective than Treatment 2: the mean of the response variable is 7 for Treat-
ment 1, and 11 for Treatment 2. The second subgroup consists of observations with duration
 6 and anxiety > 10. In this subgroup, both therapies are equally e↵ective: the mean value
of the response variable is 9 for Treatment 1, and 9 for Treatment 2. The third subgroup
consists of observations with duration > 6. In this subgroup, Treatment 2 is more e↵ective
than Treatment 1: the mean value of the response variable is 12 for Treatment 1, and 7 for
Treatment 2.

Observations were drawn from one of ten clusters, each with a di↵erent, cluster-specific (i.e.,
random) intercept. Data was generated such that covariates and cluster-specific intercepts
were uncorrelated. Also, 43% of variance in posttreatment depression scores was due to
treatment-subgroup interactions, and 8% of variance was due to cluster-specific variation.

2. General modeling framework

2.1. GLM

In a clinical trial, where the outcomes of two or more treatments are compared, an overall
GLM is often used to estimate treatment e↵ects. GLMs allow for the choice of a suitable
response distribution – for example normal, binomial, or Poisson - depending on whether the
treatment outcome variable is continuous (e.g., an improvement score), binary (e.g., improved
or not), or a count (e.g., number of events in a certain time span), respectively. In all cases
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Full sample (N = 150)

●
●

Treatment 1 Treatment 2

2

17

Figure 1: Example of a normal GLM (with fixed e↵ects only) for treatment outcomes, based
on the artificial motivating dataset (N = 150). The dot for Treatment 1 represents the first,
and the slope of the regression line represents the second element of �.

the expectation µi of the outcome variable yi given the treatment regressors xi is modeled
through a linear predictor and a suitable link function:

E[yi|xi] = µi, (1)

g(µi) = x

>
i �, (2)

where x

>
i � is the linear predictor for observation i and g is the link function1. Further, xi is

a vector of fixed-e↵ects predictor variable values for observation i, of which the first element
takes a value of 1 for the intercept, and the second element takes the value of a dummy
indicator for treatment type (a value of 0 for the first, or reference treatment type, and a
value of 1 for the second, or focal treatment type). � is a vector of fixed-e↵ects regression
coe�cients, the first element representing the intercept, which is the mean value of the linear
predictor in the first treatment group, and the second element representing the slope, which
is the mean di↵erence in the linear predictor between the first and second treatment groups.
In case of a continuous response variable, we employ a Gaussian distribution with identity
link and denote the error by ✏i = yi � µi with variance �

2
✏ .

To keep notation and examples simple, we assume xi and � to have length 2. That is, the ef-
fects of only two treatment conditions are estimated and no additional covariates are included
in the GLM. However, additional treatment conditions and covariates can easily be included.
In addition, examples and datasets in the current paper will focus on continuous response
variables with normally distributed errors, such as posttreatment severity of a disorder. But
the models and algorithms to be discussed can also be applied with discrete outcomes, such
as remission of a disorder (yes/no).

1An overview of notation used is provided in the appendix.
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To illustrate, the GLM estimated for the artificial motivating dataset is graphically repre-
sented in Figure 1. The boxplots in Figure 1 show the distribution of the posttreatment
depression scores in both treatment groups. There seems to be little overall di↵erence in
e↵ects of both treatments, as the slope of the regression line is nearly zero. We shall see that
this does not necessarily mean that posttreatment depression score and treatment type are
unrelated, as the e↵ect of treatment may be moderated by variables not yet included in the
model.

2.2. Model-based recursive partitioning

The rationale behind MOB is that a global model for all observations, like the GLM in
Equation 1 and 2, may not describe all data well, and when additional covariates are available
it may be possible to partition the dataset with respect to these covariates, and find a better
model in each cell of the partition (Zeileis et al. 2008). This is reminiscent of the classification
and regression tree (CART) algorithm of Breiman, Friedman, Olshen, and Stone (1984),
which splits the dataset into subsets, for which the distributions of the outcome variable are
most di↵erent. However, CART trees detect di↵erences in constant fits across terminal nodes,
whereas MOB trees detect di↵erences in parametric models across terminal nodes.

To find partitions and better-fitting local GLMs, the MOB algorithm tests for parameter
instability. When the partitioning is based on a GLM, instabilities are di↵erences in �̂ across
partitions of the dataset, which are defined by one or more auxiliary covariates not included
in the linear predictor. To find partitions, the MOB algorithm cycles iteratively through the
following steps (Zeileis et al. 2008): (1) fit the parametric model to the dataset, (2) test for
parameter instability over a set of partitioning variables, (3) if there is some overall parameter
instability, split the dataset with respect to the variable associated with the highest instability,
(4) repeat the procedure in each of the resulting subgroups.

More specifically, in step (2), to test for parameter instability, the so-called scores are com-
puted, using the score function. By definition, the empirical scores of all observations in a
dataset sum to zero, and when the model is correctly specified, the expected value of the score
for each observation is also zero. Under the null hypothesis of parameter stability, the scores
do not systematically deviate from the expected value of zero, when the observations are or-
dered by the values of a potential partitioning variable Uk (c.f., Merkle and Zeileis 2013). To
statistically test whether the scores systematically deviate from zero with respect to variable
Uk, the class of generalized M-fluctuation tests is used (Zeileis 2005; Zeileis and Hornik 2007).

If the null hypothesis of parameter stability in step (2) can be rejected, that is, if at least
one of the partitioning variables Uk has a p-value for the M-fluctuation test below the pre-
specified significance level ↵, the dataset is partitioned into two subsets in step (3). In step
(3), a binary partition is created using Uk⇤, the variable with the minimal p-value in step
(2). The split point for Uk⇤ is selected, by taking the value that minimizes the sum of the
values of the objective function in both partitions (Zeileis et al. 2008). In step (4), steps (1)
through (3) are repeated in each partition, until the null hypothesis of parameter stability
can no longer be rejected.

Due to the binary recursive nature of MOB, the resulting partition can be represented as a
binary tree. If the partitioning is based on the GLM, the result is a GLM tree, which has
a local fixed-e↵ects regression model in every j-th (j = 1, . . . , J) terminal node of the tree.
As a result, in the GLM tree model, the value for � depends on terminal node j in which
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anxiety
p = 0.001

2

≤ 10 > 10
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●
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Figure 2: Example of a tree representation of model-based recursive partition, based on the
artificial motivating dataset. Three additional covariates (anxiety questionnaire score, dura-
tion of depressive symptoms at baseline in months and age) were used as potential splitting
variables.

observation i ‘falls’:

g(µij) = x

>
i �j (3)

Note that, if the recursive subgroup structure (i.e., the partition) were known, the tree could
be estimated as a single GLM where all coe�cients interact with the factor indicating the
subgroup. Somewhat more formally, the model could then be written: g(µi) = x

⇤>
i �

⇤, where
x

⇤
i are the values of the 2J interactions between the subgroups from the tree, and the elements

of xi. �⇤ would also have length 2J , and contain the subgroup-specific fixed-e↵ects coe�cients.

Figure 2 provides an example of the GLM tree model in Equation 3, based on the artificial
motivating dataset. By using the three additional covariates (anxiety, duration and age),
MOB partitioned the observations into four subgroups, each with a di↵erent estimate for
�j . Age was correctly not detected as a partitioning variable, and the left- and rightmost
subgroups are in accordance with the treatment-subgroup interactions as described above.
However, the two subgroups in the middle result from a spurious split.
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2.3. GLMM

When a dataset contains observations from multiple clusters (e.g., trials, research centers, or
individuals in longitudinal datasets), the GLM in Equation 2 may be extended to include
cluster-specific, or random e↵ects, and the model becomes a GLMM:

g(µi) = x

>
i � + z

>
i b (4)

Where zi is a unit vector of length M , of which the m-th element takes a value of 1, and all
other elements take a value of 0; m (m = 1, . . . ,M) denotes the cluster which observation i

is part of. Further, b is a random vector of length M , with every element being the random
intercept for cluster m. Within the GLMM, it is assumed that b is normally distributed,
with mean zero and variance �

2
b . The parameters of the GLMM can be estimated with, for

example, maximum likelihood (ML) and restricted ML (REML), as described in Bryk and
Raudenbush (1992), for example.

For simplicity, we assume that only cluster-specific intercepts are included in the models.
However, random-e↵ects covariates and coe�cients can easily be included.

Note that, if the random-e↵ects coe�cients were known, the model could be estimated by a
simple GLM as in Equation 2 where z

>
i b would only be added as an o↵set (i.e., a variable

with a fixed coe�cient of 1) to the linear predictor.

2.4. GLMM tree

As noted earlier, ordinary GLM(M)s are not well suited for the detection of treatment-
subgroup interactions, whereas the MOB algorithm is, but does not allow for estimation
of random e↵ects. Therefore, we propose the GLMM tree, which combines the GLMM from
Equation 4 with the tree from Equation 3:

g(µi) = x

>
i �j + z

>
i b (5)

To estimate the parameters of this model, we take an approach similar to that of Hajjem
et al. (2011) and Sela and Simono↵ (2012) but extend their ideas from classical CART trees
with only random intercepts to a full GLMM algorithm. In the MERT approach, the fixed-
e↵ects part of a GLMM is replaced by a CART regression tree, and the random-e↵ects part is
estimated as usual. To estimate a MERT, an iterative approach is taken, alternating between
(1) assuming random e↵ects known, allowing for estimation of the regression tree, and (2)
assuming the regression tree known, allowing for estimation of the random e↵ects.

For estimating GLMM trees, we take the MERT approach a step further: by using a GLM
tree, instead of a CART regression tree with constant fits, to estimate the fixed-e↵ects part
of the GLMM. This allows not only for detection of di↵erences in main e↵ects, but also for
detection of di↵erences in regression e↵ects (e.g., of treatment type) across terminal nodes. In
addition, GLMM trees can be estimated for continuous, as well as binary and count variables.
The GLMM tree algorithm takes the following steps to estimate the model in Equation 5:

Step 0: Initialize by setting r and all values b̂(r) to 0.

Step 1: Set r = r + 1. Estimate GLM tree (x>i �̂j(r)), with z

>
i b̂(r�1) as an o↵set.
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Figure 3: GLMM tree of the motivating example dataset. Three covariates (anxiety ques-
tionnaire score, duration of depressive symptoms at baseline in months and age) were used as
potential splitting variables, and the clustering structure was taken into account by estimating
random intercepts.

Step 2: Estimate random e↵ects in the mixed e↵ects model x>i �̂j(r)+ z

>
i b̂(r) with subgroups

j(r) from the GLM tree.

Step 3: Repeat Steps 1 and 2 until convergence.

The algorithm initializes by setting all b values to 0, since the random-e↵ects (and also the
fixed-e↵ects) parts are initially unknown. In every iteration, the GLM tree and random-e↵ects
coe�cients b are re-estimated. The GLM tree is estimated, given the estimated b̂ from the
last iteration, and the b values are estimated, given the estimated GLM tree from the current
iteration. Iterations are continued until convergence, which is monitored by computing the
log-likelihood criterion of the mixed-e↵ects model in Equation 5.

In Figure 3, the GLMM tree that was grown on the artificial motivating dataset is presented.
As can be seen, by taking into account the clustering of observations by estimating random
intercepts, the spurious split involving the anxiety variable no longer appears in the tree.

3. Empirical evaluation

We will asses the performance of GLMM tree in recovering treatment-subgroup interactions,
and predicting di↵erences between the outcomes of two treatments, in simulated datasets
with continuous outcomes. In addition, we will compare the performance of GLMM tree with
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Figure 4: Data-generating model for treatment-subgroup interactions. Parameter d denotes
the standardized mean di↵erence between the outcomes of Treatment 1 and 2 (i.e., �j1/�✏).

that of GLM tree. In the simulation study, our main interest will be in the e↵ects of sample
size, the presence and magnitude of treatment-subgroup interactions, and the presence and
magnitude of the random e↵ects, but additonal parameters will be varied as well.

When random e↵ects are absent from the datasets, we expect GLM and GLMM tree to per-
form equally well. In the presence of random e↵ects, we expect GLMM tree to outperform
GLM tree. We expect the di↵erence in performance between both algorithms to increase,
with increasing di↵erences in treatment outcomes, increasing variance of random-e↵ects co-
e�cients, and/or increasing sample sizes.

3.1. Simulation design

Datasets with treatment-subgroup interactions

For generating datasets with treatment-subgroup interactions, we used a treatment-subgroup
interaction design from Dusseldorp and Mechelen (2014), which is also depicted in Figure 4.
Figure 4 shows two subgroups with mean di↵erences in treatment outcomes, and two sub-
groups without mean di↵erences in treatment outcomes. The four subgroups are characterized
by their values on the partitioning variables U2, and U1 or U5. That is, U1, U2 and U5 are
true partitioning variables, whereas other potential partitioning variables (U3, U4, U6 through
U15) are noise variables.

Datasets without treatment-subgroup interactions

For generating datasets without treatment-subgroup interactions, we used a design in which
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there is only a main e↵ect of treatment in the population. Put di↵erently, the number of
subgroups or terminal nodes in these datasets was J = 1, and there was only a single value
of �j = � in every dataset. The mean of the outcome variable in the datasets without
treatment-subgroup interactions was 30, which is the same value as in the datasets with
treatment-subgroup interactions. As a result, � = (27.5, 32.5) for all observations when
d = 1.

Parameters of the data-generating process

In generating datasets, we varied seven parameters of the data-generating process:

1. Three levels for the total number of observations: N = 200, N = 500, N = 1000.

2. Two levels for the number of potential partitioning covariates U1 through UK : K = 5,
K = 15 (where only U1, U2 and U5 are true partitioning variables).

3. Two levels of intercorrelations between the covariates U1 through UK : ⇢Uk,Uk0 = 0.0,
⇢Uk,Uk0 = 0.3.

4. Three levels for the number of clusters: M = 5, M = 10, M = 25.

5. Three levels for the population standard deviation of the normal distribution from which
the cluster specific intercepts are drawn: �b = 0, �b = 5, �b = 10.

6. Three levels for the intercorrelations between b and one of the Uk variables: b and
Uk uncorrelated, b correlated with a true partitioning variable (i.e., U2, U1, or U5,
introducing a correlation of ⇡ 0.42), b correlated with a non-partitioning covariate (i.e.,
U3 or U4, introducing a correlation of ⇡ 0.42)2.

7. Two di↵erent levels for �j1, the unstandardized mean di↵erence in treatment outcomes,
in subgroups with di↵erential treatment e↵ects. The levels for mean di↵erences in
subgroups with di↵erential treatment e↵ect were |�j1| = 2.5 (corresponding to a medium
e↵ect size, Cohen’s d = 0.5; Cohen 1992) and |�j1| = 5.0 (corresponding to a large e↵ect
size; Cohen’s d = 1.0).

For each cell, 50 datasets with treatment-subgroup interactions were generated, resulting in
50⇥ 3⇥ 2⇥ 2⇥ 3⇥ 3⇥ 3⇥ 2 = 32,400 training datasets. For the datasets without treatment-
subgroup interactions, the 6th parameter of the data-generating process had only two levels
(b correlated with one of the Uk variables, and b not correlated with any of the Uk variables).
Therefore, 50 ⇥ 3 ⇥ 2 ⇥ 2 ⇥ 3 ⇥ 3 ⇥ 2 ⇥ 2 = 21,600 datasets without treatment-subgroup
interactions were generated.

Variable distributions

As in Dusseldorp and Mechelen (2014), all covariates U1 through UK were drawn from a
multivariate normal distribution with means µU 1, µU 2, µU 4, and µU 5 fixed at 10, 30, �40,

2Note that, when �b = 0, the correlation between b and one of the Uk variables is 0, by definition. However,
datasets were created for this condition, to allow for a full factorial design of the simulation study; in reality,
b and U are uncorrelated in these instances.
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and 70, respectively. The means for all other covariates (i.e., µU 3, and µU 6 through µU 15)
were drawn from a discrete uniform distribution on the interval [�70, 70]. All covariates U1

through U15 have the same standard deviation: �Uk = 10. Correlations between the Uk

variables vary according to the third facet of the simulation design described above.

To generate the random error term ✏, for every observation we drew a value from a normal
distribution with µ✏ = 0 and �✏ = 5.

To generate the cluster-specific intercepts bm, we partitioned the sample into equally-sized
clusters, conditional on one of the variables U1 through U5, producing the correlations in
the sixth facet of the simulation design. For each cluster, we drew a single value bm from a
normal distribution with mean 0 and the value of �b given by the fifth facet of the simulation
design. When b was correlated with one of the potential partitioning variables, the correlated
potential partitioning variable was randomly selected.

To generate node-specific fixed e↵ects, we partitioned the sample according to the terminal
nodes of the tree in Figure 4.3. In combination with the seventh facet of the simulation
design, this determines the values of �j . For every observation, we generated a binomial
variable (with probability .5) as an indicator for treatment type.

Finally, the response variable was calculated as the sum of the (node-specific) fixed e↵ects,
random e↵ects and the error term: yi = x

>
i �j + z

>
i bm + ✏i.

3.2. Evaluation of performance

Tree size and accuracy

For every dataset, the total number of nodes in the resulting GLM and GLMM tree were
calculated. For datasets without treatment-subgroup interactions, this allowed us to assess
tree accuracy in terms of Type I error: the probability that the dataset is erroneously parti-
tioned (i.e., a tree of size > 1 is created). For datasets with treatment-subgroup interactions,
this allowed us to assess the probability that the dataset is erroneously not partitioned, and
the extent to which the algorithms may detect spurious subgroups (i.e., a tree of size > 7 is
created).

For datasets with treatment-subgroup interactions, we assessed the accuracy of the GLM and
GLMM trees. An accurately recovered tree was defined as a tree with (1) the true tree size
(i.e., tree size = 7), (2) the first split in the tree involving variable U2 and a value of 30±5, (3)
the next split on the left involving variable U1 and a value of 17± 5, and (4) the next split on
the right involving variable U5 and a value of 63±5. Note that the allowance of ±5 equals an
allowance of plus or minus half the population standard deviation of the partitioning variable
(�Uk).

To assess the e↵ects of the data-generating parameters on tree size for both algorithms, we
performed ANOVAs with algorithm type and the parameters of the data-generating process as
independent variables. In addition, interactions between algorithm type and each of the data-
generating parameters were also entered as independent variables. The impact of predictors
with main and/or interaction e↵ects which explained a proportion of > .01 of variance was
further assessed using graphical displays.

To assess the e↵ects of the data-generating parameters on tree accuracy in datasets with
treatment-subgroup interactions, we used a GLM with algorithm type and the parameters
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of the data-generating process as independent variables. In addition, interactions between
algorithm type and each of the data-generating parameters were also entered as independent
variables. The e↵ects of predictors with main and/or interaction e↵ects with unstandardized
regression coe�cients > .5 (i.e., an in- or decrease in the log-odds of .5) were further assessed
using graphical displays.

Predictive accuracy

We evaluated predictive accuracy of GLM and GLMM trees by calculating correlations be-
tween the true and predicted treatment-e↵ect di↵erences (�j1 in Figure 4). Note that this
correlation was only assessed for datasets with treatment-subgroup interactions, as the true
treatment di↵erences have a constant value in datasets without treatment-subgroup interac-
tions.

Using the same data for training and evaluation of a model results in overly optimistic esti-
mates of predictive accuracy (Hastie, Tibshirani, and Friedman 2009). Therefore, GLM and
GLMM trees were used for prediction of new observations from test datasets. Test datasets
were generated from the same population as the training datasets. Because the cluster-specific
intercepts b were randomly generated for training as well as test datasets, test observations
were from ’new’ clusters. As a result, a model without random e↵ects was used for prediction
with GLMM tree.

For every dataset, correlation coe�cients for each algorithm were calculated, representing the
linear association between the true and predicted treatment-e↵ect di↵erences. To assess the
e↵ects of the data-generating parameters on predictive accuracy, we performed ANOVAs with
algorithm type and the parameters of the data-generating process as independent variables.
In addition, interactions between algorithm type and each of the data-generating parameters
were also entered as independent variables. The e↵ects of predictors with main and/or in-
teraction e↵ects which explained a proportion of > .01 of variance were further investigated
using graphical displays.

3.3. Software

R (R Core Team 2014) was used for generation and analysis of all datasets. The partykit
package (version 1.0-2; Hothorn and Zeileis 2015) was employed for estimating GLM trees
using the lmtree function for normal linear regressions. For other response distributions,
the glmtree function would be available. For estimation of GLMMs the lmer (or glmer,
respectively) from the lme4 package (version 1.1-7; Bates, Maechler, and Bolker 2014) was
employed, using restricted maximum likelihood (REML) estimation.

For the estimation of GLMM trees the former two packages were combined in a new package
glmertree (version 0.1-0; Fokkema and Zeileis 2015; available from R-Forge). This provides
functions lmertree and glmertree that iterate between estimation of the lmtree/glmtree
model and the lmer/glmer model.

In all applications, the significance level ↵ for the parameter instability tests in the trees was
set to .05, with a Bonferroni correction applied for multiple testing. The minimum number
of observations per node in the tree was set to 20 and the maximum tree depth was set to
four, thus limiting the number of potential subgroups to eight. Iterations of the GLMM tree
algorithm were repeated until the log-likelihood changes between two subsequent iterations
fell below .001.
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Figure 5: Average tree size of GLM and GLMM trees for datasets without treatment-subgroup
interactions. Values 200, 500 and 1000 refer to sample size. Reference line at y = 1 represents
the true tree size.

3.4. Results

Tree size in datasets without treatment-subgroup interactions

Overall, smaller trees were created by GLMM tree: the average tree size was 1.09 (SD = 0.44)
for GLMM tree, and 2.02 (SD = 1.68) for GLM tree. The estimated probability that a dataset
was erroneously partitioned was .04 for GLMM tree, and .33 for GLM tree.

The e↵ects of sample size, �b and the correlation between b and one of the Uk variables on
tree size were assessed with a graphical display (Figure 5). When random e↵ects were absent
(i.e., �b = 0), both GLM and GLMM tree tended to create trees of size 1. In the presence of
random e↵ects, GLMM tree also tended to create trees of size 1, but GLM tree created much
larger trees, when b was correlated with one of the Uk variables. This e↵ect was stronger
when sample size was larger.

Tree size in datasets with treatment-subgroup interactions

In datasets with treatment-subgroup interactions, GLMM trees were also smaller than GLM
trees. For these datasets, the true tree size was 7 (4 terminal nodes and 3 inner nodes;
Figure 4). The average size of GLMM trees was 7.16 (SD = 0.62), and the average size of
GLM trees was 8.12 (SD = 2.05). The estimated probability that a dataset was erroneously
not partitioned was 0, for both GLM and GLMM tree. However, a proportion of .91 of GLMM
trees matched the true tree size, whereas a proportion of only .63 of GLM trees matched the
true tree size.
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Figure 6: Average tree size of GLM and GLMM trees for datasets with treatment-subgroup
interactions. Values 200, 500 and 1000 refer to sample size. Reference line at y = 7 represents
true tree size.

The e↵ects of sample size, �b and the correlation between b and one of the Uk variables on
tree size were assessed with a graphical display (Figure 6). When random e↵ects were absent
(i.e., �b = 0), both GLM and GLMM tree created trees with a size of about 7, on average.
However, clear di↵erences in performance between GLM and GLMMtree were observed when
�b > 0. When b is not correlated with one of the Uk variables, when sample size is small (i.e.,
200) and when �b is large (i.e., 10), GLM tree has di�culty detecting splits and grows trees
that are too small, on average. When b is not correlated with one of the Uk variables and
when sample size is larger (i.e., 500 or 1000), GLM and GLMM trees are about the same size
(i.e., ⇡ 7). When b is correlated with one of the Uk variables, GLM creates spurious splits,
especially when sample size is larger (i.e., 500 or 1000) and when �b is large (i.e., 10). This
e↵ect was stronger when b was correlated to a non-splitting variable.

Tree accuracy in datasets with treatment-subgroup interactions

To assess the accuracy of the trees created by GLM and GLMM tree, we inspected the
variables and values that were selected for partitioning in every dataset. For the first split,
GLMM tree always selected the true partitioning variable (U2). GLM tree selected a wrong
partitioning variable (I.e., U1 in only one dataset. The splitting value for U2 selected for the
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Figure 7: Average accuracy of GLM and GLMM trees. Accuracy of trees is defined as the
proportion of datasets in which the true tree was accurately recovered. Values are correlated
to one of the Uk variables; values 200, 500 and 1000 refer to sample size.

first split was 29.94 for both GLM and GLMM tree, which is very close to the true splitting
value of 30 (Figure 4). However, GLM tree showed somewhat higher variability in recovering
the splitting value for the first split (involving U2), than did GLMM tree (SD = 0.154 and
SD = 0.127, respectively).

Overall, GLMM tree performed well in recovering treatment-subgroup interactions, by ac-
curately recovering the tree in 90.19% of datasets. GLM tree performed less accurate, by
accurately recovering the tree in 61.44% of datasets.

The e↵ects of sample size, �b and the correlation between b and one of the Uk variables on the
probability of accurate tree recovery for GLM and GLMM tree were assessed with a graphical
display (Figure 7). When random e↵ects were absent from the datasets (i.e., �b = 0), the
trees recovered by GLM and GLMM tree were equally accurate, on average. In the presence
of random e↵ects, GLM trees were much less accurate than GLMM trees. This was found
for all sample sizes, when b was correlated to one of the Uk variables, and the e↵ect was
somewhat stronger when the correlated Uk was not a true partitioning variable. When b was
not correlated to one of the Uk variables, GLMM tree clearly outperformed GLM tree only
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Figure 8: Average predictive accuracy of GLM and GLMM trees. Predictive accuracy of trees
is defined as the correlation between the true and predicted di↵erences between Treatment 1
and 2. Values 5 and 2.5 refer to the absolute value of the unstandardized treatment-e↵ect
di↵erence in subgroups with treatment-e↵ect di↵erences; values 200, 500 and 1000 refer to
sample size.

when sample size was small (i.e., 200).

Predictive accuracy on test data

To assess predictive accuracy, correlations between the true and predicted treatment-e↵ect
di↵erences of both algorithms were calculated for every dataset. Overall, predicted treatment-
e↵ect di↵erences of GLMM tree were closer to the true di↵erences, than those of GLM tree.
The average correlation between the true and predicted treatment-e↵ect di↵erences over all
datasets with treatment-subgroup interactions was .94 (SD = 0.11) for GLMM tree, and .88
(SD = 0.19) for GLM tree.

The e↵ects of sample size, �b and the correlation between b and one of the Uk variables on
the predictive accuracy of both algorithms were assessed with a graphical display (Figure 8).
Both algorithms showed higher predictive accuracy when sample size was larger, and when
treatment-e↵ect di↵erences were larger. When random e↵ects were absent from the datasets
(i.e., �b = 0), predictions of GLM and GLMM tree were equally accurate. In the presence of
random e↵ects, GLM tree predictions were always much less accurate than those of GLMM
tree. This e↵ect was stronger when �b was larger, sample size was larger, and/or treatment-
e↵ect di↵erences were larger.
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4. Patient-level meta-analysis of depression treatments

4.1. Method

To illustrate the application of the GLM and GLMM tree algorithms and the di↵erences in
their results, we applied both algorithms to a dataset from a meta-analytic study of Cuijpers
et al. (2014). This meta-analysis was based on a dataset, consisting of observations for indi-
vidual patients from 14 RCTs, comparing the e↵ects of psychotherapy (cognitive behavioral
therapy; CBT) and pharmacotherapy (PHA) in the treatment of depression. The study of
Cuijpers et al. (2014) was aimed at establishing whether gender is a predictor or moderator
of the outcomes of psychological and pharmacological treatments for depression. Treatment
outcomes were assessed by means of the 17-item Hamilton Rating Scale for Depression (HAM-
D; Hamilton 1960). Cuijpers et al. (2014) found no indication that gender either predicted
or moderated treatment outcomes. Further details on the dataset are provided in Cuijpers
et al. (2014).

In our analyses, posttreatment HAM-D score was the outcome variable, and potential parti-
tioning variables were age, gender, level of education, presence of a comorbid anxiety disorder
at baseline, and pretreatment HAM-D score. The predictor variable in the linear model was
treatment type (0 = CBT and 1 = PHA). An indicator for study was used as the cluster
indicator.

In RCTs, treatment e↵ects are often estimated after controlling posttreatment values on the
outcome measure for the linear e↵ect of pretreatment values on the same measure. There-
fore, we included the predictions of a linear regression of HAM-D posttreatment on HAM-D
pretreatment scores as an o↵set variable in growing the GLM and GLMM trees. An o↵set
variable is a linear predictor with an a-priori specified coe�cient of one. Including the pre-
dictions of a linear regression of HAM-D posttreatment on HAM-D pretreatment scores as
an o↵set has the same e↵ect as statistically controlling for the linear e↵ects of pretreatment
scores, as is often done in ANCOVA.

We built all trees using data of patients with complete observations; that is, observations with
non-missing values for potential partitioning variables, and pre- and posttreatment HAM-D
score. As a result, data from 694 patients from 7 studies were included for the analyses.
Results of our analysis may therefore not be representative of the complete dataset of the
meta-analysis by Cuijpers et al. (2014).

Predictive accuracy of GLM and GLMM trees was assessed by calculating the average corre-
lations between observed and predicted HAM-D scores, based on 50-fold cross validation.

4.2. Results

Both tree-growing algorithms were applied to the dataset; the resulting GLM tree is presented
in Figure 9 and the resulting GLMM tree is presented in Figure 10. Note that the GLM tree
in Figure 9 is also the tree in the first iteration of the GLMM tree algorithm.

The GLM tree (Figure 9) selected level of education as the first partitioning variable, and
presence of a comorbid anxiety disorder as a second partitioning variable, for observations
with a higher level of education. Node 2 of Figure 9 indicates that for patients with a
low level of education, antidepressant medication provides the greatest reduction in HAM-D
scores. Node 4 indicates that for patients with a higher level of education, and no comorbid
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Figure 9: GLM tree for prediction of posttreatment total scores on the Hamilton Rating
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D scores, and the x-axes represent treatment levels: cognitive behavior therapy (CBT) vs.
pharmacotherapy (PHA).
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anxiety disorder, the reduction in HAM-D scores is about the same for CBT and PHA. Node
5 indicates, that for patients with a higher level of education and a comorbid anxiety disorder,
the reduction in HAM-D scores is greatest for PHA.

By taking into account study-specific intercepts, the final GLMM tree (Figure 10) suggests
that the first split made by GLM tree is a spurious split. The GLMM tree selected only
presence of a comorbid anxiety disorder as a partitioning variable. The terminal nodes of
Figure 10 show only a single treatment-subgroup interaction: for patients without a comorbid
anxiety disorder, CBT and PHA provide more or less the same reduction in HAM-D scores,
whereas for patients with a comorbid anxiety disorder, PHA provides a greater reduction in
HAM-D scores. The estimated intraclass correlation coe�cient for the random intercepts was
.05.

Assessment of predictive accuracy by means of 50-fold cross validation showed that the GLMM
tree had higher predictive accuracy than the GLM tree. The correlation between true and
predicted posttreatment HAM-D total scores, averaged over the 50 folds, was .28 (var = .067)
for GLMM tree, and .19 (var = .084) for GLM tree. This indicates that GLMM tree provided
higher predictive accuracy, on average, and also somewhat lower variability of predictive
accuracy than GLM tree.

5. Discussion

In the current paper, we presented the GLMM tree algorithm, which allows for the estima-
tion of a GLM-based recursive partition, as well as the estimation of random-e↵ects param-
eters. Therefore, the GLMM tree algorithm seems preeminently suited for the detection of
treatment-subgroup interactions in clustered datasets. In the empirical evaluation, we have
assessed the performance of GLMM tree in a large number of simulated dataets, and com-
pared it with GLM tree, an algorithm that creates GLM-based recursive partitions, without
estimating random e↵ects. In the application, we applied GLM and GLMM tree to an existing
dataset of a patient-level dataset of a meta-analysis on the e↵ects of psycho- and pharma-
cotherapy for depression. The application showed that GLMM tree provides results that are
easily interpretable, and also more accurate than a GLM tree without random e↵ects.

The results of our simulation study show that GLMM tree performed very well in recovering
treatment-subgroup interactions, as it accurately recovered the interactions in 90% of the
simulated datasets with treatment-subgroup interactions. In contrast, GLM tree accurately
recovered the interactions in only 61% of the datasets with treatment-subgroup interactions.
In the absence of treatment-subgroup interactions, GLMM tree erroneously detected sub-
groups in only 4% of the datasets, whereas GLM tree erroneously detected subgroups in 33%
of those datasets. In other words, the Type I error rate of GLMM tree very closely resembled
the ↵ level used for evaluating significance of parameter instability, whereas the Type I error
rate of GLM tree clearly exceeded this value.

The better performance of GLMM tree was mostly observed when random e↵ects in the
datasets were sizable, and random intercepts were correlated with potential partitioning vari-
ables. In these instances, the random e↵ects gave rise to spurious subgroup detection (spurious
splits) by GLM tree, both in datasets with and without treatment-subgroup interactions.

Predictive accuracy of GLMM tree was also higher than that of GLM tree. The average
correlation between the true treatment di↵erences and those predicted by GLMM tree was
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.94. The average correlation between the true treatment di↵erences and those predicted by
GLM tree was .88. In terms of predictive accuracy, GLMM tree clearly outperformed GLM
tree when random e↵ects in the datasets were sizable, and the di↵erences in treatment e↵ects
were relatively small (i.e., d = .5).

As expected, when random e↵ects were absent from the simulated datasets, GLM tree and
GLMM tree showed high and equal predictive accuracy. This finding indicates that GLMM
tree can be applied, whenever cluster-specific random e↵ects are expected. In the absence of
random e↵ects, GLM tree and GLMM tree are expected to perform equally well, and in the
presence of random e↵ects, GLMM tree will outperform GLM tree. This may especially be
the case with large sample sizes (N > 200), as the increased power will likely cause GLM tree
to create spurious splits, when random e↵ects are present in the data.

Not surprisingly, for both algorithms, accuracy of predicted treatment di↵erences was less
when sample size was low (i.e., N = 200). Sample size influenced performance of GLM and
GLMM tree similarly, suggesting that a larger number of estimated parameters for GLMM tree
does not adversely influences accuracy at low sample sizes. Our simulation results do warrant
some caution for the detection of treatment-subgroup interactions or treatment moderators
in small datasets (e.g., single RCTs), but irrespective of the algorithm used.

These findings are encouraging for the use of GLMM tree in the detection of treatment-
subgroup interactions in datasets with clustered structures. However, it should be noted that
the simulations show that GLMM tree performs very well, if the model is correctly specified.
That is, if there are subgroups with respect to the partitioning variables, so that there are
di↵erent parameters of the GLM in each of these subgroups, then GLMM tree will accurately
recover those subgroups. However, misspecification of the model can reduce performance. One
source of misspecification would be, when relevant variables are not included in the GLM or
as partitioning variables. If there are actual subgroups, but the variables describing them
are not entered as partitioning variables, the algorithm can only approximate the subgroups
using the partitioning variables that are available. Or, if the coe�cients of other variables vary
across subgroups, then those variables should also be included in the linear predictor of the
GLM. Another source of misspecification would be the inclusion of irrelevant variables, either
in the linear predictor of the GLM or as partitioning variables, which may reduce the power to
detect the actual subgroups. However, it should be noted that in our simulations, the number
of partitioning variables did not substantially influence performance of the algorithm(s).

In conclusion, GLMM tree provided highly accurate recovery of treatment-subgroup inter-
actions and predictions of treatment e↵ect di↵erences, both in the presence and absence of
cluster-specific random e↵ects. Therefore, GLMM tree is a promising algorithm for the detec-
tion of treatment-subgroup interactions in datasets with a clustered structure, like for example
in multi-center trials, individual-level patient data meta-analyses, and longitudinal studies.
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A. Notation

1, . . . , i, . . . , N observation number
1, . . . , j, . . . , J terminal node number in a tree
1, . . . , k, . . . ,K partitioning variable number
1, . . . ,m, . . . ,M cluster number
�j column vector of fixed-e↵ects coe�cients in terminal node j

bm column vector of random-e↵ects coe�cients in cluster m
dj �j1/�✏; e↵ect size of treatment-e↵ect di↵erences between Treat-

ment 1 and Treatment 2 in terminal node j

✏ deviation of observed treatment outcome y from its expected value
r iteration number
�b standard deviation of b
�✏ standard deviation of ✏
Uk (potential) partitioning variable k

xi column vector of fixed-e↵ects predictor variable values for obser-
vation i

yi treatment outcome for observation i

zi column vector of random-e↵ects predictor variable values for ob-
servation i
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Matthias Sutter: Experimental games on networks: Underpinnings of beha-
vior and equilibrium selection slightly revised version forthcoming in Econo-
metrica

2014-13 Uwe Dulleck, Rudolf Kerschbamer, Alexander Konovalov: Too much
or too little? Price-discrimination in a market for credence goods

2014-12 Alexander Razen, Wolgang Brunauer, Nadja Klein, Thomas Kneib,
Stefan Lang, Nikolaus Umlauf: Statistical risk analysis for real estate col-
lateral valuation using Bayesian distributional and quantile regression

2014-11 Dennis Dlugosch, Kristian Horn, Mei Wang: Behavioral determinants
of home bias - theory and experiment

2014-10 Torsten Hothorn, Achim Zeileis: partykit: A modular toolkit for recursive
partytioning in R
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Detecting treatment-subgroup interactions in clustered data with generalized linear
mixed-e↵ects model trees

Abstract
Identification of subgroups of patients for which treatment A is more e↵ective than
treatment B, and vice versa, is of key importance to the development of personali-
zed medicine. Several tree-based algorithms have been developed for the detection
of such treatment-subgroup interactions. In many instances, however, datasets may
have a clustered structure, where observations are clustered within, for example, re-
search centers, studies or persons. In the current paper we propose a new algorithm,
generalized linear mixed-e↵ects model (GLMM) trees, that allows for detection of
treatment-subgroup interactions, as well as estimation of cluster-specific random
e↵ects. The algorithm uses model-based recursive partitioning (MOB) to detect
treatment-subgroup interactions, and a GLMM for the estimation of random-e↵ects
parameters. In a simulation study, we evaluate the performance of GLMM tree and
compare it with that of MOB without random-e↵ects estimation. GLMM tree was
found to have a much lower Type I error rate than MOB trees without random ef-
fects (4% and 33%, respectively). Furthermore, in datasets with treatment-subgroup
interactions, GLMM tree recovered the true treatment subgroups much more often
than MOB without random e↵ects (in 90% and 61% of the datasets, respectively).
Also, GLMM tree predicted treatment outcome di↵erences more accurately than
MOB without random e↵ects (average predictive accuracy of .94 and .88, respec-
tively). We illustrate the application of GLMM tree on a patient-level dataset of
a meta-analysis on the e↵ects of psycho- and pharmacotherapy for depression. We
conclude that GLMM tree is a promising algorithm for the detection of treatment-
subgroup interactions in clustered datasets.
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