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Random intercept selection in structured additive regression

models
Helene Roth, Stefan Lang Helga Wagner
Department of Statistics, Institute of Applied Statistics (IFAS)
University of Innsbruck Johannes Kepler University Linz
Abstract

This paper discusses random intercept selection within the context of semipara-
metric regression models with structured additive predictor (STAR). STAR models
can deal simultaneously with nonlinear covariate effects and time trends, unit- or
cluster-specific heterogeneity, spatial heterogeneity and complex interactions between
covariates of different type. The random intercept selection is based on spike and slab
priors for the variances of the random intercept coefficients. The aim is to achieve
shrinkage of small random intercept coefficients to zero similar as for the LASSO in
frequentist linear models. The mixture structure of the spike and slab prior allows for
selective shrinkage, as coefficients are either heavily shrunk under the spike component
or left almost unshrunk under the slab component. The hyperparameters of the spike
and slab prior are chosen by theoretical considerations based on the prior inclusion
probability of a particular random coeflicient given the true effect size. Using extensive
simulation experiments we compare random intercept models based on spike and slab
priors for variances with the usual Inverse Gamma priors. A case study on malnutrition

of children in Zambia illustrates the methodology in a real data example.

Keywords: Bayesian hierarchical models, Bayesian model choice, MCMC, P-splines,

spike and slab priors



1 Introduction

A particularly broad and rich framework for semiparametric regression is provided by gen-
eralized structured additive regression (STAR) models proposed in Fahrmeir, Kneib, and
Lang (2004) and Brezger and Lang (2006), see Fahrmeir, Kneib, Lang, and Marx (2013) for
an introduction from first principles. Models of similar complexity have been developed in
a mostly frequentist setting by Simon Wood (see e.g. Wood 2006) and in Ruppert, Wand,
and Carroll (2003), Rigby and Stasinopoulos (2005) or Rue, Martino, and Nicolas (2009).
STAR models can deal simultaneously with nonlinear covariate effects and time trends, unit-
or cluster-specific heterogeneity, spatial heterogeneity and complex interactions between co-

variates of different type.

The purpose of this paper is to discuss random intercept selection within the context of
STAR models. We aim at shrinking small random intercept coefficients to zero similar to
the LASSO (Tibshirani 1996) in frequentist linear models. The selection is based on spike
and slab priors for the variances of the random intercept coefficients as proposed for ordinary
linear random effects models in Frithwirth-Schnatter and Wagner (2011). The hyperparam-
eters are chosen by theoretical considerations based on the prior inclusion probability of a
particular random coefficient given the true effect size. An implementation of the approach
is provided in the software package BayesX (Belitz, Brezger, Kneib, Lang, and Umlauf 2013)

and the corresponding R interface BayesR (Umlauf, Adler, Kneib, Lang, and Zeileis 2014).

Spike and slab priors are mixtures of two components, the spike with small variance and a
comparably flat slab. They were introduced in Mitchell and Beauchamp (1988) for Bayesian
variable selection in linear regression models. Whereas initially spike and slab prior dis-
tributions were specified for the regression coefficients, e.g. George and McCulloch (1993),
recently Ishwaran and Rao (2003) and Ishwaran and Rao (2005) introduced spike and slab
priors for their variances. Since then spike and slab priors have been frequently used for

Bayesian model choice and variable selection see e.g. Fahrmeir, Kneib, and Konrath (2010)



for variable selection in linear models and Scheipl, Fahrmeir, and Kneib (2012) for variable
selection in STAR models. Introductions into the usage of spike and slab priors can be found

in Malsiner-Walli and Wagner (2011) and Fahrmeir, Kneib, Lang, and Marx (2013).

Frithwirth-Schnatter and Wagner (2011) demonstrated that spike and slab priors for the
random intercept variances are useful for random intercept selection. These priors induce
selective shrinkage as random effects assigned to the spike component are heavily shrunk
to zero whereas those assigned to the slab experience only little shrinkage. The mixture
structure of the prior easily allows for classification of effects as not different from the prior
mean— for effects assigned to the spike — and deviating considerably, when assigned to the

slab component.

Frithwirth-Schnatter and Wagner (2011) compare different specifications of the spike and
the slab priors and unimodal priors for simulated data. They conclude that spike and slab
priors outperform unimodal priors with respect to correct classification of non-zero random
intercepts and there is little difference between different versions of spike and slab priors.
In their analysis the hyperparameters were chosen to yield resulting random effects variance
of 1, but for no other values. We fill this gap by an intensive simulation study where we

compare spike and slab priors for a wide range of hyperparameters.

The rest of the paper is organized as follows: Section 2 reviews the modeling framework of
this paper. Section 3 introduces the spike and slab prior for variances of random effects and
discusses the choice of hyperparameters. Technical details regarding the properties of the
stochastic search variable selection (SSVS) prior are deferred to the Appendix A. Simulation
experiments are presented in Section 4. An illustration for real data is given in Section 5
with an application of the methodology on malnutrition of children in Zambia. The final

Section 6 summarizes the paper and provides an outlook for future research.



2 Structured additive models

2.1 Observation model

Suppose that observations (y;, z;, ®;), i = 1,...,n, are given, where y; is a continuous re-
sponse variable, and z; = (z1,...,2q) and &; = (2;1,...,2;p) are vectors of covariates.
For the variables in z possibly nonlinear effects are assumed whereas the variables in «
are modeled in the usual linear way. The components of z are not necessarily continu-
ous covariates. A component may also indicate a time scale, a cluster- or a spatial index
(e.g. municipality, district or county) a particular observation pertains to. We assume an

additive decomposition of the effects of z;; (and z;;) and obtain the model

vi = f1(zi1) + ...+ fo(zig) + Ty + &4 (1)

Here, f1,..., f are nonlinear functions of the covariates z; and )~ is the usual linear part
of the model. The errors €; are assumed to be mutually independent Gaussian with mean 0
and variance o2, i.e. &; ~ N(0,0?).

The nonlinear effects in (1) are modeled by a basis functions approach, i.e. a particular

function f of covariate z is approximated by a linear combination of basis or indicator

functions
K
f(z) =" BuBi(2). (2)
k=1
The By’s are known basis functions and 8 = (81, ..., k) is a vector of unknown regression

coefficients to be estimated. Defining the n x K design matrix Z with elements Z[i, k] =
By(z;), the vector £ = (f(z1),..., f(2n))" of function evaluations can be written in matrix

notation as f = Z3. Accordingly, we obtain

y=n+e=2Z101+...+Z,B,+ X +¢, (3)

where y = (y1,...,yn), n=(n1,...,7,)" and € ~ N(0,*I).



2.2 Priors

Effect modeling and priors depend on the covariate or term type. We first describe the
general form of priors. In a frequentist setting, overfitting of a particular function f = Z3
is avoided by defining a roughness penalty on the regression coefficients, see for instance
Fahrmeir, Kneib, Lang, and Marx (2013). In a Bayesian framework a standard smoothness
prior is a (possibly improper) Gaussian prior of the form

1 >rk(K)/2

s () e (oL KB) 148 =0) (@)

where I(+) is the indicator function. The key components of the prior are the penalty matrix
K, the variance parameter 72 and the constraint A3 = 0. Usually the penalty matrix is
rank deficient, i.e. rk(K) < K, resulting in a partially improper prior.

The amount of smoothness is governed by the variance parameter 72. A conjugate Inverse

2 in models

Gamma prior is employed for 72 (as well as for the error variance parameter o
with Gaussian responses), i.e. 72 ~ G~!(a,b) with small values such as a = b = 0.001
for the hyperparameters a and b resulting in an uninformative prior on the log scale. The
term I(AB = 0) imposes required identifiability constraints on the parameter vector. A

straightforward choice is A = (1,...,1), i.e. the regression coefficients are centered around

Zero.

For a continuous covariate z, our basic approach for modeling a smooth function f are
Bayesian P-splines introduced in a frequentist setting by Eilers and Marx (1996) and in a
Bayesian version by Lang and Brezger (2004). P-splines assume that the unknown functions
can be approximated by a polynomial spline which can be written in terms of a linear
combination of B-spline basis functions. Hence, the columns of the design matrix Z are
given by the B-spline basis functions evaluated at the observations z;. Lang and Brezger

(2004) propose to use first or second order random walks as smoothness priors for the



regression coeflicients, i.e.

Br = Br—1+ur, or B =281 — Br_2+ u, (5)

with Gaussian errors ug ~ N(0,72) and diffuse priors p(1) o< const, or p(f1) and p(fa)
const, for initial values. This prior is of the form (4) with penalty matrix given by K = D'D,
where D is a first or second order difference matrix.

Suppose now that covariate z is an index variable that indicates the unit or cluster a par-
ticular observation belongs to. In this case, it is common practice to introduce unit- or
cluster specific i.i.d. Gaussian random intercepts or slopes, see e.g. Diggle, Heagerty, Liang,
and Zeger (2002). Suppose z can take the values 1,..., K. Then, an i.i.d. random inter-
cept can be incorporated into our framework of structured additive regression by assuming
f(k) = B, ~ N(0,72), k = 1,..., K. The design matrix Z is now a 0/1 incidence matrix

with dimension n x K. The penalty matrix is the K x K identity matrix, i.e. K = 1I.

3 Random intercept selection

In this section we now replace the usual Inverse Gamima prior for the variance 72 of an i.i.d.

random intercept by spike and slab priors that allow for random effect selection.

Although random intercepts can be formally subsumed within the STAR predictor (see the

previous section) we include the random intercept term explicitly in our model, i.e.

vi = f1(zi1) + ...+ fq(zig) + Ty + B, + €4 (6)

where z; € {1,..., K} is the value of the cluster variable z for the i-th observation.



3.1 Prior

For the random intercepts SBg, k = 1,..., K we specify a spike and slab prior distribution

by the following hierarchy:

Br|6k, 7% ~ N (0,7(5)7°)

7-2 ~ gil <V7 Q)

w ~ Beta (ag, by)

where

r(dx) =

and r << 1is a constant. Our default for r in our implementation is r = 0.005. The random

effects By basically follow a centered Gaussian distribution, with variance depending on the

2

indicator variable ;. dr = 1 indicates the slab component, with variance 7° resulting from

the Inverse Gamma distribution and d; = 0 the spike with considerably smaller variance

T7'2.

Hence random intercepts are assumed to i.i.d follow a scale mixture of Normals

2 52
ey B + w exp 5
P 2r712 T 272 |’

2

p (Bl %) o ©

conditional on the mixture weight w and the variance parameter 7
Smoothing of random intercepts is induced by the hyper-priors on these parameter. The

hyper-prior on w induces smoothing of the indicator variables, which are independent con-

ditioning on w, but marginally dependent for proper prior distributions, i.e. ag,bg > 0 . As,



conditional on the indicator variables, the marginal distribution of the random intercepts is
a scaled Student distribution with 2v degrees of freedom (see appendix A) the hyper-prior

on the variance parameter induces smoothing mainly within the mixture components.

The main purpose of the mixture specification of the prior is to allow for selective shrinkage:
due to the smaller variance, random intercepts assigned to the spike component will be
shrunk much more severly than those assigned to the slab component. Additionally based
on the posterior distribution of the indicator variables, random intercepts can be classified
as either negligable or considerably different from zero, if the posterior probability of oy = 1

exceeds a certain treshold.

However, indicators are marginally dependent for a proper prior distribution, i.e. ag, by >
0. Considering two random intercepts S, 5;, the marginal prior probability that both are

assigned to the slab component is

Por=1,0=1)= /P((Sk =1,0; = ljw)p(w)dw = /pr(w)dw =

ap ap+1

— E(w?) =
(@) ap+boag+by+1

which is larger than P(6; = 1)P(6; = 1) = E(w)? = (ao'fbo)2 for by > 1

Correspondingly
P65 = 0,8 = 0) = E((1 —w)?) > P(6 = 0)P(6 = 0)

for ag > 1.

3.2 Full conditionals

Random intercept selection using spike and slab priors for the variances can be easily in-
coprorated into existing sampling schemes for STAR models. The MCMC updates of the
regression coefficients of the nonlinear functions and linear effects remain unchainged. The

2

parameters for the variance 7% can be updated by simple Gibbs steps because their full

conditionals are known distributions. We have the following full conditionals:



1. Full conditional of d:

B ~ wp(Be | 72,0, = 1) —
p(Ok = 1Bk, w,77) = (1 —w)p(Bi | 72,6, = 0) +wp(By | 72,6, = 1)
1

N 1+1_7ka’

where

_ ©(Br; 0;772) _ ie—%(l/r—l)
©(Br; 0;72)  r

Here ¢(Bk;0; 72) denotes the density of the N (0,72) distribution evaluated at .

Ly,

2. Full conditional of 72:

1, 32
2 —1 k
2lv~G <V+K/2,Q+2];r(5k)>

3. Full conditional of w:
K K
w|éd ~ Beta (ao—FZék,bo—FK— Zék>
k=1 k=1

3.3 Choosing the hyperparameters

The parameters 5 are set up with a mixture of prior distributions to separate effects close
to zero from larger ones. The range of a priori likely parameter values is thereby driven by
the variance 72. A criterion to specify the prior distribution of the parameter variance, i.e.
the hyperparameters v and @ of the Inverse Gamma distribution, is therefore favorable. For

that purpose we establish a principle to determine v and @ in order to
e ensure inclusion of a priori relevant effects with a high probability (sensitivity)
P (0, = 1118kl = q1)

and



e at the same time let “small” effects be excluded from the model (specificity)
Pk =018k < q2) -

In Appendix A we show that

1

by P2v (Brir D)
a0 py, (Br; <)

p (0 = 1(Bk) =

1+

with pa, <ﬁk\5k; r (0k) %) being the density of a scaled Student-t distribution with 2v degrees

v
Hm/@kwk ~ toy.

Concrete probabilities are then computed after specifying the interesting minimum (or max-

of freedom, that is,

imum) effect size by

1

P e <
1 + bo tgy( T‘Q‘Bkl_q)

" iy, (/B l611<a)

For a selection of hyperparameters the corresponding probabilities are listed in the Tables

P (6r = 1[Bk] < q) =

1 - 5. The following general observations can be made:

e The higher the probability of values around zero in the slab component, the higher the
chance that small effects are detected, but also the worse the separation of irrelevant

ones.

— v drives the degrees of freedom of the Student t-distribution. A higher v leads to
a smaller variance and a smaller kurtosis and both increase the probability mass
around zero.

— (@ is part of the scale parameter where a higher ) describes a wider spread of the

effects and so reduces the probability of values around zero.

e v =0.001, @ = 0.001 seems an undesirable combination as sensitivity remains at its
low but specificity can be improved. Note, that for a single Inverse Gamma distribution

this is a standard choice to incorporate an uninformative prior on the log scale.

10



As a brief summary we can state that

e an increase in v (@ fixed) increases the sensitivity but decreases the specificity,

e an increase in @) (v fixed) decreases the sensitivity but increases the specificity.

To investigate the effect on the posterior inclusion probability we select hyperparameters to

model

e high sensitivity and high specificity (v = 10, @ = 10)

e high sensitivity and low specificity (v =1, @ = 0.001)

e low sensitivity and high specificity (v = 1, @ = 25),

see also Figure 1. These settings were integrated into the simulation study and compared

to the well established v = 5 and ) = 25 hyperparameter pair.

11



q Sensitivity Specificity
Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25
0.01 0.502 0.500 0.500 0.500 0.500 0.938 0.984 0984 0984 0.984
0.05 0.502 0.501 0.501 0.500 0.500 0.837 0.978 0.981 0.983 0.984
0.09 0.502 0.501 0.501 0.501  0.500 0.792 0.971 0977 0.981 0.983
0.13 0.502 0.501 0.501 0.501 0.500 0.767 0.964 0973 0.979 0.982
0.17 0.502 0.501 0.501 0.501 0.501 0.750 0.958 0.969 0.977 0.980
0.21 0.502 0.501 0.501 0.501 0.501 0.739 0.952 0.965 0.975 0.979
0.25 0.502 0.501 0.501 0.501 0.501 0.730 0.946 0.962 0972 0.978

Table 1: Marginal prior inclusion probabilities, v = 0.001

q Sensitivity Specificity
Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25
0.01 0.997 0.627 0.570 0.537  0.523 0.821 0.983 0.984 0.984 0.984
0.05 1.000 0917 0.824 0.701 0.627 0.573 0.963 0975 0.981 0.983
0.09 1.000 0.969 0.922 0.821 0.726 0.528 0.939 0.962 0.975 0.980
0.13 1.000 0.984 0.958 0.889 0.802 0.514 0915 0.948 0.968 0.976
0.17 1.000 0.990 0974 0926 0.856 0.508 0.893 0.934 0.960 0.972
0.21 1.000 0.993 0.982 0.948 0.892 0.506 0.871 0.920 0.953 0.967
0.25 1.000 0.995 0.987 0962 0.917 0.504 0.851 0.907 0.945 0.963

Table 2: Marginal prior inclusion probabilities, v = 1

12



q Sensitivity Specificity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0758 0.643 0.573 0.545 0.716 0.981 0.983 0.984 0.984
0.05 1 0998 0980 0.880 0.758 0.509 0.938 0.962 0976 0.981
0.09 1 1.000 0.999 0.979 0.910 0.501 0.894 0.936 0.963 0.974
0.13 1 1.000 1.000 0.996 0.971 0.500 0.854 0.910 0.948 0.966
0.17 1 1.000 1.000 0.999 0.990 0.500 0.819 0.885 0.934 0.956
0.21 1 1.000 1.000 1.000 0.996 0.500 0.786 0.863 0.919 0.947
0.25 1 1.000 1.000 1.000 0.998 0.500 0.758 0.841 0.905 0.938

Table 3: Marginal prior inclusion probabilities, v = 3

q Sensitivity Specificity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0001 Q-1 Q=3 Q=10 Q=25

0.01 1 084 0.696 0.600 0.560 0.665 0.979 0.983 0.984 0.984
0.05 1 1.00 0.998 0952 0.840 0.501 0920 0952 0972 0.979
0.09 1 1.00 1.000 0.997 0.971 0.500 0.865 0.917 0.953 0.969
0.13 1 1.00 1.000 1.000 0.996 0.500 0.818 0.885 0.933 0.957
0.17 1 1.00 1.000 1.000 0.999 0.500 0.776 0.855 0.915 0.944
0.21 1 1.00 1.000 1.000 1.000 0.500 0.740 0.828 0.897 0.932
0.25 1 1.00 1.000 1.000 1.000 0.500 0.708 0.802 0.880 0.920

Table 4: Marginal prior inclusion probabilities, v = 5

13



q Sensitivity Specificity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0943 0.79 0.650 0.589 0.599 0974 0981 0.983 0.984
0.05 1 1.000 1.00 0.995 0.943 0.500 0.890 0.933 0.962 0.974
0.09 1 1.000 1.00 1.000 0.998 0.500 0.819 0.886 0.934 0.957
0.13 1 1.000 1.00 1.000 1.000 0.500 0.761 0.844 0.907 0.939
0.17 1 1.000 1.00 1.000 1.000 0.500 0.713 0.806 0.882  0.922
0.21 1 1.000 1.00 1.000 1.000 0.500 0.673 0.772 0.859  0.906
0.25 1 1.000 1.00 1.000 1.000 0.500 0.640 0.742 0.837 0.890

Table 5: Marginal prior inclusion probabilities, v — 10

Sensitivity Specificity
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Figure 1: The sensitivity and specificity of the considered scenarios depending on the random

effect size ¢
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4 Simulation experiments

A simulation study was conducted to compare the spike and slab prior, denoted by SSVS,
to the well established Inverse Gamma prior distribution for random intercepts, denoted
by IG. Therefore we set up different random intercept structures and compare the overall

performance, estimated coefficients as well as the random intercept selection.

4.1 Simulation designs

The response is driven by two smooth effects, a random intercept and an error term:
yi ~ log(z1) + sin(z2) + Bz + €is g~ N (0, 0.52) .

The values of z; and 29 are distributed on equidistant grids in [—3, 3] and [0.3, 3], respectively.
The domains of the smooth components were selected in order to ensure effects of similar
magnitude. Cubic B-spline representations with 22 basis functions and a random walk
two penalty were chosen to model the smooth functions. The n = 1000 observations were
separated into N = 100 clusters, each of size T' = 10. The different specifications for the

random intercept are given as follows:

- full Br ~N(0,1)
- none Br =0, k=1,...,100
- partial

~N(0,1), k=716,...,100.

The classification of observations to clusters was kept fix over the M = 500 repetitions as well
as the random effects. The hyperparameters for the prior distribution of the random effects
variance were set to v = 0.001, @ = 0.001 for IG. For SSVS we used the hyperparameter

settings described and justified in Section 3.3. Since the results turned out be practically

15



unaffected by the choice of hyperparameters, the following presentation of results is restricted

to the choice v = 5 and @ = 25.

All models were estimated using the open source software BayesX.

4.2 Evaluation of model fit

The overall fit (IG versus SSVS) is compared by the deviance information criterion (DIC),
see Spiegelhalter, Best, Carlin, and van der Linde (2002). The DIC also allows for model
choice, i.e. the discrimination between the IG or the SSVS prior. A rough rule of thumb
says that DIC differences of 10 and more between two competing models indicate that the
model with the lower DIC is superior. Differences between 5 and 10 are “substantial” but

not definitely conclusive, while differences below 5 are not supportive for either model.

The quality of the estimated smooth functions are measured by the average estimated func-

tion as a measure of the bias and the mean squared error

1S/ 2
MSB(f)) =2 > (FG) = (=) . d=12
=1

The quality of the estimated random effects is measured by the average estimated random

effect as a measure of the bias and the mean squared error

MSE =Y (Be—51) -
k=1

Furthermore, in case of SSVS priors we constructed tables of inclusion as follows: A cluster
effect is assumed to be included in the model if the posterior inclusion probability exceeds
0.5. The inclusion tables then indicate the percentage of replications the respective cluster

effect is included in the model.

4.3 Results

The results of our simulation experiments are summarized through Figures 2 - 6. Figure 2

displays boxplots of DIC differences between the fits based on Inverse Gamma and spike and

16



slab priors for random effects variances. Figures 3 and 4 show average estimated functions
as well as MSE’s for f; and fs in case of a partial random effects. For the other cases (no
and full random effects) the results are similar and therefore omitted. Figure 5 displays
boxplots of MSE’s for the estimated random effects while Figure 6 shows relative inclusion

frequencies depending on the size of the random effect.

We can draw the following conclusions:

e Quverall fit: Figure 2 shows that the SSVS prior primarily pays off in the case were
some of the random effects coefficients are zero (the partial scenario). Here the DIC
differences are huge with average difference of about 45 units. If in fact there are
no nonzero random effects (none scenario) both priors IG and SSVS perform similar
with a slight tendency in favor of the SSVS prior. In cases where all random effects
coefficients are not equal to zero (full scenario) the IG prior seems to perform slightly
better than the SSVS prior although the DIC differences are usually within a range

between 5 and 10 units and therefore not conclusive according to our rule of thumb.

o [t of smooth functions: Figures 3 and 4 suggest that the choice of the random effects

prior (IG versus SSVS) does not affect the fit of the smooth functions f; and fo.

e Fit of random effects: Figure 5 largely confirms our findings based on the DIC. The
proposed SSVS prior performs superior if all or some of the random effects coefficients
are in fact zero (upper and middle panel). If all random effects are nonzero the usual

IG prior performs slightly better than the SSVS prior.

e Inclusion frequencies: Figure 6 shows that the random coefficient selection works very
well. Random coefficients that are actually zero (partial scenario) are almost never
included into the model while for nonzero coefficients the inclusion frequencies are
usually close to one. Exceptions are some effects which are nonzero but close to zero.

Here the inclusion frequencies can be comparably low in the partial and full setting.
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DIC difference: no random effect DIC difference: partial random effect DIC difference: full random effect
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Figure 2: DIC differences between fits based on Inverse Gamma and spike and slab priors
for random effects variances.
Note that we have omitted the results for the scenario where all random coefficients
are zero. The reason is that the relative inclusion frequencies are practically zero

indicating that the selection process works extremely well in this scenario.
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bias f1: IG prior, partial random effect

bias f1: spike and slab prior, partial random effect
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Figure 3: Average estimated functions for f; and fy in case of a partial random effect. The

left panel corresponds to Inverse Gamma priors for the random effects variances and the

right panel to spike and slab priors.
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MSE f1: IG prior, partial random effect MSE f1: spike and slab prior, partial random effect
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Figure 4: MSE for f; and f5 in case of a partial random effect. The left panel corresponds
to Inverse Gamma priors for the random effects variances and the right panel to spike and

slab priors.

20
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Figure 5: MSE for random effects. The left panel corresponds to Inverse Gamma priors for

the random effects variances and the right panel to spike and slab priors.
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Model inclusion frequency: partial random effect

Model inclusion frequency: full random effect
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Figure 6: Relative inclusion frequencies depending on the size of the random effect.
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5 Application: Malnutrition in Zambia

In this section we illustrate the application of spike and slab priors for random intercepts
using DHS (demographic and health survey) data from 1992 on undernutrition in Zambia.
The data set has already been used in various illustrations, see among others the detailed
case study on structured additive regression in Fahrmeir, Kneib, Lang, and Marx (2013).
The book also contains a variable description and summary statistics of all variables. Here

we build on Fahrmeir, Kneib, Lang, and Marx (2013) and use their model

zscore; = ~'x;+ fi(m_agebirth;) + fo(m__height;) + fs(m_bmi;)+
f4(c_breastfi : C_(Ig@i) + ﬁdistm’cti + €,
where zscore; is a zscore measuring chronic undernutrition, f1,..., fi are possibly nonlinear
one or two dimensional functions of the continuous covariates m__agebirth (mothers age at
birth), m_height (mothers height), m_bmi (mothers body mass index), ¢_breastf (du-
ration of breastfeeding) and c¢_age (childs age). The term Sgsiric; is @ random intercept
to cope with district specific heterogeneity. The one dimensional functions fi, fo, f3 are
modeled by cubic P-splines with 20 inner knots, the two dimensional function f; is modeled
through a Gaussian field (kriging term). For the district specific random effect we applied
our spike and slab prior with hyperparameters v = 5, Q) = 25 for the inverse gamma prior
on 72 and ag = by = 1 for the beta prior on w (uniform prior). As a kind of sensitivity
check we also used the hyperparameter combinations v = 1,Q = 25 and v = 10, = 10.
We also compared the results with a standard inverse gamma prior with hyperparameters

a =b=0.001 for the variance 72 of the random effects.

As could have been expected from the simulation study, the results for the linear effects v'x
and the nonlinear effects f1,..., f1 are almost unaffected from the random effects modeling
and practically identical to Fahrmeir, Kneib, Lang, and Marx (2013). We therefore report
only on the results for the random effects. Figure 7 displays maps of the estimated random

effects, where the left panel corresponds to a spike and slab prior with hyperparameters
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Figure 7: Posterior means of district specific random effects. The left panel displays results
for the spike and slab prior with hyperparameters v = 5, () = 25, the right panel corresponds

to the standard IG prior.

v =5, = 25 and the right panel to an IG prior. To ease comparison with the IG prior
Figure 8 displays the random effects in ascending order of size. Additionally the districts
are marked where & > 0.5 for the posterior mean of the inclusion parameters d;. A key
finding of the analysis is that the spike and slab prior shrinks small effects towards zero
while large effects appear to be more pronounced than with an IG prior. Using the IG
prior it seems that small effects are overestimated and large effects are underestimated as
an effect of the overall (nonlocal) variance parameter. In contrast the spike and slab prior
shrinks unimportant effects towards zero while important effects are not affected. Figure 8
also shows that the districts with inclusion probability larger than 0.5 correspond largely
to the districts where the 95% credible interval of the effect based on an IG prior does not

cover zero.
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Figure 8: Posterior means of estimated random effects in ascending order of size. Results
for spike and slab priors are denoted by hollow dots, results for IG priors by plus signs. The

black dots indicate a posterior mean above 0.5 for the corresponding inclusion parameter

0.

6 Conclusion

This paper develops random intercept selection within the context of models with a struc-
tured additive predictor. The selection of random intercept coefficients is based on spike
and slab priors for the variance of the random effects distribution. Our extensive simulation
experiments show that the proposed prior performs superior to the usual Inverse Gamma
prior if some or all random effects coefficients are in fact zero. In cases where all random
effects coefficients are nonzero spike and slab priors and the standard Inverse Gamma prior
perform almost equally well. The distinction between spike and slab priors and Inverse

Gamma priors can be done in practice using the deviance information criterion.

A Marginal prior inclusion probability given the effect size

The marginal prior inclusion probability given the effect 5, can formally be computed as

P(Brlk)P (k)
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From the joint distribution

P (B, 72,05 w) = p (Bel 7>, 6%) p (7%) p (B |w) p (w)

we get

P (Brlox) = /p (Bk|T2, 0k) p(72)d7? = pay, <5k5k;7“ (0r) g)

where pg, <5k|5k; r (0k) %) is the density of a scaled Student-t distribution with 2v degrees

of freedom, i.e.,

umﬁklék ~ toy.

Also
ag 0 =1
ao+bo k
p(6) ~ [ p(Gufe) p(w) deo = ,
b
a0+obo 0 =0

such that the random effect j follows a mixture of scaled Student-t distributions with 2v

degrees of freedom

bo Q ag Q
~ toy | r— —lw | — |,
B a0+b02 (TV>+a0+b02 (V

where the mixture weights are the prior expected exclusion and inclusion probability, re-
spectively.

Hence finally

ag .Q
ao—+bo P2v (Bka ;)
p ((Sk = 1|ﬁk‘) = o 0 OQ o 0 (7)
a0+b0p2l’ (Bk; T;) + a0+b0p2y (Bka ;)

1
= . 8
1+b70p2u(5k§71%) ®)
a0 po, (Bi;2)

From (7) we can see that the prior inclusion probability depends on the share of the prior

probability in the slab component of the total marginal prior effect probability.
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Abstract

This paper discusses random intercept selection within the context of semiparame-
tric regression models with structured additive predictor (STAR). STAR models
can deal simultaneously with nonlinear covariate effects and time trends, unit- or
cluster-specific heterogeneity, spatial heterogeneity and complex interactions bet-
ween covariates of different type. The random intercept selection is based on spike
and slab priors for the variances of the random intercept coefficients. The aim is to
achieve shrinkage of small random intercept coefficients to zero similar as for the
LASSO in frequentist linear models. The mixture structure of the spike and slab pri-
or allows for selective shrinkage, as coefficients are either heavily shrunk under the
spike component or left almost unshrunk under the slab component. The hyperpara-
meters of the spike and slab prior are chosen by theoretical considerations based on
the prior inclusion probability of a particular random coefficient given the true effect
size. Using extensive simulation experiments we compare random intercept models
based on spike and slab priors for variances with the usual Inverse Gamma priors.
A case study on malnutrition of children in Zambia illustrates the methodology in
a real data example.
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