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Abstract

We explore the benefits of forecast combinations based on forecast-
encompassing tests compared to simple averages and to Bates-Granger
combinations. We also consider a new combination method that fuses
test-based and Bates-Granger weighting. For a realistic simulation
design, we generate multivariate time-series samples from a macroe-
conomic DSGE-VAR model. Results generally support Bates-Granger
over uniform weighting, whereas benefits of test-based weights depend
on the sample size and on the prediction horizon. In a corresponding
application to real-world data, simple averaging performs best. Uni-
form averages may be the weighting scheme that is most robust to
empirically observed irregularities.

Keywords: Combining forecasts, encompassing tests, model selection,
time series, DSGE-VAR model.



1 Introduction

Forecast combination is an attractive option for the improvement of forecast

accuracy. A linear combination of two or more predictions often yields more

accurate forecasts than a single prediction when useful and independent in-

formation is taken into account (see Bates and Granger, 1969; Clemen, 1989;

Timmermann, 2006; Hsiao and Wan, 2014). Whereas the empirical evidence

generally supports such combinations, there is less agreement on the opti-

mal weighting rule in typical empirical situations. For example, Genre et

al. (2013) support equal-weighted averages, while Hsiao and Wan (2014) see

advantages for more sophisticated schemes, such as Bates-Granger weights.

We are interested in the potential gains in terms of predictive accuracy

that can be achieved by combining forecasts on the basis of a multiple en-

compassing test developed by Harvey and Newbold (2000) as compared to

combinations based on simple uniform weights and on weights inversely pro-

portional to squared forecast errors over a training sample, the procedure

suggested by Bates and Granger (1969). Further, we consider a new hybrid

procedure that eliminates rival models according to a forecast-encompassing

test and then imposes Bates-Granger weights on the remaining candidates.

Convincing demonstrations in support of a forecasting procedure are a
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challenging task. Horse races for empirical data are subject to sampling vari-

ation and thus to arguments of statistical significance. Simulations, on the

other hand, yield exact results but their relevance critically hinges on the

plausibility of their design. Here, we compare the techniques on data gener-

ated by a macroeconomic DSGE-VAR model, whose relevance as a potential

generator of actual macroeconomic data is widely supported by economic the-

orists. A drawback of this complex generator is that simulations are costly in

terms of computer time, such that assessing the effects of varying the design

becomes unattractive. For this reason, we also apply the methods to cor-

responding empirical data in a control experiment. All forecast evaluations

focus on predicting real gross domestic product (GDP), the output variable

of central interest in macroeconomic analysis.

In a related study, Costantini and Kunst (2011) use French and U.K.

data in order to investigate whether and to what extent combined forecasts

with weights determined by multiple encompassing tests help in improving

prediction accuracy, against the backdrop of uniform weighting. They report

some benefits for test-based weighting in one of their two data sets. We are

interested in finding out whether such benefits for test-based weighting can

be regarded as systematic.
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The DSGE-VAR model that is used as the generating mechanism for our

data constitutes a hybrid model that builds on the DSGE (dynamic stochas-

tic general equilibrium) model suggested by Smets and Wouters (2003) and

fuses it to a VAR (vector autoregressive) model following Del Negro and

Schorfheide (2004). Our interest in using DSGE models for generating data

arises from the ubiquitous usage of this modeling approach in current macroe-

conomic practice, which makes it plausible to view designs of this type as

approximating a realistic macroeconomic world. Over the past two decades,

these so-called New Keynesian models have been spreading out in the macroe-

conomic literature, varying in their levels of complexity as well as in the

specific focus of application, such as policy analysis (see, e.g., Smets and

Wouters 2003) or forecasting (see, e.g., Smets and Wouters 2004). In the

empirical implementation of DSGE models, Bayesian estimation techniques

play a major role (see An and Schorfheide, 2007, for a survey). For other

authors who take up a comparable idea of using DSGE models as a labo-

ratory for studying effects in a realistic environment, see Justiniano et al.

(2010) or Giannone et al. (2012). In contrast to most comparable studies,

however, we rely on a hybrid DSGE-VAR specification due to Del Negro and

Schorfheide (2004), as it has evolved that these DSGE-VAR models attain a
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more realistic representation of actual data than the pure DSGE variant.

Our forecasting evaluation assumes that the forecaster has no knowledge

of the underlying DSGE-VAR model and considers four time-series specifica-

tions as potential approximations to the generating mechanism: a univariate

autoregression; two bivariate autoregressions that contain the target vari-

able and one of two main indicator variables, the (nominal) interest rate

and the rate of inflation; and a factor-augmented VAR (FAVAR) model that

adds three estimated common factors to output to form a four-dimensional

VAR. This design implies that the true model is not contained in the toolbox

considered by the forecaster.

The contrast between the sophisticated generating mechanism and the

comparatively simple prediction models is deliberate, as it is representative

for the widespread empirical situation. A crucial feature in this regard is the

quality of approximation of the dynamic behavior of DSGE models by VAR

or FAVAR models, which has been studied by several authors. For example,

Boivin and Giannoni (2006) interpret the FAVAR as the reduced form of a

DSGE model in the context of short-run forecasting. Gupta and Kabundi

(2011) forecast South African data using a DSGE model and FAVAR variants

as rival models and find that the FAVAR models outperform DSGE. We
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emphasize, however, that we do not address the issue of DSGE as a prediction

device—which is a topic of current interest in the forecasting literature—but

we rather use the DSGE-type structures as realistic simulation designs.

From the four models, the forecaster is assumed to form weighted aver-

ages for the target variable of output. To this aim, forecast-encompassing

regressions (see Section 2) are run in all directions, encompassed models are

eliminated as determined by F-statistics and a specific significance level, and

the surviving models are averaged uniformly. The multiple encompassing

test of Harvey and Newbold (2000) is also considered by Costantini and

Pappalardo (2010), who use it to corroborate their hierarchical procedure for

forecast combinations that is based on a simple encompassing test of Harvey

et al. (1998). By contrast, the procedure considered here attains complete

symmetry with respect to all rival forecasting models, as the multiple encom-

passing test is run in all directions.

The test-based elimination procedure is compared to three alternative

techniques: (a) the unweighted average; (b) a weighted average with weights

determined by the MSE (mean squared error) over a training sample as sug-

gested by Bates and Granger (1969); (c) a two-step procedure with test-based

elimination followed by Bates-Granger weighting of the remaining candidates.
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This latter construction is a new technique, and an assessment of its merits

is of particular interest.

We evaluate the forecasts for various sample sizes ranging from 40 to

200 observations, i.e. for a range that may be typical for macroeconomic

forecasting, on the basis of the traditional moment-based criteria MSE and

MAE (mean absolute error) and also by the incidence of better predictions.

For the test procedure, we consider significance levels ranging in 1% steps

from 0—which corresponds to uniform weighting—to 10%. Simple averages

are often reported to be difficult to beat (see de Menezes and Bunn, 1993;

Clements and Hendry, 1998; Timmermann, 2006; Genre et al., 2013).

In summary, our experiment is of interest with regard to two aspects: first,

it assesses the value of forecast combinations based on multiple encompassing

in a realistic DSGE-VAR design; second, it assesses the effects of dimension

reduction in the spirit of FAVAR models on forecast accuracy.

The plan of this paper is as follows. Section 2 outlines all methods: the

forecast-encompassing test, the weighting scheme based on that test, and

the rival prediction models that are to be combined. Section 3 expounds

the simulation design, with details on the DSGE-VAR specification provided

in an appendix. Section 4 presents the results of the prediction evaluation.
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Section 5 reports an empirical application. Section 6 concludes.

2 Methodology

2.1 Encompassing test procedure for forecasting com-

bination

This section presents the encompassing test procedure used to determine the

weights in the combination forecast. The procedure is based on the multiple

forecast encompassing F–test developed by Harvey and Newbold (2000).

Consider M forecasting models that deliver out-of-sample prediction er-

rors e
(k)
t , k = 1, . . . ,M , for a given target variable Y , with t running over an

evaluation sample that is usually a portion of the sample of available obser-

vations. Then, the encompassing test procedure uses M linear regressions:

e
(1)
t = a1(e

(1)
t − e

(2)
t ) + a2(e
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t − e

(3)
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e
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. . .

e
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These homogeneous regressions yield M regression F statistics. A model

k is said to forecast-encompass its rivals if the F statistic in the regression

with dependent variable e
(k)
t is insignificant at a specific level of significance.1

Following the evidence of the forecast-encompassing tests, weighted average

forecasts are obtained according to the following rule. If F–tests reject their

null hypotheses in all M regressions or in none of them, a new forecast will

be formed as a uniformly weighted average of all model-based predictions.

If some, say m < M , F–tests reject their null, only those M − m models

that encompass their rivals are combined. In this case, each of the surviving

models receives a weight of (M −m)−1.

2.2 Bates-Granger weighting

Bates and Granger (1969) introduced a combination method that is typical

for the so-called ‘performance-based combinations’ and assigns higher weights

to forecasts with better forecasting track records:

wm,T =
MSE−1

m,T
∑M

m=1MSE−1
m,T

, (2)

1Harvey and Newbold (2000) use the wording ‘forecast-encompassing’ for the null hy-

pothesis of the F test. We prefer to focus on empirical forecast-encompassing defined by

non-rejection of the null and to use ‘encompassing’ in short.
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whereMSEm,T denotes the mean squared error that evolves from forecasting

based on model m from a sample ending in T . Recently, Hsiao and Wan

(2014) presented some evidence in favor of this simple and appealing method.

Both Bates-Granger weighting and the encompassing-test approach ac-

count for the performance over a training sample. The main difference is

that the encompassing test eliminates uninformative rival models completely,

while Bates-Granger assigns them a smaller weight. On the other hand, each

of the models that was not eliminated obtains the same weight in the test-

based scheme, while Bates-Granger weighting tries to distinguish between

good and excellent models. Thus, it appears worth while to process the two

ideas simultaneously.

This new hybrid procedure eliminates non-informative rivals in a first

step, but then uses Bates-Granger weighting on the remaining models. Note

that the weights should still sum to unity, so formula (2) holds in the second

step with M representing the models that have not been eliminated.

In summary, we consider four forecast combination methods: (i) uniform

averages of all models; (ii) elimination via forecast-encompassing; (iii) Bates-

Granger weighting; (iv) a two-step procedure that combines (ii) and (iii).
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2.3 The forecasting models

Forecasts are based on four classes of time-series models and on combinations

of representatives from these four classes that have been estimated from the

data by least squares after determining lag orders by information criteria.

As information criteria, we employ the AIC criterion by Akaike and the BIC

criterion by Schwarz (see Lütkepohl, 2005, section 4.3).

The first model class (model #1) is a univariate autoregressive model

for the targeted output series. The second and third model are two bivariate

vector autoregressive models (VAR). Model #2 contains output and inflation,

and model #3 contains output and the nominal interest rate. This choice of

added variables has been motivated by the fact that inflation and the interest

rate are often viewed as main economic business-cycle indicators and they

are also more often reported in the media than the remaining variables of

the DSGE system.2

The fourth and last model class (model #4) is a factor-augmented VAR

(FAVAR) model. Suppose that Yt is the target variable to be predicted

(GDP), while Ft is a vector of unobserved factors that are assumed as related

to a matrix of observed variables X by the linear identity F = XΛ with

2These variables are mentioned in Section 3.1 and listed in appendix A.
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unknown Λ, such that the column dimension of F is considerably smaller

than that of X . A FAVAR model can be described as follows:

Φ(L)









Yt

Ft









= εt, (3)

where Φ(L) = I − Φ1L − . . . − ΦpL
p is a conformable lag polynomial of

finite order p. L denotes the lag operator, and I denotes the identity matrix.

Equation (3) defines a VAR in (Yt, F
′

t )
′. This system reduces to a standard

univariate autoregression for Yt if the terms in Φ(L) that relate Yt to Ft−j , j =

1, . . . , p are all zero. Equation (3) cannot be estimated directly, as the factors

Ft are unobserved.

The proper estimation of the models requires the use of factor analysis

(see Stock and Watson, 1998, 2002). The estimation procedure consists of

two steps. In the first step, the factors F are estimated using principal

component analysis. The minimum of the BIC(3) criterion developed by Bai

and Ng (2002) determines the number of factors, i.e. the dimension of F . In

the second step, the FAVAR model is estimated by a standard VAR method

with Ft replaced by the estimate F̂t that is available from the first step.

Thus, in our forecast experiments, the FAVAR forecasts rely on VAR

models for the target output series and three additional factors that have
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been formed from combinations of the nine remaining observable variables of

the DSGE system that is detailed in appendix A. The choice of the number

three has been motivated by the fact that it is customary not to use more than

a maximum of three factors if nine series are available. In fact, we use three as

an upper bound on the factor dimension but the information criterion BIC(3)

always selects the maximum dimension. This indicates that the variables in

the DSGE system are quite heterogeneous and that the information in the

system cannot be easily condensed to a low dimension.

The FAVAR formed using this procedure has a dimension of four. Indeed,

we considered an alternative variant with two factors only for all of our

simulation designs. Excepting some designs at the smallest samples, however,

the three-factor version yields the better forecasting performance. For this

reason, we report the three-factor version exclusively.

The four rival model classes are incompletely nested, with models #2 to

#4 representing generalizations of model #1 and models #2 and #3 repre-

senting special cases of #4. Due to the lag selection that tends to choose

larger lag orders for the lower-dimensional model, however, the general situ-

ation is to be seen as non-nested.

For a given considered sample size of N , all models are estimated for
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samples of size 3N/4 to N−h−1 using expanding windows, with h = 1, . . . , 4

denoting the prediction horizon. Then, the next observation at position

t = 3N/4 + h, . . . , N − 1 is forecasted. Thus, an original sample of size

N = 200 yields a one-step forecasts for observation t = 151 based on 150

observations, then for t = 152 based on 151 observations etc., finally for

t = 199 based on 198 observations. It follows that the reported accuracy

measures average estimates of different quality. Our design represents the

action taken by a forecaster who observes 199 data points and targets the

forecast for the observation atN = 200 by optimizing her combinations of the

basic rival forecasts to this aim. In other words, the report of the forecasts

from the basic rival models is to be seen as an intermediate step.

For each replication, we consider combinations of forecasts based on

weighted averages of the four basic rival models for the observations at

time points t = N . These combinations are determined by the forecast-

encompassing tests outlined above. For the F tests, we consider significance

levels of k ∗ 0.01 with k = 0, . . . , 10. The value k = 0 corresponds to a uni-

form average, as no F statistic can be significant at the 0% level and hence

models always encompass all other models. By contrast, k = 10 corresponds

to a significance level of 10%. At sharp levels, the null remains often unre-
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jected, and many combinations will be uniform. At looser levels, rejections

become more common, and some models will be excluded from the average.

At extreme levels, no model will encompass and weights will again tend to

be uniform. We do not consider levels beyond 10%, however, as these are

unlikely to be of practical use, and some unreported experiments insinuate

that they do not improve predictive accuracy.

3 The data-generating process

Details on the DSGE-VAR model specification that underlies our simulations

are provided in the appendix A.

3.1 The DSGE-VAR simulation design

The original medium-scale closed-economy DSGE model of the Euro area by

Smets and Wouters (2003) was estimated from quarterly data by Bayesian

techniques. At first sight, it appears to have two desirable properties for cre-

ating artificial data, namely relevance in macroeconomics due to widespread

usage and an attractive level of complexity.

Nonetheless, whereas Smets and Wouters (2003) find that their DSGE
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models attain higher marginal likelihoods than VARs, Del Negro et al. (2007)

warned that such findings crucially hinge on the observation sample. Even

relatively sophisticated DSGE models are not robust against small changes in

the sample period, hence a non-negligible degree of misspecification in DSGE

models is apparent. In consequence, policy recommendations and forecasts

based on this model class could be biased, and the empirical plausibility of

artificial data generated by such a model may be impaired. Moreover, Smets

and Wouters (2007) find that the estimates for some of the model parameters

differ considerably between the ‘Great Inflation’ (1966:1–1979:2) and ‘Great

Moderation’ (1984:1–2004:4) subsamples in US data, which casts doubt on

the validity of approximating the actual economy by a DSGE model with

time-constant parameters.

One way of addressing this misspecification issue is to replace the pure

DSGE data-generating process by a hybrid DSGE-VAR that is known to be

much less sensitive to changes in the observation period and also typically

attains a higher marginal likelihood than both VAR and DSGE specifications

(see Del Negro et al., 2007). The DSGE-VAR developed by Del Negro and

Schorfheide (2004) and Del Negro et al. (2007) is a Bayesian VAR (BVAR)

that uses the information provided by a DSGE model as an informative prior

16



for BVAR estimation. The impact of the DSGE information relative to the

actual sample information is measured by a hyper-parameter ℵ ∈ (0,∞],

which can either be kept fixed during estimation or estimated together with

the DSGE model parameters (see Adjemian et al., 2008). A value of ℵ close

to 0 corresponds to an unrestricted VAR at the one extreme, whereas a value

of ℵ equal to ∞ corresponds to the VAR approximation of the DSGE model

at the other extreme (see Del Negro et al., 2007).

The misspecification of the DSGE model class also shows in the optimal

weight of the DSGE information for constructing the DSGE-VAR prior of

ℵ∗ = 1.25 for the sample from 1974:2–2004:1 in Del Negro et al. (2007),

which reflects an optimal impact of the information provided by the DSGE

model of around 55% for DSGE-VAR estimation. For the derivation of the

DSGE-VAR prior and posterior distributions as well as for a more technical

description of the DSGE-VAR methodology, see Del Negro and Schorfheide

(2004) and Del Negro et al. (2007).

Our aim is to generate artificial data that are empirically plausible across

countries and sample periods. We therefore apply the subsequent three-step

DSGE-VAR procedure while employing the Dynare preprocessor for Matlab,

which is downloadable in its current version from http://www.dynare.org:
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Step 1. We generate 2,000 time series, each of length 1,100, for ten

key macroeconomic variables (consumption Ĉ, real wage ŵ, capital K̂, in-

vestment Î, real value of installed capital Q̂, output Ŷ , labor L̂, inflation π̂,

rental rate of capital r̂k, and gross nominal interest rate R̂) from the original

Smets and Wouters (2003) model as laid out in appendix A. In line with the

source literature, hats on variables denote percentage deviations from the

non-stochastic steady state.

Step 2. Discarding the first 100 observations of each of the 2,000 time

series as burn-in draws, the remaining T = 1, 000 observations serve as the

data sample for estimating a DSGE-VAR of lag order p = 2 via Bayesian

techniques. The posterior distribution of a DSGE-VAR model cannot be de-

termined analytically, hence a Monte-Carlo Markov chain sampling algorithm

has to be invoked to simulate the distribution of the vector of DSGE-VAR

model parameters (for a survey on Bayesian inference in DSGE models see

An and Schorfheide, 2007). In particular, we adopt a Metropolis-Hastings

algorithm with two parallel Monte-Carlo Markov chains, each consisting of

55,000 draws. The first half of the draws are discarded before computing the

posterior simulations. Roberts et al. (1997) find the optimal acceptance rate

of draws at 0.234, which is met approximately across simulations.
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The DSGE model used for constructing the DSGE-VAR prior again is

the model by Smets and Wouters (2003) as given by equations (A.1)–(A.10)

in appendix A, with all parameters explicitly listed in Table 1. Due to the

computational burden associated with 2,000 full-fledged Metropolis-Hastings

simulations, we declare our target variable of interest (Ŷ ), the two additional

variables used in the bivariate VAR forecast models (R̂, π̂), and two auxiliary

variables (ŵ, r̂k) as the only observed variables, i.e. there are m = 5 observed

variables altogether. We further restrict the number of free parameters to

those listed in Table 2. Concerning the prior probability densities as well as

the prior means and standard deviations of the DSGE model parameters, we

again follow Smets and Wouters (2003).

In line with Adjemian et al. (2008), we choose to estimate the hyper-

parameter ℵ along with the so-called ‘deep’ parameters of the DSGE model.

We assume a uniform distribution for the hyper-parameter between ℵ = 0.1,

corresponding to an impact of the DSGE model information of about 10%,

and ℵ = 10, corresponding to an impact of the DSGE model information of

about 90% (note that, as in Adjemian et al., 2008, the minimum value to

obtain a proper prior ℵmin ≥ (mp + m)/T = 0.015 is satisfied). All other

parameters listed in Table 1 are kept fixed at the indicated values during
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estimation.

Step 3. After retrieving the posterior distributions of the model pa-

rameters for each of the 2,000 replications, we generate time series of length

1,100 for the ten macro variables using the pure perturbation algorithm of

Schmitt-Grohé and Uribe (2004). In this step, parameter values are set at

the means of the posterior distributions.

This step is repeated 2,000 times to obtain 2,000 new time series of ar-

tificial data. Whereas the first 100 observations of each time series are dis-

carded as starting values, the remaining 1,000 observations are separated

into shorter non-overlapping time series. Thus, the number of replications

depends on the sample size. For the largest sample size of N = 200, 10,000

replications are available for our forecasting experiments. At the other ex-

treme, for the smallest considered sample size of N = 40, the number of

available replications increases to 50,000. The sample size N is varied over

20 ∗ j for j = 2, 3, . . . , 10. Samples smaller than N = 40 would not admit

any useful forecasting evaluation, due to the relatively high dimension of the

system.

If the procedure is interrupted after step 1, it delivers pure DSGE data.

By construction, the DSGE weight in the final DSGE-VAR model is com-
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paratively large, typically around 87%. Nevertheless, the VAR contribution

turns out to be important for forecasting performance.

4 Results

This section consists of three parts. First, we focus on the relative forecasting

performance of the four basic rival models. The second subsection looks at

the weights that these rival models obtain in the test-based forecast combi-

nations. The third part considers the performance of the combined forecasts

in detail.

4.1 Performance of the rival models

Based on the evaluation of mean squared errors, Figure 1 shows that the

factor VAR model dominates at larger sample sizes in all designs, that is for

AIC as well as BIC, and the same holds for the unreported two-factor version.

Figure 1 refers to the full DSGE-VAR version of the model. Comparable

graphs for the pure DSGE model are similar and therefore omitted.

The three factors identified by the FAVAR algorithm vary considerably

across replications. A rough inspection of the average weights of observed
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variables shows that the first factor tends to incorporate investment I and

the capital stock K. Even the second factor tends to assign large weights

to I and to K, with some contributions from wages W and the rental rate

rk. The third factor focuses on consumption C and on wages W , with some

further contributions from the labor force L and the real value of capital Q.

In small samples, the univariate autoregression dominates but it loses

ground as the sample size increases. Among the two bivariate VAR models,

a clear ranking is recognizable. Model #3 with output and nominal interest

rate achieves a more precise prediction for output than model #2 with output

and inflation. This ranking is due to the structure of the DSGE model that

assumes stronger links between output and the interest rate than between

output and inflation. In fact, model #3 is pretty good for intermediate

samples and can compete with the FAVAR specification at all but the largest

samples, particularly in the AIC variants.

By contrast, the FAVAR performance is extremely poor in small samples,

slightly worse with AIC than with BIC. AIC selects the more profligate spec-

ification, with the largest number of free parameters to be estimated. For

BIC order selection, FAVAR overtakes its rivals for good around N = 100,

whereas slightly larger samples are needed for AIC.
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Both graphs in Figure 1 use a common scale, which admits a rough com-

parative visual assessment of the four variants. An obvious feature is the

inferior performance of AIC in small samples, due to parameter profligacy.

In large samples, AIC and BIC perform similarly for the FAVAR model.

BIC selection, however, becomes less attractive for its less informative rival

models that would need longer lags for optimizing their predictions.

Figure 1 restricts attention to single-step prediction. Results for longer

horizons are qualitatively similar and are not reported. They are available

upon request.

4.2 Weights in the combination forecasts

The univariate model is best for small samples, the FAVAR is best for large

samples. Thus, one may expect that the FAVAR model receives a stronger

weight in the encompassing-test weighting procedure, as the samples get

larger.3 The upper graphs in Figure 2 show that this is indeed the case.

There are slight differences between the AIC and the BIC search. AIC implies

a share of FAVAR of less than 25% for N = 40, meaning that the FAVAR

3Ericsson (1992) showed that the null hypothesis of the forecast encompassing test is

a sufficient condition for forecast MSE dominance.
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is often encompassed. BIC, on the other hand, chooses the proportional

share even for N = 60 and N = 80. While for BIC order selection the

less informative rivals outperform the FAVAR model in small samples with

respect to the MSE criterion (see Figure 1), this behavior does not entail

forecast encompassing, due to the heavily penalized and thus typically low

lag orders. Otherwise, reaction is fairly monotonic in the sense that the

FAVAR share increases with rising N and also with looser significance level.

As the significance level increases, weights diverge from the uniform pat-

tern. We note, however, that even at 10% and N = 200 the weight allotted to

the FAVAR model hardly exceeds 40%. This value is an average over many

replications with uniform weighting and comparatively few where weights of

1/3, of 1/2, or even of one are allotted to FAVAR.

If the elimination via forecast encompassing is combined with Bates-

Granger weights, one may expect a boost in the weight differences. The

lower graphs in Figure 2 show that this is not really the case. Average weight

preferences for specific models remain moderate, and the final weights after

the second step are hardly affected on average, maybe excepting a stronger

downweighting of the FAVAR model at the smallest sample sizes. This re-

silience of average weights across procedures does not imply that the same
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weights have been allotted for the same trajectories, and the next subsection

will demonstrate that the overall MSE is indeed affected. The combined pro-

cedure tends to assign the weights more accurately, even though the average

weights remain identical.

Whereas the weights for the univariate model and the bivariate VAR with

inflation monotonically decrease with increasing N , weights for the bivariate

model #3 with the interest rate peak for intermediate samples and are over-

taken by FAVAR as N exceeds 120. Contrary to the FAVAR weights, they

rise fast at small significance levels and then level out. Model #3 captures the

essence of the DSGE-VAR dynamics at reasonable sample sizes well, and if it

wins the encompassing tournament it does so typically at sharp significance

levels. Figure 3 provides a summary picture of the weight allotted to model

#3 and demonstrates that this model remains competitive in larger sam-

ples, with weights decreasing only slowly as N approaches 200, particularly

in the AIC variant, thus confirming the impression from Figure 1. Again,

we note the robustness of average weights when the two-step procedure with

Bates-Granger weighting of non-eliminated models is used rather than the

single-step elimination method.

Figures 2 and 3 refer to the full DSGE-VAR version of the model. With
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regard to the FAVAR model, comparable graphs for the pure DSGE model

are similar. Model #3, however, receives substantially more support in the

pure DSGE design. It is conceivable that the comparatively large weights

for this model even for N = 200 are responsible for the poorer performance

of the test-based procedure that is reported in the following subsection.

When the prediction horizon grows, the main features of Figure 2 and 3

continue to hold, with one noteworthy exception. For larger samples, Figure

2 shows a smooth increase of the weight allotted to the FAVAR model with

rising significance level. At larger horizons, this slope steepens, such that

even at the 1% level a considerable weight is assigned to FAVAR. The larger

weight allotted to FAVAR coincides with a lesser weight assigned to the

bivariate model #3. This stronger discrimination among rival models affects

the accuracy comparison to be reported in the next subsection.

4.3 Performance of test-based weighting

In order to evaluate the implications of the test-based method for forecasting,

we use three criteria: the mean squared error (MSE), the mean absolute

error (MAE), and the winning incidence. Generally, the MAE yields similar

qualitative results as the MSE and we do not show the MAE results in detail.

26



The qualitative coincidence of MAE and MSE naturally reflects the normal

distribution used in the simulation design.

Our graphical report is restricted to the DSGE-VAR design. For the

DSGE design without the VAR step, the main qualitative features are similar,

with support for test-based elimination however growing more impressively as

the forecast horizon increases. All detailed results are available upon request.

Figures 4 and 5 show ratios of the MSE achieved by all considered proce-

dures relative to the benchmark of Bates-Granger weights: uniform averages,

test-based elimination followed by uniform weights, test-based elimination

followed by Bates-Granger weights. The graphs address AIC and BIC order

selection in parallel, as we view the two criteria as two inherently differ-

ent approaches, and thus do not report comparisons between AIC and BIC

performance. Typically, BIC dominates AIC for the smallest sample sizes,

while AIC performs better for N > 80, which is well in line with the known

forecast-optimizing property of AIC. All these figures focus exclusively on

testing at the 1% significance level, as this is the value at which prediction

accuracy measures are optimal almost for all specifications.

For single-step prediction (see the upper panels of Figure 4), the test-

based procedures clearly benefit from larger sample sizes. At N ≥ 100, the
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combined scheme is best, while for smaller samples the simple Bates-Granger

cannot be beaten. For N ≥ 120, even the test-based weighting procedure

with uniform weights of survivors beats the benchmark. At all sample sizes,

naive uniform weights perform less convincingly, coming in last for larger

samples, although the differences are not too large at less than 1%. We

again note the advantage of simulation, as such differences may often be too

small to be significant in an empirical investigation, while they are clearly

larger than the sampling variation in our simulation design.

For two-step prediction (see the lower panels of Figure 4), relative differ-

ences increase to around 2%, but the dominance of the combined procedure

at larger samples becomes less convincing. The test-based weighting scheme

is unable to beat the Bates-Granger benchmark at any sample size, and pure

uniform averages rank last in all specifications. We note that we decided

to use the Bates-Granger weights as well as the elimination procedure on

two-step predictions proper, as we think this is more logical than basing all

procedures on single-step predictions. This implies that the selected pre-

diction models as well as their relative weights differ at different horizons.

The results suggest that the downweighting of poorly performing prediction

models tends to be more important than eliminating the worst models.
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If the step size increases, the occurrence of ties among the procedures

becomes less prominent. This, in turn, leads to a clearer separation with

regard to the accuracy ensuing from prediction models. The weight allotted

to the best model, in large samples the FAVAR model, increases.

The impression that larger prediction horizons benefit the test-based pro-

cedure is confirmed for the three-step prediction that yields the graphs in the

upper part of Figure 5. Test-based weighting dominates uniform weights at

all sample sizes and specifications. Bates-Granger weighting is clearly bet-

ter than test-based weighting, and the hybrid two-step method even beats

Bates-Granger at most sample sizes. These features are slightly enhanced

for the four-step predictions summarized in the lower part of Figure 5. Even

for four steps, relative differences at N = 100 remain around 3%.

The criteria MAE and MSE are summary statistics, and they are based

on moments of the error distributions. A lower MSE may be attained by a

forecast that is actually worse in many replications but wins few of them at

a sizeable margin. Therefore, we also consider the direct ranking of absolute

errors. The incidence of a minimum among all levels could indicate which

level is more likely to generate the best forecast. There are many ties, how-

ever, so we only report the direct comparison for the 1% test-based weighting

29



in more detail. The upper graphs in Figure 6 show the frequencies of the two

models of generating the smaller prediction error for the variants without

Bates-Granger weights, whereas the lower graphs refer to the variants with

Bates-Granger weights. Among others, Chatfield (2001) advocated the usage

of the winning incidence as a measure of predictive accuracy.

For one-step forecasts, Figure 6 demonstrates that the differences in MSE

reported above are due to comparatively few replications. Ties are many

even for large samples (around 70%) and are the rule for small samples

(around 90%). At small samples, no advantage for the test-based scheme is

recognizable. At large samples, test-based weighting gains some margin over

its rival but fails to impress.

In line with the MSE graphs, also the ‘winning frequency’ for the test-

based scheme improves at larger forecast horizons. At two steps, the two

schemes are still comparable. There is a slight advantage for the encompass-

ing test in the BIC versions, while uniform weighting is remarkably strong in

the AIC versions. At three and four steps, however, the test-based procedure

gains a sizeable margin even for small samples. Ties become less frequent

and their frequency falls to around 30% at horizon four and larger samples.

In summary, at larger prediction horizons test-based weighting becomes
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increasingly attractive. At short horizons, the merits of test-based weighting

are most pronounced for very small samples, where the accuracy of prediction

is low, and at larger samples, where weighting becomes reliable.

5 Application to empirical data

This section reports on an application of the forecast combination techniques

to empirical data that are the counterpart to the simulated data that underlie

the DSGE-VAR model. This experiment can be interpreted in either of two

ways. Firstly, it may be seen as a test for the validity of our lab results in

a real-life economic environment. Alternatively, it may be seen as an assess-

ment of the coincidence between the DSGE-VAR model and the empirical

data.

Quarterly data for the U.S. economy ranging from 1955:1 until 2013:4

are used for the empirical application, thus resulting in 236 observations al-

together. All variables were taken from the database of the Federal Reserve

Bank of St. Louis (http://research.stlouisfed.org/). Concerning the

variables employed, we closely follow Smets and Wouters (2007), i.e. all vari-

ables are transformed into steady-state percentage deviations before they en-
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ter estimation to be in line with the model requirements as given by equations

(A.1)–(A.10) in appendix A (see the online appendix to Smets and Wouters

(2007) https://www.aeaweb.org/articles.php?doi=10.1257/aer.97.3.586

for more details on the calculations). Except for extending the original Smets

and Wouters (2007) sample beyond 2004, there are just two more differences

compared to the original dataset: first, the base year for prices is 2009 instead

of 1996; second, in addition to the seven original variables Ĉ, ŵ, Î, Ŷ , L̂, π̂, R̂

that were used in their original contribution, also for the remaining three

variables of the model data were retrieved: the capital stock at constant na-

tional prices for K̂, the real interest rate of 10-year U.S. government bond as

a proxy for the rental rate of capital r̂k, and the real value of total liabilities

and equity of nonfinancial corporations to proxy for the real value of installed

capital Q̂.

On the basis of data windows of length N , with N = 40 + 20j and

j = 0, . . . , 9, we forecast the observation of output h steps after the end of

the window, with h = 1, . . . , 4. Data windows are moving along the physical

sample, such that the first window starts in t = 1 and ends in t = N , the

second one starts in t = 2 and ends in t = N + 1, etc., until the data set

is exhausted. Thus, we obtain 236 − N − 4 cases for the specific window
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length N , almost 200 cases for the shortest window N = 4 and only 12

cases for the longest window N = 220. Due to the construction principle,

the meaning of N does not correspond exactly to the sample size in the lab

simulations. There is some dependence across cases, while the replications

in the lab simulations are independent, and sampling variation is strong for

the longer samples, while sampling variation is mimimal and controllable in

the lab simulations due to the high number of replications. With empirical

data, different windows reflect different episodes in business and other cycles,

while the expansion of the window in the lab experiment may be dominated

by convergence to asymptotic structures.

In short, the results of the empirical experiment are a bit sobering with

regard to the suggested weighting schemes that work well in the lab simu-

lations. Figure 7 shows details, with the largest window N = 220 omitted,

as it uses few cases and tends to blur the picture. Performance tends to be

U–shaped, with precision improving and then deteriorating as N grows.

Because the performance of the rival procedures is subject to sampling

variation, in contrast to the lab results, we can subject it to forecast accuracy

tests. While, to our knowledge, the problem of testing predictive accuracy

among weighting patterns has not been fully elaborated yet, we rely on the
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observation that the four basic weighting schemes cannot be regarded as

nested models that would invalidate the classical test due to Diebold and

Mariano (1995). Thus, we ran this test on all six pairs of weighting schemes.

For one-step forecasts, all differences among procedures are insignificant at

the 10% level. At larger horizons, two clusters are recognizable: there is no

significant difference between uniform weights and Bates-Granger, and there

is no significant difference between test-based weighting and our combined

procedure either. There are significant differences, however, between the first

and the second group for sample sizes N = 100 and sometimes also N = 120,

in the sense that the methods without test-based elimination are significantly

better. Even significance for the reverse direction occurs, however rarely, for

large horizons and the smallest sample size N = 40.

All forecast combinations, although not much different among themselves,

outperform the individual forecasting models by a wide margin. Whereas the

FAVAR model dominates its rivals at larger N in the lab simulations, no sin-

gle model appears to be markedly stronger than the others in the empirical

experiment. FAVAR gains ground between short and intermediate sample

sizes, and deteriorates again for N > 100, whereas the univariate AR model

performs surprisingly well for large N , presumably reflecting the fact that
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dynamics across variables are subject to stronger variations than univariate

dynamics. Figure 8 shows relative weights for the four models, with AIC–

based lag orders. The shown weights never deviate far from the uniform 1/4,

and this appears to be responsible for the strength of the simple weighting

schemes. The test-based procedures imply a stronger emphasis on individual

models, thus they tend to discard potentially important information. Elimi-

nation pays off if one of the models performs poorly, and this occurs in the

lab simulations where the FAVAR model alone absorbs all important forecast

information, but elimination does not work if all models perform similarly.

In short, encompassed models contribute in empirically typical situations,

where all models are wrong but none of them is too useful, while encom-

passed models do not contribute in lab situations, where models converge to

asymptotic approximations to a time-constant data-generating process.

6 Conclusion

The results of our forecast experiments in the DSGE-VAR lab are well in

line with the empirical evidence provided by Costantini and Kunst (2011).

Generally, they support the traded wisdom in the forecasting literature that
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uniform weighting of rival model forecasts is difficult to beat in typical fore-

casting situations. Large sample sizes are needed to reliably eliminate inferior

rival models from forecasting combinations. In many situations of empirical

relevance, the information contained in slightly worse predictions as marked

by individual MSE performance may still be helpful for increasing the preci-

sion of the combination.

Forecast-encompassing tests imply a reasonable weighting of individual

models in our experiments. Univariate models yield the best forecasts in

small samples, and sophisticated higher-dimensional models receive a small

weight. With increasing sample size, our experiments clearly show that the

factor-augmented VAR achieves superior predictive accuracy and thus it re-

ceives the largest weights in test-based combinations. The benefits with

respect to an optimized combination forecast, however, turn out to be more

difficult to exploit. At the one-step horizon, the test-based combination

forecast fails to show a clear dominance over a simple uniform weighting

procedure in the range of N = 60 to N = 120 that is of strong empirical

relevance. Only at horizons of three and beyond does the dominance of test-

based weighting become convincing. A noteworthy general result is that, for

the encompassing test, the sharpest significance level of 1% tends to yield
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the best results.

In the DSGE-VAR design, support for the encompassing test as a tool

for weighting is stronger than in the pure DSGE design. Because we, in

principle, view the DSGE-VAR as a more realistic data-generating process,

this aspect benefits the test-based procedure. The outcome of our empiri-

cal control experiment, however, is again much less supportive for test-based

weights, with a particularly strong showing for simple averages. We see the

main reasons for this discrepancy in irregularities in empirical data that are

insufficiently matched by any economic models, including the most sophisti-

cated DSGE-VAR. Such irregularities benefit the comparatively most robust

procedure, in our setting unweighted averages, as long as the descriptive

power of the prediction models is limited. By contrast, if at least one of the

rivals achieves a high degree of descriptive accuracy, such as the FAVAR in

the DSGE-VAR lab, the sophisticated combination of test-based elimination

and Bates-Granger weights may deserve attention.
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[30] Schmitt-Grohé, S., Uribe, M. (2004). Solving dynamic general equilib-
rium models using a second-order approximation to the policy function.
Journal of Economic Dynamics and Control 28:755–775.

[31] Smets, F., Wouters, R. (2003). An Estimated Dynamic Stochastic Gen-
eral Equilibrium Model of the Euro Area. Journal of the European Eco-

nomic Association 1:1123–1175.

[32] Smets, F., Wouters, R. (2004). Forecasting with a Bayesian DSGE
Model: An Application to the Euro Area. Journal of Common Market

Studies 42:841–867.

[33] Smets, F., Wouters, R. (2005). Comparing Shocks and Frictions in US
and Euro Area Business Cycles: a Bayesian DSGE Approach. Journal of
Applied Econometrics 20:161–183.

[34] Smets, F., Wouters, R. (2007). Shocks and Frictions in US Business
Cycles: A Bayesian DSGE Approach. American Economic Review 97:586–
606.

[35] Stock, J.H., Watson, M.W. (1998). Diffusion indexes. Working paper
No. 6702, NBER.

[36] Stock, J.H., Watson, M.W. (2002). Macroeconomic forecasting using
diffusion indexes. Journal of Business & Economic Statistics 20:147–162.

40



[37] Timmermann, A. (2006). Forecast combinations, in: Elliott, G.,
Granger, C.W.J., Timmermann, A. (Eds.), Handbook of Economic Fore-

casting. Elsevier.

41



Tables and figures

42



Table 1: Parameters of the DSGE model and their values.

Parameter Value Description

β 0.99 Intertemporal discount factor
τ 0.025 Depreciation rate of capital
α 0.3 Capital output ratio
ψ 1/0.169 Inverse elasticity of capital utilization cost
γp 0.469 Degree of partial indexation of price
γw 0.763 Degree of partial indexation of real wage
λw 0.5 Mark-up in real wage setting
ξp 0.908 Degree of Calvo price stickiness
ξw 0.737 Degree of Calvo real-wage stickiness
σl 2.4 Inverse elasticity of labor supply
σc 1.353 Coefficient of relative risk aversion in consumption
h 0.573 Degree of habit formation in consumption
φ 1.408 1 + share of fixed cost in production
ϕ 1/6.771 Inverse of investment adjustment cost
r̄k 1/β − 1 + τ Steady-state rental rate of capital
invy 0.22 Share of investment to output
ky invy/τ Share of capital to output
cy 0.6 Share of consumption to output
gy 1− cy − invy Share of government spending to output
rπ 1.684 Inflation coefficient
r∆π 0.14 Inflation growth coefficient
ry 0.099 Output coefficient
r∆y 0.159 Output growth coefficient
ρ 0.961 Degree of interest-rate smoothing
ρεl 0.889 Autocorrelation coefficient for labor supply shock
ρεa 0.823 Autocorrelation coefficient for productivity shock
ρεb 0.855 Autocorrelation coefficient for consumption preference shock
ρεg 0.949 Autocorrelation coefficient for government spending shock
ρπ̄ 0.924 Autocorrelation coefficient for inflation objective shock
ρεi 0.927 Autocorrelation coefficient for investment shock
ςηl 3.52 Standard deviation of labor supply shock
ςηa 0.598 Standard deviation of productivity shock
ςηb 0.336 Standard deviation of consumption preference shock
ςηg 0.325 Standard deviation of government spending shock
ςηπ̄ 0.017 Standard deviation of inflation objective shock
ςηi 0.085 Standard deviation of investment shock
ςηr 0.081 Standard deviation of interest-rate shock
ςηp 0.16 Standard deviation of price mark-up shock
ςηw 0.289 Standard deviation of real-wage mark-up shock
ςηq 0.604 Standard deviation of equity-premium shock
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Table 2: DSGE-VAR prior information.

Parameter Domain Prior PDF Prior Mean Prior Std. Dev.

γp [0, 1) Beta 0.75 0.15
γw [0, 1) Beta 0.75 0.15
ξp [0, 1) Beta 0.75 0.05
ξw [0, 1) Beta 0.75 0.05
rπ (−∞,+∞) Normal 1.7 0.1
r∆π (−∞,+∞) Normal 0.3 0.1
ry (−∞,+∞) Normal 0.125 0.05
r∆y (−∞,+∞) Normal 0.0625 0.05
ρ [0, 1) Beta 0.8 0.1
ρεl [0, 1) Beta 0.85 0.1
ρεa [0, 1) Beta 0.85 0.1
ρεb [0, 1) Beta 0.85 0.1
ρεg [0, 1) Beta 0.85 0.1
ρπ̄ [0, 1) Beta 0.85 0.1
ρεi [0, 1) Beta 0.85 0.1
ςηl [0,+∞) Inv. Gamma-1 1 +∞
ςηa [0,+∞) Inv. Gamma-1 0.4 +∞
ςηb [0,+∞) Inv. Gamma-1 0.2 +∞
ςηg [0,+∞) Inv. Gamma-1 0.3 +∞
ςηπ̄ [0,+∞) Inv. Gamma-1 0.02 +∞
ςηi [0,+∞) Inv. Gamma-1 0.1 +∞
ςηr [0,+∞) Inv. Gamma-1 0.1 +∞
ςηp [0,+∞) Inv. Gamma-1 0.15 +∞
ςηw [0,+∞) Inv. Gamma-1 0.25 +∞
ςηq [0,+∞) Inv. Gamma-1 0.4 +∞
ℵ [0.1, 10] Uniform

Shape and scale parameters for gamma and beta distributions are implicitly given by the

priors for the mean and for the standard deviation.
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Figure 1: MSE for the four competing forecast models in single-step prediction.

Solid curve stands for FAVAR, dashed for the univariate AR model, dotted and

dash-dotted for bivariate VAR models. Left graph for AIC search, right graph for

BIC search.
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Figure 2: Weights allotted to the FAVAR model in dependence of the sample size

and of the significance level for the encompassing test in single-step prediction. Left

graph for AIC search, right graph for BIC search. Upper graphs for the single-step

encompassing test, lower graphs for the two-step combination with Bates-Granger

weights.
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Figure 3: Weights allotted to the bivariate model with interest rate in dependence

of the sample size and of the significance level for the encompassing test in single-

step prediction. Arrangement of graphs as in Figure 2.
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Figure 4: Ratios of MSE relative to Bates-Granger benchmark. Prediction hori-

zons one and two. Order selection according to AIC on the left and to BIC on the

right. Dashed curve represents uniform weighting, dash-dotted curve stands for

test-based weighting, dotted curve for the hybrid technique.
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Figure 5: Ratios of MSE relative to Bates-Granger benchmark. Prediction hori-

zons three and four. Order selection according to AIC on the left and to BIC on

the right. For meaning of curves, see Figure 4
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Figure 6: Frequency of a smaller absolute forecast error due to test-based weight-

ing at 1% (black curves) relative to procedures without test-based elimination (gray

curves). Upper graphs compare direct test-based weighting and uniform weights,

lower graphs compare our combined procedure and Bates-Granger weights. Fore-

casts at horizons one (solid), two (dashed), three (dotted), and four (dash-dotted).

Lag orders determined by AIC on the left, by BIC on the right.
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Figure 7: Performance of weighting schemes with empirical data. Solid curve

denotes the combined procedure of Bates-Granger weights and test-based elimina-

tion; dashes denote pure test-based elimination; dash-dots denote Bates-Granger

weights; dots denote uniform weights. Graphs correspond to horizons one to four.
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Figure 8: Weights assigned to prediction models according to the Bates-Granger

scheme for the empirical data set. Solid curve denotes the FAVAR model, dashed

curve denotes the univariate AR model, dotted and dash-dotted curves stand for

the two bivariate models. Graphs correspond to horizons one to four.
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A A medium-scale DSGE model

Smets and Wouters (2003) originally developed a medium-scale DSGE model

of the Euro area and estimated it based on quarterly data and Bayesian

techniques. Our objective, however, is to use this closed-economy model in

order to create artificial data.

We decided for the model by Smets and Wouters (2003) due to the follow-

ing two properties. First, the model remains present in the empirical DSGE

literature. Besides its original application for policy analysis and forecasting

in the Euro area (see Smets and Wouters, 2003, 2004), it was also successfully

adapted to US data (see Smets and Wouters, 2005, 2007). Second, it achieves

an attractive level of complexity, as it concentrates on the main features of a

realistic macroeconomy and avoids being too country-specific. For example,

Onatski and Williams (2010) established the qualitative robustness of the

main dynamic features of the Smets and Wouters (2003) model to changes

in the assumptions on prior uncertainty.

The subsequent ten expectational difference equations constitute the log-

linear representation of this fully micro-founded model. For a detailed deriva-

tion of these equations see Smets and Wouters (2003). All variables are given

in percentage deviations from the non-stochastic steady state, denoted by
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hats. The endogenous variables are consumption Ĉ, real wage ŵ, capital K̂,

investment Î, real value of installed capital Q̂, output Ŷ , labor L̂, inflation π̂,

rental rate of capital r̂k, and gross nominal interest rate R̂. For a description

of all model parameters appearing below see Table 1.

The economy is inhabited by a continuum of measure 1 of infinitely-lived

households who maximize the present value of expected future utilities. The

optimal intertemporal allocation of consumption characterized by external

habit formation is given by:

Ĉt =
h

1 + h
Ĉt−1 +

1

1 + h
Et{Ĉt+1} −

1− h

(1 + h)σc
{R̂t −Et(π̂t+1)}+

1− h

(1 + h)σc
εbt .

(A.1)

Households are monopolistically competitive suppliers of labor and face nom-

inal rigidities in terms of Calvo (1983) contracts when resetting their nominal

wage. These assumptions imply a New Keynesian Phillips curve for the real

wage, which is characterized by partial indexation:

ŵt =
β

1 + β
Et(ŵt+1) +

1

1 + β
ŵt−1 +

β

1 + β
Et(π̂t+1)−

1 + βγw
1 + β

π̂t +
γw

1 + β
π̂t−1

−
1

1 + β

(1− βξw)(1− ξw)

{1 + (1+λw)σl

λw
}ξw

{ŵt − σlL̂t −
σc

1− h
(Ĉt − hĈt−1) + εlt}+ ηwt .

(A.2)
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Capital is also owned by households and accumulates according to:

K̂t = (1− τ)K̂t−1 + τ Ît−1. (A.3)

Investment, which is subject to adjustment costs, evolves as follows:

Ît =
1

1 + β
Ît−1 +

β

1 + β
Et(Ît+1) +

ϕ

1 + β
Q̂t + εit. (A.4)

The corresponding equation for the real value of installed capital reads:

Q̂t = −{R̂t−Et(π̂t+1)}+
1− τ

1− τ + r̄k
Et(Q̂t+1)+

r̄k

1− τ + r̄k
Et(r̂

k
t+1)+η

q
t . (A.5)

Moreover, there is also a continuum of measure 1 of monopolistically com-

petitive intermediate goods producers who maximize the present value of

expected future profits while facing the subsequent production function:

Ŷt = φεat + φαK̂t−1 + φαψr̂kt + φ(1− α)L̂t. (A.6)

Their labor demand equation is therefore given by:

L̂t = −ŵt + (1 + ψ)r̂kt + K̂t−1. (A.7)

Similar to households, intermediate goods producers face nominal rigidities

in terms of Calvo (1983) contracts when resetting their price. These as-

sumptions imply the standard New Keynesian Phillips curve, which again is
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characterized by partial indexation:

π̂t =
β

1 + βγp
Et{π̂t+1}+

γp
1 + βγp

π̂t−1

+
1

1 + βγp

(1− βξp)(1− ξp)

ξp
{αr̂kt + (1− α)ŵt − εat }+ ηpt . (A.8)

Using data from 13 OECD countries, Korenok et al. (2010) showed that this

way of modelling firms’ price-setting behaviour—sticky prices in combination

with indexation—represents actually observed behaviour quite well.

The goods market equilibrium condition reads:

Ŷt = (1− τky − gy)Ĉt + τkyÎt + εgt . (A.9)

Finally, monetary policy is assumed to be implemented by the following

Taylor-type interest-rate rule:

R̂t = ρR̂t−1+(1−ρ){π̄t+rπ(π̂t−1−π̄t)+ryŶt}+r∆π(π̂t−π̂t−1)+r∆y(Ŷt−Ŷt−1)+η
r
t .

(A.10)

Differing from the original article, we assume that the interest-rate rule de-

pends on actual output only, but not on hypothetical potential output.

Equations (A.1)–(A.10) contain six macroeconomic shocks that are as-

sumed to follow independent stationary AR(1) processes of the form εt =

ρεt−1 + ηt with ρ ∈ (0, 1) and η i.i.d. ∼ N(0, ς2η ). More specifically, there is

a consumption preference shock εb in equation (A.1), a labor supply shock
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εl in equation (A.2), an investment shock εi in equation (A.4), a productiv-

ity shock εa in equation (A.8), a government spending shock εg in equation

(A.9), and an inflation objective shock π̄ in equation (A.10).

In addition, there are four shocks assumed to follow i.i.d. processes ∼

N(0, ς2η ): there is a real-wage mark-up shock ηw in equation (A.2), an equity-

premium shock ηq in equation (A.5), a price mark-up shock ηp in equation

(A.8), and an interest-rate shock ηr in equation (A.10).

Table 1 provides the parameter values used in the following. They cor-

respond to the modes of the posterior distributions in case those were esti-

mated in Smets and Wouters (2003), otherwise they were kept fixed during

Bayesian estimation. These values jointly satisfy the Blanchard and Kahn

(1980) conditions, which require that there are six eigenvalues of the coeffi-

cient matrix of the equation system (A.1)–(A.10) larger than 1 in modulus for

its six forward-looking variables (Ĉ, ŵ, Î, Q̂, π̂, r̂k). Hence, there is a unique

stationary solution to the equation system (A.1)–(A.10).
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