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Non-technical summary

Research Question

How can the costs of contagion in the network of banks due to exogenous shocks to individual banks,
which are transmitted to other banks through interbank credits, be measured in an economically mean-
ingful way? Existing models on how external shocks to banks spread to other banks often assume that
some banks in the network actually default and do not consider less severe forms of distress such as asset
devaluations and deterioration in the credit quality of certain exposure classes. We establish a framework
which quantifies the impact of contagion and develop a measure of systemic risk which is associated
with the interbank lending channel.

Contribution

The proposed framework computes the aggregate Tier 1 capital loss to the banking system as a unit
to measure the costs of interconnectedness. An initial shock propagates through the network of banks
by increasing the expected losses of the credit portfolios of all directly and indirectly connected banks.
The mechanism relies on the empirically observed relationship between banks’ capital ratios and their
probabilities of default. In combination with regulatory requirements and accounting standards we do
not only simulate the propagation of big shocks such as bank failures, but also of smaller shocks such as
a decrease in the credit quality of mortgages. The algorithm is put to the test using the bilateral interbank
credit exposure of the entire German banking system.

Results

We find that the contagion risk in the German interbank network is concentrated around four of the
1,710 banks. When analyzing the effectiveness of additional capital buffers of up to 2.5pp (buffer for
systemically important financial institutions, SIFIs), we conclude that their buffers are not high enough
to absorb the costs of the failure of any other SIFI. Moreover, we find that the losses from indirect credit
exposure is much higher than from direct exposure in case a SIFI defaults. From this we conclude that
it is crucial to account not only for direct exposure but rather the entire network when evaluating the
interconnectedness of banks. In a different policy application we find that a shock to the mortgage sector
hits the banking system twice: once in the form of write-downs to their own portfolio and also, in equal
measure, in the form of the losses of their counterparties in the financial system. Properly calibrated
capital buffers can effectively reduce the losses from contagion.



Nichttechnische Zusammenfassung

Fragestellung

Wie können Ansteckungskosten im Bankensystem auf Grund von exogenen Schocks, die nur einzel-
ne Banken betreffen und durch Verknüpfungen am Interbankmarkt an andere Banken weitergegeben
werden, in ökonomisch sinnvoller Weise gemessen werden? Existierende Modelle zur Übertragung von
Schocks auf benachbarte Banken setzen häufig voraus, dass einige Banken im Netzwerk tatsächlich
ausfallen und betrachten weniger schwerwiegende Formen finanziellen Stresses, zum Beispiel Wertmin-
derungen von Aktiva oder die Verschlechterung der Kreditqualität in bestimmten Forderungsklassen,
in nur ungenügender Weise. Wir entwickeln einen theoretischen Rahmen zur Messsung des Einflusses
von Ansteckung und leiten ein Maß für systemische Risiken ab, die durch den Interbanken-Kreditkanal
verursacht werden.

Beitrag

In dem von uns entwickelten Modell wird der aggregierte Verlust des Kernkapitals infolge eines exter-
nen Schocks als Maß für die Kosten der Vernetzung ermittelt. Die Übertragung eines externen Schocks
im Bankennetzwerk führt zu erhöhten erwarteten Verlusten bei allen direkt und indirekt verbundenen
Banken. Der Mechanismus nutzt die empirisch beobachtete Assoziation zwischen den Kapitalquoten der
Banken und deren Ausfallwahrscheinlichkeit. In Zusammenwirkung mit regulatorischen Kapitalanfor-
derungen und Rechnungslegungsvorschriften können wir nicht nur große Schocks, wie den Zusammen-
bruch einer großen Bank, modellieren, sondern auch weniger drastische Ereignisse, wie zum Beispiel
eine Verschlechterung der Kreditqualität von Hypothekendarlehen. Der Algorithmus wird für die bilate-
ralen Forderungen des gesamten deutschen Bankensystems getestet.

Ergebnisse

Die Anwendung des Verfahrens zeigt, dass das Ansteckungsrisiko bei deutschen Banken auf etwa vier
der insgesamt 1.710 Banken konzentriert ist. Hinsichtlich der Effektivität eines zusätzlichen Eigenka-
pitalpuffers von bis zu 2,5 Prozentpunkten (Puffer für systemrelevante Finanzintermediäre, SIFIs) zeigt
sich allerdings, dass dieser nicht hoch genug ist, um in jedem Falle die Kosten des Ausfalls eines an-
deren SIFIs zu absorbieren. Zudem zeigt sich, dass die Verluste aus der indirekten Ansteckung um ein
Vielfaches höher sein können als die direkten Verluste bei Ausfall eines SIFIs. Daraus folgern wir, dass
es wichtig ist, das ganze Netzwerk und nicht nur direkte Gegenparteien zu berücksichtigen, wenn man
den Vernetzungsgrad einer Bank evaluiert. Ein Schock des Immobiliensektors beispielsweise trifft das
Bankensystem in zweifacher Weise: neben den Verlusten aus dem eigenen Portfolio an Immobilienkre-
diten sind die Verluste für die Geschäftspartner ebenso relevant. Zusätzliche Puffer, die der Höhe nach
angemessen kalibriert sind, können effektiv zur Reduktion der indirekten Verluste beitragen.
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1 Introduction
We propose a framework to compute the regulatory capital loss to the banking system caused by the
propagation of an external shock through interbank loans. The impact of interbank lending on financial
stability is twofold. On the one hand, interconnected banks may improve risk sharing and diversification,
thereby alleviating their exposure to idiosyncratic shocks, as noted by Allen and Gale (2000) and Freixas,
Parigi, and Rochet (2000). On the other hand, the network exposes all banks to the risk of contagion,
that is, of an adverse shock to one bank or a group of banks spreading to other interconnected banks,
resulting in distress, or – in the worst case – in default. In this spirit, BCBS (2013) classifies the level of
interconnectedness as one main driver of systemic risk in the banking system.1 In the light of the recent
financial crisis, the risk of contagion has increasingly become a matter of importance to regulators.
Therefore, this paper focuses on the adverse effect of interbank credits as a source of contagion.

To simulate contagion in the interbank market, we analyze the impact of an increase in the debtor
bank’s probability of default (PD) on its creditor banks’ PD, its creditor banks’ creditor banks’ PD, and
so on. First, we follow regulatory and accounting requirements to compute the reduction of the cred-
itor bank’s Tier 1 capital ratio (Tier 1 capital over risk-weighted assets) induced by the debtor bank’s
lower PD. In essence, we aim to mimic banks’ risk management practices based on external reporting
requirements. An increase in the debtor bank’s PD results in a deterioration of the credit quality of the
portfolio of its creditor banks because the creditor banks are exposed to higher expected and unexpected
credit losses. This will ultimately reduce the creditor banks’ Tier 1 capital ratios. Then, we estimate the
impact of a decrease in a bank’s Tier 1 capital ratio on its own PD using a logistic regression. Given
the relationship between the debtor banks’ PD and the creditor banks’ PD, our algorithm then simulates
a multiple-round contagion process where the PD of all the creditor banks deteriorates, which are con-
nected (directly and indirectly via their counterparties) with those debtor banks subject to an exogenous
shock. The increase in banks’ PDs results in higher expected credit losses in the banking system. The
corresponding reduction in regulatory Tier 1 capital is proposed as a measure of the adverse effects of
interconnectedness caused by contagion via interbank credits.

The paper contributes to the academic literature and policy toolkit in several ways. Firstly, we are
the first to use banks’ PD in combination with regulatory requirements and accounting standards as a
contagion mechanism in the interbank market, which we term the credit quality channel. In so doing,
we are able to simulate the propagation not only of big shocks such as bank failures, but even of small
shocks such as a deterioration in the credit quality of mortgages.

Secondly, we propose an economically meaningful metric to summarize the cost of interconnected-
ness: the reduction in regulatory Tier 1 capital of all banks in the network. This metric, called BSLoss
for short, also allows for an alternative interpretation. By construction it equals the balance sheet loss
due to an increase in loan loss allowances. Thirdly, we test our algorithm on the bilateral interbank credit
exposure of the entire German banking system. We quantify the contagion cost of single bank failures
and compute the benefit of a capital buffer for systemically important banks. Moreover, we compute the
BSLoss which results from a shock to house prices and study the effectiveness of sectoral risk buffers in
reducing this loss. The proposed model allows policy makers to monitor the build up of vulnerabilities
over time and gives them a better understanding of the effectiveness of policy actions in response to
different types of shocks.

In our policy application, we find that the contagion risk in the German interbank network is con-
centrated around four or five of the 1,710 banks. Moreover, losses from indirect credit exposure can be
much higher than from direct exposure. In the case of a failure of one of the five most interconnected
banks, the costs from indirect exposure exceed the costs from direct exposure by a factor up to 15. From

1Systemic risk, as defined by BIS, IMF, and OECD (2001), is a risk that an event will trigger a loss of confidence
in a substantial portion of the financial system that is serious enough to have adverse consequences for the real
economy.
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this we conclude that it is crucial to account not only for direct exposure but rather the entire network
when evaluating the interconnectedness of banks. When analyzing the effectiveness of additional capital
buffers of up to 2.5pp (buffer for systemically important financial institutions, SIFIs), we conclude that
their buffers are not high enough to absorb the costs of the failure of any other SIFI. In a different policy
application, we find that a shock to the mortgage sector hits the banking system twice: once in the form
of write-downs to their own portfolio and also, in equal measure, in the form of the losses incurred by
their counterparties in the financial system. An additional capital buffer which is proportional to each
bank’s exposure to the mortgage sector (systemic risk buffer) can effectively reduce the losses from con-
tagion if they are calibrated well. Given a certain stress scenario, our framework can be used for such
calibration.

The paper is structured as follows. Section 2 gives an overview of the relevant literature with a focus
on the DebtRank. In Section 3 we introduce the algorithm of the BSLoss. Section 4 presents the results
of two policy experiments. Section 5 concludes.

2 Literature
Most of the studies on the adverse effects of interbank credits on the stability of the banking system
follow two strands of literature. The first one refers to default cascade models: A bank default triggers a
loss on interbank lending for its creditor banks. This, in turn, may trigger a default of the creditor banks
and a corresponding loss to the creditors’ creditor banks, and so forth. In this spirit, Eisenberg and Noe
(2001) propose a static model in which a clearing payment vector describes a fair allocation of losses
that result from an external shock. This vector represents a function of the operating cash flows of the
members of the financial network and satisfies the requirements of limited liability, debt priority and pro-
rata reimbursements. Rogers and Veraart (2012) extend the modeling framework of Eisenberg and Noe
(2001) by introducing default costs in the system. They analyze situations in which solvent banks have an
incentive to rescue failing banks and conclude how such a rescue consortium might be constructed. More
recently, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) have generalized the results of Eisenberg and
Noe (2001) by showing that, regardless of the structure of the financial network, a payment equilibrium
– consisting of a mutually consistent collection of asset liquidations and repayments of interbank loans –
always exists and is generically unique. They provide a comprehensive theoretical analysis between the
structure of the financial network and the likelihood of systemic failure due to contagion of counterparty
risk. As long as negative shocks imposed on banks are sufficiently small a dense interconnected financial
network enhances financial stability. In contrast, beyond a certain threshold, dense interconnections serve
as a mechanism for the propagation of shocks and thus threatens financial stability. Focusing more on
empirical findings, Mistrulli (2011) explores how banks’ defaults propagate within the Italian interbank
market. He finds that contagion based on actual exposure patterns tends to exceed contagion based on
hypothetical exposure patterns (eg entropy maximization method) which previous works often had to
rely on due to the lack of actual bilateral exposure information. Memmel and Sachs (2011) develop
a default cascade model with stochastic losses given default (LGDs) which follow approximately a u-
shaped Beta distribution and is calibrated on realized recovery rates from defaulted interbank exposures.
They conclude that contagion in the German interbank market can occur and that the number of bank
defaults increases on average if a stochastic LGD is assumed instead of a constant one.

The second strand of literature refers to centrality measures, which are used to identify the most
important node in a network. Different centrality measures exist which reflect different interpretations
of importance. Landherr, Friedl, and Heidemann (2010) provide a critical review of different central-
ity measures. One of the most simplistic measures is the degree centrality which counts the number of
connections one node has to other nodes. More complex measures are recursive centrality measures.
According to this concept, the centrality of one node in the network depends not only on the amount of
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its direct connections, but also on the centrality of the nodes it is connected to. As a result, the centralities
of all (connected) nodes influence each other recursively. Recursive centrality can also be described as a
weighted sum of all direct and indirect connections of any length. This concept is formalized mathemat-
ically in the standard eigenvector centrality by Bonacich (1972). Another version of recursive centrality
measures is the PageRank, developed by Google’s co-founder Larry Page, to assess the importance of
websites. In the wake of the recent financial crisis the concept of recursive centrality measures has
gained popularity as an indicator of interconnectedness in the banking system. To name a few, ECB
(2012) and Brunnermeier, Clerc, and Scheicher (2013) applied recursive centrality measures to assess
structural vulnerabilities and the level of interconnection of banks. Alter, Craig, and Raupach (2015)
apply different centrality concepts to capital rules on the banking system. They find that capital rules
based on eigenvector centrality dominate traditional capital requirements and capital rules based on any
other centrality measure. Martinez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benitez, and Solorzano-
Margain (2014) propose a unified measure of centrality. Conducting a principal component analysis,
they suggest a unique index of centrality which incorporates information of several centrality measures.

Default cascade models and centrality measures have their merits and limitations, as outlined by Bat-
tiston, Puliga, Kaushik, Tasca, and Caldarelli (2012). Default cascade models provide an easy economic
interpretation of contagion. Their measure, which is the loss occurring in the banking system conse-
quently to a bank’s default, allows comparisons to be made between different banking systems and for
one banking system at various points in time. However, default cascade models are typically restricted
to the case that only a default of a bank can result in adverse spill-over effects. Once no further bank
fails, the contagion usually stops. This ignores the fact that a relatively small deterioration in the credit
rating of an asset class or bank could already have negative consequences for the creditor banks’ sol-
vency, because their portfolio is exposed to a higher expected loss from an ex-ante perspective. Default
cascade models are therefore indifferent to small changes in risk. By contrast, centrality measures are
sensitive to all links in the system; vulnerabilities due to an increased level of interconnectedness can be
captured before losses have materialized. While centrality measures are useful for rankings, the numbers
are hard to interpret in economic terms. Thus, centrality measures can be used neither to quantify adverse
effects from interconnectedness nor to assess the benefit of macroprudential action. Finally, they are not
comparable between different banking systems and for one banking system at various points in time.

Against this background, Battiston et al. (2012) develop the DebtRank, which combines the benefits
of recursive centrality measures and default cascade models to overcome the above-mentioned limita-
tions. The DebtRank aims at measuring the economic loss caused by contagion after some predefined
shock has hit one bank or a group of banks. In essence, the transmission of a shock results in an increase
in the level of distress of the connected banks. Battiston et al. (2012) describe the level of distress for
banks by a continuous variable ranging between zero and one, where the lower boundary means "undis-
tressed" and the upper boundary means "default". They construct an algorithm which postulates how
banks’ levels of distress depend on each other. Accordingly, the level of distress of a bank, say bank A,
is influenced by the level of distress of its debtor banks weighted by the relative exposure. The relative
exposure describes a debtor-specific ratio and equals the loans between bank A and its debtors over Tier 1
capital of bank A. It reflects the relative portion of the Tier 1 capital of bank A which would be lost if the
debtor banks default and a recovery value of zero. To prevent reverberations, it is assumed that each bank
can propagate its distress only once. To measure the economic loss the difference between the banks’
total assets weighted by the levels of distress after contagion and before contagion is calculated.

The DebtRank provides plenty of interesting insights into the adverse effects of interconnectedness.
We add to this measure a refined propagation mechanism and an enhanced interpretation and policy appli-
cation. While the level of distress, one key variable of the DebtRank, remains abstract and unobservable,
we propose a model which defines the banks’ level of distress as their PD. Further, the contagion and
mutual interference process of banks’ distress postulated by the DebtRank is proportional to banks’ rel-
ative exposure. While intuitive, there is no verification that distress just spreads in this way. To address
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this issue, our model derives the contagion effect from the empiric relationship between a bank’s Tier 1
capital ratio and its PD.

3 Methodology
To simulate the contagion process we focus on assessing the impact a change in the debtor bank’s PD has
on the creditor bank’s PD. In this respect, we choose a two-step approach: First, we analyze the impact
a bank’s Tier 1 capital ratio has on its own PD. In a second step, we investigate the impact the debtor
bank’s PD has on the creditor bank’s Tier 1 capital ratio.

In the first step, we use a logistic regression to estimate the effect in a change of a bank’s Tier 1
capital ratio on its PD. According to Packer and Tarashev (2011) high-quality capital measures, such
as the Tier 1 capital ratio, are one important factor to assess a bank’s credit quality. We use a logistic
regression in order to estimate the effect of the Tier 1 capital ratio has on PD. In the second step, we
compute the influence the debtor bank’s PD has on the creditor bank’s Tier 1 capital ratio following
regulatory and accounting requirements. In essence, we aim to mimic banks’ risk management practices
based on external reporting requirements. An increase in the debtor bank’s PD results in a deterioration
of the credit quality of the portfolio of its creditor banks because the creditor banks may be exposed to
higher expected credit losses and to higher unexpected credit losses. The former is captured by an asset
devaluation on the creditor banks’ balance sheet according to the applicable accounting standards, eg
in the form of loan loss allowances (LLA) which are deducted from their Tier 1 capital.2 The latter is
reflected by higher regulatory charges according to the Basel Accords, eg in the form of risk-weighted
assets (RWA). Both effects drive down their Tier 1 capital ratios – defined as Tier 1 capital over RWA.

We then develop an algorithm which iteratively computes the change in each bank’s PD after an
exogenous shock has hit one bank or several banks. Exogenous shocks lead to a sudden deterioration in
the credit quality of the directly affected banks resulting in their distress or default. Given the relationship
between the debtor bank’s PD and the creditor bank’s PD, default or distress of one bank or a group
of banks may result in a subsequent increase of PDs of its creditor banks, and the creditors’ creditor
banks, and so on. In order to capture this mechanism, the algorithm models a multiple-round contagion
process where the PDs of all the creditor banks deteriorate, which are connected (directly and indirectly)
with those debtor banks subject to the exogenous shock. The increase in banks’ PDs results in higher
expected credit losses in the banking system. The corresponding reduction in Tier 1 capital is proposed as
a measure for the adverse effects of interconnectedness caused by contagion through interbank lending.

3.1 Contagion algorithm

After having explained the conceptual idea of our algorithm in a narrative way, we will now put it into
a mathematical format. Before doing so we need to introduce some notation. Let us denote by Wij the
interbank loan by bank i to bank j. The variable PD0(i) describes bank i’s initial PD at iteration step
k = 0, before the shock occurs. The PD reflects the bank’s probability of failing within the next year.
Furthermore, let PDk(i|A) be the PD of bank i at iteration step k conditional on the exogenous shock
event A that takes place at k = 1. Each PDk(i|A) is a continuous variable with PDk(i|A) ∈ [0, 1],
where PDk(i|A) = 1 means that bank i is in default status at iteration step k.3 The leverage ratio of
bank i at iteration step k, defined by Tier 1 capital divided by total assets (net of LLA), is denoted by
Levi,k = Tier1i,k/TAi,k. Similarly, the capital ratio is a risk-based measure under supervisory capital

2Our approach, which refers to the 1-year expected credit losses with 1-year PDs, follows common risk man-
agement practices and is compatible with LLA under the currently applicable International Accounting Standard
(IAS 39); see Appendix A1.

3Note that PD0(i|A) = PD0(i).
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standards and is denoted by CapRati,k = Tier1i,k/RWAi,k. In order to compute the risk weights,
denoted by RWij , and ultimately the risk-weighted assets for bank i at iteration step k, RWAi,k, we
follow the methodology adopted for the Internal Ratings Based (IRB) approach of the Basel supervisory
capital frameworks. In this context, LGD denotes loss given default and M the residual maturity.

An exogenous shock is introduced in the banking system. Denote by S the set of banks subject to
the exogenous shock. There are two different ways by which the shock can affect the Tier 1 capital ratios
of those banks which belong to the set S. The first is an abrupt reduction in Tier 1 capital. The second is
a sudden increase in risk-weighted assets. Consequently, the changes in the relevant variables due to the
shock event A at iteration step k = 1 can be expressed by

Tier1Ai,1 =

{
Tier1i,0 − ϕ1i for all i ∈ S
Tier1i,0 for all i /∈ S

RWAAi,1 =

{
RWAi,0 + ϕ2i for all i ∈ S
RWAi,0 for all i /∈ S ,

whereϕ1i, ϕ2i ≥ 0 reflect the level of stress imposed on the banks which belong to S. ThenCapRatAi,1 =

Tier1Ai,1/RWAAi,1.
We compute the effect of the change in the banks’ capital ratio on their PDs using a logistic regres-

sion:
PDi,t = F (α+ βcaprat · ln(CapRati,t−1)), (1)

where F (z) = ez/(1 + ez) is the cumulative logistic distribution and PDi,t is the probability that the
bank will fail in time (t− 1, t].4 From Equation (1) we obtain

ln(
PDi,t

1− PDi,t
)− ln(

PDi,t−1
1− PDi,t−1

) = β̂ · (CapRati,t−1 − CapRati,t−2). (2)

Before returning to our algorithm a remark on terminology is necessary. Since we empirically es-
timate the relationship between the capital ratio and the PD, the logistic regression described above
obviously includes a time aspect. However, it is important to highlight that the iteration below is not
necessarily related to time. Most of the adjustments in the balance-sheet variables do not occur within a
pre-specified time-horizon. In order to clearly emphasize this important fact we use index k rather than
t as a reference to a specific iteration step in the contagion process.

Rearranging terms and using the algorithm rather than the regression notation, Equation (2) can be
rewritten as:

PDk(i|A) =

(
PDk−1(i|A)

1−PDk−1(i|A)

)(
CapRati,k
CapRati,k−1

)β̂
1 +

(
PDk−1(i|A)

1−PDk−1(i|A)

)(
CapRati,k
CapRati,k−1

)β̂ . (3)

Formula (3) enables us to compute a new PD (conditional on event A) as a function of banks’ previous
PD, its current and previous Tier 1 capital ratio, as well as the estimated coefficient β̂ in an iterative
procedure. For simplicity we use π(CapRati,k, CapRati,k−1, PDk−1(i|A), β̂) as an abbreviation for
the right side of formula (3).

4Indeed, we will later add time-invariant control variables which we omit in this section for ease of notation as
they do not affect the derivation of the formulas. Moreover, one might also want to add some time-varying control
variables in order to isolate the impact of the Tier 1 capital ratio on the PD from other variables. However, the
estimated relation between the capital ratio and the PD would then only be correct if all other explanatory variables
remained constant. This is however not the case, neither in our algorithm nor in reality. Therefore, we will use β̂
from (1) as our base case. Nevertheless, as a robustness check in our empirical aplication, we will also present the
main results for the case that time-variant control variables are used.
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We consider a bank as defaulted and set its PD to one, if some pre-defined default criteria are met.
The default criteria may reflect insolvency in the strict sense, ie Tier1 < 0. More sensitive default
criteria may reflect minimum regulatory requirements, or other boundaries which are not set by the
supervisor, but implicitly set by the market. We denote the default criteria by CapRatcrit and Levcrit
which reflect critical values for the capital ratio and the leverage ratio.

After the initial shock, for k ≥ 2, the algorithm updates the banks’ balance sheet variables with
respect to the changed counterparties’ PDs of round k − 1:

TAi,k = TAi,k−1 −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A))

Tier 1i,k = Tier 1i,k−1 −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A))

∆kRWj = RW (PDk−1(j|A), LGD,M)−RW (PDk−2(j|A), LGD,M)

RWAi,k = RWAi,k−1 +
∑
j

∆kRWj ·Wij .

In these formulae the index j runs through all counterparties of bank i. For more details on the computa-
tion of Tier 1i,k, TAi,k and RWAi,k we refer to Appendix A1. The algorithm then updates the banks’
current PD using Equation (3) if the bank has not defaulted in an earlier step of the iteration and sets it
equal to 1 otherwise.

The algorithm stops after a finite number of steps, in round K, once the change in the PD for each
bank is smaller than some small, positive value ε. We may assume that the algorithm terminates because
the sequence PD0(A), PD1(A),..., PDk(A),... of vectors of the PDs has a monotonic limit for the
following two reasons: By construction it has the vector 1 (each component equals 1) as an upper bound;
and furthermore, it is monotonically increasing if β̂caprat > 0. Then PDk−1(i|A) − PDk−1(i|A)2 ≥
0 and CapRati,k+1 ≤ CapRati,k imply that the slope of the PD curve expressed as a function of
ln(CapRat) is negative. This reasoning refers to formulae (1) and (2) above as well as (5) and (6) in
Appendix A2.

Finally, we define the banking system loss as

BSLoss1,KA =
∑
j

(TAj,1 − TAj,K) =
∑
j

(Tier 1j,1 − Tier 1j,K), (4)

where K is the last round before the algorithm stops, ie it is the number of iterations carried out by the
contagion algorithm and the index j runs through all banks of the network. The metric BSLoss measures
the accumulated loss of Tier 1 capital, or equivalently the balance sheet loss due to a devaluation of
assets, to the banking system induced by the contagion effect following the event A.5

Note that we chose to not capture the initial shock, as BSLoss is meant to be a measure of conta-
gion. Nevertheless, we could easily include the initial loss using the following measure: BSLoss0,KA =∑

j(Tier 1j,0 − Tier 1j,K). Further, policy makers could be interested in the costs borne solely by the
direct counterparties of the initially shocked institutions. This cost can be measured by: BSLoss1,2A =∑

j(Tier 1j,1 − Tier 1j,2). Similarly, policy makers could be interested in the costs from indirect con-

tagion effects from round 2 onwards. This cost can be measured by: BSLoss2,KA =
∑

j(Tier 1j,2 −
Tier 1j,K). On a different note, policy makers might want to know how many institutions failed during
the contagion process: DF 1,K

A =
∑

j x(j), where x(j) = 1 if PDK(j|A) = 1 and x(j) = 0 else. More
so, they could be interested by how much the average PD in the system has decreased as a consequence
of event A: ∆PDA =

∑
j(PDK(j|A)−PD0(j|A))

N .

5For notational ease, we will drop the subscript A and the superscript 1,K in most instances.
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In addition, it may be of interest not only to quantify the BSLoss given one bank or a group of
banks are hit by a shock, but also how likely the shock and the resulting BSLoss will occur. A practical
approach to consider the expected BSLoss is to multiply the BSLoss with the initial PD of the bank
subject to the initial shock A.6 This expected BSLoss would be suited to benchmark certain policy
interventions, such as the introduction of a SIFI-buffer (see Section 4.2).

3.2 Properties of the algorithm
In this section we want to show that the sequence of PDs and the corresponding losses that are generated
by the algorithm described in the previous section converge and are unique if the network of banks is
specified by an initial state of capital ratios, ie both the numerator and denominator of the Tier 1 capital
ratios are given for each bank, and by the matrix W of the interbank network of bilateral exposures.

By construction BSLoss is a function of both the vector PD0 of initial PDs of the banks in the
network and the size of the shock ϕ which is imposed on the banks in the set S, ie

BSLoss : {[0, 1]n ,R+
0 } −→ R+

0 ,

with n describing the number of banks and R+
0 the set of non-negative real numbers.7 The iterative

procedure which generates BSLoss may be interpreted as a limit

BSLoss = lim
k→∞

BSLossk(PDk),

with BSLossk being the cumulated loss until the iteration step k and with PDk = (PDk(1, A), . . . ,
PDk(n,A)) for each k ≥ 1. An operator Φ : [0, 1]n −→ [0, 1]n assigns a new vector of PDs to an
initial vector of PDs in each step of the iteration, ie PDk+1 = Φ(PDk). Since a PD is a real number in
the interval [0, 1] the domain of Φ is the cube [0, 1]n. Therefore, the sequence of the PD vectors has a
monotonic limit

PD∗ = lim
k→∞

PDk.

By construction, the operator Φ which generates the sequence of PDs is continuous from the left.
The reason for this property is that a jump in the operator Φ can only occur if a bank is assigned to the
default state in a certain step of the iteration. This happens if one of the values of the capital ratio or the
leverage ratio falls below the critical values. In the event a bank reaches the critical values for one of
these ratios, but does not fall below it, this bank is still considered to be compliant with the regulatory
standards.

More formally, the property of being continuous from the left reads as follows: For each sequence
PDk such that limk→∞ PDk = PD∗ and PDk < PD∗ for all k the order of limit and operator can be
interchanged, ie limk→∞Φ(PDk) = Φ(limk→∞ PDk). Consequently, monotonicity of the sequence
of the PD vectors PDi in combination with the property that Φ is continuous from the left ensures that
the iterative procedure converges and has the limit Φ(PD∗). Hence, the contagion algorithm can be
interpreted as a fixed point iteration. It generates a unique fixed point PD (ie a vector of PDs) and the
corresponding BSLoss under the assumptions described above. This fixed point describes a steady state
after the network of banks has reacted to an external shock.

6In case a group of banks are hit by the shock, one would need to specify the initial joint PD for the respective
group of banks.

7To keep the presentation in this subsection and the academic example simple we assume here that the size of
the shock is the same for each bank and applies to Tier 1 capital, ie the numerator of the capital ratio. However,
all the statements hold true for more general shocks ϕ1i, ϕ2i, which may apply to both the numerator and the
denominator and are not necessarily equal in size for each bank.
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Due to the fact that the matrix W describes a very complex network, it turns out to be difficult
to describe properties of each sequence PDk(i|A) or for BSLossk that go beyond the fact that these
quantities converge. For this reason, we rely on a simple academic example to develop some intuition for
the algorithm and the sequences it generates and some of their basic properties. The academic example
can be found in Appendix A4.

It can be seen in this example that

• BSLoss(PD0, φ) is monotonic in the size of the shock φ, ie φa, φb with φa ≤ φb imply
BSLoss(PD0, φa) ≤ BSLoss(PD0, φb),

• BSLoss(PD0, φ) is not continuous in its second argument φ because the function may jump for
certain values of φ (in the example the function jumps for a φ in the interval [0.0670, 0.0671]) ,

• the functionBSLoss(PD0, φ) is not continuous in the vector of initial PDs because small changes
of PD0 may cause a jump in BSLoss (in the example, the function jumps if the initial PD of
0.0750 is increased by a small ε ≤ 10−4) .

3.3 Benefit of policy intervention
Next to quantifying the cost of contagion, policy makers are interested in determining the benefit of a
policy intervention. Our framework can easily accommodate this need by simulating the effect on the
BSLoss if the Tier 1 capital of a group of banks SR is raised before the shock occurs, at k = 0:

Tier1Ri,0 =

{
Tier1i,0 + κ for all i ∈ SR
Tier1i,0 else

,

where κ is some positive number which denotes the magnitude of the regulatory intervention. In line
with Subsection 3.1,

CapRatRi,0 = Tier1Ri,0/RWAi,0 and PDR
0 (i) = π(CapRatRi,0, CapRati,0, PD0(i), β̂).

We then use Tier1Ri,0 instead of Tier1i,0 and PDR
0 (i) instead of PD0(i) in the general algorithm to

compute BSLossA,R, the banking system loss due to event A and regulation R where SR 6= ∅. In order
to compute the benefit of the regulation, we compute by how much the intervention was able to reduce
contagion of the shock event A: BA = BSLossA − BSLossA,R, where BSLossA is the banking
system loss for the case in which no regulatory buffer is imposed, SR = ∅.
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Implementation of the framework: policy intervention and contagion
Throughout this box we use

π(CapRati,k, CapRati,k−1, PDi,k−1, β̂) :=

(
PDk−1(i|A)
PDk−1(i|A)−1

)(
CapRati,k
CapRati,k−1

)β̂
1 +

(
PDk−1(i|A)
PDk−1(i|A)−1

)(
CapRati,k
CapRati,k−1

)β̂
as an abbreviation.
k = 0, regulatory intervention possible

Tier1Ri,0 =

{
Tier1i,0 + κ for all i ∈ SR
Tier1i,0 otherwise

CapRatRi,0 = Tier1Ri,0/RWAi,0

PDR
0 (i) = π(CapRatRi,0, CapRati,0, PD0(i), β̂)

k = 1, shock occurs

Tier1i,1 =

{
Tier1Ri,0 − ϕ1i for all i ∈ S
Tier1Ri,0 otherwise

RWAi,1 =

{
RWAi,0 + ϕ2i for all i ∈ S
RWAi,0 otherwise

CapRati,1 = Tier1i,1/RWAi,1

PD1(i|A) =

{
1 if CapRati,k < CapRatcrit or Levi,k < Levcrit

min
{

1, π(CapRati,1, CapRat
R
i,0, PD

R
0 (i), β̂)

}
else

k = 2, iterate

TAi,k = TAi,k−1 −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A))

Tier 1i,k = Tier 1i,k−1 −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A))

∆kRWj = max{0, RW (PDk−1(j|A), LGD,M)−RW (PDk−2(j|A), LGD,M)}

RWAi,k = RWAi,k−1 +
∑
j

∆kRWj ·Wij

CapRati,k = Tier1i,k/RWAi,k

PDk(i|A) =

{
1 if CapRati,k < CapRatcrit or Levi,k < Levcrit

min
{

1, π(CapRati,k, CapRati,k−1, PDi,k−1, β̂)
}

else

k = k + 1, until PDK(i|A)− PDK−1(i|A) < ε.

BSLoss =
∑

j(Tier 1j1 − Tier 1jK)
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4 Policy applications
Our algorithm can be applied to various kinds of analyses related to macroprudential policy. It can be
used to analyze the level of banking system loss for different types of shocks, such as idiosyncratic bank
failures or macroeconomic shocks. Furthermore, it allows us to compute by how much the banking
system loss will be absorbed if we increase the Tier 1 capital for certain banks or in proportion to certain
asset holdings. This makes our algorithm a useful tool to estimate the contagion cost of a forecast shock
scenario and to determine the benefit of different types of capital surcharges that aim to curb potential
contagion.

In this section, we will first compute the BSLoss that results from the failure of each individual bank.
Subsequently, we will analyze by how much BSLoss is reduced if a capital buffer for the most important
banks (SIFI-buffer) is introduced. Then, we will compute the BSLoss that results from an adverse shock
to mortgages. Lastly, we will impose banks to hold more capital proportional to their investment in
mortgages (sectoral risk buffer). We then compute by how much this policy intervention reduces the
BSLoss that results from the adverse shock to mortgages.

4.1 Data and parameter specification
For our analysis, we use end-of-year 2013 data on interbank loans obtained from the Deutsche Bun-
desbank’s credit register of large exposures and loans of AC1.5 million or more. The interbank lending
network has the following properties. It is a directed graph (or "digraph") with 1, 710 nodes (banks) and
20, 425 arcs (single loans from one bank to another). The average in-degree, ie the average number of
loans a bank receives, is 12, ranging from 0 to 1, 357 loans. The number of loans a bank gives, ranges
from 0 to 997. The average path length in the network is 2 with a diameter, ie the largest path between
any two nodes in the network, of 5. The average clustering coefficient, which is a measure of cliquishness
in a network ranging from 0 (very loose network) to 1 (very dense network), amounts to 0.71. Figure 1
shows an extract of the network we use.8

8In the network literature a path is defined as a sequence of links connecting two nodes such that no node is hit
twice. This fact distinguishes a path from a walk, since in the course of a walk every node in the network can be
hit several times. The intuition behind the clustering coefficient can be illustrated by a simple example: imagine
three nodes of a network a,b and c with arcs ab and ac. The clustering coefficient gives the probability that there
also exists an arc bc.
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Figure 1: Extract of bank network

Note: For illustrative purposes the graph only shows the top 6 banks whose default generates the largest BSLoss;
see Subsection 4.2. The graph contains 46 nodes and 1, 188 edges. Label, size and color of the nodes depend on
their importance measured as the BSLoss their default generates. The thickness and the color of the edges represent
the size of the respective loan.

The end-of-year 2013 balance sheet data used in the algorithm stems from various sources: Tier 1
capital, total assets and RWAs are taken from German banks’ reports to the Deutsche Bundesbank, the
Common Reporting Framework and the Banking Statistics. The unconditional PDs for the start of the
iteration k = 0 for German banks are derived from their credit ratings assigned by the three major rating
agencies, namely Fitch Ratings, Moody’s, and Standard & Poor’s. In order to combine the information
obtained from the three rating agencies, the average of the historically observed default rates per credit
ranking is calculated. If a bank is not rated by one of the three major rating agencies, then a standard
rating investment grade range is assumed. For our application to the house price bubble, we use the
absolute amount of loans every bank holds in the real estate sector, which we obtain from the German
banks’ reports to the Deutsche Bundesbank. Furthermore, the PD for mortgage loans is set to PDMg =
1.5%, the average value for mortgage loans reported by a representative selection of German banks,
based on supervisory reports.

For the estimation of the elasticity parameter β which we need for Equation (3) we use a logistic
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regression as in Equation (1). Our unbalanced panel consists of 8, 288 observations over six years. The
dependent variable equals one if a bank defaults as recorded by the Deutsche Bundesbank and zero oth-
erwise. The independent variable is Tier 1 capital over RWA. We use lagged dependent variables in order
to avoid endogeneity. Further, we include banking group dummies and regional dummies. The estimated
coefficients show the expected signs and can be found in Table 3 in Appendix A2. Most importantly, the
Tier 1 capital ratio is significant at the 1% significance level and β̂ = −1.25. Consequently, a higher
capital ratio significantly reduces a bank’s PD. Figure 2 illustrates the estimated relationship between
capital ratio and the PD based on Equation (3).

Figure 2: Estimated effect of capital ratio on probability of default

 

Note: Assuming that a capital ratio of 11% is associated with a PD of 4%, we exemplarily compute the PD for
different values of the capital ratio based on Equation (3).

For the BSLoss algorithm, we choose the following parameters. The propagation of the exogenous
shock stops when the changes in the PDs of all counterparties are smaller than a threshold value ε =
10−6. We apply the following default criteria: A bank is considered as defaulted if its Tier 1 capital ratio
falls below 6%, reflecting the minimum capital requirements of the Basel 3 framework. To comply with
the rules of the Foundation IRB approach we apply a loss given default, or LGD, of 45%. This value
reflects a conservative approach by assuming all interbank loans are unsecured. Furthermore, we assume
a residual maturity, M , of 2.5 years for exposures to the banking sector.

4.2 Systemic importance of single institutions
In our first application, we compute the BSLoss of each institution’s failure in turn. This exercise provides
a ranking of banks according to the danger their interconnectedness poses to the banking system and gives
policy makers an indication of the relative importance of each bank in the system. Supervisory resources
might be assigned according to this relative importance.

Table 1 displays an excerpt of the results for the top 20 banks in the network whose default causes
the largest banking system loss. To accommodate confidentiality requirements, banks’ identities are not
revealed and BSLoss is normalized, assigning a value of 1 to the bank with the greatest BSLoss. We can
deduce from column 2 of Table 1 that the contagion risk in the German interbank market is concentrated
around four banks. In particular, the top three banks stand out. Based on theBSLoss the top three banks
are almost equally important for the German banking system with regard to interconnectedness. In fact,
a default of one of these three banks results in a subsequent default of the remaining two banks due to
their high level of interconnectedness.9 On the contrary, the failure of the sixth most interconnected bank

9This fact explains why the BSLoss nearly equals for this group of banks. Note that the BSLoss measures the
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would cause less than a tenth of the loss that the failure of one of the three most dangerous institutions
would cause. In the same vein, the failure of the 20nd most dangerous bank is estimated to lead to less
than one percent of the loss induced by one of the three most dangerous banks. From this we conclude
that the contagion risk in the German interbank network is rather concentrated.

Table 1: Ranking according to BSLoss in descending order

Total effect Indirect effect Unconditional effect

Rank
BSLoss1,K

i

BSLoss1,K1

K
DF1,K

i

DF1,K1

BSLoss1,K
i∑

j Wji

BSLoss2,K
i

BSLoss1,K
i

DF
2,K
i

DF
1,K
i

PD0(i)·BSLoss1,K
i

PD0(1)·BSLoss1,K1
(1) (2) (3) (4) (5) (6) (7) (8)

1 1 15 1 5.51 91.8% 96.1% 0.868
2 1 14 1 7.19 93.7% 96.2% 1.000
3 1 10 1 4.68 90.4% 95.4% 0.605
4 0.34 10 0.692 1.23 63.5% 20.5% 0.101
5 0.11 8 0.020 0.94 52.5% 53.6% 0.110
6 0.09 8 0.015 0.76 40.7% 28.6% 0.039
7 0.08 8 0.034 0.73 38.4% 16.7% 0.036
8 0.07 7 0.119 0.69 34.7% 1.8% 0.022
9 0.07 8 0.044 0.59 23.4% 7.9% 0.029

10 0.06 7 0.008 0.96 53.3% 45.5% 0.041
11 0.06 6 0.004 0.47 3.6% 60.0% 0.012
12 0.03 6 0.004 0.47 4.9% 16.7% 0.018
13 0.03 7 0.013 0.61 26.0% 44.4% 0.017
14 0.02 6 0.002 0.45 0.7% 33.3% 0.002
15 0.02 6 0.003 0.69 35.0% 25.0% 0.007
16 0.02 6 0.004 0.54 17.3% 33.3% 0.010
17 0.01 7 0.014 0.58 22.8% 15.0% 0.008
18 0.01 5 0.002 0.45 1.1% 33.3% 0.008
19 0.01 6 0.003 0.70 35.6% 25.0% 0.005
20 0.01 6 0.005 0.52 14.1% 28.6% 0.007

Note: The first column displays the rank of the bank according to the BSLoss in descending order. Column 2
shows BSLoss for the respective bank as a fraction of the BSLoss of the highest ranked bank (bank 1). The third
column lists the round at which the contagion algorithm stopped (ie the number of iterations). Column 4 indicates
how many institutions failed during the contagion process following the failure of the relevant bank as a fraction of
the number of failures caused by the default of bank 1. Column 5 expressesBSLoss in relation to the total amount
of loans which the respective bank received from other banks. Column 6 displays the BSLoss from rounds two to
K (that is the second and later round effects) as proportion of the total BSLoss. Column 7 gives the percentage
of defaulting banks in rounds two to K with respect to the total number of defaulting banks. Column 8 displays
the unconditional effect (BSLoss weighted with the respective bank’s PD) as fraction of the bank with the largest
value (bank 2 in this scenario).

Another noteworthy observation which can be deduced from column 6 of Table 1 is that the losses
are borne mostly by counterparties’ counterparties, rather than the first round direct counterparties, in
case one of the more "interconnected" banks fails. That is, the indirect effect of contagion for rounds
k ≥ 2 is much bigger than the direct contagion effect of round k = 1. From this we conclude that
it is crucial to account not only for direct exposure but rather the entire network when evaluating the
interconnectedness of banks. So far, the indicator-based methodology of the Basel Committee to deter-
mine the interconnectedness of domestic systemically important banks (D-SIBs) only accounts for direct

reduction in Tier1 of the creditor banks due to a credit deterioration of their debtor banks. In case the creditor
banks default, they still have to account for additional Tier1 loses due to a subsequent credit deterioration of their
debtor banks, ie we allow for negative Tier1 levels.

13



exposure.
Column 8 of Table 1 shows the unconditional contagion effect, which reflects the BSLoss weighted

by the initial PD of the bank subject to shock A. According to this measure the ranking of the top 20
banks does not materially change compared to the ranking based on the unweightedBSLoss. Following
the expected BSLoss the contagion risk in the German interbank market is concentrated around the top
five banks. This group of top five banks includes the same banks as the group of top five banks according
to the BSLoss (see column 2).

As a plausibility check, we compare the ranking derived from BSLoss to rankings obtained from
other, established measures of interconnectedness. To this end, Table 2 displays the Spearman’s rank
correlation coefficient ρ between our ranking derived from BSLoss and the following rankings: First,
the total score of the indicator-based methodology of the Basel Committee to determine D-SIBs. This
method comprises four different dimensions: size, interconnectedness, complexity and substitutability.
Second, the sub-score for interconnectedness of the D-SIBs score, which is mainly based on the volume
of interbank loans. Third, the rank correlation with the Bonacich centrality measure. This eigenvector-
based measure takes into account the entire network structure of the interbank market. Following
Nacaskul (2010), we weight the adjacency matrix with the corresponding interbank matrix. Fourth,
the number of loans to each bank. The results in Table 2 show that the more established rankings are
(highly) correlated with ours derived from BSLoss.

The relatively low positive correlation between the D-SIBs’ interconnectedness ranking and ours can
be explained by its broader scope, as it takes into account not only interbank exposure but also exposure
to the non-bank financial sector. It might, however, also point to the importance of counterparties’
counterparties, which is captured in our ranking. The high correlation with the Bonacich eigenvector-
based centrality measure emphasizes that the BSLoss shares the same merits in terms of using the
information of the whole network. In addition, BSLoss also takes into account the interbank loan
quality and the inherent relationship between the PD of the debtor bank and the PD of the creditor bank.
Most importantly, in contrast to the more established rankings, BSLoss provides policy makers with an
economic interpretation.

Table 2: Rank correlation between BSLoss and other measures of interconnectedness

D-SIBs D-SIBs Bonacich In-Degree
(Total score) (Intercon.) centrality measure

ρ 0.39 0.66 0.96 0.70

The table displays the Spearman’s rank correlation coefficient ρ between BSLoss and the following four mea-
sures: 1) ranking based on the methodology of the Basel Committee to determine domestic systemically important
banks; 2) the part of the former measure which captures interconnectedness; 3) the α-centrality measure developed
by Bonacich and Lloyd (2001) and 4) the in-degree.

As a robustness check for the specification of our logit regression, we now estimate the relationship
between PD and capital ratio with additional control variables. Following Craig, Kötter, and Krüger
(2014), we add Tier 1 capital over RWA, depreciation and adjustments over equity, administration ex-
penses over total assets, return on equity, cash and overnight interbank loans over total assets and the
log of total assets. These variables follow the CAMEL approach and reflect capital adequacy, asset
quality, quality of management, profitability, and liquidity as well as size. Further, we include banking
group dummies and regional dummies. The estimated coefficients show the expected signs and can be
found in Table 3. Most importantly, the Tier 1 capital ratio is significant at the 1% significance level and
β̂ = −2.01. Consequently, a higher capital ratio significantly reduces a bank’s PD.

Table 4 in the Appendix 6 is the equivalent to Table 1 and displays an excerpt of the results for the
top 20 banks whose default cause the largest BSLoss. While BSLoss of most banks are very similar using
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either one of the beta coefficients, most importantly, the BSLoss ranked as bank 1 and 2 are 14 and 12
times higher using the beta of the multivariate regression. This sharp increase is due to the cliff effect
inherent in our algorithm whenever a bank fails and stresses the importance of robustness checks in a
policy context. Excluding those two banks, the BSLoss for the remaining top 20 banks is only 0.2%
higher when using the alternative beta coefficient. Further, almost the same group of banks forms the top
20 banks in the two tables, except for the identities of bank 14 and 18 in Table 4 and for the the identities
of bank 17 and 18 in Table 1, which are not included in the other tables. Similar to the results in Table 1
we can observe from column 6 of Table 4 that the indirect effect of contagion for rounds k ≥ 2 is much
bigger than the direct contagion effect of round k = 1.

Having determined the importance of banks in terms of their interconnectedness, we will now sim-
ulate the benefits of a policy intervention. We found that the risk of contagion is rather concentrated
on five banks in the network. Therefore, we analyze by how much the BSLoss is reduced if a capital
buffer for the most important banks (SIFI-buffer) is introduced. To do so, we follow the methodology
outlined in Subsection 3.3. To each of the five most interconnected institutions we assign more capital
such that the new capital ratio is 0.5, 1, 1.5, 2, 2.5 or 3 percentage points higher than the initial one. We
then repeat the previous analysis and let each of the SIFIs fail in turn. We find the buffers to be largely
ineffective in curbing contagion among SIFIs. The BSLoss is reduced significantly only if the buffers
exceed 2.5pp. In the case the buffers amount to 3.0pp, the BSLoss of two of the five most interconnected
banks is substantially reduced in each case by 21% and their expected BSLoss is reduced by 42% and
45% respectively. However, the BSLoss of any of the other three banks is not considerably reduced by
the policy intervention, although their expected BSLoss is reduced by 8%, 17% and 18% respectively.
The aim of the SIFI-buffers is to increase the shock-absorbing capacity of the identified SIFIs, so that
they are less likely to default if they are hit by a shock. We conclude that the buffers are not high enough
to prevent the other SIFIs from failing in case that one of the SIFIs fails, if the buffers are capped at
2.5pp.

4.3 Shock to the real estate sector
The burst of a house price bubble was at the center of the last financial crises and others before. Therefore,
our second application of the algorithm is a scenario analysis of the consequences of a decline in real
estate prices. Using our algorithm, we determine how this shock is propagated and amplified by interbank
lending. In a first step, we calculate the banking system loss caused by such a decline in real estate prices.
In a second step we assess the benefit of a policy intervention.

We proxy a decline in house prices by an increase in the loss that banks incur if a mortgage is not
repaid, ie the loss given mortgage default. We argue that if a mortgage defaults and house prices have
dropped, banks are left with a house whose value has declined. In that way, a decrease in house prices
translates into higher LGDs of mortgages, LGDMg. The increase in the loss given mortgage default then
influences the values of Tier 1 capital and the RWAs due to accounting rules and risk management prac-
tices and, consequently, decreases the capital ratio of each bank which has an exposure to the mortgage
sector. Bank i’s exposure to the mortgage sector is denoted by Mgi. Each institution exposed to the real
estate sector will then also experience a rise in its PD as a consequence of the decline in its capital ratio.
The rise in bank’s PDs triggers the credit quality contagion spiral in the interbank market. We use our
algorithm to compute the banking system loss from contagion caused by a real estate shock modeled as
follows:
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The shocked balance sheet items at k = 1 are given by

TAi,1 = TAi,0 −∆LGDMg · PDMg ·Mgi

Tier1i,1 = Tier1i,0 −∆LGDMg · PDMg ·Mgi

∆RWi,1 = RWMgi(PDMg,∆LGDMgi, 1)

RWAi,1 = RWAi,0 + ∆RWi,1 ·Mgi

CapRati,1 =
Tier1i,1
RWAi,1

Note that ∆LGDMg ·PDMg ·Mgi = ϕ1i and ∆RWi,1 ·Mgi = ϕ2i in our algorithm and S contains all
banks for which Mgi > 0. In these formulae the linearity of risk weights in the LGD is exploited. The
formula for the computation of risk weights for exposures to retail costumers can be found in Appendix
6. As a relevant aspect of this computation it has to be noted that the residual maturities for residential
mortgage loans are assumed to be 1 year, ieM = 1, in the Basel capital framework. Based on supervisory
reports for a representative selection of German banks, the probability of default for mortgage loans is
set to PDMg = 0.015, and is not affected by the shock.10

Figure 3: Initial shock, direct and indirect contagion for different ∆LGDMg

The figure shows different specifications of the banking system loss for different changes in the loss given mortgage
default. It shows the loss from the total effect including the initial shock and contagion (BSLoss0,KMg ), the loss
from direct and indirect contagion (BSLoss1,KMg ) and the loss from indirect contagion only (BSLoss2,KMg ).

Figure 3 illustrates the banking system loss for different loss given mortgage defaults. The evolution
of BSLoss as a function of ∆LGD is not smooth, but follows a pattern with alternating sharp and
moderate increases. This shape of the function results from the dynamic of the defaults. A small increase
in LGD may result in an abrupt increase in BSLoss in the event that higher losses cause bank failures.

The figure is quite revealing for policy makers. Comparing BSLoss1,KMg (the gray and dark gray
area) with BSLoss0,1Mg (the light gray area), we find that across the different scenarios for ∆LGDMg

(aggregated) contagion effects from interconnectedness are nearly as high as the (aggregated) initial loss
due to the macroeconomic shock. In other words, the losses to banks’ counterparties (and counterpar-
ties’ counterparties) are nearly as high as the losses realized by banks on their own mortgage portfolio.

10Another interesting application would be to shock the PDMg instead of the LGDMg .
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Moreover, we find that the direct contagion losses (gray shaded area) are almost always higher than the
losses from indirect contagion (dark gray area). Obviously, the costs of the shock triggered by the real
estate sector depend on its size. For a 15pp change in the loss given mortgage default, the initial loss to
the banking system is AC2.02 billion and the loss due to contagion is AC2.04 billion. This amounts to both
around 0.50% of the accumulated banking system capital.

Subsequently, we assess the effectiveness of capital surcharges, the so-called systemic risk buffer, to
curb contagion from the mortgage sector to the interbank market. Before any shock hits the system, all
institutions are forced to increase their capital ratio by the variable κ relative to their exposure to the real
estate sector. Banks have to comply with this requirement by increasing their Tier 1 capital accordingly:

Tier1Ri,0
RWAi,0

=
Tier1i,0
RWAi,0

+ 0.01 · κ · Mgi
TAi,0

,

where Tier1Ri,0 denotes the Tier 1 capital that banks hold after the regulatory intervention. As a result,
the new Tier 1 capital ratio translates into a decrease in a bank’s own PD which we use as the starting
PD in the algorithm; see Subsection 3.3 for more detail. To evaluate the effectiveness of the systemic
risk buffer, we compare the banking system loss for κ ∈ {1, 2, 3} to the banking system loss without
regulatory intervention, κ = 0.

Figure 4: Illustration of different scales of policy intervention for several shock scenarios

The figure illustrates the level ofBSLoss1,KMg for different changes in loss given default. The different shaded areas
indicate the BSLoss for different degrees of regulatory intervention, ranging from no regulatory intervention,
κ = 0, to an increase in the capital ratio of κ = 3 relative to banks’ exposure to the real estate sector. Note that
BSLoss1,KMg measures loss due to contagion within the banking system, excluding the direct adjustments due to
the initial real estate shock.

Figure 4 illustrates the level of BSLoss for different changes in loss given default and different de-
grees of regulatory intervention. The buffers effectively absorb the macroeconomic shock and reduce
contagion if they are set adequately. Consider, for example, a rise in the loss given default of 15pp.
Given an intervention of κ = 1, the banking system loss can be reduced by roughly C0.99 billion and
for an intervention of κ = 2 by an additional C0.85 billion. In relative terms, a policy intervention of
κ = 1 will mitigate the consequences of the exogenous shock in the system by almost 50% compared
to the situation without regulatory intervention. A stronger intervention of κ = 2 reduces the scale of
consequences for the system by a total of 91%. In contrast, a systemic risk buffer of 3pp barely adds any
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additional benefit. The banking system loss can be reduced only by C3 million compared to the level
reached by a risk buffer of 2pp. We conclude that the systemic risk buffers can effectively reduce the
losses from contagion if they are chosen well. Given a certain stress scenario, our framework leads itself
to such calibration.

4.4 Discussion of the model and the results
When working with a complex, non-linear network system, we have to make simplifying assumptions
and make some choices on our parameters. In this section, we briefly discuss these choices and possible
consequences or extensions.

In our model, we assume that banks know when their counterparties are hit directly or indirectly by
an adverse shock and, as a result, account for the increased credit risk in their credit portfolio instantly.
This does not imply that each bank has complete information about the entire network structure, but that
each bank has complete information about the credit quality of its direct counterparties, and accounts
any credit deterioration immediately. However, in reality, this adjustment process tends to occur with
some time lag – it might be the case that shocks are covered up and adjustments in the balance sheet take
longer in the beginning. But sooner or later the bank’s credit portfolio will be reassessed and changes in
expected credit losses will be crystallized.

We take the simplifying assumption of a static network structure. In reality, network structures may
change while a shock propagates through the banking system. While this certainly leaves room for future
research, we argue that lending relationships, at least in the German banking system, are usually long
lasting and are likely to be stable in the short run. It is more likely that banks will change their (long-
run) lending and borrowing habits in response to a policy intervention, exposing our policy evaluation
to the Lucas critique. In order to assess the usefulness of additional capital buffers to reduce contagion,
one could take into account the cost of capital surcharges in terms of reduced lending, as was done by
Kashyap and Stein (2004). If a SIFI-buffer is imposed, banks might try to reduce their centrality or
importance as lender and borrower in the network in order to reduce their surcharge. If systemic risk
buffers for the mortgage sector are imposed, banks might reduce their exposure to the real estate sectors.
In both cases, contagion to the analyzed shock is reduced. In that way, the benefit of regulation that we
compute is a lower bound and might be bigger once we account for a change in banks’ behavior.

Our algorithm is very flexible in the way a shock can be introduced. It is possible to shock one single
bank, a set of banks or all banks at once. Variables which might introduce the shock range from banks’
Tier 1 capital over risk weights up to LGDs and banks’ PDs. Therefore, a sophisticated risk analysis can
be used in order to identify relevant shock scenarios and feed them into the proposed algorithm. Besides
the chosen shock scenario, the results of the model also depend on other parameter choices which affect
the persistence and severity of the contagion process. For example, changes in LGDs or the critical values
of the default criteria (CapRatcrit or Levcrit) may result in jumps in BSLoss if these changes alter the
number of defaulting banks ("cliff effect"). In order to take this into account, a sensitivity analysis with
respect to the chosen parameters is important in a policy context.

Due to data availability restrictions, we use data on the German banking system only. In order
to get a more complete view, it is certainly desirable to include cross-border lending and borrowing
relationships. On a similar note, the framework can be extended to assess the interconnectedness within
or across financial networks, such as the insurance sector or the shadow banking system. In this case,
however, the propagation mechanism needs to be modified since the Basel framework does not apply
to non-bank financial institutions, accounting rules vary and the relationship between other types of
financial intermediaries may be substantially different. Nevertheless, the Macroeconomic Assessment
Group on Derivatives (2013) led by the BIS has applied a comparable methodology to identify changes
in the probability of a crisis in the OTC-Derivatives market. Finally, the model is restricted to one
contagion channel (interbank lending). One extension could be to combine other contagion channels (eg
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the liquidity channel) into the model to better measure systemic risk.

5 Conclusion
In this paper we develop an analytical framework to quantify the cost of contagion in the interbank mar-
ket. Our contagion process which we term the credit quality channel has several merits. It is modeled in
a more realistic fashion because it does not rely on "true" defaults, as does a domino default mechanism.
Rather, it is responsive to small changes in credit risk brought about by an increase in the likelihood of
bank defaults in the future (over a 1-year time horizon). In addition, we propose a metric termed BSLoss
which estimates the potential regulatory capital loss to the banking system due to contagion via interbank
loans. This measure is expressed in a monetary unit and is therefore easy to interpret. This framework
is useful in the context of macroprudential surveillance, instrument calibration and policy evaluation.
We demonstrate the practicality of our algorithm in two examples: we compute the contagion costs
associated with a single bank failure as well as with a shock to the real estate sector.

When working with a complex, non-linear network system, we have to make simplifying assump-
tions. For example, we take the simplifying assumption of a static network structure. While this certainly
leaves room for future research, we argue that lending relationships are usually long-lasting and are likely
to be stable in the short run. It is more likely that banks will change their (long-run) lending and bor-
rowing habits in response to a policy intervention, exposing our policy evaluation to the Lucas critique.
We argue that the resulting change in the network is likely to reduce contagion even further, causing the
estimated benefit of the policy intervention to possibly underestimate the real benefit.

Our model can easily be refined, adjusted and extended to different policy questions and different
regulatory environments. For example, one could analyze the effect of a capital buffer which is propor-
tional to each bank’s exposure to the most contagious banks. Apart from a reduction in BSLoss, this
would also give an incentive to be less connected to the most contagious banks, transforming the net-
work and making it less prone to contagion. Further, policy makers could use their stress tests to identify
relevant macro shocks and feed them into our algorithm to analyze contagion in the interbank network.
We see this flexibility as a virtue of our algorithm.
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6 Appendix

A1: Calculation of risk weights, Tier 1 capital and total assets
Risk weights are calculated using the IRB formula

RW (PD,LGD,M) = 1.06 · 12.5 · LGD·

(
N

(
N−1(PD) +

√
ρ(PD) · N−1(q99.9%)√

1− ρ(PD)

)
− PD

)

· 1 + b(PD) · (M − 2.5)

1− 1.5 · b(PD)

where b(PD) = (0.11852− 0.05478 · ln(PD))2 and ρ is the asset correlation, which is defined by

ρ(PD) =
1− e−50·PD

1− e−50
· 0.12 + (1− 1− e−50·PD

1− e−50
) · 0.24.

This formula applies to risk weight for the Banks, Sovereigns and Corporates exposure classes.
For exposures to retail borrowers a slightly different formula applies. Instead of a PD-dependent asset
correlation a constant asset correlation of ρ = 0.15 is used.

Expected losses are deducted from the Tier 1 capital. The expected loss of bank i on the interbank
loan W granted to bank j in round k equals

ELi,k = Wij · PDk(i|A) · LGD.

Accordingly, the Tier 1 capital in k + 1 which has changed due a change in the PD of the debtor bank j
in the previous round amounts to

Tier1i,k+1 = Tier1i,k −
∑
j

(ELi,k − ELi,k−1)

= Tier1i,k −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A)).

Total assets are calculated net of LLAs. Under IAS 39 LLAs reflect incurred losses. That means
LLAs can only be recognized if there is objective evidence that a loss event has been incurred (eg 90
days past due). A PD of one is assigned to loans which are subject to a loss event. That means in the
context of the expected loss approach the LLAs under IAS 39 would be calculated only for defaulted
loans (PD = 1) and simply reflect LGD times EAD. However, two types of LLAs exist: specific
LLAs, where the loss event has been incurred and identified (and consequently a PD of one has been
assigned to the defaulted loan), and general LLAs, where the loss event has been incurred, but has not
been identified yet (and consequently a PD of one has not yet been assigned to the loan). Against this
background a common practice among banks is to calculate the general LLAs for all the loans where
a loss event has not been identified using the 1-year expected loan loss, ie LGD times exposure times
(1-year) PD.

We follow this approach and assume LLAs can be described approximately by the 1-year expected
loan loss based on regulatory risk parameters.11 Hence, the loan loss allowance charged to bank i on the

11Under the new International Financial Reporting Standard (IFRS) 9, banks will have to calculate LLAs for
expected loan losses instead of actual loan losses. The new standard will come into effect on 1 January 2018
(with early application permitted). According to this standard, depending on whether there has been a significant
increase in the credit risk, the lifetime expected loan loss or the 1-year expected loan loss is taken into account
to measure LLAs. Hence, factoring IFRS 9 into our model would require a modification by taking into account
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interbank loan W granted to bank j in round t equals to

LLAi,k = Wij · PDk(i|A) · LGD.

As a result, the total assets in k + 1 which have changed due to a change in probability of default of the
debtor banks j amounts to

TAi,k+1 = TAi,k −
∑
j

(LLAi,k − LLAi,k−1)

= TAi,k −
∑
j

Wij · LGD · (PDk−1(j|A)− PDk−2(j|A)).

A2: Logistic regression
In order to estimate the effect of a change in a bank’s capital ratio on its probability of default, we run
the following logistic regression:

PDi,t =
eα+β·ln(CapRati,t−1)+γXi,t−1

1 + eα+β·ln(CapRati,t−1)+γXi,t−1
.

where PD is the probability of default, CapRat is the capital ratio and X is the matrix of control
variables. In order to know by how much the probability of default changes if the capital ratio changes,
we take the derivative:

dPDi,t

dln(CapRati,t−1)
= β

eα+β·ln(CapRati,t−1)+γXi,t−1

(1 + eα+β·ln(CapRati,t−1)+γXi,t−1)2
= β · (PDi,t − PD2

i,t).

Rearranging terms gives

dPDi,t = β · (PDi,t − PD2
i,t) · dln(CapRati,t−1) (5)

or, equivalently,
dPDi,t

PDi,t − PD2
i,t

= β · dln(CapRati,t−1).

Formula (5) is referred to in the main text because it reveals monotonicity properties of the PD as
a dependent function of the capital ratio of the previous period. Eg the PD is monotone decreasing for
negative β.

Taking into account that
∫ dPDi,t

PDi,t(PDi,t−1) = ln
(

PDi,t

1−PDi,t

)
+c, with a constant c, and applying simple

rules for the logarithm, we obtain

ln

(
PDi,t

1− PDi,t

)
= β · (ln(CapRati,t)− ln(CapRati,t−1)) + ln

(
PDi,t−1

1− PDi,t−1

)
.

Putting both sides of this equality into the exponent of the ex-function, rearranging terms and applying

lifetime PDs or 1-year PDs on a case-by-case basis.
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rules for the logarithm once more gives

PDi,t =

(
CapRati,t
CapRati,t−1

)β ( PDi,t−1

1−PDi,t−1

)
1 +

(
CapRati,t
CapRati,t−1

)β ( PDi,t−1

1−PDi,t−1

) . (6)

In the table below, we present the estimated coefficients of the logistic regression which we use in
our policy application.

Table 3: Regression results

univariate multivariate

PDi,t = F (α + βcaprat · ln(CapRati,t−1) + γ1 ·Xi,t−1 + γ2 · Zi)

constant -6.478*** -29.734***
(0.000) (0.965)

ln(Tier 1 capital/RWA) -1.246*** -2.005***
(0.000) (0.000)

depreciation & adjustments/equity -0.001
(0.729)

administrative expenses/TA 0.017**
(0.050)

return on equity -0.077***
(0.000)

cash & overnight interbank loans/TA 0.031***
(0.002)

ln(TA) 0.309***
(0.000)

(pseudo) R2 0.011 0.136

Notes: F (z) = ez/(1 + ez) is the cumulative logistic distribution. Our unbalanced panel consists of 10, 159
observations over six years (from 2001 to 2006) and the total number of banks is 1,821. The dependent variable
equals one if the bank defaults and zero otherwise. Distress events are systematically recorded by the German
central bank, Deutsche Bundesbank. There are six different types of distress events that are drawn from the German
Banking Act ("Kreditwesengesetz, KWG"), see also Kick and Koetter (2007). The first three are early indications
of potential future problems: annual operating profit contractions in excess of 25 percent, losses of 25 percent
of regulatory capital or above requiring a notification of the regulator according to ï¿½24(1) KWG, and general
notifications by banks that the existence of the bank might be at risk in line with ï¿½29(3) KWG. Additional distress
categories are capital injections received by banks from sector-specific insurance funds, restructuring mergers and
revocations of a charter by a moratorium. We control for banking group as well as regional effects. Standard errors
are given in parentheses and the 1% and 5% significance levels are indicated by *** and **, respectively.
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A3: Robustness check for the specification of our logit regression

Table 4: Ranking according to BSLoss in descending order

Total effect Indirect effect Unconditional effect

Rank
BSLoss1,K

i

BSLoss1,K1

K
DF1,K

i

DF1,K1

BSLoss1,K
i∑

j Wji

BSLoss2,K
i

BSLoss1,K
i

DF
2,K
i

DF
1,K
i

PD0(i)·BSLoss1,K
i

PD0(1)·BSLoss1,K1
(1) (2) (3) (4) (5) (6) (7) (8)

1 1 16 1 8.64 94.8% 97.2% 0.421
2 1 14 1 8.34 94.6% 95.9% 0.409
3 1 14 1 5.52 91.9% 96.1% 0.868
4 1 14 1 7.20 93.8% 96.2% 1
5 1 10 1 4.68 90.4% 95.4% 0.605
6 0.35 11 0.69 1.23 63.6% 20.9% 0.101
7 0.11 10 0.02 0.95 52.8% 53.6% 0.111
8 0.09 11 0.015 0.76 41.0% 28.6% 0.039
9 0.07 9 0.119 0.69 35.0% 2.4% 0.022

10 0.06 10 0.008 0.98 54.0% 50.0% 0.041
11 0.06 9 0.004 0.47 4.4% 66.7% 0.013
12 0.03 9 0.005 0.49 7.7% 28.6% 0.019
13 0.03 10 0.014 0.62 28.3% 50.0% 0.017
14 0.02 8 0.002 0.45 1.0% 33.3% 0.002
15 0.02 8 0.003 0.70 35.5% 25.0% 0.007
16 0.02 8 0.004 0.55 18.4% 33.3% 0.010
17 0.02 9 0.015 0.59 24.1% 22.7% 0.008
18 0.01 6 0.002 0.46 1.6% 33.3% 0.008
19 0.01 8 0.003 0.70 35.9% 25.0% 0.005
20 0.01 8 0.005 0.53 14.7% 28.6% 0.007

Note: The first column displays the rank of the bank according to the BSLoss in descending order. Column 2
shows BSLoss for the respective bank as a fraction of the BSLoss of the highest ranked bank (bank 1). The third
column lists the round at which the contagion algorithm stopped (ie the number of iterations). Column 4 indicates
how many institutions failed during the contagion process following the failure of the relevant bank as a fraction of
the number of failures caused by the default of bank 1. Column 5 expressesBSLoss in relation to the total amount
of loans which the respective bank received from other banks. Column 6 displays the BSLoss from rounds two to
K (that is the second and later round effects) as proportion of the total BSLoss. Column 7 gives the percentage
of defaulting banks in rounds two to K with respect to the total number of defaulting banks. Column 8 displays
the unconditional effect (BSLoss weighted with the respective bank’s PD) as fraction of the bank with the largest
value (bank 2 in this scenario).
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A4: Academic example
We assume an interbank lending market where each bank is connected to all other banks. Three banks
exist, each with PDi(0) = 100 bp, TAi,0 = 20, RWAi,0 = 10, Tier1i,0 = 0.8 for i ∈ {1, 2, 3}. The

bilateral exposures are given by the following matrix

0 3 3
2 0 2
0 2 2

.

Table 5 displays the BSLoss metric for different levels of shocks and over various rounds. From
the results it can be seen that BSLoss is monotonically increasing in ϕ. BSLoss has a discontinuity in
the interval between ϕ = 670 bp and ϕ = 671 bp. Above this threshold the default of banks leads to
a jump in the PDs and in BSLoss. Any additional increment exceeding that shock level does not lead
to a further increase in BSLoss. Notably, an additional increase in the initial shock would only imply
that these banks default in an earlier step of the iteration, leaving the overall BSLoss unchanged. The
sequences of the PDs for different levels of the shock ϕ are shown in Figure 5.

Table 6 displaysBSLoss for different initial PD vectors and over various rounds if a shock (ϕ = 500
bp) has hit one bank. From the simulation results it can be seen that, for low levels, an increase in
initial PDs results in higher BSLoss due to the logarithmic relationship between CapRat and PD.
However, BSLoss jumps in the interval (750bp, 751bp). The default of one bank implies the default
of the two other banks in the system and results in an abrupt increase BSLoss. Interestingly, any
additional increment exceeding that level of the initial PD vector does not lead to a further increase
in BSLoss, but actually a decrease. Given that the PDs are bounded by 1, any additional increase in
initial PDs (ie PD0 ≥ 751 bp) results ceteris paribus in a smaller jump in stressed PDs and hence a
corresponding reduction in BSLoss. The development of stressed PDs depending on the level of initial
PDs is illustrated in Figure 6.

Table 5: Development of BSLoss for different shocks over the rounds of the algorithm

Round ϕ = 400bp ϕ = 600bp ϕ = 670bp ϕ = 671bp ϕ = 800bp ϕ = 1000bp

1 0.0720 0.1080 0.1206 0.1208 0.1440 0.1800
2 0.0819 0.1221 0.1361 0.1363 0.1622 4.6350
3 0.0883 0.1336 0.1497 0.1499 4.6148 6.2370
4 0.2374 0.1358 0.1523 0.1526 6.2370
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

8 0.0901 0.1372 0.1541 0.1544
9 0.0901 0.1373 0.1541 4.5902
10 0.0901 0.1373 0.1541 6.2370
.
.
.

.

.

.
.
.
.

.

.

.
14 0.0901 0.1373 0.1541
.
.
.

.

.

.
.
.
.

16 0.1373 0.1541
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Figure 5: Development of the banks’ PDs for different shock sizes

Table 6: Development of BSLoss for different values of the initial PD vectors

Round PD0 =

200
200
200

 PD0 =

600
600
600

 PD0 =

750
750
750

 PD0 =

751
751
751

 PD0 =

1000
1000
1000

 PD0 =

1400
1400
1400


1 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900
2 0.1103 0.1379 0.1448 0.1448 0.1525 0.1585
3 0.1213 0.1724 0.1874 0.1875 0.2045 0.2168
4 0.1244 0.1927 0.2156 0.2157 0.2426 0.2625
5 0.1258 0.2064 0.2363 0.2364 0.2729 0.3004
6 0.1262 0.2149 0.2505 0.2508 0.2959 0.3310
...

...
...

...
...

...
...

9 0.1264 0.2265 0.2732 0.2736 0.3390 0.3947
10 0.2280 0.2770 0.2773 4.2257 0.4093
11 0.2289 0.2796 0.2799 5.6700 4.0694
12 0.2295 0.2815 0.2818 5.4180
...

...
...

...
18 0.2306 0.2856 0.2859
...

...
...

23 0.2861 0.2864
24 4.3175
25 5.8269
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Figure 6: Development of the banks’ PDs for different values of the initial PD vectors
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