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‘Lucas’ In The Laboratory1

Elena Asparouhova, Peter Bossaerts, Nilanjan Roy, and William Zame

Journal of Finance, forthcoming

Abstract

The Lucas asset pricing model is studied here in a controlled setting. Participants could

trade two long-lived securities in a continuous open-book system. The experimental design

emulated the stationary, infinite-horizon setting of the model and incentivized participants

to smooth consumption across periods. Consistent with the model, prices aligned with

consumption betas, and they co–moved with aggregate dividends, more strongly so when

risk premia were higher. Trading significantly increased consumption smoothing compared

to autarky. Nevertheless, as in field markets, prices were excessively volatile. The noise

corrupted traditional GMM tests. Choices displayed substantial heterogeneity: no subject

was representative for pricing.
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tation with Large, Diverse and Interconnected Socio-Economic Systems, the Development Fund of the David
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Duffy, Burton Hollifield, Hanno Lustig, Ramon Marimon, Richard Roll, Jose Scheinkman, Jason Shachat,
Shyam Sunder, Stijn van Nieuwerburgh, Michael Woodford, the editor, associate editor and reviewers, were
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For over thirty years, the Lucas intertemporal asset pricing model (Lucas, 1978) and its

extensions and variations have served as the basic platform for research on dynamic asset

pricing and business cycles. At the cross-sectional level, the Lucas model predicts that only

aggregate consumption risk is priced.2 At the time-series level, the Lucas model predicts

that the level and volatility of asset prices are correlated with the level and volatility of

aggregate consumption.

Here we study multi-period, multi-security asset pricing in a controlled setting and evalu-

ate the outcomes against the predictions of the Lucas model. We find that consumption beta

ranks security prices in cross section, as predicted by the model, but not security returns over

time. We also find, as the model predicts, that fundamentals (aggregate consumption) drive

changes in prices over time, implying (because of our parametrization) significant predictabil-

ity, in violation of simple accounts of the Efficient Markets Hypothesis (EMH). Nevertheless,

as in the field, the theory is rejected because the prices are excessively volatile: fundamentals

explain at most 18% of price changes, while the theory predicts that fundamentals should

explain 100% of price changes.

Since incentives are controlled and all choices are observed in the lab, we are able to

study welfare. Across participant types (distinguished by initial holdings and period-income

fluctuations), we discover substantial Pareto improvements from autarky, to the extent that

consumption shares become statistically insignificantly different from constant, both over

2This is in keeping with the predictions of static models, such as CAPM, that only market risk is priced.
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time and across states.3 Thus, excess volatility does not appear to prevent improvements in

welfare. However, we document considerable individual heterogeneity, so that no individual

choice can be considered to be representative for pricing. Closer inspection of choices suggests

that excess volatility is consistent with decision making based on subjects’ (only mildly

incorrect) prediction that prices do not change with fundamentals. The simulation of an

economy populated with agents endowed with such beliefs leads to market outcomes that

closely resemble the outcomes of our experiment.

Finally, we study instrumentation in Generalized Method of Moments (GMM) tests of

the asset return–consumption restrictions of the Lucas model and find that correct inference

requires observation of the true underlying state of the economy. Unless the true state is used

as an instrument (one that is hard to envision to be available to the econometrician using field

data) the GMM tests with traditional instruments (lagged returns, consumption) generate

incorrect parameter estimates and suggest mis-leading conclusions about the validity of the

model.

From a methodological point of view, our novel experimental design addresses several

difficult issues with laboratory testing of the Lucas model, such as the need to generate a

stationary, infinite-horizon setting, and to make period-consumption perishable. Prices in

our experiment do not “bubble,” a finding that is in contrast with the vast literature on

laboratory bubbles, and which we attribute to our design featuring incessant incentives to

trade. This echoes the opinion of Crockett and Duffy (2013).

3When agents exhibit homothetic utility, in equilibrium everyone consumes a constant fraction of available
consumption goods.
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We proceed as follows. Because experimental tests of asset pricing theory are still rare,

we first provide extensive motivation and then discuss the challenges one encounters when

attempting to test the Lucas model in a controlled setting. We then present the Lucas model

within a stylized version of the framework we created in the laboratory. Section IV provides

concrete details of the experimental design. Results are discussed in Section V. Section

VI uses the data from the laboratory to investigate the statistical properties of the GMM

tests with which historical data from the field have traditionally been analyzed. Section

VII discusses potential causes behind the excessive volatility of asset prices observed in our

laboratory markets. Section VIII concludes. Appendix A discusses the theory in greater

detail; Appendix B presents an illustrative numerical example; Appendix C contains the

Instructions and the Timeline.

I. Why Experimental Tests of The Lucas Model?

Controlled experimentation with markets is not standard methodology in empirical finance,

so we first must address why we think our exercise has value. We think that experimentation

itself should not be an issue. Controlled experiments are the foundation of science. That

experimentation is still rare in finance must have to do with the difficulty of designing

experiments that are informative. We would argue that experiments can be “informative”

even if the experimental setting does not match exactly the “real world.”. The goal of
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experiments is, in the first place, to test the veracity of theory in a setting where confounding

factors are eliminated as much as possible.

The Lucas model has been tested exclusively4 on historical data from the field using

statistical analysis5 or calibration6 of its core equilibrium restrictions, the stochastic Euler

equations.7 It is fair to say that the general conclusion from these tests is that the model

fails. One could wonder why bother testing in the laboratory something that is “obviously

wrong” in the field? This is where we argue that experimental testing does have something

important to add. It is precisely because the model fails on historical data that one wants

to test whether it is true using controlled experiments. The fact that the stochastic Euler

equations do not fit a given set of historical data from the field does not make the model

invalid. Observation in the field is inevitably incomplete and it may very well be that one is

making the wrong measurements (e.g., consumption of durable goods is left out or modeled

incorrectly8). There may be forces at play that the theory abstracts from and are ignored in

the empirical analysis (e.g., transaction costs). Or the theory just does not apply because

an important assumption is violated (e.g., allocations are not Pareto efficient, and hence a

representative agent does not exist). Etc.

4Crockett and Duffy (2013) tests a version of the Lucas model without risk. We elaborate later on the
commonalities and differences between their and our experimental designs.

5The seminal paper is Hansen and Singleton (1983).
6The seminal paper is Mehra and Prescott (1985)
7Analyzed in depth in, among others, Cochrane (2001).
8Dunn and Singleton (1986) test a version of the model where consumption goods provide services for

two periods only.
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Our experimental design represents a realistic setting, yet with minimal complexity. Real

people trade for real money in real markets, and their task encapsulates the two key goals of

trading in the Lucas model, namely, diversification (across risky securities) and smoothing

(of consumption over time). Our design accommodates agent heterogeneity (human subjects

do exhibit differences in, e.g., attitudes towards risk), and imposes endowments that are

nonstationary in order to induce trade beyond the first period.

At the same time, our experiment does not provide a faithful replication of the field. One

deviation that we would like to give special attention to is that the experiment uses a design

with dividends that are stationary in levels and not in growth. In contrast, empirical tests of

the Lucas model on historical data from the field build on an extension of the Lucas model

that is stationary in consumption growth rather than in consumption levels (Mehra and

Prescott, 1985). For obvious practical reasons, we stay with the original version. Indeed,

incentives would have been distorted if payment levels depended on how long a session

lasted (with stationary consumption growth, dividends increase over time and this would

mean that subjects would be paid more in sessions with more periods). Most importantly,

however, because of our assumption of stationarity in levels, the main conclusions we draw

do not depend on particular functional forms (of preferences) even if one allows, as we do,

for heterogeneity across agents.

There is one important difference between the stationary-in-levels and stationary-in-

growth models. Stationary-in-levels models readily generate equilibrium phenomena such

as counter-cyclical equity premia (we shall do so here too) without having to appeal to
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counter-cyclical risk aversion (Routledge and Zin, 2011). Assuming standard preferences

such as power utility, when the economy is stationary in levels, wealth is higher in a good

state than in the bad state (states are defined as levels of wealth). As a result, the curvature

of the utility function is lower in a high state than in a low state, so risk premia are lower in

a high state than in a low state. One thereby obtains counter-cyclical equity premia. When

the economy is stationary in growth, however, the state can be good (consumption growth

was high leading into the period) or bad (consumption growth was low) with probabilities

that are independent of wealth levels. (Notice that here states are defined in terms of growth,

not wealth levels.) Since utility curvature only depends on wealth levels, and the state of

the economy is unrelated to wealth levels, one cannot have counter-cyclical equity premia.

To nevertheless obtain counter-cyclical equity premia, one could introduce a reference point

that is low when the state is good and high when the state is bad (Campbell and Cochrane,

1999). This way, the curvature of the utility function not only depends on wealth, but also

explicitly on the state. Counter-cyclical equity premia emerge naturally.

While the goal of experiments is not to aim at replicating the field, experimental results

become potentially more informative if mismatches between theory and (experimental) data

are not unlike the anomalies one observes in the field. The excess volatility we record

in our experiments happens to be one of the dominant puzzles about historical financial

markets (Shiller, 1981). Interestingly, excessive volatility emerges in our experiments despite

the fact that the arguments used to explain the phenomenon in the field do not apply to

our setting. These include: durability of consumption goods (Dunn and Singleton, 1986),
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preference for early resolution of uncertainty (Epstein and Zin, 1991), collateral use of certain

consumption goods (Lustig and Nieuwerburgh, 2005), and long-run dependencies in the

statistical properties of consumption flows (Bansal and Yaron, 2004).

In the laboratory, inspection of an anomaly may help identify its origins. It may reveal the

blind spots of the theory, and therefore help clarify why the theory fails to explain the field.

Prices in the Lucas model are solely determined by (“are measurable in”) the fundamental

risk in the economy, and price risk is equivalent to fundamental risk. In our experiments,

there is only one source of fundamental risk, namely, aggregate consumption.9 Yet a large

fraction of the price changes we observe is independent of changes in fundamentals. The

existence of this apparent residual risk, distinct from fundamental risk, is inconsistent with

the Lucas model. Within the model any such residual risk is eliminated by agents’ perfect

knowledge of how prices change with fundamentals, i.e., by their perfect foresight. We not

only observe this residual risk, which we shall refer to as residual price forecasting risk,10

but we document that it is large in magnitude: fundamentals explain at most 18% of the

variability of securities prices, so residual price forecasting risk accounts for the remaining

82%.11

9In the field, one can argue that past empirical investigations may have missed important risk components;
see, e.g., Heaton and Lucas (2000)

10Note that given the structure of the Lucas economy, the residual risk can only come through the agents’
imperfect price forecasts.

11There have been recent attempts to incorporate in the Lucas model uncertainty about the true nature
of the evolution of fundamentals (Maenhout, 2004; Epstein and Wang, 1994). It deserves emphasis that the
resulting models continue to assume perfect foresight (of prices given future states). As such, these models
still do not accommodate residual price forecasting risk.
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With hindsight, it perhaps should have been obvious that imperfect foresight is the

Achilles heel of the Lucas model. But in fact it did not seem so obvious. Starting with Plott

and Sunder (1988), evidence from financial markets experiments with heterogeneous infor-

mation have given overwhelming support to the view that markets can manage to produce

perfect foresight equilibria, to the extent that markets are being promoted as forecasting de-

vices (Arrow, Forsythe, Gorham, Hahn, Hanson, Ledyard, Levmore, Litan, Milgrom, Nelson,

et al., 2008). We are beginning to understand the aspects of human nature that facilitate

this remarkable ability to acquire perfect foresight (Bruguier, Quartz, and Bossaerts, 2010).

There, however, the setting is one where differentially informed participants have to extract

insider information from the order and trade flows. In contrast, in our case equally informed

participants have to build, from the same flows, correct expectations of how future clearing

prices relate to fundamentals.12

As we shall see, the design we chose to test the Lucas model requires participants to fol-

low quite sophisticated hedging strategies. One may conjecture that our subjects (students

at Caltech, UCLA and the University of Utah) lack the financial sophistication to conceive

of, let alone execute, these strategies. However, there are plenty of examples in the experi-

mental economics, psychology, and computational neuroscience literatures that humans are

capable of quite complicated behavior towards uncertainty. We already alluded to subjects’

remarkable ability to trade on other participants’ information (Plott and Sunder, 1988). In

12The only fundamental difference between the two settings is that in the case of differential information,
agents have to form expectations about exogenous uncertainty, while in our setting, agents have to form
expectations about endogenous uncertainty, namely, prices. In the perfect foresight equilibrium, however,
the problem is solved in the same way: by assuming that agents know the (endogenous) mapping from states
to prices.
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a two-period asset market setting, Bossaerts, Meloso, and Zame (2013) have shown that

subjects can resort to complex hedging strategies in order to improve performance.

Controlled experiments can also shed light on the plausibility of important features of

a theory in the presence of a more compelling alternative. Such is the case with the Lucas

model, where prices are tightly linked to fundamentals, and hence, to the extent that funda-

mentals are predictable, prices must be predictable as well. In contrast, original accounts of

the Efficient Markets Hypothesis (EMH) stated that prices must not be predictable: prices

must be a martingale, except for drift as compensation for risk (Samuelson, 1973; Malkiel,

1999). The idea behind EMH is that investors would trade to exploit the predictability

and in the process eliminate it. In historical data from the field, many exceptions have

been discovered. Securities prices can be predicted with, e.g., dividend yield (although

not everyone agrees: see Goyal and Welch (2003) for a critique); securities prices exhibit

cyclicality (mean reversion; Lo and MacKinlay (1988)); price evolution can be predicted for

several months after specific events such as earnings surprises (Bernard and Thomas, 1989);

Etc. Interestingly, these violations of EMH tend to be explained, not as confirmation of the

Lucas model, but in terms of behavioral finance, which is to say, in terms of cognitive biases

in investor decision making (De Bondt and Thaler, 1985; Daniel, Hirshleifer, and Subrah-

manyam, 1998; De Long, Shleifer, Summers, and Waldmann, 1990). Lucas’ proposition is

that securities prices may be predictable even in properly functioning markets that do not

display any behavioral anomalies. Our experiments demonstrate that this is not only a the-

oretical possibility, but also eminently relevant to real financial markets. In the experiments,
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prices move with the aggregate dividend (though in an extremely noisy way). Because ag-

gregate dividends are predictable in the sense that the aggregate dividend is expected to fall

in periods with high aggregate dividend, and v.v., prices are predictable too. Significantly,

the aggregate dividend is the only variable that predicts price changes in our experiments.

II. Challenges in Designing an Experimental Test of

The Lucas Model

The Lucas model makes assumptions – most importantly, stationarity – that are difficult to

satisfy, even in a controlled laboratory setting. Moreover, the model lacks many institutional

details; in particular it simply assumes that markets generate Pareto optimal allocations –

so that a representative agent exists – and studies the prices that would support these allo-

cations, without considering how such allocations might come about. As a result, designing

a laboratory instantiation of the Lucas model is a challenging exercise.

Let us start with the last challenge, the existence of a representative agent. Unless agents

are identical, which seems hardly more likely in the laboratory than in the field, the repre-

sentative agent is only an equilibrium construct, and not a testable assumption/prediction.

Fortunately for us, the heterogeneous agent version of the Lucas model yields predictions

that are qualitatively no different than the predictions of the representative agent model (al-

though they arise in a different way) and are testable in the laboratory environment. Pareto
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optimality plays a central role here. In the representative agent model, Pareto optimality

is tautological – there is after all, only one agent. In the heterogeneous agent model, a

representative agent can be constructed – but only if it is assumed that the result of trade

is a Pareto optimal allocation – which is not guaranteed – and the particular representative

agent that is constructed depends on the particular Pareto optimal allocation that obtains

through trade.

For the market outcome to be Pareto optimal would seem to require that the market reach

a Walrasian equilibrium, which in turn would seem to require a complete set of markets, an

impossibility in an infinite-horizon economy with uncertainty. However, it is in fact enough

that markets be dynamically complete, which can be the case even with a few assets provided

that these assets are long-lived and can be traded frequently (Duffie and Huang, 1985), that

participants are able to perfectly foresee future prices (Radner, 1972), and that agents can

employ investment strategies that exhibit the hedging features that are at the core of the

modern theory of both derivatives pricing (Black and Scholes, 1973; Merton, 1973b) and

dynamic asset pricing (Merton, 1973a).

The second challenge is that agents must learn a great deal. To minimize the difficulty

of learning, and consistent with the Lucas model, agents in our experimental economy will

be told the exogenous uncertainty – the dividend process. They still must learn/forecast the

endogenous uncertainty – the price process. As we shall see and discuss, this presents agents

with a very difficult problem indeed.
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In addition to these, three other particularly challenging aspects of the Lucas model

need to be addressed before one can test it in the laboratory. The model assumes that,

(i) the time horizon is infinite and that agents discount the future, (ii) agents prefer to

smooth consumption over time, and (iii) the economy is stationary. Meeting these challenges

requires a novel experimental design. We deal with the infinite horizon as in Camerer and

Weigelt (1996), by introducing a random ending time determined by a constant termination

probability.13 More precisely, the experimental market unfolds period by period, and each

such period can be terminal with the said probability. Termination uncertainty resolves

at the conclusion of each period, after subjects have established their securities and cash

holdings for that period. Upon termination, all securities expire worthless.

We provide an incentive for participants to smooth consumption by emulating perishabil-

ity of consumption in each period: at the end of every non-terminal period, holdings of cash

(the consumption good) disappear; only cash held at the end of the randomly determined

terminal period is credited to participants’ final payout accounts (and hence “consumed”).

Stationarity of the laboratory economy might seem evident, given the stationarity of the

dividend process. However, stationarity of the termination probability does presents a severe

difficulty. If an experimental session lasts for, say, two hours and each period within that

session lasts for four minutes, it is quite easy for participants to believe that the termination

probability is the same at the end of the first period, when four minutes have elapsed, as it

is at the end of the second period, when eight minutes have elapsed – but it is quite hard

13As is well-known, a stochastic ending time is (theoretically) equivalent to discounting over an infinite
time horizon (assuming subjects are expected utility maximizers with time-separable preferences).
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for participants to believe that the termination probability remains the same at the end

of the twenty-ninth period, when 116 minutes have elapsed and only four minutes remain.

In that circumstance, participants will surely believe that the termination probability must

be higher. However, if as a result subjects believe that the termination probability is not

constant, a random ending time would induce a non-constant discount factor – and very

likely induce different discount factors across subjects, because they may each imagine a

different way of ensuring that the last period occurs before the session ends. To treat this

challenge, we introduce a novel termination rule.14 We elaborate on the rule in Section IV.

Here we only mention that it relies on the assumption of stationarity of dividends in levels

(and not in growth) and on the small (only two) number of possible dividend realizations.

In parallel work, Crockett and Duffy (2013) also study an infinite horizon asset market

in the laboratory, but their experimental approach and purpose are different from ours.

First, there is no risk in their setting. Our experiment includes risk, and hence, allows

us to study the interplay between the two core drivers of the Lucas model, namely, risk

avoidance (through diversification) and inter-temporal consumption smoothing. Second,

Crockett and Duffy (2013) induce a preference for consumption smoothing by imposing a

schedule of final payments to participants that is non-linear in period earnings. We take

a different approach, and induce preference for consumption smoothing by paying only for

14One complication that is often raised as an issue for testing models like Lucas’ in the laboratory is that
they require participants to be risk averse. Consistent with evidence on individual decision making (Holt
and Laury, 2002), prior experimental analysis of asset pricing models has demonstrated overwhelmingly that
prices reflect risk aversion as theorists know it – decreasing marginal utility. See, e.g., Bossaerts, Plott, and
Zame (2007a); Bossaerts and Zame (2008). This constitutes an anomaly only if one insists that participants
evaluate all losses and gains in relation to present value of lifetime wealth. Rabin (2000) has cautioned us
about the use of a single utility function to represent preferences over all ranges of wealth.
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one carefully chosen period (the last one), forfeiting payments in all periods that end not

being terminal. Third, the focus in Crockett and Duffy (2013) is on the contrast between

pricing in a treatment where there are incentives to trade because of demand for consumption

smoothing and pricing in a treatment where there are no such incentives because there is

no demand for consumption smoothing. Crockett and Duffy (2013) thus sheds light on a

long line of experimental work on asset price bubbles, starting with Smith, Suchanek, and

Williams (1988), where there are incentives to trade only in initial stages. In contrast, here

we are interested in aspects of the Lucas model that have generated controversy in studies

of historical asset prices. Of course, for good experimental control, and in line with Crockett

and Duffy (2013), our setting is one where incentives to trade remain present throughout. A

final difference concerns the stationarity assumption of the Lucas model. Like us, Crockett

and Duffy (2013) used random termination to induce discounting. But we also needed to

ensure stationarity, which we obtain through our novel termination protocol.

III. The Lucas Asset Pricing Model in a Setting

Amenable To Experimental Tests

We formulate an instantiation of the Lucas asset pricing model that is simple enough to be

implemented in the laboratory and yet complex enough to generate a rich set of predictions

about prices and allocations, even under very weak assumptions. In particular, we allow

for agents with different preferences and endowments (of assets and time-varying income
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streams), and we make no assumptions about functional forms, but still obtain strong and

testable implications for individual consumption choices and trading patterns and for prices.

The design is somewhat complex, but at the outset we should reassure the reader that

the task that is required from the subjects is less complex, and is actually rather intuitive.

In order for a subject to perform successfully, she does not need to know all the details

of the design. It suffices that she appropriately reacts to prices in the marketplace, and

that she anticipates future prices reasonably well. At the end of this section, we explain the

experiment from the point of view of a subject. (Another way to get a better understanding of

the perspective of the subject is to study Appendix C, where we re-produce the Instructions.)

A full theoretical analysis of the economy we emulate in the laboratory is delegated to

Appendix A. Here, we focus on predictions in the theory that have empirical relevance, i.e.,

that could potentially be observed in our experiments. These concern prices (and returns)

in our laboratory markets, as well as subject choices (consumption, trading strategies).

To create an environment suitable for the laboratory setting, we use a formulation that

necessarily generates a great deal of trade; in our formulation, Pareto optimality (hence equi-

librium) requires that trading takes place every period. This is important in the laboratory

setting because subjects do not know the “correct” equilibrium prices (nor do we) and can

only learn them through trade, which would seem problematic (to say the least) if trade were

to take place infrequently or not at all. We therefore follow Bossaerts and Zame (2006) and
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treat a setting in which aggregate consumption is stationary (i.e. a time-invariant function

of dividends) but individual endowments are not.15

We proceed as follows. We first present an abstract version of the economic structure

of the laboratory environment (endowment processes, preferences, risk, etc.) and discuss

the theoretical predictions. We then explain how the abstract economic structure was ob-

tained concretely in the laboratory (with elements such as inducing of preferences, insuring

stationarity of the risk in the economy, organization of trade, markets, communication, etc.)

A. The Structure Of The Laboratory Economy

We consider an infinite horizon economy with a single perishable consumption good in each

time period. In the experiment, the consumption good is cash so we use the terms ‘con-

sumption’ and ‘cash’ interchangeably here. How we make cash “perishable” and how we

make the laboratory economy infinite-lived will be explained later. In each period there

are two possible states of nature H (high), L (low), which occur with probabilities π, 1− π

independently of time and past history. Two long-lived assets are available for trade: (i) a

Tree that pays a stochastic dividend dHT when the state is H, dLT when the state is L and

(ii) a (consol) Bond that pays a constant dividend dHB = dLB = dB each period.16 We assume

15As Judd, Kubler, and Schmedders (2003) have shown, if individual endowments are stationary then, at
equilibrium, all trading takes place in the initial period. As Crockett and Duffy (2013) confirm, not giving
subjects a reason to trade in every period (or at least frequently) is a recipe for producing price bubbles in
the laboratory – perhaps because subjects are motivated to trade solely out of boredom.

16Lucas (1978) assumes that a Tree and a one-period bond are available; we use a consol bond simply for
experimental convenience. The two formulations generate the same predictions with respect to consumption
and equivalent predictions with respect to prices.
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dHT > dLT ≥ 0 and normalize so that the Bond and Tree have the same expected dividend:

dB = πdHT + (1 − π)dLT . Note that the dividend processes are stationary in levels. (In the

experiment proper, we choose π = 1/2; dHT = 1, dLT = 0; dB = 0.50, with all payoffs in

dollars.)

There are n agents, where n is even (in the experiments n will be between 12 and 30).

Each agent i has an initial endowment bi of Bonds and τi of Trees, and also receives an

additional private flow of income ei,t (possibly random) in each period t. Write b =
∑
bi,

τ =
∑
τi and e =

∑
ei for the social (aggregate) endowments of bonds, trees and additional

income flow. We assume that the social income flow e is stationary – i.e., a time-invariant

function of dividends (in the experiment proper it will be constant) – so that aggregate

consumption bdσB + τdσT + e is also stationary (σ indexes the state), but we impose no

restriction on individual endowments. (As noted earlier, we wish to ensure that in the

experimental setting subjects have a reason to trade each period.)

We induce the following preferences. Agent i maximizes discounted expected lifetime

utility for infinite (stochastic) consumption streams

Ui({ct}) = E

[
∞∑
t=1

βt−1ui(ct)

]

where ct is (stochastic) consumption at time t. We assume that the period utility functions

ui are smooth, strictly increasing, strictly concave and have infinite derivative at 0 (so that

optimal consumption choices are interior), but make no assumptions as to functional forms.
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Note that agent endowments and utility functions may be heterogeneous but that all agents

use the same constant discount factor β, which we induce to equal 5/6.

In each period t agents receive dividends from the Bonds and Trees they hold, as well

as potential income flow, trade their holdings of Bonds and Trees at current prices, use the

proceeds together with their endowments to buy a new portfolio of Bonds and Trees, and

consume the remaining cash. How exactly agents buy and sell in our laboratory economy

will be explained later on. Here, we follow the theory and assume that agents take as

given the current prices of the Bond pB,t and of the Tree pT,t (both of which depend on the

current state), make forecasts of (stochastic) future asset prices pB,t′ , pT,t′ for each t′ > t

and optimize subject to their current budget constraint and their forecast of future asset

prices. (More directly: agents optimize subject to their forecast of future consumption

conditional on current portfolio choices.) At a Radner equilibrium (Radner, 1972) markets

for consumption and assets clear at every date and state and all price forecasts are correct

(“perfect foresight”). This is not quite enough for equilibrium to be well-defined because it

does not rule out the possibility that agents acquire more and more debt, delaying repayment

further and further into the future – and never in fact repaying it. In order that equilibrium

be well-defined, such schemes must be ruled out. Levine and Zame (1996), Magill and Quinzii

(1994) and Hernandez and Santos (1996) show that this can be done in a number of different

ways. Levine and Zame (1996) show that all ‘reasonable’ ways lead to the same equilibria;
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the simplest is to require that debt not become unbounded.17 (In the experimental setting,

we forbid short sales so debt is necessarily bounded.)

B. Predictions

Our predictions derive from an analysis of the equilibrium in this economy. We assume

that this is a Radner (perfect foresight) equilibrium, and as is universal in the literature

we assume that this Radner equilibrium exists and – because markets are (potentially)

dynamically complete – that it coincides with Walrasian equilibrium, so that equilibrium

allocations are Pareto optimal. These assumptions are not innocuous, but, as noted before,

the familiar version of the Lucas model begins with the assumption of a representative agent

equilibrium, and the existence of a representative agent assumes Pareto optimality. Thus,

from a theoretical point of view, all that we are assuming is subsumed in the familiar version.

Whether a Radner equilibrium obtains that generates Pareto optimal allocations is ultimately

an empirical issue. Verification that a particular equilibrium obtains with associated welfare

properties has occupied economists who work on markets experiments ever since the seminal

paper of Smith (1965).

Despite allowing for heterogeneity and without making any assumptions about functional

forms for preferences, the theory makes testable quantitative predictions about individual

consumptions (which, in the experiments, will be end-of-period cash holdings), prices and

17Lucas (1978) finesses the problem in a different way by defining equilibrium to consist of prices, choices
and a value function – but if unbounded debt were permitted then no value function could possibly exist.
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trading patterns. Some of these predictions take a particularly simple form when the specific

parameters are as in our experiments. The pricing predictions should be entirely familiar in

the context of the usual Lucas model with a representative agent having constant relative

risk aversion CRRA utility (though our predictions do not rely on CRRA). We go far beyond

pricing because we formulate predictions about allocations as well.

Prediction 1. There is trade in each period.

For investors in our economy to reach Pareto optimal allocations, they need to smooth

consumption to the point that their consumption is stationary and perfectly correlated with

aggregate consumption. Since their income fluctuates between periods (in fact, we let

it fluctuate between odd and even numbered periods), they somehow need to un-do these

fluctuations, and they can do so (only) through trade in the financial markets. This means

that trading volume must always be positive. Volume may be larger in the first period (when

investors trade to their long-run average optimal securities holdings), but beyond the first

period, they trade to offset income fluctuations.

Prediction 2. The tree is always cheaper than the bond.

Because markets are dynamically complete, agents can trade to Pareto optimal allocations.

Pricing in a Pareto-optimal allocation can be derived using the representative agent ap-

proach. Indeed, a representative agent exists, and prices should be such that the represen-
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tative agent is willing to hold the supply of assets and consume no more or less than the

aggregate dividend.

In an economy with heterogeneous agents, the preferences of the representative agent

are hard to derive. These preferences may not even look like those of any individual agent.

However, since each period we only have two possible states (the state σ is either high H or

low L), things simplify dramatically.

To see this, fix an individual agent i; write {ci,t} for i’s equilibrium consumption stream.

Because of Pareto optimality and of stationarity of aggregate dividends, consumption will

depend only on the state and not on time (see Appendix A for details), so we suppress the

time index t. Write i’s first-order condition for optimality:

pσA,t = β

{
π

[
u′i(c

H
i )

u′i(c
σ
i )

]
(dHA + pHA,t+1) + (1− π)

[
u′i(c

L
i )

u′i(c
σ
i )

]
(dLA + pLA,t+1)

}

where superscripts index states and subscripts index assets, time and agents in the obvious

way. We can write this in more compact form as

pσA,t = βE

{[
u′i(ci)

u′i(c
σ
i )

]
(dA + pA,t+1)

}
(1)

for σ = H,L and A = B, T . Equality of the ratios of marginal utilities across all agents,

which is a consequence of Pareto optimality, implies that (1) is independent of the choice of
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agent i, and hence that we could write (1) in terms of the utility function of a representative

agent.

Let µ = u′i(c
L
i )/u′i(c

H
i ) be the marginal rate of substitution in the Low state for con-

sumption in the High state. Pareto optimality guarantees that µ is independent of which

agent i we use, so it is the marginal rate of substitution of any individual and that of the

representative agent. (Note that risk aversion implies µ > 1.) Consequently:

pHA = β
[
π(dHA + pHA ) + (1− π)(dLA + pLA)µ

]
pLA = β

[
π(dHA + pHA )(1/µ) + (1− π)(dLA + pLA)

]

Solving yields:

pHA =

(
β

1− β

)[
πdHA + (1− π)dLA µ

]
pLA =

(
β

1− β

)[
πdHA (1/µ) + (1− π)dLA

]
(2)
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Specializing to the parameters of the experiment dHT = 1, dLT = 0; dHB = dLB = 0.5; β = 5/6

yields:

pHB = (2.5)(1 + µ)/2

pLB = (2.5)(1 + µ)/2µ

pHT = 2.5

pLT = 2.5/µ (3)

The important thing to note here is that:

pσB > pσT ,

in each state σ. That is, the Bond is always priced above the Tree. Intuitively, this is

because the “consumption beta” of the Tree is higher, and hence, is discounted more (relative

to expected future dividends). The consumption beta of a security is the covariance of its

future dividends with aggregate future consumption. Bond dividends are deterministic, while

those of the Tree increase with aggregate consumption. Hence, the consumption beta of the

Tree is higher than that of the Bond.

(Notice also that, under our parametrization, pHT = 2.5; the price of the tree in the High

state is independent of risk attitudes. In addition, pHB/p
L
B = pHT /p

L
T ; the ratios of asset prices

in the two states are the same.)
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Prediction 3. Asset prices are perfectly correlated with fundamentals.

From (3) it follows that:

pHA/p
L
A = µ. (4)

Consequently, prices are perfectly correlated with the state; they are higher in the good state

(H) and lower in the bad state (L). Significantly, prices only change if the state changes. If

the state is the same in two consecutive periods, prices do not change.

Why prices are higher in the good state could be understood most clearly by thinking

about the representative agent. In state H, aggregate consumption supply is high, so high

prices (low returns) must be in place to temper the representative agent’s desire to save

(buy). The opposite is true for state L: aggregate consumption is low, so low prices (high

returns) temper the representative agent’s desire to borrow (sell).

Prediction 4. The more the Tree trades at a discount relative to the Bond, the

greater the difference of prices of both securities across states.

More precisely, cross-sectional and inter-temporal features of asset prices reinforce each

other.18 The discount of the Tree relative to the Bond increases because risk aversion rises.

18This insight forms the basis of recent GMM tests on field data, whereby parameters obtained from
the cross-section of asset returns are used to verify intertemporal equilibrium restrictions. See Nagel and
Singleton (2011).
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As a result, the Tree and Bond prices move more extremely with fundamentals. Mathemat-

ically,

cov(pσB − pσT , pHA − pLA) > 0,

for σ = H,L and A = B, T , with covariance computed based on sampling across cohorts

of agents (economies), keeping everything else constant. “Everything else” means: initial

endowments, private income flows, asset structure, outcome probabilities, as well as impa-

tience β. Economies are therefore distinguishable at the price level only in terms of the risk

aversion (embedded in µ) of the representative agent.19

Prediction 5. Expected returns vary across states.

From prices and dividends of the Tree and Bond as well as the state transition probabilities

(from a Low state one moves to a High state or remains in the Low state with equal prob-

ability), one can readily compute the expected returns on the Tree and the Bond. Simple

algebraic manipulation then allows one to express the difference across High and Low states

19To obtain the result, write all variables in terms of µ:

pHB − pHT = (0.5)2
(

β

1− β

)
(µ− 1)

pLB − pLT = −(0.5)2
(

β

1− β

)(
1

µ

)
+ constant

pHB − pLB =

(
β

1− β

)(µ
4

)
+ constant

pHT − pLT = −0.5

(
β

1− β

)(
1

µ

)
+ constant

All variables increase in µ (for µ > 1). As µ changes from one agent cohort (economy) to another, these
variables all change in the same direction. Hence, across agent cohorts, they are positively correlated.
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of the expected return on the Tree (E[RT |H] − E[RT |L]) and Bond (E[RB|H] − E[RB|L])

as follows:

E[RT |H]− E[RT |L] = π(1− µ) + (1− π)(
1

µ
− 1) + dB(1− µ)

1

pHT
,

E[RB|H]− E[RB|L] = π(1− µ) + (1− π)(
1

µ
− 1) + dB(1− µ)

1

pHB
.

Because µ > 1, all terms in both expressions are negative, and hence, the expected return

on both assets is higher in “busts” (when the state is Low) than in “booms” (when the state

is High). Lucas (1978) emphasized return predictability as one of the natural equilibrium

features of the model and contrasted this with the martingale version of EMH.20

Prediction 6. The equity premium is counter-cylical.

The difference between the expected return on the risky security (the Tree) and the expected

return on the (relatively) risk free security (the Bond) is the equity premium (Mehra and

Prescott, 1985).21 Because asset prices and dividends are stationary, equity premia are

stationary as well and depend only the state. Simple computations then allow us to

explicitly derive the equity premia in the High and Low states. These computations rely on

20Of course prices do form a martingale under the risk-neutral probabilities – the probabilities adjusted
by marginal rates of substitution – but the risk-neutral probabilities are equilibrium constructions because
marginal rates of substitution depend on equilibrium allocations.

21Mehra and Prescott (1985) use a slightly different model, with long-lived Tree and a one-period bond,
and define the equity premium as the difference between the expected return on the risky security and that
of the one-period bond.
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two facts: (i) the expected dividends are the same for both assets and equal to dB, and (ii)

for each asset A, pHA = µpLA. We obtain:

EH =
πpHT + (1− π)pLT + dB − pHT

pHT
− πpHB + (1− π)pLB + dB − pHB

pHB

= dB

(
1

pHT
− 1

pHB

)
EL =

πpHT + (1− π)pLT + dB − pLT
pLT

− πpHB + (1− π)pLB + dB − pLB
pLB

= dB

(
1

pLT
− 1

pLB

)
= dB

(
µ

pHT
− µ

pHB

)
= µEH

Note that both equity premia are positive. The difference across states is:

EH − EL = (1− µ)EH

This difference is strictly negative (because µ > 1), so the equity premium is counter-cyclical:

it is lower in the High state than in the Low state. Note that counter-cyclicality provides the

right incentives: when dividends are low, the equity premium is high, so investors buy risky

Trees rather than consuming scarce dividends; when dividends are high, the equity premium

is low, so investors prefer to consume rather than engage in risky investment.

Prediction 7. Agents smooth consumption over time.
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This is an immediate consequence of Pareto optimality, the condition that guarantees the

existence of a representative agent. Despite the fact that individual incomes fluctuate over

time, in equilibrium agents smooth out this fluctuation by trading in securities. Income

fluctuations do not impact available aggregate consumption, and hence, agents should be

able to trade them away.

Prediction 8. Agents hedge fundamental risk.

Equilibrium trading strategies involve (net) selling assets when income is low and (net) re-

purchasing when income is high. Equilibrium prices change with fundamentals (aggregate

dividends), and since fundamentals are random, prices are random. Because prices are

random, agents do not know at what prices they will be able to carry out these re-purchases:

there is price risk. However, they have the opportunity to hedge this price risk. Indeed,

the dividend of the Tree is (perfectly) correlated with aggregate dividends, and hence, with

prices. By buying Trees, beginning-of-period cash balances are high when the dividend of the

Tree is high. When this happens, aggregate dividends, and hence, prices, are high too. The

increase in cash balances allows agents to re-purchase assets despite the increase in prices.

The opposite obtains when the dividend of the Tree is low: cash balances at the beginning

of the period are (relatively) low, but that is no concern because re-purchase prices will be

low as well. As such, Trees allow agents to hedge fundamental risk, and hence, price risk.

Consequently – but perhaps counter-intuitively! – agents should buy Trees in periods when

private income is low and they should sell when private income is high. In fact, it can be
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shown that hedging increases with risk aversion. This is because price risk, measured as the

difference in prices across H and L states, increases with risk aversion (reflected in µ).

We reiterate that, in the Lucas equilibrium, prices move only because of aggregate divi-

dends. So, fundamental risk is the sole source of price risk. Any residual price movement is

incompatible with the Lucas model. Residual price risk may emerge in equilibrium because

agents do not know how prices relate to the fundamental state of the economy, i.e., when

agents have imperfect foresight. We elaborate on this point in a later section. From the point

of view of the agents, residual price risk and the residual price forecasting risk we alluded

to before are the same. Residual price forecasting risk is the residual randomness in prices

given a fundamental state (i.e., a level of aggregate dividends).

Hedging is usually associated with Merton’s intertemporal asset pricing model (Merton,

1973a) and is the core of modern derivatives analysis (Black and Scholes, 1973; Merton,

1973b) – but it also forms an integral part of the trading predictions of the Lucas model.

In summary, our implementation of the Lucas model predicts that securities prices differ

cross-sectionally depending on consumption betas (the Tree has the higher beta), while

intertemporally, securities prices move with fundamentals (dividends of the Tree). The two

predictions reinforce each other: the bigger the difference in prices across securities, the larger

the intertemporal movements. These predictions are the same as in the original Lucas model.

But in our setting, there is agent heterogeneity, and we can say more. Specifically, investment

choices should be such that consumption (cash holdings at the end of a period) across states
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becomes perfectly rank-correlated between agents (or even perfectly correlated, if agents

have the same preferences). Likewise, consumption should be smoothed across periods with

and without income. Investment choices are sophisticated: they require, among others, that

agents hedge price risk, by buying Trees when experiencing income shortfall (and selling

Bonds to cover the shortfall), and selling Trees in periods of high income (while buying back

Bonds).

For illustration, Appendix B provides explicit solutions for equilibrium prices, holdings

and consumptions when taking the parameters as in the experiment and assuming that all

agents display identical constant relative risk aversion, which we vary from 0.2 to 1.0. There

is nothing special about these particular choices of risk aversion; we offer them solely for

comparison purposes. We note that risk aversion in the range .2− .5 is consistent with the

experimental findings of Holt and Laury (2002) and Bossaerts and Zame (2008).

IV. Implementation In The Laboratory

As we have already noted, implementing the Lucas economy in the laboratory encounters

three difficulties:

(a) The Lucas model has an infinite horizon and assumes that agents discount the future.

(b) The Lucas model assumes that agents prefer to smooth consumption over time.

(c) The Lucas economy is stationary.
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In our experiment, we used the standard solution (Camerer and Weigelt, 1996) to resolve

issue (a), which is to randomly determine if a period is terminal. This ending procedure

induces discounting with a discount factor equal to the probability of continuation. We

set the termination probability equal to 1/6 so the continuation probability (and induced

discount factor) is β = 5/6. In mechanical terms: after the markets in period t closed we

rolled a twelve-sided die; if it came up either 7 or 8, we terminated; otherwise we moved on

to a new period.

To resolve issue (b), we made end-of-period individual cash holdings disappear in every

period that was not terminal; only securities holdings carried over to the next period. If a

period was terminal, however, securities holdings perished and cash holdings were credited;

participants’ earnings were then determined entirely by the cash they held at the end of this

terminal period. To see that this has the desired implication for preferences, note that the

probability that a given replication terminates in period t is the product of (1 − β) (the

probability that it terminates in period t, conditional on not having terminated in the first

t−1 periods) times βt−1 (the probability that it does not terminate in the first t−1 periods).

Hence, assuming expected utility, each agent maximizes

∞∑
t=1

(1− β)βt−1E[u(ct)] = (1− β)E
[ ∞∑
t=1

βt−1u(ct)
]

Of course the factor (1− β) has no effect on preferences.22

22Starting with Epstein and Zin (1991), it has become standard in research on the Lucas model with
historical field data to use time-nonseparable preferences, in order to allow risk aversion and intertemporal
consumption smoothing to affect pricing differentially. Because of our experimental design, we cannot appeal
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So, while we will not literally have consumption every period, agents in our setting face

the same optimization problem as if they actually had to consume every period and wanted

to smooth consumption across periods. Thus, our experiment is designed so that, for subjects

to optimize, they need to solve the same problem in the laboratory as in the theory. When

choices for the two optimization problems are the same, the Lucas model predicts that prices

will also be the same, because in the Lucas model, prices derive from choices, by means of

the stochastic Euler equations.

It is less obvious how to resolve problem (c). The problem is not with the dividends

and personal income but with the termination probability. In principle, simply announcing

a constant termination probability should do the trick – because each period is equally

likely to be terminal. However, if the probability of termination is in fact constant (and

independent of the current duration) then the experiment could continue for an arbitrarily

long time. In particular there would be a non-negligible probability that the experiment

would continue much longer than a typical session. It is clear that subjects understand this:

in our own pilot experiments, subject beliefs about the termination probability increased

substantially as the end of the session approached.

To deal with this problem we employed a simple termination rule: We announced that

the experimental session would last until a pre-specified time and there would be as many

replications of the (Lucas) economy as could be fit within this time frame. If a replication

to time-nonseparable preferences if we need to explain pricing anomalies. Indeed, separability across time
and states is a natural consequence of expected utility. We consider this to be a strength of our experiment:
we have tighter control over preferences.

32



ended at least 10 minutes before the announced ending time of the session, a new replication

would begin; otherwise, the experimental session would end. If a replication was still

running 10 minutes before the announced ending time of the session, we announced before

trade opened that the current period would be either the last one (if our die turned up 7 or 8)

or the next-to-last one (for all other values of the die). In the latter case, the next period was

the terminal period, with certainty, so subjects would keep the cash they received through

dividends and income for that period. Note that there should be no trade in the terminal

period because assets perish at the end and hence are worthless. We nevertheless opened

markets, to verify whether subjects understood this. Invariably, they did. In Appendix

C, we re-produce the time line plot that we used alongside the instructions to facilitate

comprehension.

To see that equilibrium prices remain the same whether the new termination protocol is

applied or if termination is perpetually determined with the roll of a die, consider an agent’s

optimization problem in period t, which is terminal with probability 1− β and penultimate

with probability β: maximize (1 − β)u(cσt ) + βE[u(ct+1)] subject to the standard budget

constraint. The first-order conditions for asset A are:

(1− β)u′(cσt )pσA,t = βE[u′(ct+1)dA,t+1].
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The left-hand side is expected marginal utility from keeping cash worth one unit of the

security; the right-hand side is expected marginal utility from buying the unit; optimality

implies equality. Re-arranging yields

pσA,t =

(
β

1− β

)
E

[
u′(ct+1)

u′(cσt )
dA,t+1

]

Because aggregate consumption and dividends are i.i.d., this can be written as an infinite

series:

pσA,t =
∞∑
τ=0

βτ+1E

[
u′(ct+τ+1)

u′(cσt )
dA,t+τ+1

]
.

The series telescopes, so can be written recursively as in (1), which is the equation that

applies to the infinite-horizon case. Hence, our two-period termination protocol produces

pricing as if the economy were to continue forever.23

In short, to utilize the two hour session time optimally, we ran as many replications as

possible. Whenever a replication terminated and there was still time left in the session, we

initiated a new replication. Thus, the termination protocol was only applied to at most one

of the replications in a session. If a replication ended naturally (i.e., through the roll of the

die) close to the 10-minute mark before end of a session, we did not start a new replication.

23Our early-termination protocol relies on the specific setting we are in. Specifically, pricing in our two-
period early-termination protocol is identical to that in an perpetual continuation of the random termination
protocol because we are assuming that state drawing is independent over time. If we were to assume
dependence, we could nevertheless alter the early termination protocol. For instance, if the state transition
is markovian (meaning that the current state alone determines the transition probabilities) then a three-
period early-termination protocol could be conceived, whereby the session is ended either in the first, second
or third stage. The key is to be able to re-write pricing in this three-period world as an infinite series, and
to show that this infinite series is identical to the pricing formula one obtains under perpetual continuation
of the random termination protocol.
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Overall, our design may look intimidating, but the task we expected the subject to

perform is actually quite intuitive. Each period, the subject enters with holdings of the Tree

and Bond from a prior period, and receives cash, in the form of income (potentially) and

dividends. The subject then has to decide how to re-distribute her wealth across cash and

assets. She knows that there is a given chance (1/6) that the replication ends that period,

at which point she earns the cash she is holding, but the assets she still has in her portfolio

become worthless. With complementary chance (5/6), we move to a subsequent period, and

the subject forfeits her cash, while rolling over assets. The latter generate new cash (in

the form of dividends) in the new period. So, the task we ask the subject to perform is

to optimally balance holdings of cash and assets. Assets are risky, but by holding Bonds,

dividend risk can be eliminated. So, some combination of Trees and Bonds seems to be

optimal. To ensure subjects understand the task, the Instructions (reproduced in Appendix

C) contain a table that specifies, for two different strategies, the effect on cash, and hence,

potential earnings.

There is one further difficulty which we have not mentioned: default. In the (finite or

infinite horizon) Radner model, assets are simply promises; selling an asset – borrowing –

entails a promise to repay in the future. However, in the model, nothing enforces these

promises; that they are kept is simply part of the definition of equilibrium. If nothing

enforced these promises in the laboratory then participants could (and in our experience,

would) simply make promises that they could not keep. One possibility for dealing with this

problem is to impose penalties for default – failing to keep promises. In some sense that
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is what Radner equilibrium implicitly presumes: there are penalties for default and these

penalties are so great that no one ever defaults.

However imposing penalties in the laboratory is highly problematic: What should the

penalties be? The rules governing experimentation with human subjects prevent us from

forcing subjects to pay from their own pockets, and excluding subjects from further partic-

ipation in the experiment would raise a host of problems following such an exclusion – to

say nothing of the fact that neither of these penalties might be enough to guarantee that

default would not occur and to make it common knowledge that default would not occur.

Moreover, this speaks only to intentional default, but what about unintentional default –

mistakes? And what about plans that would have led to default in circumstances that might

have occurred but did not? And what about the fact that the mechanisms for discouraging

default might change behavior in other – unexpected – ways?

There is no simple solution to this problem because it is not a problem confined to the

laboratory. Radner equilibrium effectively prohibits default but it is entirely silent about how

this prohibition is to be enforced. As Kehoe and Levine (1993) and Geanakoplos and Zame

(2014) (and others) have pointed out, mechanisms for dealing with default may eliminate

default – but only at the cost of other distortions.

Our solution in the laboratory is simply to prohibit short-sales (negative holdings) of

assets. This creates a potential problem because our theoretical analysis presumed that

it was always possible for any agent to buy or sell an infinitesimal additional quantity of
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either asset, but if an agent’s current holding of an asset were zero he could not sell it and

if his consumption and portfolio were both zero he could not buy it. However, so long as

agents do not bump up against the zero bound, our analysis remains correct. In the actual

experimental data, the number of agents who bumped up against the zero bound was quite

small.

The need to bar short sales explains why we use an instantiation of the Lucas economy

in which the Bond is in positive net supply: risk tolerant subjects could merely reduce their

holdings of Bonds rather than having to sell short (which was not permitted). Because both

assets are in positive supply, our economy is, strictly speaking, a Lucas orchard economy

(Martin, 2011), but the predictions we identified before are not different in a model in

which the Bond is in zero net supply.

Because income and dividends vary across time and states and cash disappears at the

end of each non-terminal period, those who are optimizing or nearly optimizing must trade

often. As we shall see, trading volume was indeed substantial.24 Trading took place through

an anonymous, electronic continous open book system. The trading screen, part of soft-

ware called Flex-E-Markets, was intuitive, requiring little instruction.25 Subjects quickly

familiarized themselves with key aspects of trading in the open-book mechanism (bids, asks,

cancellations, transaction determination protocol, etc.) through one mock replication of our

24As we have noted earlier, we agree with Crockett and Duffy (2013) that frequent trading deters the
formation of pricing anomalies such as bubbles.

25Flex-E-Markets is documented at http://www.flexemarkets.com; the software is freely available to aca-
demics.
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economy during the instructional phase of the experiment. A snapshot of the trading screen

is re-produced in Figure 1.

All accounting and trading was done in U.S. dollars. Thus, subjects did not have to

convert from imaginary experiment money to real-life currency.

As explained above, within each experimental session, we conducted as many replications

as possible within the time allotted. In order to minimize wealth effects, we paid for only a

fixed number (2) of the replications, randomly chosen after conclusion of the experiment.26

However, we do not view wealth effects as important in this context in any event, since

there is no assumption that subject preferences are constant across replications within a

given session – and they are certainly not constant across sessions, since the populations of

subjects in different sessions were disjoint.

Finally, we allocated assets and income processes as follows.

• There are an even number n = 2m of agents; agents i = 1, . . . ,m are of Type I, agents

i = m+ 1, . . . , 2m are of Type II.

• Type I agents are endowed with asset holdings bI = 0, τI = 10 and have income eI,t = 15

when t is even and eI,t = 0 when t is odd.

• Type II agents are endowed with asset holdings bII = 10, τII = 0 and have income

eII,t = 15 when t is odd and eII,t = 0 when t is even.

26If a session ended with fewer replications we paid for multiples of some or all of the replications.
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V. Results

Table I provides specifics of the six experimental sessions, each of which contained several

replications; the number of participants ranged from 12 to 30. Three sessions were conducted

at Caltech, two at UCLA, and one at the University of Utah, thus providing us with evidence

from a variety of subject pools (subjects were undergraduate and graduate students as well as

staff from these institutions; they were not selected based on their background in economics

or finance). In all there were 15 replications, totaling 80 periods. Whenever the end of the

experiment occurred during a replication (starred sessions), our novel termination protocol

was applied: in the terminal period of these replications, participants knew for certain that it

was the last period. In the other (unstarred) sessions, the last replication occurred sufficiently

close to the end of the experiment that a new replication was not begun, so our termination

protocol was not applied.

We now discuss to what extent each prediction is borne out in the data. We first re-state

the prediction (we keep the the same order as before) and then evaluate the evidence.

Prediction 1. There is trade in each period.

Table II lists average trading volume per period (excluding terminal periods during which

there was no trade). Trading volume in Periods 1 and 2 is significantly higher, reflecting the

need for agents to move from initial holdings to their steady-state holdings. In the theory,
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Table I

Summary data, all experimental sessions. Stars indicate sessions when last
replication ended with a switch to the two-period termination protocol.

Session Place Number of Number of Periods Subject
Replications (Total within Session, Count

Min. across Replications,
Maximum)

1 Caltech∗ 4 (14, 1, 7) 16
2 Caltech 2 (13, 4, 9) 12
3 UCLA∗ 3 (12, 3, 6) 30
4 UCLA∗ 2 (14, 6, 8) 24
5 Caltech∗ 2 (12, 2, 10) 20
6 Utah∗ 2 (15, 6, 9) 24
(Overall) 15 (80, 1, 10)

subsequent trade takes place only to smooth consumption across odd and even periods.27

Volume in the Bond is significantly lower in Periods 1 and 2. This appears to be an artifact of

the few replications when the state in Period 1 was low, which deprived Type I participants

(who are endowed with 10 Trees and have no personal income in odd periods) of cash. In

principle, Type I participants should have been able to sell enough Trees to buy Bonds, but

it appears that they did not manage to complete all the necessary trades in the allotted

time (four minutes). On average, 23 Trees and 17 Bonds were traded per period. Since the

average supply was 210 Trees and 210 Bonds and the average period was 3-4 minutes long,

this means that roughly 10% of available securities were traded each period and that one

transaction occurred roughly every 5 seconds.

27In principle, subjects should be able to trade to steady-state consumption smoothing allocations within
one period; we do allow for an extra period of adjustment.
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Table II

Trading volume.

Periods Tree Bond
Trade Volume Trade Volume

All
Mean 23 17
St. Dev. 12 11
Min 3 2
Max 59 58

1 and 2
Mean 30 21
St. Dev. 15 14
Min 5 4
Max 59 58
≥ 3

Mean 19 15
St. Dev. 8 9
Min 3 2
Max 36 41

Prediction 2. The tree is always cheaper than the bond.

Table III displays average period transaction prices; Table IV stratifies the results by the

period’s state (High if the dividend of the Tree was $1; Low if it was $0). Consistent with

the theory, the Bond is priced above the Tree; the price differential averaged about $0.50.

We momentarily refrain from making statements about the statistical significance. We will

do so later when we discuss a proper modeling of the dynamics of (average-period) prices.

Indeed, the time series exhibit peculiar properties, as we discuss next.

Prediction 3. Asset prices are perfectly correlated with fundamentals.
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Table III

Period-average transaction prices and corresponding discount of the Tree price
relative to the Bond price.

Tree Bond Discount
Price Price

Mean 2.75 3.25 0.50
St. Dev. 0.41 0.49 0.40
Min 1.86 2.29 -0.20
Max 3.70 4.32 1.79

Prices moved with fundamentals, but correlation is far from perfect. Figure 2 shows a plot of

the evolution of (average) prices over time, arranged chronologically by experimental sessions

(numbered as in Table I); replications within a session are concatenated.28 The plot reveals

that prices are volatile. In theory, prices should move only because of variability in economic

fundamentals, which in this case amounts to changes in the dividend of the Tree. Prices

should be high in High states, and low in Low states, and these levels should be determined

only by the state, not by, e.g., passage of time, or whether the period is Odd or Even. In

reality, a large fraction of price movements is unrelated to fundamentals; following LeRoy

and Porter (1981) and Shiller (1981), we will refer to this as excessive volatility. Some price

drift can be detected, but formal tests reported below will reveal that the drift is entirely

due to the impact of states on prices, and the particular sampling of the states across the

sessions. That is, after accounting for changes in states, price changes are white noise.

28This means that the average prices of the first period of the next replication are plotted as if it were
the continuation of the previous replication. The second session, for instance, has 13 observations; the first
4 observations pertain to the first replication, and the subsequent nine observations pertain to the second
replication.
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Table IV

Mean period-average transaction prices and corresponding discount of the Tree
price relative to the Bond price, as a function of state.

State Tree Bond Discount
Price Price

High 2.91 3.34 0.43
Low 2.66 3.20 0.54
Difference 0.24 0.14 -0.11

According to the theory, pHT should equal 2.50 irrespective of risk aversion (of the repre-

sentative agent) and all other prices (across states, securities) derive from this number by

means of a single parameter. As Table IV shows, pHT is higher than predicted: it is predicted

to be 2.50 but is actually 2.91. Similarly, the ratio pHT /p
L
T is greater than the ratio pHB/p

L
B

while the two ratios should be equal. As mentioned before, we refrain from taking a position

on the statistical significance of these deviations. (Period-average) transaction prices are not

i.i.d., so we cannot rely on standard t tests to determine significance.

Prediction 4. The more the Tree trades at a discount relative to the Bond, the

greater the difference of prices of both securities across states.

The prediction is that the differential in prices between High and Low states should correlate

positively with the difference between the Bond price and the Tree price, i.e., the discount

of the Tree price relative to the Bond price. Correlation is to be taken across economies, i.e.,

across replications. Table V displays correlations of the average discount on the Tree price

relative to the Bond price (regardless of state) and the average difference between prices of
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Table V

Correlation across replications between the average discount on the Tree price
relative to the Bond price and the average price differential of the Tree or

Bond between High and Low states.

Tree Bond

Correlation 0.80 0.52
(St. Err.) (0.40) (0.40)

the Tree or of the Bond across states. Each observation corresponds to one replication, so

there are 15 observations in total. Consistent with the theoretical prediction, the correlations

are positive, though the estimate is insignificant for the Bond.

Formal Statistics for Predictions 2-3-4

At this point, we pause and discuss statistical significance. To assess significance of price

differences across states, we ran a regression of period transaction price levels onto the state

(=1 if high; 0 if low). To adjust for time series dependence that one might have perceived

in Figure 2, we originally added session dummies and a time trend (period number). In

addition, to gauge the effect of our session termination protocol, we added a dummy for

periods when we announced that the session is about to come to a close, and hence, the

period was going to be either the penultimate or last one, depending on the draw of the die.

Lastly, we originally also added a dummy for even periods.
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However, closer inspection of the properties of the error term revealed substantial de-

pendence over time, as evident from the Durbin-Watson test.29 Further model specification

analysis was performed, to ensure that the error term became properly behaved. This re-

vealed that the best model required first differencing of price changes. The highest adjusted

R2 was obtained for a model that predicted price changes across periods as the result of only

the change in the state. See Table VI.30 The regression does not include an intercept or

period dummies: average price changes are insignificantly different from zero and indepen-

dent of the period once the change in the state is accounted for. This implies, among others,

29The Table below displays the original estimation results. Notice that the Durbin-Watson (DW) test
generated values that correspond to p < 0.001, suggesting that the error term was highly autocorrelated,
and hence, that the model was mis-specified.

Footnote Table
OLS estimates of the regression of period-average transaction price levels on several
explanatory variables, including a state dummy (∗ = significant at p = 0.05; DW = Durbin-
Watson statistic of time dependence of the error term).
Explanatory Tree Price Bond Price
Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Session Dummies:
1 2.69∗ (2.53, 2.84) 3.17∗ (2.93, 3.41)
2 2.69∗ (2.51, 2.87) 3.31∗ (3.04, 3.59)
3 1.91∗ (1.75, 2.08) 2.49∗ (2.23, 2.74)
4 2.67∗ (2.50, 2.84) 2.92∗ (2.66, 3.18)
5 2.47∗ (2.27, 2.67) 2.86∗ (2.56, 3.17)
6 2.23∗ (2.05, 2.40) 3.42∗ (3.16, 3.69)

Period Number 0.06∗ (0.03, 0.08) 0.06∗ (0.01, 0.10)
State Dummy (High=1) 0.24∗ (0.12, 0.35) 0.11 (-0.07, 0.29)
Initiate Termination -0.07 (-0.28, 0.14) -0.01 (-0.33, 0.31)
Dummy Even Periods -0.00 (-0.11, 0.11) -0.11 (-0.28, 0.06)
R2 0.71 0.52
DW 1.05∗ 0.88∗

Notice though that the coefficient to the termination dummy is insignificant, suggesting that our termi-
nation protocol was indeed neutral, as predicted by the theory. This constitutes comforting evidence that
our experimental design was correct.

30We deleted observations that straddled two replications. Hence, the results in Table VI are solely based on
intra-replication price behavior. Unfortunately, this deprived us from testing whether our session termination
protocol was neutral. The original specification did allow us to perform this test, and as mentioned in the
previous footnote, the results confirmed the neutrality.
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Table VI

OLS regression of changes in period-average transaction prices. (∗ = significant
at p = 0.05.)

Explanatory Tree Price Change Bond Price Change
Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Change in State Dummy
(None=0; High-to-Low=-1, 0.19∗ (0.08, 0.29) 0.10 (-0.03, 0.23)
Low-to-High=+1)

R2 0.18 0.04
Autocor. (s.e.=0.13) 0.18 -0.19

that the apparent drift in the display of the price data (Figure 2) is a visual illusion (besides

being only intra-session, not within-replication), entirely driven by the actual sampling of

the state. The autocorrelations of the error terms are now acceptable (comfortably within

two standard errors from zero).

For the Tree, the effect of a change in state from Low to High is substantial ($0.19) and

significant (p < 0.05). The effect of a change in state on the Bond price is smaller ($0.10),

and insignificant (p > 0.05). Both confirm the theoretical prediction that prices should be

determined by the state.

The excess volatility of prices is plainly evident from Table VI. Fundamentals (changes

in the state) explain only 18% of the variability of the Tree prices (R2 = 0.18); 82% of price

variance is unexplained.31 The situation is even worse for the Bond: 96% of the variance

of Bond price changes is unexplained by changes in the state. The Lucas model instead

31We relate price changes to state changes using a linear model; however, because there are only two states,
linearity is without loss of generality.
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predicts that fundamentals should explain all of the variability of asset prices. It deserves

emphasis that the unexplained variability is essentially noise; in particular, it is unrelated

to the subject cohort, because session dummies were insignificant. Overall, the regressions

in first differences show that, consistent with the Lucas model, fundamental economic forces

are behind price changes – significantly so for the Tree. But at the same time, prices are

excessively volatile, with no discernible drift.

Prediction 5. Expected returns are time-varying.

The theory states that the expected returns on the two securities should vary depending on

the state. Specifically, expected returns are higher in the Low than in the High state, which

is to say that expected returns are counter-cyclical. Table VII provides the evidence. The

results are consistent with the theory: the difference in average returns across High and Low

states is negative for both securities, though insignificant (at 5% level) for the Bond. The

counter-cyclicality of expected returns implies that returns are predictable, in violation of

traditional accounts of EMH.

Prediction 6. The equity premium is counter-cylical.

Table VII demonstrates that the equity premium is counter-cyclical. But the theory also

requires the equity premium to be positive, while it is not in “boom” periods: the average

return on the Tree is below that of the Bond when the state is High, and the difference

is highly significant. In the Low state, and overall, the equity premium is positive, but
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Table VII

Average returns across securities and states (High or Low aggregate dividend).
Standard errors in parentheses. ∗∗ indicates one-sided significance at the 1%

level (Equity Premium: t test of difference in return across securities;
Difference across states: two-sample unequal-variance t test).

State Tree Bond Equity
Premium

Average 12.8 (%) 15.9 -3.1
(3.3) (1.5) (2.8)

High 2.0 15.3 −13.3∗∗

(4.4) (2.1) (4.5)
Low 17.8 16.1 1.7

(4.2) (2.0) (3.4)
Difference −15.8∗∗ -0.8

not significant. This return anomaly in the High state is in sharp contrast with the general

correctness of price levels. This paradoxical situation may be understood in view of the noise

in prices, and since returns are ratios of prices (and dividends), the noise is amplified in the

returns. As a result, the fit of the Lucas model is much worse when one considers returns

rather than price levels.

Prediction 7. Agents smooth consumption over time.

In the Lucas equilibrium, consumption choices are Pareto optimal. This means, in particular,

that agents of both types should trade to holdings that generate high consumption in High

states, and low consumption in Low states. Table VIII displays the average amount of cash

48



Table VIII

Average consumption (end-of-period cash, in dollars) across states (High or
Low Tree dividend) and across periods (Odd/Even), stratified by participant

Type (autarky numbers in parentheses). Last two rows: p levels of the
contribution of State and Period to explaining variation of the consumption
share of Type I (end-of-period cash holdings as a proportion of total cash
available) in a two-way mixed-effects ANOVA. For choices to be Pareto
efficient, consumption shares should be independent of State and Period

provided the representative agents for the two Types have homothetic utility.

States Periods
High Low Odd Even

Type I 14.93 (19.75) 7.64 (4.69) 7.69 (2.41) 13.91 (20.65)
Type II 15.07 (10.25) 12.36 (15.31) 14.72 (20) 11.74 (5)
ANOVA p-value 0.09 0.27
ANOVA Interaction p-value 0.23

(consumption) per type in High vs. Low states.32 Consistent with the theoretical prediction,

consumption is positively correlated across Types.

To gauge the significance of this finding, Table VIII also displays, in parentheses, the

consumption (cash) levels that agents could have reached if they were not allowed to trade.

These are the consumption levels under autarky. Note that autarky consumption levels

are anti-correlated. Through trading, the average Type I and Type II agents managed to

move correlation of their consumptions from negative to positive. This suggests economically

significant Pareto improvements, consistent with the Lucas model.

Pareto optimality also implies that subjects should be able to perfectly offset income

differences across odd and even periods. Table VIII demonstrates that our subjects indeed

32To compute these averages, we ignored Periods 1 and 2, to allow subjects time to trade from their initial
holdings to steady state positions.
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managed to smooth consumption substantially; the outcomes are far more balanced than

under autarky (numbers in parentheses; averaged across High and Low states, excluding

Periods 1 and 2), again implying substantial Pareto improvements.33

If one were willing to entertain the assumption that utilities of our subjects are ho-

mothetic, Pareto efficiency would suggest a stronger prediction than positive correlation of

consumption across states, or smoothing of income across Odd and Even periods. Under

homothetic utilities, consumption shares should be independent across states and across pe-

riods. Table VIII displays the results of a formal test of equality of the consumption share of

the average Type I subject across states and periods. The share of total consumption (total

cash available) that the average Type I subject chose at the end of each period was computed

and a two-way analysis of variance (ANOVA) was applied, with state (High/Low) and period

(Odd/Even) as potential factors determining variability in this consumption share, allowing

for interaction between state and period. A mixed-effects approach was used, to accommo-

date differences in consumption shares across replications due to differences in drawing of

the state in the first period and in subject cohort.

Table VIII shows that neither the state nor the nature of the period (nor their interaction)

are significant (p > 0.05) factors in explaining the variability of the consumption share of the

average Type I subject across periods. As such, the apparent violations of the prediction of

33Autarky consumption of Type II subjects is independent of the state, because Type II subjects are
endowed with Bonds whose dividends are riskless; autarky consumption of Type I subjects depends on
states because they are endowed with Trees, whose dividends are risky. We used the sequence of realized
states across all the sessions to compute their autarky consumption.
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equal consumption shares across states/periods implied by the average consumption levels

reported in Table VIII are solely due to sampling error.

The finding is rather striking, because the assumption of homothetic preferences is ques-

tionable. Yet, our empirical results suggest that the assumption can be maintained as far as

the choices of the average subject of Type I (and by implication, of Type II) are concerned.

Prediction 8. Agents hedge fundamental risk.

The above results show that our subjects (on average) managed to move towards the Pareto-

optimal equilibrium consumption patterns of the Lucas model. However, they did not resort

to hedging as a means to ensure those patterns.

Table IX lists average asset holdings across periods for Type I subjects (who received

income in Even periods). They were net sellers of assets in periods of income shortfall (see

“Total” row). But unlike in the theory, they decreased Tree holdings in low-income periods

and increased them in high-income periods. Only in period 9 is there some evidence of

hedging: Type I subjects on average bought Trees while they were income-poor (Period 9’s

holding of Trees is higher than Period 8’s).

This finding should put our trading volume numbers in perspective. As noted earlier,

trade volume was substantial (see Table II). However, the volume of trade is much lower

than predicted by the Lucas model. In Appendix B, we show that even for (constant) relative

risk aversion as low as 0.2, average turnover should be about 20% of average holdings for
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Table IX

End-of-period asset holdings, type I subjects. Averages across all replications
and subjects (of Type I). Initial allocation in parentheses, for reference.

Period Dollar Asset Total
Income Tree (10) Bond (0) (10)

1 0 6.67 0 6.67
2 15 7.00 1.08 8.08
3 0 5.67 0.33 6.00
4 15 6.33 1.25 7.58
5 0 5.75 0.50 6.25
6 15 6.75 1.60 8.35
7 0 5.92 0.92 6.84
8 15 6.67 2.58 9.25
9 0 6.92 2.25 9.17

the Tree, and over 50% for the bond. Keep in mind however that these predictions presume

that subjects follow the sophisticated hedging strategy of Prediction 8 namely, to buy Trees

when in need of cash. Without this strategy, the volume needed to smooth consumption

is substantially lower. Fewer assets have to be traded since Tree purchases (required for

hedging) need not be offset by extra Bond sales (required to smooth consumption).

If their actions truly reflect their beliefs, then the absence of hedging suggests that sub-

jects did not expect prices to co-move with the dividend on the Tree. Indeed, if prices move

at random relative to fundamentals, then price risk cannot be hedged by buying Trees, unlike

in the Lucas equilibrium. Income shortfalls can be covered as well by selling Trees as by

selling Bonds. This observation turns out to form a crucial basis for a conjecture as to why

prices exhibit excess volatility; we elaborate in Section VII.
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Subject-Level Differences

There are substantial individual differences in portfolio choices. Table X illustrates how

three subjects of Type I end up holding almost opposing portfolios of Trees and Bonds.

Subject 7 increased his holdings of Trees over time. Significantly, this subject bought Trees

in periods with income shortfall (odd periods), effectively implementing the hedging strategy

of the theory. Subject 5 is almost a mirror image of subject 7, though s/he did not resort

to hedging. Subject 3 diversified across Trees and Bonds but likewise did not hedge because

Tree holdings decreased in odd periods.

The subject-level differences reported in Table X are not exceptional. The contrast

between individual choices and choices aggregated over individuals of the same Type is

stark. In terms of choice predictions, the theory “works” at the Type level, but not at the

individual level and so one has to be careful extrapolating to phenomena at the market level

(e.g., prices) from observing individuals singly. If we had considered Subjects 3 or 5 to be

“representative,” and had predicted cross-sectional and temporal behavior of prices on the

basis of their choices, the fit would have been poor. The situation is reminiscent of the

cross-sectional variation in choices in static asset pricing experiments. There too, prices at

the market level can be “right” (satisfy, e.g., CAPM) even if individual choices are at odds

with the theory; see Bossaerts, Plott, and Zame (2007a).

Table X shows that subjects in certain periods held zero units of a security. If subjects

followed equilibrium strategies and their risk aversion was not too high, this should not
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Table X

End-Of-Period Asset Holdings Of Three Type I Subjects. Initial allocations: 10
Trees, 0 Bonds. Data from one replication in the first Caltech session.

Period 1 2 3 4 5 6
Subject

Trees:
3 4 4 3 4 3 4
5 1 1 0 1 1 3
7 7 10 13 15 19 20

Bonds:
3 3 5 3 5 3 4
5 8 15 14 15 16 17
7 2 3 0 4 0 4

have happened; see Tabe AI in Appendix B. The following provides some idea of how often

subjects traded to the boundary. We exclude period 1, because as mentioned before, it often

took more than one period for subjects to trade away from initial holdings (all subjects

started with zero holdings of one of the two securities). Of the 1272 period-subjects (one

subject per period), 19% held zero of the Tree, and 24% held zero of the Bond. Are these

numbers high? This is difficult to say. Again, holdings of individual subjects are enormously

variable and this variability reveals nothing about the success of the Lucas model.

Summary

Altogether, many facets of the Lucas model are confirmed in the experimental data. Rela-

tive price levels were correct, prices over time moved with fundamentals, and this movement

was more pronounced when the Tree was cheaper. The Lucas model of asset pricing re-

lies on Pareto optimality of consumption flows and indeed we found average end-of-period
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cash holdings across subject types to be positively correlated, effectively un-doing, through

trading, the negative correlation of autarky consumptions.

Still, prices were excessively volatile, which made returns extremely noisy. While the

equity premium was counter-cyclical, as predicted, its sign was actually incorrect in the

High state. Evidently, the noise in prices translated into incorrect average returns.

Finally, while average consumptions across types revealed substantial Pareto improve-

ment, individual consumption flows (end-of-period cash holdings) were all over. There is

no particular pattern and one would be hard-pressed to find a single individual who acted

exactly like in the theory, smoothing consumption across states and across odd and even

periods, and hedging fundamental risk.

VI. Using Laboratory Data To Assess The Statistical

Properties Of GMM Tests Of The Lucas Model

As noted before, we (control and) observe much more in our laboratory environment than is

possible in the field. However, an interesting and potentially revealing exercise is to ignore

this additional richness, treat our laboratory data as if they were historical field data, and

carry out the same kind of econometric tests that have been used for historical field data.

Hence, let us consider only the times series of asset returns and aggregate consumption in

our laboratory data. We ignore all the additional information (true dividend process, true
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realized state, individual choices, etc). Then let us use Generalized Method of Moments

(GMM) to test whether the stochastic Euler equations are satisfied. We assume – as has

been done in the analysis of historical field data – the presence of a representative agent with

constant relative risk aversion (power utility). We estimate the coefficient of risk aversion γ

and the discount factor (β) and test whether the Euler equations hold, while imposing that

the representative agent “consumes” the aggregate cash each period.

Note that the assumption of power utility is without loss of generality because we have

only two states. Indeed, in equilibrium only the marginal rate of substitution µ between

consumption in a Low state and consumption in a High state is a free parameter (besides

the time discount rate β). See Prediction 3. Power utility is one type of preference that

could fit; any other preference profile with decreasing marginal utility would too.

It is our opinion that the theory explains many facets of the experimental results. How-

ever, as mentioned before, the behavior of asset returns is anomalous in one important

dimension. Specifically, Table VII shows that the average return on the Tree in the High

state is significantly lower (at 2.0%) than that of the Bond (at 15.3%). Thus, the equity

premium in the High state is (significantly) negative. The corresponding Euler equation can

only be fit with a negative risk aversion coefficient (assuming that β is set at its correct value,

namely, 5/6). In contrast, in the Low state, the ranking of returns is consistent with risk

aversion, at 17.8% for the Tree and 16.1% for the Bond (though the difference in insignif-

icant at p = 0.05). GMM will record the tension between the equity premium in the Low

state and in the High state – as long as one uses the (true) state as an instrument so that the
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conditional average returns across the two states are contrasted. The GMM statistic should

then reject the model.

In the field, the true state of the economy (High, Low) is rarely available. One imme-

diately wonders whether traditional instruments would be good proxies. Our experimental

data provide a unique opportunity to investigate this issue. Since the GMM test should

reject, what we are after is effectively an analysis of the power of the GMM test when one

uses the instruments that we know should lead to rejections, and when one uses proxies as

instruments instead.

The Euler equations are:

E

[
β

(
c∗t+1

c∗t

)−γ
dA + pA,t+1

pA,t
− 1
∣∣∣It] = 0

where c∗t and c∗t+1 denote aggregate (per capita) consumption in periods t and t+ 1, respec-

tively, A ∈ {B, T}, and It is the information that agents in the economy (participants in

our experiments) had at the end of period t. As is standard in GMM tests of these Euler

equations, we choose variables zt (“instruments”) in the agents’ information set. Each in-
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strument generates a set of two unconditional moment conditions (one for each of the assets,

B and T ), by applying the law of iterated expectations:

E

[
E

[(
β

(
c∗t+1

c∗t

)−γ
dA + pA,t+1

pA,t
− 1

)
zt

∣∣∣It]]

= E

[(
β

(
c∗t+1

c∗t

)−γ
dA + pA,t+1

pA,t
− 1

)
zt

]
= 0

Our first test is based on a traditional instrument choice, going back to Hansen and

Singleton (1983). We choose as instruments (i) the constant 1, (ii) lagged consumption

growth, and (iii), lagged returns on the Tree T and (iv) lagged returns on the Bond B.

Thus, we have 4 instruments, and hence, 8 moment conditions. Only two parameters, β and

γ, need to be estimated, so we have 6 over-identifying restrictions. The idea behind GMM is

to find values of the parameters that minimizes a quadratic form in the moment conditions.

With a suitable weighting matrix, the resulting minimum is χ2 distributed, with degrees of

freedom equal to the number of over-identifying restrictions.34 The necessary time series,

of consumption growth and asset returns, were constructed by concatenating periods across

all replications and all sessions, leaving out observations that would straddle two different

replications, as we did for Table VI.

The top panel of Table XI displays the results of the first test. We note three points:

1. The model is not rejected: p = 0.310.

34We implemented GMM using Matlab routines provided by Michael Cliff.
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Table XI

GMM Estimation And Testing Results For Three Different Sets Of
Instruments.

Instruments χ2 test β γ
(p value) (p value (p value

for β = 5/6) for γ = 0)

constant 1, lagged 7.124 0.86 -0.01
consumption growth (0.310) (0.003) (0.917)
& asset returns
constant 1, lagged 0.731 0.86 -0.18
consumption growth (0.694) (0.029) (0.162)
high & low state 14.349 0.86 0.16
dummies, lagged (0.006) (0.002) (0.001)
consumption growth

2. The estimated discount factor β is significantly different from the theoretical one.

3. The coefficient of risk aversion γ is not significantly different from zero.

However, the results of this test may be misleading. In particular, GMM produces an

estimate of the risk aversion coefficient that implies that the representative agent is risk-

neutral or even slightly risk-loving, yet the price level data clearly show that subjects were

risk averse, because the Tree is cheaper than the Bond. Moreover, participants smoothed

consumption both across states and across time, again suggesting risk aversion. Further

inspection of the data (Table VII) suggests why GMM produces this peculiar estimate of risk

aversion. Indeed, average returns on the two securities, while positive, are hardly different

from each other. The average equity premium is a tiny 0.1%, while there is a large difference

in the covariation of dividends with the aggregate dividend. As a result, GMM fits parameters

that make one believe that the representative agent is risk neutral.
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In looking more closely, we might view the χ2 GMM test of over-identifying restrictions

as suspect. Two instruments – the lagged returns on the Tree and Bond – are “weak”, in

the sense that they are uncorrelated (even independent) over time, both with themselves

and with consumption growth.35 Hence these moment conditions do not provide additional

restrictions beyond the ones imposed by the moment conditions constructed with the con-

stant as instrument. Effectively, the number of degrees of freedom in the χ2 test is not 6,

but only 2.

To determine the impact of these weak instruments, we ran a second test, re-estimating

the model with only the constant and lagged consumption as instruments. The second row

of Table XI displays the results. The model still fails to be rejected (with an even higher

p-level). And the estimation of risk attitude continues to be anomalous, because the point

estimate remains in the risk-loving range, though insignificantly different from risk neutrality.

Poor instrument choice may be the reason behind the low power of GMM and its ten-

dency to generate the wrong estimates of risk aversion. As argued before, anomalies emerge

specifically when contrasting average returns across the High and Low states. Lagged ag-

gregate consumption growth is a noisy proxy for the state. What if we used the true state

as instrument? Would we obtain the rejection that we expect? And would the estimate of

the coefficient of risk aversion become significantly positive, in line with the choices of our

subjects and with the patterns we observe in price levels?

35The details of the calculation can be obtained from the authors upon request.

60



Consequently, in our third test, we replaced the constant instrument with two dummy

variables, one that tracked the High state, and the other one tracking the Low state. We kept

the remaining instrument, the consumption growth. In total, this gives three instruments

and as such generated six moment conditions. With two parameters to estimate, we are left

with four degrees of freedom. The results are presented in the bottom panel of Table XI.

We observe the following.

1. The model is now rejected (p < 0.01).

2. The discount factor, β remains a bit too high.

3. Risk aversion is now highly significant (p = 0.001).

Altogether, when the true state is used as instrument, we recover power (to reject) and

obtain parameter estimates that are consistent with subjects’ choices and with patterns in

price levels.

The impact of instrument choice on the power of the GMM test should caution anyone

when conclusions need to be drawn from field data. Perhaps most annoying is the mis-

estimation of the coefficient of risk aversion when using traditional instruments. Because the

choice of utility function in the estimation is without loss of generality, it would be wrong

to search for alternative preferences just because we estimated risk aversion to be too low.

The mis-estimation was solely due to lack of power when implementing the GMM test with

traditional instruments.
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VII. The Expected and the Anomalous

Viewed against the predictions of the Lucas model, our experiments generate findings that are

expected – prices and individual consumption are correlated with fundamentals (aggregate

consumption) and prices are ordered across securities and across states as predicted by the

theory – and findings that seem anomalous – prices are excessively volatile and subjects do

not hedge. Because volatile prices would seem to signal clearly the need to hedge, the co-

existence of excess volatility and lack of hedging seems surprising. However, the particular

kind of excess volatility that we see in the experimental data might well lead subjects to

conclude that there is no opportunity to hedge.

To see why this might be so, recall first that the predictions of the Lucas model, and

indeed the very definition of Radner equilibrium, depend on the assumption that agents have

perfect foresight. This does not mean that agents can predict the random future dividends

but rather that they know the random process of dividends and what prices will obtain for

each possible dividend realization. In the experiment, the subjects are told the dividend

process, so in principle any lack of perfect foresight cannot be there. But the price process

must be learned. It seems to be too much to expect that price beliefs be exactly correct.

Perhaps it is more realistic to expect that beliefs be approximately correct?

Optimization against exactly correct beliefs leads exactly to the Radner equilibrium pre-

dicted by the Lucas model. It would seem that optimization against approximately correct

beliefs should lead to something that approximates the Radner equilibrium predicted by the
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Lucas model. However, this is not necessarily so: because the price process is endogenous,

beliefs about the price process can be approximately correct (i.e. close to the realized price

process) and still very far from the price process predicted by the Lucas model. The same

point has been made by Adam, Marcet, and Nicolini (2012), who used it to explain excess

volatility in historical data.

On the basis of our experimental data, it seems quite plausible that agents expected

prices to follow a martingale – as would be predicted by traditional accounts of EMH! –

and not to co-move with economic fundamentals – as would be predicted by the Lucas

model. In Section V, we documented how subjects did not hedge price risk, in contrast

with optimal trading strategies in the Lucas equilibrium. Hedging is accomplished by buying

Trees when subjects experience income shortfall. In equilibrium, Trees are a perfect hedge

against future price changes, when income flows allow subjects to re-purchase securities:

Trees pay dividends when prices are high; they do not when prices are low. If subjects

decided not to hedge price risk by buying Trees, and if their decisions truly reflect their

beliefs, then subjects appeared to believe that prices move in ways that are unrelated to

dividends. That is, choices revealed expectations according to which prices are a martingale

(possibly with drift, but definitely unrelated to fundamentals).

The belief that prices follow a martingale is wrong, but it is not readily falsifiable on the

basis of the limited number of observations available to subjects. Indeed, the belief that,

e.g., Bond prices follow a martingale would be hard to falsify even after eighty observations
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(see Table VI), which is an order of magnitude more observations than were available to

subjects. The martingale belief is therefore a credible working hypothesis.

A thought experiment may help to understand the consequences of incorrect beliefs.

Imagine that in every period agents always believe that past prices are the best predictions

of future prices, independent of economic fundamentals; that, given these beliefs, agents

correctly solve their current optimal investment-consumption problem as a function of prices;

that agents then send demand schedules to the market; and that markets generate prices

so that demand and supply are equal in that period. Of course, beliefs will be revealed

to be wrong next period, so we are considering in this thought experiment only a kind of

temporary equilibrium (Grandmont, 1977), but one in which beliefs, although incorrect, are

disciplined by observation. How would prices in this temporary equilibrium evolve over time?

Simulations suggest that prices would evolve very much as in the experiment: they co-move

with dividends, but very noisily – hence they would be excessively volatile.

To illustrate this thought experiment, we carried out simulations. There are two types

of agents, endowed as in the experiment, and each type is represented by an agent with

logarithmic utility. Agent beliefs (that prices revert to the levels of the previous period)

are affected every period by an additive gaussian disturbance with mean zero and standard

deviation $0.40. Agents start out believing that the Tree will be priced at $2.5 and the

Bond at $3. Figure 3 displays the evolution of prices and states in a typical simulation.

Price dynamics are in line with those in the experiment – prices relate to states only in a

noisy way. At the same time, agents turn out not to hedge residual price forecasting risk;

64



they accommodate income shortfalls solely by selling Bonds and Trees. Still, their choices

move substantially towards Pareto optimality: the consumption share of the Type I agent

fluctuates only between 39% and 44%, little affected by state and period (Odd/Even).

This thought experiment demonstrates starkly that the price predictions of the Lucas

model are fragile to small mistakes in beliefs about the price processes. This comes as

a surprise because price predictions in the Lucas model are robust to small mistakes in

beliefs about the dividend processes (Hassan and Mertens, 2010). Consequently, it seems

that mistakes in beliefs can manifest themselves quite differently: when they concern the

dividend processes, mistakes are dampened out; when they concern price processes, mistakes

can create positive feedback and hence are amplified.

VIII. Conclusion

Over the last thirty years, the Lucas model of dynamic asset pricing has become the lens

through which scholars of finance and macroeconomics interpret historical data coming from

the field. Yet little is known about the true relevance of the Lucas model and confidence in

the model has certainly been shaken by recent events. This paper was prompted in part by

the belief that proper understanding of the Lucas model – and of the thinking underlying

it and the applications that are made of it – could be greatly advanced if we could examine

the workings of a Lucas economy in the laboratory. Of course, it is a long way from the

laboratory to the real world. There are many features of the real world that are absent in
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the laboratory and these features may well have an enormous bearing on the applicability of

the Lucas model (or any other model). But this seems to us to argue even more forcefully

for laboratory experimentation. Models are idealizations and the laboratory is an idealized

environment; if the models do not work in the laboratory, why should we expect them to

work in the real world?

In our view, our experiments provide substantial support for the Lucas asset pricing

model. Our experimental results display features that are consistent with the most important

predictions of the Lucas model: prices move with fundamentals, agents trade assets to smooth

consumption and insure against risk, more risky assets yield a substantial premium over

less risky assets, and the equity premium is counter-cyclical. Our experimental results do

display a feature that is at odds with the predictions of the Lucas model: prices display excess

volatility, so returns are noisy,36 to the point that the equity premium is actually negative

in “booms.” This, then, causes rejections in standard GMM tests of the stochastic Euler

equations (provided the right instruments are employed). Interestingly, excess volatility is

precisely the feature of field data that much of the literature has attempted to explain in

terms of “frictions” or deviations from the basic model. These frictions and deviations are

entirely absent in our laboratory environment, suggesting that they may not be needed to

explain the empirical failure of the model.

36Notice the contrast between price levels, which overall are in accordance with the Lucas model, and
returns, which are not. As an anonymous associate editor pointed out, price levels may provide a more
accurate reflection of subjects’ expectations than (sample) average returns. If we had used, e.g., the Gordon
pricing model, to extract from prices the implied required rates of returns, and hence, the ex ante risk premia,
the evidence would have been more in line with the model.
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Instead, we conjecture that excessive volatility was caused by subjects’ mistakes in fore-

casting future prices. The Lucas model presumes that the agents perfectly forecast future

asset prices – but the subjects in our experiments could not and did not do so. Indeed, the

absence of a hedging component to choices revealed that subjects did not anticipate prices to

correlate with fundamentals. When we simulated the temporary equilibrium (Grandmont,

1977) of our laboratory economy, we found that beliefs that prices would not change with

fundamentals were difficult to falsify – such beliefs generated “almost” perfect foresight. At

the same time, prices were far more volatile than in the perfect-foresight equilibrium of the

Lucas model. Interestingly, little Pareto efficiency was lost because, at the end of the day,

agents in the simulations made only small forecast mistakes. In that dimension too, our

experiments are in line with our conjecture: we recored substantial Pareto improvements.

It might be argued that, because our experiments are short (the longest replication is only

ten periods) we have not provided a fair opportunity for subjects to learn perfect forecasts.

However, it must be kept in mind that in many ways we have given our subjects a much

simpler problem than they face in the real world. In our experiment, subjects are told the

true dividend process; in the field they would have to learn it. In our experiment the true

dividend process is stationary; in the field it is not. (Indeed, it might be argued that the

world is not stationary at all, but that stationarity is just an assumption imposed on a model

which would otherwise be completely intractable.) Thus, in many dimensions, we gave the

Lucas model the best possible chance to succeed.37

37We should add that in our experiment there is a great deal more aggregate consumption risk than in
the field. In our experiment the ratio of aggregate consumption in the High dividend state to aggregate
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It would be of interest to know whether our subjects would eventually learn to make

correct forecasts if they had many more observations. Unfortunately a design that provides

enough observations seems quite impractical. We have noted that it would require eighty

periods for subjects to learn about the true relation between prices and fundamentals; to

obtain replications of eighty periods we would need to choose the continuation probability

β uncomfortably close to 1. The high continuation probability may entice subjects not

to take serious the trade-off between cash on hand and securities holdings. Perhaps more

importantly, a replication of eighty periods would last at least 4-5 hours (following the very

substantial initial time for training etc.); carrying out an experimental session of such a

duration would be difficult.

If agents are aware that, besides fundamental risk, they face risk because their foresight

is imperfect, then the equilibrium (Euler) equations will be misleading. This is because the

equations assume that there are no residual price forecasting mistakes. One would expect

the agents themselves to be at least as averse to fundamental risk (about which they know

a lot) as to residual price forecasting mistakes (about which they do not know much). Their

investments, and hence, consumption choices, are likely to be affected. But the equilibrium

equations explain consumption choices only in terms of fundamental risk, and consequently,

there is a real danger that agents will look far more risk averse through those equations than

they actually are. Future experiments should clarify to what extent awareness of residual

consumption in the Low dividend state is 1.50, while in the field it is (using the Mehra and Prescott (1985)
estimates of U.S. data) only about 1.08.

68



price forecasting mistakes introduce risk premia that are missing in the perfect foresight

equilibrium on which the Lucas model is built.

Our experimental findings also illustrate that one should be cautious when extrapolating

from the individual to the market. As in our static experiments (Bossaerts, Plott, and Zame,

2007b), we find substantial heterogeneity in choices across subjects; most individual choices

have little or no explanatory power for market prices, or even for choices averaged across

subjects of the same type (same endowments). Overall, the system (market) behaves as

predicted by the theory (at least qualitatively), but individual choices do not. Hence, we

caution strongly against giving too much credence to asset pricing theories in which the

system is simply a mirror image of one of its parts. The “laws” of the (financial) system

may be different from those of its parts.

The idea of looking at experimental findings using the methodology typically used to

study historical field data is borrowed from Asparouhova (2006). We think that the exercise

yields interesting insights. We found that statistical inference is biased unless one has access

to the “correct” instruments. Outside the laboratory, it would be hard to determine what

the correct instruments are, and even if one knew, they may not be observable.
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Appendices

Appendix A: Theory

The main text only discusses theoretical predictions that have empirical relevance, leaving

out details of the arguments that support those predictions. Here, we list the main theoretical

results in a logically coherent way, which necessarily implies some repetition of points already

made in the text.

1. Individual consumption is stationary and perfectly correlated with aggre-

gate consumption.
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To see this, fix a period t and a state σ = H,L. The boundary condition guaran-

tees that equilibrium allocations are interior, so Pareto optimality guarantees that all

agents have the same marginal rate of substitution for consumption in state σ at pe-

riods t, t + 1: u′i(c
σ
i,t+1)/u

′
i(c

σ
i,t) = u′j(c

σ
j,t+1)/u

′
i(c

σ
j,t) for each i, j. In particular, the

ranking of marginal utility for consumption in state σ at dates t, t + 1 must be the

same for all agents. Because utility functions are strictly concave, the rankings of con-

sumption in state σ at dates t, t + 1 must be the same for all agents (and opposite to

rankings of marginal utilities). But the sum of individual consumptions is aggregate

consumption, which is stationary – hence equal in state σ at periods t, t+1. Hence the

consumption of each individual agent must also be equal in state σ at periods t, t+ 1.

Since t is arbitrary this means that individual consumption must be constant in state

σ; i.e., stationary. Because the rankings of consumption across states are the same

for all agents, the ranking must agree with the ranking of aggregate consumption, so

individual consumption is perfectly correlated with aggregate consumption.

2. The stochastic Euler equations obtain both at the individual level and for

the representative consumer.

To see this, fix an agent i; write {ci} for i’s stochastic equilibrium consumption stream

(which we have just shown to be stationary). Because i optimizes given current and

future asset prices, asset prices in period tmust equalize marginal utility of consumption

at each state in period t with expected marginal utility of consumption at period t+ 1.

If i buys (sells) an additional infinitesimal amount ε of asset A = B, T at period t,

77



consumption in period t is reduced (increased) by ε times the price of the asset but

consumption in period t+ 1 is increased (reduced) by ε times the delivery of the asset,

which is the sum of its dividend and its price in period t + 1. Hence the first order

condition is:

pσA,t = β

{
π

[
u′i(c

H
i )

u′i(c
σ
i )

]
(dHA + pHA,t+1) + (1− π)

[
u′i(c

L
i )

u′i(c
σ
i )

]
(dLA + pLA,t+1)

}

where superscripts index states and subscripts index assets, time, agents in the obvious

way. We can write this in more compact form as

pσA,t = βE

{[
u′i(ci)

u′i(c
σ
i )

]
(dA + pA,t+1)

}
(5)

for σ = H,L and A = B, T . (5) is the familiar stochastic Euler equation except that

the marginal utilities are those of an arbitrary agent i and not of the representative

agent. (Equality of the ratios of marginal utilities across agents, which is a consequence

of Pareto optimality, implies that (5) is independent of the choice of agent i, and also

that we could write (5) in terms of the utility function of a representative agent – but

the utility function of the representative agent would be determined in equilibrium.)

3. Asset prices are stationary.

Fix an asset A = B, T and a period t. The stochastic Euler equation (5) expresses

prices pA,t at time t in terms of marginal rates of substitution, dividends and prices

at times t + 1. Substituting t + 1 for t expresses prices pA,t+1 at time t + 1 in terms
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of marginal rates of substitution, dividends and prices at times t + 2, and so forth.

Combining all these substitutions and keeping in mind that consumptions, marginal

rates of substitution and dividends are stationary yields an infinite series for prices

pσA,t =
∞∑
τ=0

βτ+1E

[
u′i(ci,t+τ+1)

u′i(c
σ
i,t)

dA,t+τ+1

]
= βE

[
u′i(ci)

u′i(c
σ
i )
dA

] ∞∑
τ=0

βτ

=

(
β

1− β

)
E

[
u′i(ci)

u′i(c
σ
i )
dA

]
(6)

The terms in the infinite series are stationary so prices are stationary as well.

4. Asset prices are determined by one unknown parameter.

Let µ = u′i(c
L
i )/u′i(c

H
i ) be the marginal rate of substitution of substitution in the

Low state for consumption in the High state (which Pareto optimality guarantees is

independent of which agent i we use); note that risk aversion implies µ > 1. The

assertion then follows immediately from (6) but a slightly different argument is perhaps

more revealing. For each asset A = B, T we can write the stochastic Euler equations

as

pHA = β
[
π(dHA + pHA ) + (1− π)(dLA + pLA)µ

]
pLA = β

[
π(dHA + pHA )(1/µ) + (1− π)(dLA + pLA)

]
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It follows immediately that

pHA/p
L
A = µ (7)

Substituting and solving yields

pHA =

(
β

1− β

)[
πdHA + (1− π)dLA µ

]
pLA =

(
β

1− β

)[
πdHA (1/µ) + (1− π)dLA

]
(8)

Specializing to the parameters of the experiment dHT = 1, dLT = 0; dHB = dLB = 0.5;

β = 5/6 yields

pHB = (2.5)(1 + µ)/2

pLB = (2.5)(1 + µ)/2µ

pHT = 2.5

pLT = 2.5/µ

Only one parameter, µ, determines prices of both securities in both states. Notice:

pHT = 2.5 (the price of the tree in the High state is independent of risk attitudes) and

pHB/p
L
B = pHT /p

L
T (the ratios of asset prices in the two states are the same).

5. Asset prices are perfectly correlated with fundamentals.

This is also an immediate consequence of equations (8); because µ > 1 asset prices are
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higher in the High state than in the Low state. Informally, this is understood most

clearly by thinking about the representative agent. In state H, aggregate consumption

supply is high, so high prices (low returns) must be in place to temper the representative

agent’s desire to save (buy). The opposite is true for state L: aggregate consumption

is low, so low prices (high returns) temper the representative agent’s desire to borrow

(sell).

6. The Tree is cheaper than the Bond.

This too is a consequence of equations (8). In the context of static asset-pricing theory

this pricing relation is a simple consequence of the fact that the dividends on the Tree

have higher covariance with aggregate consumption than does the Bond; the Tree has

higher “beta” than the Bond. However, in the dynamic context the result is more

subtle because asset prices in period t depend on dividends in period t+1 and on asset

prices in period t+ 1; since prices are determined in equilibrium, it is not automatic a

priori that prices of the Tree have higher covariance with aggregate consumption than

prices of the Bond.

7. Expected returns on the Tree and Bond change with the state; they are

countercyclical.

From prices and dividends of the Tree and Bond as well as the state transition proba-

bilities (from a Low state one moves to a High state or remains in the Low state with

equal probability), on can readily compute the expected returns on the Tree and the

Bond. Simple algebraic manipulation then allows one to express the difference across
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High and Low states of the expected return on the Tree (E[RT |H]−E[RT |L])and Bond

(E[RB|H]− E[RB|L])as follows:

E[RT |H]− E[RT |L] = π(1− µ) + (1− π)(
1

µ
− 1) + dB(1− µ)

1

pHT
,

E[RB|H]− E[RB|L] = π(1− µ) + (1− π)(
1

µ
− 1) + dB(1− µ)

1

pHB
.

Because µ > 1, all terms in both expressions are negative, and hence, the expected

return on both assets is higher in “busts” (when the state is Low) than in “booms”

(when the state is High).

8. The equity premium is positive and counter-cylical.

The difference between the expected return on the risky security (the Tree) and the

expected return on the (relatively) risk free security (the Bond) is the equity premium

(Mehra and Prescott, 1985).38 The conclusion that the Tree is cheaper than the Bond

implies that the equity premium is positive. Because asset prices are stationary, equity

premia are stationary as well; simple computations show that the equity premia in the

38Mehra and Prescott (1985) use a slightly different model, with long-lived Tree and a one-period bond,
and define the equity premium as the difference between the expected return on the risky security and that
of the one-period bond.
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High and Low states are (remember that the expected dividends are the same for both

assets and equal to dB, and that for each asset A, pHA = µpLA):

EH =
πpHT + (1− π)pLT + dB − pHT

pHT
− πpHB + (1− π)pLB + dB − pHB

pHB

= dB

(
1

pHT
− 1

pHB

)
EL =

πpHT + (1− π)pLT + dB − pLT
pLT

− πpHB + (1− π)pLB + dB − pLB
pLB

= dB

(
1

pLT
− 1

pLB

)
= dB

(
µ

pHT
− µ

pHB

)
= µEH

Note that both equity premia are positive. The difference across states is:

EH − EL = (1− µ)EH

This difference is strictly negative (because µ > 1) so the equity premium is counter-

cyclical (lower in the High state than in the Low state). Note that counter-cyclicality

provides the correct incentives: when dividends are low, the equity premium is high,

so investors buy risky Trees rather than consuming scarce dividends; when dividends

are high, the equity premium is low, so investors prefer to consume rather than engage

in risky investment.

9. Cross-sectional and time series properties of asset prices reinforce each

other.
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To be more precise, as the discount of the Tree price relative to the Bond price increases

because risk aversion rises, the difference in Tree prices or in Bond prices across states

increases. That is,

cov(pσB − pσT , pHA − pLA) > 0,

for σ = H,L and A = B, T , with covariance computed based on sampling across cohorts

of agents (economies), keeping everything else constant. “Everything else” means:

initial endowments, private income flows, asset structure, outcome probabilities, as

well as impatience β. Economies are therefore distinguishable at the price level only

in terms of the risk aversion (embedded in x) of the representative agent.39

10. Agents smooth consumption over time.

Individual equilibrium consumptions are stationary but individual endowments are not,

so agents smooth over time.

11. Agents trade to hedge fundamental risk.

If prices were constant, agents could smooth consumption simply by buying or selling

one asset. However, there is price risk, because prices move with fundamentals and

39To obtain the result, write all variables in terms of µ:

pHB − pHT = (0.5)2
(

β

1− β

)
(µ− 1)

pLB − pLT = −(0.5)2
(

β

1− β

)(
1

µ

)
+ constant

pHB − pLB =

(
β

1− β

)(µ
4

)
+ constant

pHT − pLT = −0.5

(
β

1− β

)(
1

µ

)
+ constant

All variables increase in µ (for µ > 1). As µ changes from one agent cohort (economy) to another, these
variables all change in the same direction. Hence, across agent cohorts, they are positively correlated.
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fundamentals are uncertain. Hence, when agents sell assets because private income is

low (relative to average private income), they also need to insure against the risk that

prices might change by the time they are ready to buy back the assets. In equilibrium,

prices increase with the dividend on the Tree, and agents correctly anticipate this. Since

the Tree pays a dividend when prices are high, it is the perfect asset to hedge price

risk. Consequently – but perhaps counter-intuitively! – agents buy Trees in periods

when private income is low and sell when private income is high.

Appendix B: Numerical Example

Here, we provide explicit solutions for equilibrium prices, holdings and consumptions when

taking the parameters as in the experiment and assuming that all agents display identical

constant relative risk aversion, which we vary from 0.2 to 1.0.

• There are an even number n = 2m of agents; agents i = 1, . . . ,m are of Type I, agents

i = m+ 1, . . . , 2m are of Type II.

• Type I agents are endowed with asset holdings bI = 0, τI = 10 and have income eI,t = 15

when t is even and eI,t = 0 when t is odd.

• Type II agents are endowed with asset holdings bII = 10, τII = 0 and have income

eII,t = 15 when t is odd and eII,t = 0 when t is even.

• All agents have constant relative risk aversion γ = .2, .5, 1. (There is nothing special

about these particular choices of risk aversion; we offer then solely for comparison pur-

85



Table XII

Prices, discounts and equity premia for various levels of constant relative risk
aversion (γ).

γ State Tree Bond Price Equity
Price Return Price Return Discount Premium

0.2 High (H) $2.50 16.1% $2.61 15.3% $0.11 0.8%
Low (L) $2.31 25.9% $2.40 25% $0.09 0.9%

0.5 High (H) $2.50 10.8% $2.78 8.8% $0.28 2%
Low (L) $2.04 35.7% $2.27 33.3% $0.23 2.5%

1 High (H) $2.50 3.3% $3.13 -0.7% $0.63 4%
Low (L) $1.67 55% $2.08 49% $0.41 6%

poses. We note that risk aversion in the range .2−.5 is consistent with the experimental

findings of Holt and Laury (2002) and Bossaerts and Zame (2008).)

• The initial state is High.

Table XII provides equilibrium asset prices, the discounts in the price of the Tree relative

to the Bond, and equity premia, as functions of the state and of risk aversion. As expected,

Trees are always cheaper than Bonds. The discount on the Tree is higher in state H than

in state L, while the equity premium is lower in state H than in state L, reflecting the pro-

cyclical behavior of the discount and the counter-cyclical behavior of the equity premium.

The dependence of prices on the state, and the predictability of returns is apparent from the

table.40

40From Equation 5, one can derive the (shadow) price of a one-period pure discount bond with principal of
$1, and from this price, the one-period risk free rate. (For instance, if risk aversion is equal to 1 (logarithmic
utility), then in the High state, the one-period risk free rate is -4% and in the Low state it is 44%.) The
risk free rate mirrors changes in expected returns on the Tree and Bond. The reader can easily verify that,
when defined as the difference between the expected return on the market portfolio (the per-capita average
portfolio of Trees and Bonds) and the risk free rate, the equity premium is countercyclical, just like it is
when defined as the difference between the expected return on the Tree and on the Bond.
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Table AI

Type I agent equilibrium holdings and trades as a function of period
(Odd/Even) and constant relative risk aversion (γ); Type I agents receive

income in Even periods only. Calculations assume that the state in period 1 is
High.

γ Period Tree Bond (Total)
0.2 Odd 5.45 2.70 (8.15)

Even 4.63 6.23 (10.86)
(Trade in Odd) (+0.82) (-3.53) (-2.71)

0.5 Odd 6.32 1.96 (8.28)
Even 3.48 7.24 (10.72)
(Trade in Odd) (+2.84) (-5.28) (-2.44)

1 Odd 7.57 0.62 (8.19)
Even 2.03 7.78 (9.81)
(Trade in Odd) (+5.54) (-7.16) (-1.62)

Table AI displays equilibrium holdings and trades for Type I agents, who receive income

in Even periods and face an income shortfall in Odd periods. (Equilibrium holdings and

trades of Type II agents are of course complements to those of Type I agents.) As expected,

the absence of income in Odd periods is resolved not through outright sales of assets, but

through a combination of sales of Bonds and purchases of Trees. The Bond sales provide

income; the Tree purchases hedge price risk across time.41,42

Equilibrium holdings and trades ensure that Type I agents consume a constant fraction

(48%,) of total available consumption in the economy, independent of state or date; of course

Type II agents consume the complementary fraction (52%). That consumption shares are

41Notice that equilibrium holdings and trade depend on whether the period is odd/even but not on the
state (dividend of the Tree).

42In this Table, we have chosen the state in period 1 to be H so that the Tree pays a dividend of $1. If
the state in Period 1 were L, and risk aversion were strictly greater than 0.5, agents would need to short sell
Bonds – which we do not permit in the experiment.
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constant is a consequence of the assumptions that allocations are Pareto optimal and that

agents have identical homothetic utilities; as we have noted earlier, without the assumption

of identical homothetic utilities all we can conclude is that individual consumptions are

perfectly correlated with aggregate consumption.

Appendix C: Instruction Set

Below is the instruction set (3 pages) as well as a graphical representation of the timeline,

which we used for the experiments.
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PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

Dividends       
Tree $1*10=10 $0*10=0 $0*10=0 $1*10=10 $0*10=0 $1*10=10 

Bond $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 
Income 0 15 0 15 0 15 
Initial Cash $10  

(=10+0+0) 
$15  
(=0+0+15) 

$0  
(=0+0+0) 

$25  
(=10+0+15) 

$0 
(=0+0+0) 

$25  
(=10+0+15) 

Trade       
Tree 0 0 0 0 0 0 

Bond 0 0 0 0 0 0 
Cash Change $0 $0 $0 $0 $0 $0 
Final 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

CASH $ 10.00 $ 15.00 $ 0.00 $ 25.00 $ 0.00 $ 25.00 
 
!
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PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 5 6 4 5 3 
Bond 0 5 6 4 6 4 

Dividends       
Tree $1*10=10 $0*5=0 $0*6=0 $1*4=4 $0*5=0 $1*3=3 

Bond $0.5*0=0 $0.5*5=2.5 $0.5*6=3 $0.5*4=2 $0.5*6=3 $0.5*4=2 
Income $0 $15 $0 $15 $0 $15 
Initial Cash $10  

(=10+0+0) 
$17.5  
(=0+2.5+15) 

$3 
(=0+3+0) 

$21  
(=4+2+15) 

$3 
(=0+3+0) 

$20 
(=3+2+15) 

Trade       
Tree -5 +1 -2 +1 -2 +1 

Bond +5 +1 -2 +2 -2 +1 
Cash Change $0 -$5 +$10 -$7.5 +$10 -$5 
Final 
Holdings 

      

Tree 5 6 4 5 3 4 
Bond 5 6 4 6 4 5 

CASH $ 10.00 $ 12.50 $ 13.00 $ 13.50 $ 13.00 $ 15.00 
!
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Appendix: Time Line Plot To Complement In-

structions

Period 1 Period 2 Period 3 

   Dividends
from initial allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

   Dividends
from carried over allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

Etc.
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Figure 1. Snapshot of the trading interface. Two bars graphically represent the book of
the market in Trees (left) and in Bonds (right). Red tags indicate standing asks; blue tags
indicate standing bids. Detailed information about standing orders is provided by clicking
along either of the bars (here, the Tree bar is clicked, at a price level of $3.66). At the
same time, this populates the order form to the left, through which subjects could submit
or cancel orders. Asset holdings are indicated next to the name of the market, and cash
balances are given in the top right corner of the interface. The remaining functionality in
the trading interface is useful but non-essential.

93



Figure 2. Time series of transaction prices of the Tree (solid line) and the Bond (dashed
line); averages per period. Session numbers underneath line segments refer to Table I.
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Figure 3. Time series of Tree (blue) and Bond (green) prices in a temporary equilibrium
where agents expect prices to revert back to last period’s levels, plus mean-zero gaussian
noise with $0.40 standard deviation. Also shown, in red, is the evolution of the state (High
= 1; Low = 0).
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