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Johannes Kepler University Linz

Abstrat

This paper disusses random interept seletion within the ontext of semipara-

metri regression models with strutured additive preditor (STAR). STAR models

an deal simultaneously with nonlinear ovariate e�ets and time trends, unit- or

luster-spei� heterogeneity, spatial heterogeneity and omplex interations between

ovariates of di�erent type. The random interept seletion is based on spike and slab

priors for the varianes of the random interept oe�ients. The aim is to ahieve

shrinkage of small random interept oe�ients to zero similar as for the LASSO in

frequentist linear models. The mixture struture of the spike and slab prior allows for

seletive shrinkage, as oe�ients are either heavily shrunk under the spike omponent

or left almost unshrunk under the slab omponent. The hyperparameters of the spike

and slab prior are hosen by theoretial onsiderations based on the prior inlusion

probability of a partiular random oe�ient given the true e�et size. Using extensive

simulation experiments we ompare random interept models based on spike and slab

priors for varianes with the usual Inverse Gamma priors. A ase study on malnutrition

of hildren in Zambia illustrates the methodology in a real data example.

Keywords: Bayesian hierarhial models, Bayesian model hoie, MCMC, P-splines,

spike and slab priors



1 Introdution

A partiularly broad and rih framework for semiparametri regression is provided by gen-

eralized strutured additive regression (STAR) models proposed in Fahrmeir, Kneib, and

Lang (2004) and Brezger and Lang (2006), see Fahrmeir, Kneib, Lang, and Marx (2013) for

an introdution from �rst priniples. Models of similar omplexity have been developed in

a mostly frequentist setting by Simon Wood (see e.g. Wood 2006) and in Ruppert, Wand,

and Carroll (2003), Rigby and Stasinopoulos (2005) or Rue, Martino, and Niolas (2009).

STAR models an deal simultaneously with nonlinear ovariate e�ets and time trends, unit-

or luster-spei� heterogeneity, spatial heterogeneity and omplex interations between o-

variates of di�erent type.

The purpose of this paper is to disuss random interept seletion within the ontext of

STAR models. We aim at shrinking small random interept oe�ients to zero similar to

the LASSO (Tibshirani 1996) in frequentist linear models. The seletion is based on spike

and slab priors for the varianes of the random interept oe�ients as proposed for ordinary

linear random e�ets models in Frühwirth-Shnatter and Wagner (2011). The hyperparam-

eters are hosen by theoretial onsiderations based on the prior inlusion probability of a

partiular random oe�ient given the true e�et size. An implementation of the approah

is provided in the software pakage BayesX (Belitz, Brezger, Kneib, Lang, and Umlauf 2013)

and the orresponding R interfae BayesR (Umlauf, Adler, Kneib, Lang, and Zeileis 2014).

Spike and slab priors are mixtures of two omponents, the spike with small variane and a

omparably �at slab. They were introdued in Mithell and Beauhamp (1988) for Bayesian

variable seletion in linear regression models. Whereas initially spike and slab prior dis-

tributions were spei�ed for the regression oe�ients, e.g. George and MCulloh (1993),

reently Ishwaran and Rao (2003) and Ishwaran and Rao (2005) introdued spike and slab

priors for their varianes. Sine then spike and slab priors have been frequently used for

Bayesian model hoie and variable seletion see e.g. Fahrmeir, Kneib, and Konrath (2010)
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for variable seletion in linear models and Sheipl, Fahrmeir, and Kneib (2012) for variable

seletion in STAR models. Introdutions into the usage of spike and slab priors an be found

in Malsiner-Walli and Wagner (2011) and Fahrmeir, Kneib, Lang, and Marx (2013).

Frühwirth-Shnatter and Wagner (2011) demonstrated that spike and slab priors for the

random interept varianes are useful for random interept seletion. These priors indue

seletive shrinkage as random e�ets assigned to the spike omponent are heavily shrunk

to zero whereas those assigned to the slab experiene only little shrinkage. The mixture

struture of the prior easily allows for lassi�ation of e�ets as not di�erent from the prior

mean� for e�ets assigned to the spike � and deviating onsiderably, when assigned to the

slab omponent.

Frühwirth-Shnatter and Wagner (2011) ompare di�erent spei�ations of the spike and

the slab priors and unimodal priors for simulated data. They onlude that spike and slab

priors outperform unimodal priors with respet to orret lassi�ation of non-zero random

interepts and there is little di�erene between di�erent versions of spike and slab priors.

In their analysis the hyperparameters were hosen to yield resulting random e�ets variane

of 1, but for no other values. We �ll this gap by an intensive simulation study where we

ompare spike and slab priors for a wide range of hyperparameters.

The rest of the paper is organized as follows: Setion 2 reviews the modeling framework of

this paper. Setion 3 introdues the spike and slab prior for varianes of random e�ets and

disusses the hoie of hyperparameters. Tehnial details regarding the properties of the

stohasti searh variable seletion (SSVS) prior are deferred to the Appendix A. Simulation

experiments are presented in Setion 4. An illustration for real data is given in Setion 5

with an appliation of the methodology on malnutrition of hildren in Zambia. The �nal

Setion 6 summarizes the paper and provides an outlook for future researh.
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2 Strutured additive models

2.1 Observation model

Suppose that observations (yi, zi,xi), i = 1, . . . , n, are given, where yi is a ontinuous re-

sponse variable, and zi = (zi1, . . . , ziq)
′
and xi = (xi1, . . . , xip)

′
are vetors of ovariates.

For the variables in z possibly nonlinear e�ets are assumed whereas the variables in x

are modeled in the usual linear way. The omponents of z are not neessarily ontinu-

ous ovariates. A omponent may also indiate a time sale, a luster- or a spatial index

(e.g. muniipality, distrit or ounty) a partiular observation pertains to. We assume an

additive deomposition of the e�ets of zij (and xij) and obtain the model

yi = f1(zi1) + . . .+ fq(ziq) + x′
iγ + εi. (1)

Here, f1, . . . , fq are nonlinear funtions of the ovariates zi and x′
iγ is the usual linear part

of the model. The errors εi are assumed to be mutually independent Gaussian with mean 0

and variane σ2
, i.e. εi ∼ N(0, σ2).

The nonlinear e�ets in (1) are modeled by a basis funtions approah, i.e. a partiular

funtion f of ovariate z is approximated by a linear ombination of basis or indiator

funtions

f(z) =

K∑

k=1

βkBk(z). (2)

The Bk's are known basis funtions and β = (β1, . . . , βK)′ is a vetor of unknown regression

oe�ients to be estimated. De�ning the n × K design matrix Z with elements Z[i, k] =

Bk(zi), the vetor f = (f(z1), . . . , f(zn))
′
of funtion evaluations an be written in matrix

notation as f = Zβ. Aordingly, we obtain

y = η + ε = Z1β1 + . . .+Zqβq +Xγ + ε, (3)

where y = (y1, . . . , yn)
′
, η = (η1, . . . , ηn)

′
and ε ∼ N(0, σ2I).

4



2.2 Priors

E�et modeling and priors depend on the ovariate or term type. We �rst desribe the

general form of priors. In a frequentist setting, over�tting of a partiular funtion f = Zβ

is avoided by de�ning a roughness penalty on the regression oe�ients, see for instane

Fahrmeir, Kneib, Lang, and Marx (2013). In a Bayesian framework a standard smoothness

prior is a (possibly improper) Gaussian prior of the form

p(β|τ2) ∝
(

1

τ2

)
rk(K)/2

exp

(
− 1

2τ2
β′Kβ

)
· I(Aβ = 0), (4)

where I(·) is the indiator funtion. The key omponents of the prior are the penalty matrix

K, the variane parameter τ2 and the onstraint Aβ = 0. Usually the penalty matrix is

rank de�ient, i.e. rk(K) < K, resulting in a partially improper prior.

The amount of smoothness is governed by the variane parameter τ2. A onjugate Inverse

Gamma prior is employed for τ2 (as well as for the error variane parameter σ2
in models

with Gaussian responses), i.e. τ2 ∼ G−1 (a, b) with small values suh as a = b = 0.001

for the hyperparameters a and b resulting in an uninformative prior on the log sale. The

term I(Aβ = 0) imposes required identi�ability onstraints on the parameter vetor. A

straightforward hoie is A = (1, . . . , 1), i.e. the regression oe�ients are entered around

zero.

For a ontinuous ovariate z, our basi approah for modeling a smooth funtion f are

Bayesian P-splines introdued in a frequentist setting by Eilers and Marx (1996) and in a

Bayesian version by Lang and Brezger (2004). P-splines assume that the unknown funtions

an be approximated by a polynomial spline whih an be written in terms of a linear

ombination of B-spline basis funtions. Hene, the olumns of the design matrix Z are

given by the B-spline basis funtions evaluated at the observations zi. Lang and Brezger

(2004) propose to use �rst or seond order random walks as smoothness priors for the
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regression oe�ients, i.e.

βk = βk−1 + uk, or βk = 2βk−1 − βk−2 + uk, (5)

with Gaussian errors uk ∼ N(0, τ2) and di�use priors p(β1) ∝ const, or p(β1) and p(β2) ∝

const, for initial values. This prior is of the form (4) with penalty matrix given byK = D′D,

where D is a �rst or seond order di�erene matrix.

Suppose now that ovariate z is an index variable that indiates the unit or luster a par-

tiular observation belongs to. In this ase, it is ommon pratie to introdue unit- or

luster spei� i.i.d. Gaussian random interepts or slopes, see e.g. Diggle, Heagerty, Liang,

and Zeger (2002). Suppose z an take the values 1, . . . ,K. Then, an i.i.d. random inter-

ept an be inorporated into our framework of strutured additive regression by assuming

f(k) = βk ∼ N(0, τ2), k = 1, . . . ,K. The design matrix Z is now a 0/1 inidene matrix

with dimension n×K. The penalty matrix is the K ×K identity matrix, i.e. K = I.

3 Random interept seletion

In this setion we now replae the usual Inverse Gamma prior for the variane τ2 of an i.i.d.

random interept by spike and slab priors that allow for random e�et seletion.

Although random interepts an be formally subsumed within the STAR preditor (see the

previous setion) we inlude the random interept term expliitly in our model, i.e.

yi = f1(zi1) + . . .+ fq(ziq) + x′
iγ + βzi + εi, (6)

where zi ∈ {1, . . . ,K} is the value of the luster variable z for the i-th observation.
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3.1 Prior

For the random interepts βk, k = 1, . . . ,K we speify a spike and slab prior distribution

by the following hierarhy:

βk|δk, τ2 ∼ N
(
0, r(δk)τ

2
)

τ2 ∼ G−1 (ν,Q)

p(δk|ω) =





ω δk = 1

1− ω δk = 0

ω ∼ Beta (a0, b0)

where

r(δk) =





r δk = 0

1 δk = 1,

and r << 1 is a onstant. Our default for r in our implementation is r = 0.005. The random

e�ets βk basially follow a entered Gaussian distribution, with variane depending on the

indiator variable δk. δk = 1 indiates the slab omponent, with variane τ2 resulting from

the Inverse Gamma distribution and δk = 0 the spike with onsiderably smaller variane

rτ2.

Hene random interepts are assumed to i.i.d follow a sale mixture of Normals

p
(
βk|ω, τ2

)
∝ 1− ω

rτ
exp

(
−

β2
j

2rτ2

)
+

ω

τ
exp

(
−

β2
j

2τ2

)
,

onditional on the mixture weight ω and the variane parameter τ2 .

Smoothing of random interepts is indued by the hyper-priors on these parameter. The

hyper-prior on ω indues smoothing of the indiator variables, whih are independent on-

ditioning on ω, but marginally dependent for proper prior distributions, i.e. a0, b0 > 0 . As,
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onditional on the indiator variables, the marginal distribution of the random interepts is

a saled Student distribution with 2ν degrees of freedom (see appendix A) the hyper-prior

on the variane parameter indues smoothing mainly within the mixture omponents.

The main purpose of the mixture spei�ation of the prior is to allow for seletive shrinkage:

due to the smaller variane, random interepts assigned to the spike omponent will be

shrunk muh more severly than those assigned to the slab omponent. Additionally based

on the posterior distribution of the indiator variables, random interepts an be lassi�ed

as either negligable or onsiderably di�erent from zero, if the posterior probability of δk = 1

exeeds a ertain treshold.

However, indiators are marginally dependent for a proper prior distribution, i.e. a0, b0 >

0. Considering two random interepts βk, βl, the marginal prior probability that both are

assigned to the slab omponent is

P (δk = 1, δl = 1) =

∫
P (δk = 1, δl = 1|ω)p(ω)dω =

∫
ω2p(ω)dω =

= E(ω2) =
a0

a0 + b0

a0 + 1

a0 + b0 + 1

whih is larger than P (δk = 1)P (δl = 1) = E(ω)2 =
(

a0
a0+b0

)2
for b0 > 1

Correspondingly

P (δk = 0, δl = 0) = E((1− ω)2) > P (δk = 0)P (δl = 0)

for a0 > 1.

3.2 Full onditionals

Random interept seletion using spike and slab priors for the varianes an be easily in-

oprorated into existing sampling shemes for STAR models. The MCMC updates of the

regression oe�ients of the nonlinear funtions and linear e�ets remain unhainged. The

parameters for the variane τ2 an be updated by simple Gibbs steps beause their full

onditionals are known distributions. We have the following full onditionals:

8



1. Full onditional of δk:

p(δk = 1 |βk, ω, τ2) =
ωp(βk | τ2, δk = 1)

(1− ω)p(βk | τ2, δk = 0) + ωp(βk | τ2, δk = 1)
=

=
1

1 + 1−ω
ω Lk

,

where

Lk =
ϕ(βk; 0; r τ

2)

ϕ(βk; 0; τ2)
=

1√
r
e−

β2k
2τ2

(1/r−1).

Here ϕ(βk; 0; τ
2) denotes the density of the N(0, τ2) distribution evaluated at βk.

2. Full onditional of τ2:

τ2 | ν ∼ G−1

(
ν +K/2, Q+

1

2

K∑

k=1

β2
k

r(δk)

)

3. Full onditional of ω:

ω | δ ∼ Beta

(
a0 +

K∑

k=1

δk, b0 +K −
K∑

k=1

δk

)

3.3 Choosing the hyperparameters

The parameters βk are set up with a mixture of prior distributions to separate e�ets lose

to zero from larger ones. The range of a priori likely parameter values is thereby driven by

the variane τ2. A riterion to speify the prior distribution of the parameter variane, i.e.

the hyperparameters ν and Q of the Inverse Gamma distribution, is therefore favorable. For

that purpose we establish a priniple to determine ν and Q in order to

• ensure inlusion of a priori relevant e�ets with a high probability (sensitivity)

P (δk = 1 | |βk| ≥ q1)

and
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• at the same time let �small� e�ets be exluded from the model (spei�ity)

P (δk = 0 | |βk| ≤ q2) .

In Appendix A we show that

p (δk = 1|βk) ≈
1

1 + b0
a0

p2ν(βk;r
Q
ν )

p2ν(βk;
Q
ν )

with p2ν

(
βk|δk; r (δk) Q

ν

)
being the density of a saled Student-t distribution with 2ν degrees

of freedom, that is,

√
ν

r (δi)Q
βk|δk ∼ t2ν .

Conrete probabilities are then omputed after speifying the interesting minimum (or max-

imum) e�et size by

P (δk = 1||βk| ≤ q) =
1

1 + b0
a0

Pt2ν

(√
ν
rQ

|βk|≤q

)

Pt2ν

(√
ν
Q
|βk|≤q

)

.

For a seletion of hyperparameters the orresponding probabilities are listed in the Tables

1 - 5. The following general observations an be made:

• The higher the probability of values around zero in the slab omponent, the higher the

hane that small e�ets are deteted, but also the worse the separation of irrelevant

ones.

� ν drives the degrees of freedom of the Student t-distribution. A higher ν leads to

a smaller variane and a smaller kurtosis and both inrease the probability mass

around zero.

� Q is part of the sale parameter where a higher Q desribes a wider spread of the

e�ets and so redues the probability of values around zero.

• ν = 0.001, Q = 0.001 seems an undesirable ombination as sensitivity remains at its

low but spei�ity an be improved. Note, that for a single Inverse Gamma distribution

this is a standard hoie to inorporate an uninformative prior on the log sale.
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As a brief summary we an state that

• an inrease in ν (Q �xed) inreases the sensitivity but dereases the spei�ity,

• an inrease in Q (ν �xed) dereases the sensitivity but inreases the spei�ity.

To investigate the e�et on the posterior inlusion probability we selet hyperparameters to

model

• high sensitivity and high spei�ity (ν = 10, Q = 10)

• high sensitivity and low spei�ity (ν = 1, Q = 0.001)

• low sensitivity and high spei�ity (ν = 1, Q = 25),

see also Figure 1. These settings were integrated into the simulation study and ompared

to the well established ν = 5 and Q = 25 hyperparameter pair.
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q Sensitivity Spei�ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 0.502 0.500 0.500 0.500 0.500 0.938 0.984 0.984 0.984 0.984

0.05 0.502 0.501 0.501 0.500 0.500 0.837 0.978 0.981 0.983 0.984

0.09 0.502 0.501 0.501 0.501 0.500 0.792 0.971 0.977 0.981 0.983

0.13 0.502 0.501 0.501 0.501 0.500 0.767 0.964 0.973 0.979 0.982

0.17 0.502 0.501 0.501 0.501 0.501 0.750 0.958 0.969 0.977 0.980

0.21 0.502 0.501 0.501 0.501 0.501 0.739 0.952 0.965 0.975 0.979

0.25 0.502 0.501 0.501 0.501 0.501 0.730 0.946 0.962 0.972 0.978

Table 1: Marginal prior inlusion probabilities, ν = 0.001

q Sensitivity Spei�ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 0.997 0.627 0.570 0.537 0.523 0.821 0.983 0.984 0.984 0.984

0.05 1.000 0.917 0.824 0.701 0.627 0.573 0.963 0.975 0.981 0.983

0.09 1.000 0.969 0.922 0.821 0.726 0.528 0.939 0.962 0.975 0.980

0.13 1.000 0.984 0.958 0.889 0.802 0.514 0.915 0.948 0.968 0.976

0.17 1.000 0.990 0.974 0.926 0.856 0.508 0.893 0.934 0.960 0.972

0.21 1.000 0.993 0.982 0.948 0.892 0.506 0.871 0.920 0.953 0.967

0.25 1.000 0.995 0.987 0.962 0.917 0.504 0.851 0.907 0.945 0.963

Table 2: Marginal prior inlusion probabilities, ν = 1
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q Sensitivity Spei�ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.758 0.643 0.573 0.545 0.716 0.981 0.983 0.984 0.984

0.05 1 0.998 0.980 0.880 0.758 0.509 0.938 0.962 0.976 0.981

0.09 1 1.000 0.999 0.979 0.910 0.501 0.894 0.936 0.963 0.974

0.13 1 1.000 1.000 0.996 0.971 0.500 0.854 0.910 0.948 0.966

0.17 1 1.000 1.000 0.999 0.990 0.500 0.819 0.885 0.934 0.956

0.21 1 1.000 1.000 1.000 0.996 0.500 0.786 0.863 0.919 0.947

0.25 1 1.000 1.000 1.000 0.998 0.500 0.758 0.841 0.905 0.938

Table 3: Marginal prior inlusion probabilities, ν = 3

q Sensitivity Spei�ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.84 0.696 0.600 0.560 0.665 0.979 0.983 0.984 0.984

0.05 1 1.00 0.998 0.952 0.840 0.501 0.920 0.952 0.972 0.979

0.09 1 1.00 1.000 0.997 0.971 0.500 0.865 0.917 0.953 0.969

0.13 1 1.00 1.000 1.000 0.996 0.500 0.818 0.885 0.933 0.957

0.17 1 1.00 1.000 1.000 0.999 0.500 0.776 0.855 0.915 0.944

0.21 1 1.00 1.000 1.000 1.000 0.500 0.740 0.828 0.897 0.932

0.25 1 1.00 1.000 1.000 1.000 0.500 0.708 0.802 0.880 0.920

Table 4: Marginal prior inlusion probabilities, ν = 5
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q Sensitivity Spei�ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.943 0.79 0.650 0.589 0.599 0.974 0.981 0.983 0.984

0.05 1 1.000 1.00 0.995 0.943 0.500 0.890 0.933 0.962 0.974

0.09 1 1.000 1.00 1.000 0.998 0.500 0.819 0.886 0.934 0.957

0.13 1 1.000 1.00 1.000 1.000 0.500 0.761 0.844 0.907 0.939

0.17 1 1.000 1.00 1.000 1.000 0.500 0.713 0.806 0.882 0.922

0.21 1 1.000 1.00 1.000 1.000 0.500 0.673 0.772 0.859 0.906

0.25 1 1.000 1.00 1.000 1.000 0.500 0.640 0.742 0.837 0.890

Table 5: Marginal prior inlusion probabilities, ν = 10
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Figure 1: The sensitivity and spei�ity of the onsidered senarios depending on the random

e�et size q
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4 Simulation experiments

A simulation study was onduted to ompare the spike and slab prior, denoted by SSVS,

to the well established Inverse Gamma prior distribution for random interepts, denoted

by IG. Therefore we set up di�erent random interept strutures and ompare the overall

performane, estimated oe�ients as well as the random interept seletion.

4.1 Simulation designs

The response is driven by two smooth e�ets, a random interept and an error term:

yi ∼ log(zi1) + sin(zi2) + βzi + εi, εi ∼ N
(
0, 0.52

)
.

The values of z1 and z2 are distributed on equidistant grids in [−3, 3] and [0.3, 3], respetively.

The domains of the smooth omponents were seleted in order to ensure e�ets of similar

magnitude. Cubi B-spline representations with 22 basis funtions and a random walk

two penalty were hosen to model the smooth funtions. The n = 1000 observations were

separated into N = 100 lusters, eah of size T = 10. The di�erent spei�ations for the

random interept are given as follows:

- full βk ∼ N (0, 1)

- none βk = 0, k = 1, . . . , 100

- partial βk





= 0, k = 1, . . . , 75

∼ N (0, 1) , k = 76, . . . , 100.

The lassi�ation of observations to lusters was kept �x over theM = 500 repetitions as well

as the random e�ets. The hyperparameters for the prior distribution of the random e�ets

variane were set to ν = 0.001, Q = 0.001 for IG. For SSVS we used the hyperparameter

settings desribed and justi�ed in Setion 3.3. Sine the results turned out be pratially

15



una�eted by the hoie of hyperparameters, the following presentation of results is restrited

to the hoie ν = 5 and Q = 25.

All models were estimated using the open soure software BayesX.

4.2 Evaluation of model �t

The overall �t (IG versus SSVS ) is ompared by the deviane information riterion (DIC),

see Spiegelhalter, Best, Carlin, and van der Linde (2002). The DIC also allows for model

hoie, i.e. the disrimination between the IG or the SSVS prior. A rough rule of thumb

says that DIC di�erenes of 10 and more between two ompeting models indiate that the

model with the lower DIC is superior. Di�erenes between 5 and 10 are �substantial� but

not de�nitely onlusive, while di�erenes below 5 are not supportive for either model.

The quality of the estimated smooth funtions are measured by the average estimated fun-

tion as a measure of the bias and the mean squared error

MSE(fj) =
1

K

K∑

i=1

(
f̂ (zij)− f (zij)

)2
, j = 1, 2.

The quality of the estimated random e�ets is measured by the average estimated random

e�et as a measure of the bias and the mean squared error

MSEre =
1

K

K∑

k=1

(
β̂k − βk

)2
.

Furthermore, in ase of SSVS priors we onstruted tables of inlusion as follows: A luster

e�et is assumed to be inluded in the model if the posterior inlusion probability exeeds

0.5. The inlusion tables then indiate the perentage of repliations the respetive luster

e�et is inluded in the model.

4.3 Results

The results of our simulation experiments are summarized through Figures 2 - 6. Figure 2

displays boxplots of DIC di�erenes between the �ts based on Inverse Gamma and spike and
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slab priors for random e�ets varianes. Figures 3 and 4 show average estimated funtions

as well as MSE's for f1 and f2 in ase of a partial random e�ets. For the other ases (no

and full random e�ets) the results are similar and therefore omitted. Figure 5 displays

boxplots of MSE's for the estimated random e�ets while Figure 6 shows relative inlusion

frequenies depending on the size of the random e�et.

We an draw the following onlusions:

• Overall �t: Figure 2 shows that the SSVS prior primarily pays o� in the ase were

some of the random e�ets oe�ients are zero (the partial senario). Here the DIC

di�erenes are huge with average di�erene of about 45 units. If in fat there are

no nonzero random e�ets (none senario) both priors IG and SSVS perform similar

with a slight tendeny in favor of the SSVS prior. In ases where all random e�ets

oe�ients are not equal to zero (full senario) the IG prior seems to perform slightly

better than the SSVS prior although the DIC di�erenes are usually within a range

between 5 and 10 units and therefore not onlusive aording to our rule of thumb.

• Fit of smooth funtions: Figures 3 and 4 suggest that the hoie of the random e�ets

prior (IG versus SSVS) does not a�et the �t of the smooth funtions f1 and f2.

• Fit of random e�ets: Figure 5 largely on�rms our �ndings based on the DIC. The

proposed SSVS prior performs superior if all or some of the random e�ets oe�ients

are in fat zero (upper and middle panel). If all random e�ets are nonzero the usual

IG prior performs slightly better than the SSVS prior.

• Inlusion frequenies: Figure 6 shows that the random oe�ient seletion works very

well. Random oe�ients that are atually zero (partial senario) are almost never

inluded into the model while for nonzero oe�ients the inlusion frequenies are

usually lose to one. Exeptions are some e�ets whih are nonzero but lose to zero.

Here the inlusion frequenies an be omparably low in the partial and full setting.
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Figure 2: DIC di�erenes between �ts based on Inverse Gamma and spike and slab priors

for random e�ets varianes.

Note that we have omitted the results for the senario where all random oe�ients

are zero. The reason is that the relative inlusion frequenies are pratially zero

indiating that the seletion proess works extremely well in this senario.
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Figure 3: Average estimated funtions for f1 and f2 in ase of a partial random e�et. The

left panel orresponds to Inverse Gamma priors for the random e�ets varianes and the

right panel to spike and slab priors.
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Figure 4: MSE for f1 and f2 in ase of a partial random e�et. The left panel orresponds

to Inverse Gamma priors for the random e�ets varianes and the right panel to spike and

slab priors.
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Figure 5: MSE for random e�ets. The left panel orresponds to Inverse Gamma priors for

the random e�ets varianes and the right panel to spike and slab priors.
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Figure 6: Relative inlusion frequenies depending on the size of the random e�et.
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5 Appliation: Malnutrition in Zambia

In this setion we illustrate the appliation of spike and slab priors for random interepts

using DHS (demographi and health survey) data from 1992 on undernutrition in Zambia.

The data set has already been used in various illustrations, see among others the detailed

ase study on strutured additive regression in Fahrmeir, Kneib, Lang, and Marx (2013).

The book also ontains a variable desription and summary statistis of all variables. Here

we build on Fahrmeir, Kneib, Lang, and Marx (2013) and use their model

zscorei = γ ′xi + f1(m_agebirthi) + f2(m_heighti) + f3(m_bmii)+

f4(c_breastfi · c_agei) + βdistricti + εi,

where zscorei is a zsore measuring hroni undernutrition, f1, . . . , f4 are possibly nonlinear

one or two dimensional funtions of the ontinuous ovariates m_agebirth (mothers age at

birth), m_height (mothers height), m_bmi (mothers body mass index), c_breastf (du-

ration of breastfeeding) and c_age (hilds age). The term βdistricti is a random interept

to ope with distrit spei� heterogeneity. The one dimensional funtions f1, f2, f3 are

modeled by ubi P-splines with 20 inner knots, the two dimensional funtion f4 is modeled

through a Gaussian �eld (kriging term). For the distrit spei� random e�et we applied

our spike and slab prior with hyperparameters ν = 5, Q = 25 for the inverse gamma prior

on τ2 and a0 = b0 = 1 for the beta prior on ω (uniform prior). As a kind of sensitivity

hek we also used the hyperparameter ombinations ν = 1, Q = 25 and ν = 10, Q = 10.

We also ompared the results with a standard inverse gamma prior with hyperparameters

a = b = 0.001 for the variane τ2 of the random e�ets.

As ould have been expeted from the simulation study, the results for the linear e�ets γ ′x

and the nonlinear e�ets f1, . . . , f4 are almost una�eted from the random e�ets modeling

and pratially idential to Fahrmeir, Kneib, Lang, and Marx (2013). We therefore report

only on the results for the random e�ets. Figure 7 displays maps of the estimated random

e�ets, where the left panel orresponds to a spike and slab prior with hyperparameters
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Figure 7: Posterior means of distrit spei� random e�ets. The left panel displays results

for the spike and slab prior with hyperparameters ν = 5, Q = 25, the right panel orresponds

to the standard IG prior.

ν = 5, Q = 25 and the right panel to an IG prior. To ease omparison with the IG prior

Figure 8 displays the random e�ets in asending order of size. Additionally the distrits

are marked where δk > 0.5 for the posterior mean of the inlusion parameters δk. A key

�nding of the analysis is that the spike and slab prior shrinks small e�ets towards zero

while large e�ets appear to be more pronouned than with an IG prior. Using the IG

prior it seems that small e�ets are overestimated and large e�ets are underestimated as

an e�et of the overall (nonloal) variane parameter. In ontrast the spike and slab prior

shrinks unimportant e�ets towards zero while important e�ets are not a�eted. Figure 8

also shows that the distrits with inlusion probability larger than 0.5 orrespond largely

to the distrits where the 95% redible interval of the e�et based on an IG prior does not

over zero.
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Figure 8: Posterior means of estimated random e�ets in asending order of size. Results

for spike and slab priors are denoted by hollow dots, results for IG priors by plus signs. The

blak dots indiate a posterior mean above 0.5 for the orresponding inlusion parameter

δk.

6 Conlusion

This paper develops random interept seletion within the ontext of models with a stru-

tured additive preditor. The seletion of random interept oe�ients is based on spike

and slab priors for the variane of the random e�ets distribution. Our extensive simulation

experiments show that the proposed prior performs superior to the usual Inverse Gamma

prior if some or all random e�ets oe�ients are in fat zero. In ases where all random

e�ets oe�ients are nonzero spike and slab priors and the standard Inverse Gamma prior

perform almost equally well. The distintion between spike and slab priors and Inverse

Gamma priors an be done in pratie using the deviane information riterion.

A Marginal prior inlusion probability given the e�et size

The marginal prior inlusion probability given the e�et βk an formally be omputed as

p(δk|βk) =
p(βk|δk)p(δk)

p(βk)
.
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From the joint distribution

p
(
βk, τ

2, δk, ω
)
= p

(
βk|τ2, δk

)
p
(
τ2
)
p (δk|ω) p (ω) ,

we get

p (βk|δk) =
∫

p
(
βk|τ2, δk

)
p(τ2)dτ2 = p2ν

(
βk|δk; r (δk)

Q

ν

)

where p2ν

(
βk|δk; r (δk) Q

ν

)
is the density of a saled Student-t distribution with 2ν degrees

of freedom, i.e.,

√
ν

r (δi)Q
βk|δk ∼ t2ν .

Also

p(δk) ≈
∫

p (δk|ω) p (ω) dω =





a0
a0+b0

δk = 1

b0
a0+b0

δk = 0

,

suh that the random e�et βk follows a mixture of saled Student-t distributions with 2ν

degrees of freedom

βk ∼ b0
a0 + b0

t2ν

(
r
Q

ν

)
+

a0
a0 + b0

t2ν

(
Q

ν

)
,

where the mixture weights are the prior expeted exlusion and inlusion probability, re-

spetively.

Hene �nally

p (δk = 1|βk) =
a0

a0+b0
p2ν

(
βk;

Q
ν

)

b0
a0+b0

p2ν

(
βk; r

Q
ν

)
+ a0

a0+b0
p2ν

(
βk;

Q
ν

)
(7)

=
1

1 + b0
a0

p2ν(βk;r
Q
ν )

p2ν(βk;
Q
ν )

. (8)

From (7) we an see that the prior inlusion probability depends on the share of the prior

probability in the slab omponent of the total marginal prior e�et probability.
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