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Random inter
ept sele
tion in stru
tured additive regression

models

Helene Roth, Stefan Lang

Department of Statisti
s,

University of Innsbru
k

Helga Wagner

Institute of Applied Statisti
s (IFAS)

Johannes Kepler University Linz

Abstra
t

This paper dis
usses random inter
ept sele
tion within the 
ontext of semipara-

metri
 regression models with stru
tured additive predi
tor (STAR). STAR models


an deal simultaneously with nonlinear 
ovariate e�e
ts and time trends, unit- or


luster-spe
i�
 heterogeneity, spatial heterogeneity and 
omplex intera
tions between


ovariates of di�erent type. The random inter
ept sele
tion is based on spike and slab

priors for the varian
es of the random inter
ept 
oe�
ients. The aim is to a
hieve

shrinkage of small random inter
ept 
oe�
ients to zero similar as for the LASSO in

frequentist linear models. The mixture stru
ture of the spike and slab prior allows for

sele
tive shrinkage, as 
oe�
ients are either heavily shrunk under the spike 
omponent

or left almost unshrunk under the slab 
omponent. The hyperparameters of the spike

and slab prior are 
hosen by theoreti
al 
onsiderations based on the prior in
lusion

probability of a parti
ular random 
oe�
ient given the true e�e
t size. Using extensive

simulation experiments we 
ompare random inter
ept models based on spike and slab

priors for varian
es with the usual Inverse Gamma priors. A 
ase study on malnutrition

of 
hildren in Zambia illustrates the methodology in a real data example.

Keywords: Bayesian hierar
hi
al models, Bayesian model 
hoi
e, MCMC, P-splines,

spike and slab priors



1 Introdu
tion

A parti
ularly broad and ri
h framework for semiparametri
 regression is provided by gen-

eralized stru
tured additive regression (STAR) models proposed in Fahrmeir, Kneib, and

Lang (2004) and Brezger and Lang (2006), see Fahrmeir, Kneib, Lang, and Marx (2013) for

an introdu
tion from �rst prin
iples. Models of similar 
omplexity have been developed in

a mostly frequentist setting by Simon Wood (see e.g. Wood 2006) and in Ruppert, Wand,

and Carroll (2003), Rigby and Stasinopoulos (2005) or Rue, Martino, and Ni
olas (2009).

STAR models 
an deal simultaneously with nonlinear 
ovariate e�e
ts and time trends, unit-

or 
luster-spe
i�
 heterogeneity, spatial heterogeneity and 
omplex intera
tions between 
o-

variates of di�erent type.

The purpose of this paper is to dis
uss random inter
ept sele
tion within the 
ontext of

STAR models. We aim at shrinking small random inter
ept 
oe�
ients to zero similar to

the LASSO (Tibshirani 1996) in frequentist linear models. The sele
tion is based on spike

and slab priors for the varian
es of the random inter
ept 
oe�
ients as proposed for ordinary

linear random e�e
ts models in Frühwirth-S
hnatter and Wagner (2011). The hyperparam-

eters are 
hosen by theoreti
al 
onsiderations based on the prior in
lusion probability of a

parti
ular random 
oe�
ient given the true e�e
t size. An implementation of the approa
h

is provided in the software pa
kage BayesX (Belitz, Brezger, Kneib, Lang, and Umlauf 2013)

and the 
orresponding R interfa
e BayesR (Umlauf, Adler, Kneib, Lang, and Zeileis 2014).

Spike and slab priors are mixtures of two 
omponents, the spike with small varian
e and a


omparably �at slab. They were introdu
ed in Mit
hell and Beau
hamp (1988) for Bayesian

variable sele
tion in linear regression models. Whereas initially spike and slab prior dis-

tributions were spe
i�ed for the regression 
oe�
ients, e.g. George and M
Cullo
h (1993),

re
ently Ishwaran and Rao (2003) and Ishwaran and Rao (2005) introdu
ed spike and slab

priors for their varian
es. Sin
e then spike and slab priors have been frequently used for

Bayesian model 
hoi
e and variable sele
tion see e.g. Fahrmeir, Kneib, and Konrath (2010)
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for variable sele
tion in linear models and S
heipl, Fahrmeir, and Kneib (2012) for variable

sele
tion in STAR models. Introdu
tions into the usage of spike and slab priors 
an be found

in Malsiner-Walli and Wagner (2011) and Fahrmeir, Kneib, Lang, and Marx (2013).

Frühwirth-S
hnatter and Wagner (2011) demonstrated that spike and slab priors for the

random inter
ept varian
es are useful for random inter
ept sele
tion. These priors indu
e

sele
tive shrinkage as random e�e
ts assigned to the spike 
omponent are heavily shrunk

to zero whereas those assigned to the slab experien
e only little shrinkage. The mixture

stru
ture of the prior easily allows for 
lassi�
ation of e�e
ts as not di�erent from the prior

mean� for e�e
ts assigned to the spike � and deviating 
onsiderably, when assigned to the

slab 
omponent.

Frühwirth-S
hnatter and Wagner (2011) 
ompare di�erent spe
i�
ations of the spike and

the slab priors and unimodal priors for simulated data. They 
on
lude that spike and slab

priors outperform unimodal priors with respe
t to 
orre
t 
lassi�
ation of non-zero random

inter
epts and there is little di�eren
e between di�erent versions of spike and slab priors.

In their analysis the hyperparameters were 
hosen to yield resulting random e�e
ts varian
e

of 1, but for no other values. We �ll this gap by an intensive simulation study where we


ompare spike and slab priors for a wide range of hyperparameters.

The rest of the paper is organized as follows: Se
tion 2 reviews the modeling framework of

this paper. Se
tion 3 introdu
es the spike and slab prior for varian
es of random e�e
ts and

dis
usses the 
hoi
e of hyperparameters. Te
hni
al details regarding the properties of the

sto
hasti
 sear
h variable sele
tion (SSVS) prior are deferred to the Appendix A. Simulation

experiments are presented in Se
tion 4. An illustration for real data is given in Se
tion 5

with an appli
ation of the methodology on malnutrition of 
hildren in Zambia. The �nal

Se
tion 6 summarizes the paper and provides an outlook for future resear
h.
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2 Stru
tured additive models

2.1 Observation model

Suppose that observations (yi, zi,xi), i = 1, . . . , n, are given, where yi is a 
ontinuous re-

sponse variable, and zi = (zi1, . . . , ziq)
′
and xi = (xi1, . . . , xip)

′
are ve
tors of 
ovariates.

For the variables in z possibly nonlinear e�e
ts are assumed whereas the variables in x

are modeled in the usual linear way. The 
omponents of z are not ne
essarily 
ontinu-

ous 
ovariates. A 
omponent may also indi
ate a time s
ale, a 
luster- or a spatial index

(e.g. muni
ipality, distri
t or 
ounty) a parti
ular observation pertains to. We assume an

additive de
omposition of the e�e
ts of zij (and xij) and obtain the model

yi = f1(zi1) + . . .+ fq(ziq) + x′
iγ + εi. (1)

Here, f1, . . . , fq are nonlinear fun
tions of the 
ovariates zi and x′
iγ is the usual linear part

of the model. The errors εi are assumed to be mutually independent Gaussian with mean 0

and varian
e σ2
, i.e. εi ∼ N(0, σ2).

The nonlinear e�e
ts in (1) are modeled by a basis fun
tions approa
h, i.e. a parti
ular

fun
tion f of 
ovariate z is approximated by a linear 
ombination of basis or indi
ator

fun
tions

f(z) =

K∑

k=1

βkBk(z). (2)

The Bk's are known basis fun
tions and β = (β1, . . . , βK)′ is a ve
tor of unknown regression


oe�
ients to be estimated. De�ning the n × K design matrix Z with elements Z[i, k] =

Bk(zi), the ve
tor f = (f(z1), . . . , f(zn))
′
of fun
tion evaluations 
an be written in matrix

notation as f = Zβ. A

ordingly, we obtain

y = η + ε = Z1β1 + . . .+Zqβq +Xγ + ε, (3)

where y = (y1, . . . , yn)
′
, η = (η1, . . . , ηn)

′
and ε ∼ N(0, σ2I).
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2.2 Priors

E�e
t modeling and priors depend on the 
ovariate or term type. We �rst des
ribe the

general form of priors. In a frequentist setting, over�tting of a parti
ular fun
tion f = Zβ

is avoided by de�ning a roughness penalty on the regression 
oe�
ients, see for instan
e

Fahrmeir, Kneib, Lang, and Marx (2013). In a Bayesian framework a standard smoothness

prior is a (possibly improper) Gaussian prior of the form

p(β|τ2) ∝
(

1

τ2

)
rk(K)/2

exp

(
− 1

2τ2
β′Kβ

)
· I(Aβ = 0), (4)

where I(·) is the indi
ator fun
tion. The key 
omponents of the prior are the penalty matrix

K, the varian
e parameter τ2 and the 
onstraint Aβ = 0. Usually the penalty matrix is

rank de�
ient, i.e. rk(K) < K, resulting in a partially improper prior.

The amount of smoothness is governed by the varian
e parameter τ2. A 
onjugate Inverse

Gamma prior is employed for τ2 (as well as for the error varian
e parameter σ2
in models

with Gaussian responses), i.e. τ2 ∼ G−1 (a, b) with small values su
h as a = b = 0.001

for the hyperparameters a and b resulting in an uninformative prior on the log s
ale. The

term I(Aβ = 0) imposes required identi�ability 
onstraints on the parameter ve
tor. A

straightforward 
hoi
e is A = (1, . . . , 1), i.e. the regression 
oe�
ients are 
entered around

zero.

For a 
ontinuous 
ovariate z, our basi
 approa
h for modeling a smooth fun
tion f are

Bayesian P-splines introdu
ed in a frequentist setting by Eilers and Marx (1996) and in a

Bayesian version by Lang and Brezger (2004). P-splines assume that the unknown fun
tions


an be approximated by a polynomial spline whi
h 
an be written in terms of a linear


ombination of B-spline basis fun
tions. Hen
e, the 
olumns of the design matrix Z are

given by the B-spline basis fun
tions evaluated at the observations zi. Lang and Brezger

(2004) propose to use �rst or se
ond order random walks as smoothness priors for the
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regression 
oe�
ients, i.e.

βk = βk−1 + uk, or βk = 2βk−1 − βk−2 + uk, (5)

with Gaussian errors uk ∼ N(0, τ2) and di�use priors p(β1) ∝ const, or p(β1) and p(β2) ∝

const, for initial values. This prior is of the form (4) with penalty matrix given byK = D′D,

where D is a �rst or se
ond order di�eren
e matrix.

Suppose now that 
ovariate z is an index variable that indi
ates the unit or 
luster a par-

ti
ular observation belongs to. In this 
ase, it is 
ommon pra
ti
e to introdu
e unit- or


luster spe
i�
 i.i.d. Gaussian random inter
epts or slopes, see e.g. Diggle, Heagerty, Liang,

and Zeger (2002). Suppose z 
an take the values 1, . . . ,K. Then, an i.i.d. random inter-


ept 
an be in
orporated into our framework of stru
tured additive regression by assuming

f(k) = βk ∼ N(0, τ2), k = 1, . . . ,K. The design matrix Z is now a 0/1 in
iden
e matrix

with dimension n×K. The penalty matrix is the K ×K identity matrix, i.e. K = I.

3 Random inter
ept sele
tion

In this se
tion we now repla
e the usual Inverse Gamma prior for the varian
e τ2 of an i.i.d.

random inter
ept by spike and slab priors that allow for random e�e
t sele
tion.

Although random inter
epts 
an be formally subsumed within the STAR predi
tor (see the

previous se
tion) we in
lude the random inter
ept term expli
itly in our model, i.e.

yi = f1(zi1) + . . .+ fq(ziq) + x′
iγ + βzi + εi, (6)

where zi ∈ {1, . . . ,K} is the value of the 
luster variable z for the i-th observation.
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3.1 Prior

For the random inter
epts βk, k = 1, . . . ,K we spe
ify a spike and slab prior distribution

by the following hierar
hy:

βk|δk, τ2 ∼ N
(
0, r(δk)τ

2
)

τ2 ∼ G−1 (ν,Q)

p(δk|ω) =





ω δk = 1

1− ω δk = 0

ω ∼ Beta (a0, b0)

where

r(δk) =





r δk = 0

1 δk = 1,

and r << 1 is a 
onstant. Our default for r in our implementation is r = 0.005. The random

e�e
ts βk basi
ally follow a 
entered Gaussian distribution, with varian
e depending on the

indi
ator variable δk. δk = 1 indi
ates the slab 
omponent, with varian
e τ2 resulting from

the Inverse Gamma distribution and δk = 0 the spike with 
onsiderably smaller varian
e

rτ2.

Hen
e random inter
epts are assumed to i.i.d follow a s
ale mixture of Normals

p
(
βk|ω, τ2

)
∝ 1− ω

rτ
exp

(
−

β2
j

2rτ2

)
+

ω

τ
exp

(
−

β2
j

2τ2

)
,


onditional on the mixture weight ω and the varian
e parameter τ2 .

Smoothing of random inter
epts is indu
ed by the hyper-priors on these parameter. The

hyper-prior on ω indu
es smoothing of the indi
ator variables, whi
h are independent 
on-

ditioning on ω, but marginally dependent for proper prior distributions, i.e. a0, b0 > 0 . As,
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onditional on the indi
ator variables, the marginal distribution of the random inter
epts is

a s
aled Student distribution with 2ν degrees of freedom (see appendix A) the hyper-prior

on the varian
e parameter indu
es smoothing mainly within the mixture 
omponents.

The main purpose of the mixture spe
i�
ation of the prior is to allow for sele
tive shrinkage:

due to the smaller varian
e, random inter
epts assigned to the spike 
omponent will be

shrunk mu
h more severly than those assigned to the slab 
omponent. Additionally based

on the posterior distribution of the indi
ator variables, random inter
epts 
an be 
lassi�ed

as either negligable or 
onsiderably di�erent from zero, if the posterior probability of δk = 1

ex
eeds a 
ertain treshold.

However, indi
ators are marginally dependent for a proper prior distribution, i.e. a0, b0 >

0. Considering two random inter
epts βk, βl, the marginal prior probability that both are

assigned to the slab 
omponent is

P (δk = 1, δl = 1) =

∫
P (δk = 1, δl = 1|ω)p(ω)dω =

∫
ω2p(ω)dω =

= E(ω2) =
a0

a0 + b0

a0 + 1

a0 + b0 + 1

whi
h is larger than P (δk = 1)P (δl = 1) = E(ω)2 =
(

a0
a0+b0

)2
for b0 > 1

Correspondingly

P (δk = 0, δl = 0) = E((1− ω)2) > P (δk = 0)P (δl = 0)

for a0 > 1.

3.2 Full 
onditionals

Random inter
ept sele
tion using spike and slab priors for the varian
es 
an be easily in-


oprorated into existing sampling s
hemes for STAR models. The MCMC updates of the

regression 
oe�
ients of the nonlinear fun
tions and linear e�e
ts remain un
hainged. The

parameters for the varian
e τ2 
an be updated by simple Gibbs steps be
ause their full


onditionals are known distributions. We have the following full 
onditionals:
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1. Full 
onditional of δk:

p(δk = 1 |βk, ω, τ2) =
ωp(βk | τ2, δk = 1)

(1− ω)p(βk | τ2, δk = 0) + ωp(βk | τ2, δk = 1)
=

=
1

1 + 1−ω
ω Lk

,

where

Lk =
ϕ(βk; 0; r τ

2)

ϕ(βk; 0; τ2)
=

1√
r
e−

β2k
2τ2

(1/r−1).

Here ϕ(βk; 0; τ
2) denotes the density of the N(0, τ2) distribution evaluated at βk.

2. Full 
onditional of τ2:

τ2 | ν ∼ G−1

(
ν +K/2, Q+

1

2

K∑

k=1

β2
k

r(δk)

)

3. Full 
onditional of ω:

ω | δ ∼ Beta

(
a0 +

K∑

k=1

δk, b0 +K −
K∑

k=1

δk

)

3.3 Choosing the hyperparameters

The parameters βk are set up with a mixture of prior distributions to separate e�e
ts 
lose

to zero from larger ones. The range of a priori likely parameter values is thereby driven by

the varian
e τ2. A 
riterion to spe
ify the prior distribution of the parameter varian
e, i.e.

the hyperparameters ν and Q of the Inverse Gamma distribution, is therefore favorable. For

that purpose we establish a prin
iple to determine ν and Q in order to

• ensure in
lusion of a priori relevant e�e
ts with a high probability (sensitivity)

P (δk = 1 | |βk| ≥ q1)

and
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• at the same time let �small� e�e
ts be ex
luded from the model (spe
i�
ity)

P (δk = 0 | |βk| ≤ q2) .

In Appendix A we show that

p (δk = 1|βk) ≈
1

1 + b0
a0

p2ν(βk;r
Q
ν )

p2ν(βk;
Q
ν )

with p2ν

(
βk|δk; r (δk) Q

ν

)
being the density of a s
aled Student-t distribution with 2ν degrees

of freedom, that is,

√
ν

r (δi)Q
βk|δk ∼ t2ν .

Con
rete probabilities are then 
omputed after spe
ifying the interesting minimum (or max-

imum) e�e
t size by

P (δk = 1||βk| ≤ q) =
1

1 + b0
a0

Pt2ν

(√
ν
rQ

|βk|≤q

)

Pt2ν

(√
ν
Q
|βk|≤q

)

.

For a sele
tion of hyperparameters the 
orresponding probabilities are listed in the Tables

1 - 5. The following general observations 
an be made:

• The higher the probability of values around zero in the slab 
omponent, the higher the


han
e that small e�e
ts are dete
ted, but also the worse the separation of irrelevant

ones.

� ν drives the degrees of freedom of the Student t-distribution. A higher ν leads to

a smaller varian
e and a smaller kurtosis and both in
rease the probability mass

around zero.

� Q is part of the s
ale parameter where a higher Q des
ribes a wider spread of the

e�e
ts and so redu
es the probability of values around zero.

• ν = 0.001, Q = 0.001 seems an undesirable 
ombination as sensitivity remains at its

low but spe
i�
ity 
an be improved. Note, that for a single Inverse Gamma distribution

this is a standard 
hoi
e to in
orporate an uninformative prior on the log s
ale.
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As a brief summary we 
an state that

• an in
rease in ν (Q �xed) in
reases the sensitivity but de
reases the spe
i�
ity,

• an in
rease in Q (ν �xed) de
reases the sensitivity but in
reases the spe
i�
ity.

To investigate the e�e
t on the posterior in
lusion probability we sele
t hyperparameters to

model

• high sensitivity and high spe
i�
ity (ν = 10, Q = 10)

• high sensitivity and low spe
i�
ity (ν = 1, Q = 0.001)

• low sensitivity and high spe
i�
ity (ν = 1, Q = 25),

see also Figure 1. These settings were integrated into the simulation study and 
ompared

to the well established ν = 5 and Q = 25 hyperparameter pair.
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q Sensitivity Spe
i�
ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 0.502 0.500 0.500 0.500 0.500 0.938 0.984 0.984 0.984 0.984

0.05 0.502 0.501 0.501 0.500 0.500 0.837 0.978 0.981 0.983 0.984

0.09 0.502 0.501 0.501 0.501 0.500 0.792 0.971 0.977 0.981 0.983

0.13 0.502 0.501 0.501 0.501 0.500 0.767 0.964 0.973 0.979 0.982

0.17 0.502 0.501 0.501 0.501 0.501 0.750 0.958 0.969 0.977 0.980

0.21 0.502 0.501 0.501 0.501 0.501 0.739 0.952 0.965 0.975 0.979

0.25 0.502 0.501 0.501 0.501 0.501 0.730 0.946 0.962 0.972 0.978

Table 1: Marginal prior in
lusion probabilities, ν = 0.001

q Sensitivity Spe
i�
ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 0.997 0.627 0.570 0.537 0.523 0.821 0.983 0.984 0.984 0.984

0.05 1.000 0.917 0.824 0.701 0.627 0.573 0.963 0.975 0.981 0.983

0.09 1.000 0.969 0.922 0.821 0.726 0.528 0.939 0.962 0.975 0.980

0.13 1.000 0.984 0.958 0.889 0.802 0.514 0.915 0.948 0.968 0.976

0.17 1.000 0.990 0.974 0.926 0.856 0.508 0.893 0.934 0.960 0.972

0.21 1.000 0.993 0.982 0.948 0.892 0.506 0.871 0.920 0.953 0.967

0.25 1.000 0.995 0.987 0.962 0.917 0.504 0.851 0.907 0.945 0.963

Table 2: Marginal prior in
lusion probabilities, ν = 1
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q Sensitivity Spe
i�
ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.758 0.643 0.573 0.545 0.716 0.981 0.983 0.984 0.984

0.05 1 0.998 0.980 0.880 0.758 0.509 0.938 0.962 0.976 0.981

0.09 1 1.000 0.999 0.979 0.910 0.501 0.894 0.936 0.963 0.974

0.13 1 1.000 1.000 0.996 0.971 0.500 0.854 0.910 0.948 0.966

0.17 1 1.000 1.000 0.999 0.990 0.500 0.819 0.885 0.934 0.956

0.21 1 1.000 1.000 1.000 0.996 0.500 0.786 0.863 0.919 0.947

0.25 1 1.000 1.000 1.000 0.998 0.500 0.758 0.841 0.905 0.938

Table 3: Marginal prior in
lusion probabilities, ν = 3

q Sensitivity Spe
i�
ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.84 0.696 0.600 0.560 0.665 0.979 0.983 0.984 0.984

0.05 1 1.00 0.998 0.952 0.840 0.501 0.920 0.952 0.972 0.979

0.09 1 1.00 1.000 0.997 0.971 0.500 0.865 0.917 0.953 0.969

0.13 1 1.00 1.000 1.000 0.996 0.500 0.818 0.885 0.933 0.957

0.17 1 1.00 1.000 1.000 0.999 0.500 0.776 0.855 0.915 0.944

0.21 1 1.00 1.000 1.000 1.000 0.500 0.740 0.828 0.897 0.932

0.25 1 1.00 1.000 1.000 1.000 0.500 0.708 0.802 0.880 0.920

Table 4: Marginal prior in
lusion probabilities, ν = 5
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q Sensitivity Spe
i�
ity

Q=0.001 Q=1 Q=3 Q=10 Q=25 Q=0.001 Q=1 Q=3 Q=10 Q=25

0.01 1 0.943 0.79 0.650 0.589 0.599 0.974 0.981 0.983 0.984

0.05 1 1.000 1.00 0.995 0.943 0.500 0.890 0.933 0.962 0.974

0.09 1 1.000 1.00 1.000 0.998 0.500 0.819 0.886 0.934 0.957

0.13 1 1.000 1.00 1.000 1.000 0.500 0.761 0.844 0.907 0.939

0.17 1 1.000 1.00 1.000 1.000 0.500 0.713 0.806 0.882 0.922

0.21 1 1.000 1.00 1.000 1.000 0.500 0.673 0.772 0.859 0.906

0.25 1 1.000 1.00 1.000 1.000 0.500 0.640 0.742 0.837 0.890

Table 5: Marginal prior in
lusion probabilities, ν = 10
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Figure 1: The sensitivity and spe
i�
ity of the 
onsidered s
enarios depending on the random

e�e
t size q
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4 Simulation experiments

A simulation study was 
ondu
ted to 
ompare the spike and slab prior, denoted by SSVS,

to the well established Inverse Gamma prior distribution for random inter
epts, denoted

by IG. Therefore we set up di�erent random inter
ept stru
tures and 
ompare the overall

performan
e, estimated 
oe�
ients as well as the random inter
ept sele
tion.

4.1 Simulation designs

The response is driven by two smooth e�e
ts, a random inter
ept and an error term:

yi ∼ log(zi1) + sin(zi2) + βzi + εi, εi ∼ N
(
0, 0.52

)
.

The values of z1 and z2 are distributed on equidistant grids in [−3, 3] and [0.3, 3], respe
tively.

The domains of the smooth 
omponents were sele
ted in order to ensure e�e
ts of similar

magnitude. Cubi
 B-spline representations with 22 basis fun
tions and a random walk

two penalty were 
hosen to model the smooth fun
tions. The n = 1000 observations were

separated into N = 100 
lusters, ea
h of size T = 10. The di�erent spe
i�
ations for the

random inter
ept are given as follows:

- full βk ∼ N (0, 1)

- none βk = 0, k = 1, . . . , 100

- partial βk





= 0, k = 1, . . . , 75

∼ N (0, 1) , k = 76, . . . , 100.

The 
lassi�
ation of observations to 
lusters was kept �x over theM = 500 repetitions as well

as the random e�e
ts. The hyperparameters for the prior distribution of the random e�e
ts

varian
e were set to ν = 0.001, Q = 0.001 for IG. For SSVS we used the hyperparameter

settings des
ribed and justi�ed in Se
tion 3.3. Sin
e the results turned out be pra
ti
ally
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una�e
ted by the 
hoi
e of hyperparameters, the following presentation of results is restri
ted

to the 
hoi
e ν = 5 and Q = 25.

All models were estimated using the open sour
e software BayesX.

4.2 Evaluation of model �t

The overall �t (IG versus SSVS ) is 
ompared by the devian
e information 
riterion (DIC),

see Spiegelhalter, Best, Carlin, and van der Linde (2002). The DIC also allows for model


hoi
e, i.e. the dis
rimination between the IG or the SSVS prior. A rough rule of thumb

says that DIC di�eren
es of 10 and more between two 
ompeting models indi
ate that the

model with the lower DIC is superior. Di�eren
es between 5 and 10 are �substantial� but

not de�nitely 
on
lusive, while di�eren
es below 5 are not supportive for either model.

The quality of the estimated smooth fun
tions are measured by the average estimated fun
-

tion as a measure of the bias and the mean squared error

MSE(fj) =
1

K

K∑

i=1

(
f̂ (zij)− f (zij)

)2
, j = 1, 2.

The quality of the estimated random e�e
ts is measured by the average estimated random

e�e
t as a measure of the bias and the mean squared error

MSEre =
1

K

K∑

k=1

(
β̂k − βk

)2
.

Furthermore, in 
ase of SSVS priors we 
onstru
ted tables of in
lusion as follows: A 
luster

e�e
t is assumed to be in
luded in the model if the posterior in
lusion probability ex
eeds

0.5. The in
lusion tables then indi
ate the per
entage of repli
ations the respe
tive 
luster

e�e
t is in
luded in the model.

4.3 Results

The results of our simulation experiments are summarized through Figures 2 - 6. Figure 2

displays boxplots of DIC di�eren
es between the �ts based on Inverse Gamma and spike and

16



slab priors for random e�e
ts varian
es. Figures 3 and 4 show average estimated fun
tions

as well as MSE's for f1 and f2 in 
ase of a partial random e�e
ts. For the other 
ases (no

and full random e�e
ts) the results are similar and therefore omitted. Figure 5 displays

boxplots of MSE's for the estimated random e�e
ts while Figure 6 shows relative in
lusion

frequen
ies depending on the size of the random e�e
t.

We 
an draw the following 
on
lusions:

• Overall �t: Figure 2 shows that the SSVS prior primarily pays o� in the 
ase were

some of the random e�e
ts 
oe�
ients are zero (the partial s
enario). Here the DIC

di�eren
es are huge with average di�eren
e of about 45 units. If in fa
t there are

no nonzero random e�e
ts (none s
enario) both priors IG and SSVS perform similar

with a slight tenden
y in favor of the SSVS prior. In 
ases where all random e�e
ts


oe�
ients are not equal to zero (full s
enario) the IG prior seems to perform slightly

better than the SSVS prior although the DIC di�eren
es are usually within a range

between 5 and 10 units and therefore not 
on
lusive a

ording to our rule of thumb.

• Fit of smooth fun
tions: Figures 3 and 4 suggest that the 
hoi
e of the random e�e
ts

prior (IG versus SSVS) does not a�e
t the �t of the smooth fun
tions f1 and f2.

• Fit of random e�e
ts: Figure 5 largely 
on�rms our �ndings based on the DIC. The

proposed SSVS prior performs superior if all or some of the random e�e
ts 
oe�
ients

are in fa
t zero (upper and middle panel). If all random e�e
ts are nonzero the usual

IG prior performs slightly better than the SSVS prior.

• In
lusion frequen
ies: Figure 6 shows that the random 
oe�
ient sele
tion works very

well. Random 
oe�
ients that are a
tually zero (partial s
enario) are almost never

in
luded into the model while for nonzero 
oe�
ients the in
lusion frequen
ies are

usually 
lose to one. Ex
eptions are some e�e
ts whi
h are nonzero but 
lose to zero.

Here the in
lusion frequen
ies 
an be 
omparably low in the partial and full setting.

17



−
10

−
5

0
5

10
15

20
D

IC
 d

iff
er

en
ce

DIC difference: no random effect

0
20

40
60

80
D

IC
 d

iff
er

en
ce

DIC difference: partial random effect

−
12

−
10

−
8

−
6

−
4

−
2

D
IC

 d
iff

er
en

ce

DIC difference: full random effect

Figure 2: DIC di�eren
es between �ts based on Inverse Gamma and spike and slab priors

for random e�e
ts varian
es.

Note that we have omitted the results for the s
enario where all random 
oe�
ients

are zero. The reason is that the relative in
lusion frequen
ies are pra
ti
ally zero

indi
ating that the sele
tion pro
ess works extremely well in this s
enario.
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Figure 3: Average estimated fun
tions for f1 and f2 in 
ase of a partial random e�e
t. The

left panel 
orresponds to Inverse Gamma priors for the random e�e
ts varian
es and the

right panel to spike and slab priors.
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Figure 4: MSE for f1 and f2 in 
ase of a partial random e�e
t. The left panel 
orresponds

to Inverse Gamma priors for the random e�e
ts varian
es and the right panel to spike and

slab priors.
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Figure 5: MSE for random e�e
ts. The left panel 
orresponds to Inverse Gamma priors for

the random e�e
ts varian
es and the right panel to spike and slab priors.
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t.
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5 Appli
ation: Malnutrition in Zambia

In this se
tion we illustrate the appli
ation of spike and slab priors for random inter
epts

using DHS (demographi
 and health survey) data from 1992 on undernutrition in Zambia.

The data set has already been used in various illustrations, see among others the detailed


ase study on stru
tured additive regression in Fahrmeir, Kneib, Lang, and Marx (2013).

The book also 
ontains a variable des
ription and summary statisti
s of all variables. Here

we build on Fahrmeir, Kneib, Lang, and Marx (2013) and use their model

zscorei = γ ′xi + f1(m_agebirthi) + f2(m_heighti) + f3(m_bmii)+

f4(c_breastfi · c_agei) + βdistricti + εi,

where zscorei is a zs
ore measuring 
hroni
 undernutrition, f1, . . . , f4 are possibly nonlinear

one or two dimensional fun
tions of the 
ontinuous 
ovariates m_agebirth (mothers age at

birth), m_height (mothers height), m_bmi (mothers body mass index), c_breastf (du-

ration of breastfeeding) and c_age (
hilds age). The term βdistricti is a random inter
ept

to 
ope with distri
t spe
i�
 heterogeneity. The one dimensional fun
tions f1, f2, f3 are

modeled by 
ubi
 P-splines with 20 inner knots, the two dimensional fun
tion f4 is modeled

through a Gaussian �eld (kriging term). For the distri
t spe
i�
 random e�e
t we applied

our spike and slab prior with hyperparameters ν = 5, Q = 25 for the inverse gamma prior

on τ2 and a0 = b0 = 1 for the beta prior on ω (uniform prior). As a kind of sensitivity


he
k we also used the hyperparameter 
ombinations ν = 1, Q = 25 and ν = 10, Q = 10.

We also 
ompared the results with a standard inverse gamma prior with hyperparameters

a = b = 0.001 for the varian
e τ2 of the random e�e
ts.

As 
ould have been expe
ted from the simulation study, the results for the linear e�e
ts γ ′x

and the nonlinear e�e
ts f1, . . . , f4 are almost una�e
ted from the random e�e
ts modeling

and pra
ti
ally identi
al to Fahrmeir, Kneib, Lang, and Marx (2013). We therefore report

only on the results for the random e�e
ts. Figure 7 displays maps of the estimated random

e�e
ts, where the left panel 
orresponds to a spike and slab prior with hyperparameters
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Figure 7: Posterior means of distri
t spe
i�
 random e�e
ts. The left panel displays results

for the spike and slab prior with hyperparameters ν = 5, Q = 25, the right panel 
orresponds

to the standard IG prior.

ν = 5, Q = 25 and the right panel to an IG prior. To ease 
omparison with the IG prior

Figure 8 displays the random e�e
ts in as
ending order of size. Additionally the distri
ts

are marked where δk > 0.5 for the posterior mean of the in
lusion parameters δk. A key

�nding of the analysis is that the spike and slab prior shrinks small e�e
ts towards zero

while large e�e
ts appear to be more pronoun
ed than with an IG prior. Using the IG

prior it seems that small e�e
ts are overestimated and large e�e
ts are underestimated as

an e�e
t of the overall (nonlo
al) varian
e parameter. In 
ontrast the spike and slab prior

shrinks unimportant e�e
ts towards zero while important e�e
ts are not a�e
ted. Figure 8

also shows that the distri
ts with in
lusion probability larger than 0.5 
orrespond largely

to the distri
ts where the 95% 
redible interval of the e�e
t based on an IG prior does not


over zero.
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Figure 8: Posterior means of estimated random e�e
ts in as
ending order of size. Results

for spike and slab priors are denoted by hollow dots, results for IG priors by plus signs. The

bla
k dots indi
ate a posterior mean above 0.5 for the 
orresponding in
lusion parameter

δk.

6 Con
lusion

This paper develops random inter
ept sele
tion within the 
ontext of models with a stru
-

tured additive predi
tor. The sele
tion of random inter
ept 
oe�
ients is based on spike

and slab priors for the varian
e of the random e�e
ts distribution. Our extensive simulation

experiments show that the proposed prior performs superior to the usual Inverse Gamma

prior if some or all random e�e
ts 
oe�
ients are in fa
t zero. In 
ases where all random

e�e
ts 
oe�
ients are nonzero spike and slab priors and the standard Inverse Gamma prior

perform almost equally well. The distin
tion between spike and slab priors and Inverse

Gamma priors 
an be done in pra
ti
e using the devian
e information 
riterion.

A Marginal prior in
lusion probability given the e�e
t size

The marginal prior in
lusion probability given the e�e
t βk 
an formally be 
omputed as

p(δk|βk) =
p(βk|δk)p(δk)

p(βk)
.
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From the joint distribution

p
(
βk, τ

2, δk, ω
)
= p

(
βk|τ2, δk

)
p
(
τ2
)
p (δk|ω) p (ω) ,

we get

p (βk|δk) =
∫

p
(
βk|τ2, δk

)
p(τ2)dτ2 = p2ν

(
βk|δk; r (δk)

Q

ν

)

where p2ν

(
βk|δk; r (δk) Q

ν

)
is the density of a s
aled Student-t distribution with 2ν degrees

of freedom, i.e.,

√
ν

r (δi)Q
βk|δk ∼ t2ν .

Also

p(δk) ≈
∫

p (δk|ω) p (ω) dω =





a0
a0+b0

δk = 1

b0
a0+b0

δk = 0

,

su
h that the random e�e
t βk follows a mixture of s
aled Student-t distributions with 2ν

degrees of freedom

βk ∼ b0
a0 + b0

t2ν

(
r
Q

ν

)
+

a0
a0 + b0

t2ν

(
Q

ν

)
,

where the mixture weights are the prior expe
ted ex
lusion and in
lusion probability, re-

spe
tively.

Hen
e �nally

p (δk = 1|βk) =
a0

a0+b0
p2ν

(
βk;

Q
ν

)

b0
a0+b0

p2ν

(
βk; r

Q
ν

)
+ a0

a0+b0
p2ν

(
βk;

Q
ν

)
(7)

=
1

1 + b0
a0

p2ν(βk;r
Q
ν )

p2ν(βk;
Q
ν )

. (8)

From (7) we 
an see that the prior in
lusion probability depends on the share of the prior

probability in the slab 
omponent of the total marginal prior e�e
t probability.
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hias Sutter: Donations, risk attitudes and time preferences: A study on al-
truism in primary school children forthcoming in Journal of Economic Beha-
vior and Organization

2014-20 Christian Kleiber, Achim Zeileis: Visualizing count data regressions using
rootograms

2014-19 Matthias Siller, Christoph Hauser, Janette Walde, Gottfried Tapp-
einer: The multiple facets of regional innovation

2014-18 Carmen Arguedas, Esther Blanco: On fraud and certification of corporate
social responsibility

2014-17 Achim Zeileis, Christoph Leitner, Kurt Hornik: Home victory for Brazil
in the 2014 FIFA World Cup

2014-16 Andreas Exenberger, Andreas Pondorfer, Maik H. Wolters: Estima-
ting the impact of climate change on agricultural production: accounting for
technology heterogeneity across countries

2014-15 Alice Sanwald, Engelbert Theurl: Atypical employment and health: A
meta-analysis

2014-14 Gary Charness, Francesco Feri, Miguel A. Meléndez-Jiménez,
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Abstract
This paper discusses random intercept selection within the context of semiparame-
tric regression models with structured additive predictor (STAR). STAR models
can deal simultaneously with nonlinear covariate effects and time trends, unit- or
cluster-specific heterogeneity, spatial heterogeneity and complex interactions bet-
ween covariates of different type. The random intercept selection is based on spike
and slab priors for the variances of the random intercept coefficients. The aim is to
achieve shrinkage of small random intercept coefficients to zero similar as for the
LASSO in frequentist linear models. The mixture structure of the spike and slab pri-
or allows for selective shrinkage, as coefficients are either heavily shrunk under the
spike component or left almost unshrunk under the slab component. The hyperpara-
meters of the spike and slab prior are chosen by theoretical considerations based on
the prior inclusion probability of a particular random coefficient given the true effect
size. Using extensive simulation experiments we compare random intercept models
based on spike and slab priors for variances with the usual Inverse Gamma priors.
A case study on malnutrition of children in Zambia illustrates the methodology in
a real data example.
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