
Erhardt, Klaudia

Research Report

How to generate spell data from data in "wide" format:
Based on the migration biographies of the IAB-SOEP
migration sample

DIW Data Documentation, No. 79

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Erhardt, Klaudia (2015) : How to generate spell data from data in "wide" format:
Based on the migration biographies of the IAB-SOEP migration sample, DIW Data Documentation,
No. 79, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at:
https://hdl.handle.net/10419/122163

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/122163
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Data
Documentation

How to Generate Spell Data from
Data in "Wide" Format
Based on the Migration Biographies of the
IAB-SOEP Migration Sample
Klaudia Erhardt

79

Deutsches Institut für Wirtschaftsforschung 2015

IMPRESSUM
© DIW Berlin, 2015
DIW Berlin
Deutsches Institut für Wirtschaftsforschung
Mohrenstr. 58
10117 Berlin
Tel. +49 (30) 897 89-0
Fax +49 (30) 897 89-200
www.diw.de
ISSN 1861-1532
All rights reserved.
Reproduction and distribution
in any form, also in parts,
requires the express written
permission of DIW Berlin.

Data Documentation 79

Klaudia Erhardt*

How to Generate Spell Data from Data in “Wide” Format

Based on the Migration Biographies of the IAB-SOEP Migration
Sample (SOEP 2013, data set bdp_mig)

Including the Employed Stata Syntax

Last Update: 2014-11-24

* Klaudia Erhardt, SOEP, DIW Berlin, kerhardt@diw.de

mailto:kerhardt@diw.de

Data Documentation 79
Contents

2

Contents:

1 Introduction 3

2 Main working principles of a transformation from “wide” data into spell data 4

3 Determining the relation between source and target files 6

3.1 Structure of the source file 6

3.2 The structure of the target file 11

3.3 Detailed correspondence between source variables and target variables 12

4 How to do the transformation in Stata 17

4.1 Layout of the do-file migspell_transform.do 18

4.1.1 Sections 0 to 1: preliminary operations 18

4.1.2 Section 2: Generating spell data for “stays abroad” 19

4.1.3 Section 3: Generating spell data for “coming to Germany” 20

4.1.4 Section 4: Integration of the two spell data sets 21

4.2 Some specific procedures within the syntax 21

4.2.1 Invoking the variable names of the migration biographies within a loop
structure 21

4.2.2 How to generate the target spell data file 23

Appendix A: migspell_transform.do 24

Appendix B: Questions of the migration biography 34

German version 35

Englisch translation 39

Data Documentation 79
1 Introduction

3

1 Introduction

This paper describes the generation of spell data from data in “wide” format on the
basis of the migration biographies obtained from the integrated person-biography
questionnaire administered to the IAB-SOEP Migration Sample (sample M), wave 30
(wave bd). The questions on respondents’ migration biography are numbers 16 to 33,
with questions 16 to 27 being addressed to respondents born outside Germany and
questions 28 to 33 to German-born respondents (see appendix). The original question-
naires are reproduced as SOEP Survey Paper No. 218 (see SOEP Survey Paper No. 219
for an English translation).

The transformation presented in this paper is done with Stata. The syntax is explained
in detail and printed in Appendix A.

This paper not only describes the transformation of the migration biographies into
spell format but also explains the working principles in a generalized way. Although the
structure of the migration biography data is somewhat idiosyncratic and complex (dis-
cussed in detail in chapter 3), it can be deconstructed into a series of basic forms that
increase in complexity. This paper can therefore serve as a manual for similar kinds of
jobs.

In the strict sense of the word, spell data are about time periods with a defined start
and end. The technique described here is not dependent on time or date variables. It
can be used for any data transformation job that reshapes data from wide to long, and
that is too complex for Stata’s “reshape” command, whether or not the data at hand
are spell data. However, for data other than spell data, this kind of transformation is
only viable and sensible if the sequence of variables in the pre-transformation form
consists of repeating characteristics for multiple instances of the same kind of object.
Examples of such a data structure with non-spell (non-time-related) data are: sets of
characteristics for all major consumer goods in a household, for each training program
or degree completed by an individual, or for each child in a family.1

1 A good alternative to reshaping the data at a post-production stage would be to organize them

from the outset into “long” format. Thus, for individuals within a household—basically the same
data structure as described here—it would be quite unusual to store the data in “wide” format. An
advantage of the “long” data format is that the number of possible repetitions does not have to be
predefined. Yet often the original data format is not determined by the data user but by the insti-
tution conducting the survey.

Data Documentation 79
2 Main working principles of a transformation from “wide” data into spell data

4

2 Main working principles of a transformation from “wide” data into
spell data

An individual’s complete migration biography comprises a single record in the source
file. Thus, moves between countries constitute a very long chain of variables. The
transformation into a spell data structure results in a record for each move that a per-
son made, so that every person who has moved in his or her life has more than one
record in the target spell data set. The resulting target spell file will therefore have far
more observations but far fewer variables than the original source file.

The basic method of generating the target spell data file is to split the original chain of
variables from the source file into data segments consisting of several variables each,
with each segment relating to one move. Each data segment, supplemented with the
case ID variable from the source file, can thus be transformed into a record of the tar-
get spell data set. Figuratively, this is like chopping a very long log into similarly sized
pieces of firewood and stacking them one on top of the other.

In order to do this, the following operations dealing with the relation between source
and target file have to be carried out:

• Decide on the structure and the variables for the target file.

• Identify the variables in the source file that fit the variables of the target file for
each spell.

More on these two steps will follow later. At this point, we will proceed as if we had
already determined the data structure of the source and target file as well as the rela-
tions between the two and will continue describing the general method of doing the
transformation. The steps are as follows:

1. Even if we had the simplest possible data structure in the source file, we would still
have to deal with the problem of the variable names: The variables in the source
file that capture the same characteristics are inevitably named differently for each
repetition, whereas the target file uses the same variable names for a characteris-
tic in every repetition. The variables therefore have to be renamed before adding a
data segment from the source file to the target file as a new spell.

2. The different variables of the source file that flow into one variable of the target
file might have different codings for the same semantic values, so this has to be
checked and, if necessary, captured by appropriate recoding before adding the
spell to the target file. With the migration biographies of the IAB-SOEP migration
sample this is in fact necessary.

Data Documentation 79
2 Main working principles of a transformation from “wide” data into spell data

5

3. Preferably, “empty” spells should not be transferred to the target file. Empty spells,
i.e., spells with code “not applicable” in every variable, result from respondents
dropping out or from filtering. For example, with the migration biographies of data
set bdp_mig, the different loop segments2 are moves to Germany and moves to
other countries, so respondents skip the one or the other segment. It is more con-
venient to check for empty spells before appending the new spell than to identify
and delete them after the compilation of the target file. The condition that identi-
fies empty spells depends on the data at hand. Within data file bdp_mig, “empty”
values are coded -2 (does not apply). To identify empty spells, it suffices to check if
the variable starty (year when the move took place) has the value -2 because if this
is true, all the other variables in the data segment relating to the same move will
also have the value -2.

4. The target file needs a new variable that does not stem from the source file to
identify the spells within a case. It is better to create such a spell-ID as a consecu-
tive number the moment the spells are generated instead of doing so after the tar-
get file has been compiled. In this way, the spell ID mirrors the succession of moves
in the original data, including possible date errors which ought not to be corrected
automatically because they then would probably stay unnoticed. In fact, this prac-
tice may cause gaps in the sequence of the generated spell IDs (due to the men-
tioned “empty spells”), but this does not create problems at this stage and can, if
desired, be corrected easily after the target file has been compiled.

In principle, we have now outlined all the necessary steps for transferring “wide” data
to long (spell) data. The Stata syntax file migspell_transform.do (see Appendix, p.
24ff.), which will be explained in detail in chapter 4, executes these steps.

Additionally, the syntax contains a data transformation that is usually unnecessary. It
captures an idiosyncratic feature of the migration biographies of bdp_mig: the country
variables do not contain Germany because of the specific design of the questions. Re-
spondents were first asked if they had moved to Germany or to another country. This
question was followed by “to which country?” if the move was to another country.
Germany therefore has to be integrated into the country variables before generating
the spells.

Before we deal with the Stata syntax, we have to determine the relationship between
source file and target file. This is the subject of the next chapter.

2 In the following, we use the term “loop” instead of “repetition”. In the questionnaire, if the re-

spondent answers that she moved again after a first move, the sequence of questions is interrupt-
ed by jumping back to the first question about a move, thus forming a loop. We call one passage
through the loop a “loop transit”.

Data Documentation 79
3 Determining the relation between source and target files

6

3 Determining the relation between source and target files

This section returns to the two issues postponed above: deciding on the structure and
the variables of the target file, and determining the correspondence between the vari-
ables of the source and the target file. To address these issues, we have to consider
the information collected with the questionnaire and the variables in the source file.
The questions we need to answer are: What information is to be transferred and which
exact spell does it belong to? When does the migration history of a person begin and
when does it end?

The following sections refer to the migration biographies of bdp_mig.dta, but the un-
derlying ideas described here fit similar jobs as well.

3.1 Structure of the source file

The “migration biographies” are formed by the variables originating from questions 16
to 33 of the integrated individual biographical questionnaire for the IAB-SOEP Migra-
tion sample (sample M), wave 30 (wave bd).

The questions are repeated in a loop for each move from one country to another or
from and to Germany. The data set contains a series of variables for each possible loop
transit, the number of transits being limited to 15. To make things more complicated,
moves to Germany and moves to another country result in different sets of variables
per loop transit. A given respondent may have moved from Germany to another coun-
try, but might also have moved between other countries. Respondents might therefore
have values in both sets of variables, and might have two moves within the same loop
transit, if those were between Germany and another country, and between two other
countries.

And finally, there are different sets of variables for German-born and non-German-
born migrants. As these two groups are genuinely separate (no person can switch from
one group to the other), the treatment of the data by the syntax file mig-
spell_transform.do is divided into two parts: in a first step, the “stays abroad” data on
the German-born migrants are transformed into spell data. Then in a second step, spell
data is generated from the “coming to Germany” data on the migrants who were not
born in Germany.

The principle of the transformation is roughly the same for both groups, but the source
variables are different, and the structure of the “coming to Germany” migration biog-
raphies is a bit more complicated than the “stays abroad” migration biographies.

Data Documentation 79
3 Determining the relation between source and target files

7

In the following, the flow charts for the two parts of the migration biography show the
questions involved and the succession of the questions, which depends partly on the
answers. As mentioned, the “stays abroad” section addresses the migrants born in
Germany and is entirely independent of the “coming to Germany” section, which ad-
dresses migrants born outside Germany. No respondent can have valid information in
both segments.

Figure 1 (see following page) shows the variables for the migration biographies of the
German-born migrants, which by itself consists of two distinguishable parts, that is,
two interlaced variable sequences, one for the stays abroad and the other for the stays
in Germany. A respondent may have several consecutive loop transits in part 1 of the
loop if he or she moved between different foreign countries, but can transit loop
part 2 only once before switching back to loop part 1. Note also that moves have to
take place between different countries; moves between different parts of the same
country are not considered as a move3. With question 30 “When did you move to the
other country?” the respondent enters the interlaced loop. Question 32 produces a
bifurcation: either the respondent moved to another “other country” or returned
home to Germany. If she stayed in Germany without any further moves abroad (ques-
tion 33), she exits the loop permanently.

As a first step to determine the relationship between source and target file, we com-
pile the kinds of information that come from the loops:

Table 1: List of information types from the “stays abroad” section of the migration biography

• Kind of next move (to Germany or to another country:

bifurcation between the two loop parts)
• What country was the (next) move to?
• When did the move take place?
• Migration status at move to other country

This list is fairly short. It shows that the two loop parts can easily be mapped onto each
other, because both parts contain basically the same kind of information with excep-
tion of question 31 (Migration status at move to other country), which is only asked
when the respondent moves to a foreign country.

3 In a few cases the interviewee reported moves to faraway regions or counties of the same country,

such as from France to La Reunion, or from Russia to Siberia. As the SOEP country list has no codes
for subdivisions of countries, this may look like a data error because it was coded as a move from a
country to the same country—while as a rule, moves within the same country were not to be re-
ported.

Data Documentation 79
3 Determining the relation between source and target files

8

Figure 1: Flow chart of the „stays abroad“ section of the migration biographies

Data Documentation 79
3 Determining the relation between source and target files

9

Figure 2: Flow chart of the „coming to Germany“ section of the migration biographies

Data Documentation 79
3 Determining the relation between source and target files

10

Now we perform the same examination for the migration biographies of the migrants
born outside Germany. Figure 2 shows the respective flow chart. At first sight it looks
intimidatingly complex. But a closer look reveals the same two loop segments for
“stays in Germany” and “stays abroad”. In this case, however, there are more varia-
bles, and, due to lack of space, it was not possible to place the two loop parts as neatly
side by side as in Figure 1. We will see below that the complex structure can be broken
down into a very similar list to that shown in Table 1.

We find two bifurcation points instead of one: question 17 and question 23, each lead-
ing either to loop part 1 or to loop part 2. But because question 17 is outside the loop,
this does not really increase the level of difficulty.

In part 1 of the loop (“stays abroad”) we do not find any other type of information
than that listed in Table 1. The flow chart here is slightly more complex than the previ-
ous flow chart because question 23 branches off in three directions instead of two. The
possible answers to the question “Where did you move to” were: to Germany, to my
birth country, to another country. This also only seems to be more complicated. In fact
it is still the decision between Germany and another country. For the branches “birth
country” and “other country” the same questions are posed except for “which coun-
try?”.

In loop part 2 “stays in Germany” we find a new kind of information: “labor force
group” from question 19 and question 26 which were posed when the answer to the
preceding questions 18 or 25 was “with job offer”. For the rest there are no surprises:
all the information types are already known from the examination of the migration
biographies of the non-German-born migrants (see Table 1).

The list of information types from the “coming to Germany” section of the migration
biography can be determined as is listed in Table 2:

Table 2: List of information types from the “coming to Germany” section of the migration biography

• Kind of next move (to Germany or to another country:

bifurcation between the two loop parts)
• What country was the (next) move to?
• When did the move take place?
• Migration status at move to other country
• Labor force group

In spite of the overwhelmingly crowded flow chart for the “coming to Germany” sec-
tion of the migration biographies, the list of information types has only one more entry
than the previous list and is still very short.

Data Documentation 79
3 Determining the relation between source and target files

11

The real challenge for programming the transformation into spell data comes from the
fact that several variables precede the loops containing the same information types as
the variables within the loop. At this point it is not yet apparent why this is a problem,
and we leave the issue aside for the moment.

The list in Table 1 is contained entirely in the list in Table 2. The list in Table 2 will
therefore be used as the source to determine the variables in the target file.

3.2 The structure of the target file

From Table 2 the following variable list can be generated:

• country: country where the spell was spent

• starty: start date of the spell, year

• startm: start date of the spell, month

The migration biography data contain no time variable, but two separate variables
for year and month of each move. For the moment we leave this as it is. Also we do
not concern ourselves with the end dates at this point. Apart from date errors or
missing data, each spell is connected to the next (because there is no alternative to
the respondents being either in Germany or in some other country), and the end of
a spell can be derived from the start date of the following spell or—for the last
spell—from the interview date. This can be carried out after the compilation of the
target file.

• status: status when coming to the respective country

• lfgroup: labor force group the respondent belonged to when coming to Germany
as a working person

• nmtype: type of the next move

• tcountry: target country of the next move

The latter two variables, nmtype and tcountry, point to the next spell, but they belong
to the current spell. Variable nmtype contains the information type “kind of next
move” and it produces the ramification between “stay in Germany” and “stay in an-
other country”. It therefore has to precede the spell relating to one of the branches,
that is, it belongs to the current spell and points to the next.4 As to tcountry, it is de-
batable whether this variable is really required, because its information (where was

4 Treating the information type “kind of next move” as a characteristic of the following spell would

obscure its function as a bifurcation point and therefore make it more difficult to depict the under-
lying structure.

Data Documentation 79
3 Determining the relation between source and target files

12

the move to) could just as well be transferred directly to the variable country in the
next spell. It is essentially a question of taste. I found it more convincing to transfer the
related information to a variable “target country of the next move” when generating
the spell data and deduce the value of country from the target country of the preced-
ing spell after the compilation of the spell file.

In addition to the aforementioned variables that are generated from the loops, the
spell data file needs two identifiers:

• persnr: Case ID

• spid: Spell ID5

persnr and spid are added to each spell in the process of generating it. While persnr is
contained in the source file and just has to be copied to each spell, spid is a newly gen-
erated variable. The two identifiers are not covered in the following two synopses
however, in order to save space.

What remains to be addressed is the question “When does the migration history of a
person begin and when does it end?” (see p. 6). It seems appropriate to let the migra-
tion biography begin at birth and end at the time of the interview. In consequence, no
migration biography is left-censored except if the respondent did not report her birth
year. So we insert an additional spell for the time between birth and first move (or the
interview date if no move has taken place). The variable country then contains the
birth country in the first spell of each respondent; starty and startm contain birth year
and month. Allowing the migration biography to begin at birth entails the advantage
that every respondent appears in the target spell data file with at least one record.

Up to now, the mapping of the source variables to the target variables was done
somewhat sketchily. However, in order to write a concise and well structured program
for the transformation of wide data into spells we have to set up a clear and unambig-
uous table of the correspondences. This will be provided in the next chapter.

3.3 Detailed correspondence between source variables and target
variables

We need a detailed table of the source variables in each particular loop transit. In this
context, we will come back to the aforementioned problem caused by several variables

5 Usually in the SOEP-data the spell ID variable is named spellnr. The variable spid generated here in

the transformation process will have gaps and is replaced later by a spell ID variable named spellnr
that shows the same consecution of spells as spid but has no gaps.

Data Documentation 79
3 Determining the relation between source and target files

13

preceding the actual loop and containing the same information types as the variables
within the loop (see p. 11).

The correspondence between the source variables by loop transit and the target varia-
bles is shown in the following two synopses “stays abroad” and “coming to Germany”.

The columns of the tables are formed by the above listed variables in the target file
(see p. 11). The first column, named somewhat awkwardly “VARinfix” relates to the
part of the variable names of bdp_mig that refers roughly to an index of the loop
transits, and that is neither a prefix nor a suffix, since it is to be found in the middle of
the variable name. In other words, it designates the varying part of the variable names.
The last column, “coverage”, shows the conditions under which the variables listed in
the same row of the table apply.

The lines of the synopses indicate the source variables in file bdpm_mig for each spell
and each variable of the target file. Synopsis 1 shows, for example, that the value of
variable status in the second spell in the target file stems from variable
bdpm_l01_3101 in the source file.

The first line of each synopsis, that is, the first spell, contains the aforementioned vari-
ables birth country, birth year and birth month, which are not part of the migration
biographies. Thus we create an additional spell that does not correspond with a move
but that represents the first episode of each migration history, the episode from birth
to first move (or the interview date if no move occurred).

From here on, we no longer refer to “lines” of the synopses but to “spells”.

We see that the column “lfgroup” (i.e., the variable lfgroup in the target file) does not
apply in the “stays abroad” section of the migration biographies. We could have omit-
ted it from synopsis 1 but chose to maintain the column for reasons of symmetry and
because we want to merge all spells from all biographies into one target file.

Following the columns downwards, we see that from a certain point on there is wel-
come regularity and repetition, which is what we need if we want to program loops for
the transformation into spells instead of writing specific syntax for each particular
move. From the point of repetition onwards (after spell 1 in synopsis 1 and spell 4 in
synopsis 2) there are always two spells with the same VARinfix. These represent the
two interlaced loop parts constituted by stays in Germany and stays abroad (remem-
ber the flow charts).

We can now understand the reason for including the variables nmtype and tcountry
(which point to the next spell) in the current spell: their source variables bear the infix
of the actual spell. Note that the column country is empty in both synopses except for

Data Documentation 79
3 Determining the relation between source and target files

14

the first (artificial) spell. Because we decided on assigning the values of the “country”
variables of bdpm_mig to tcountry to keep the regularity of the VARinfixes, country will
be filled after the compilation of the target file from tcountry of the previous spell.

However, the regularity of the VARinfixes within a spell is broken in synopsis 2 with the
variables highlighted in yellow. For the moment, we postpone the meaning of the yel-
low highlighting and the reasons for the irregularity and concentrate first on synopsis 1
which shows the migration biographies of the German-born migrants (“stays abroad”).
Here we find an almost perfect regularity. If it were not for the interlacing of the two
loop parts representing stays in Germany and stays abroad (i.e., if we had only every
second spell), we would have a basic structure that is easy to transform into spell data.
Even so, transformation is not very difficult because the interlaced loops only require a
second transformation procedure of the same type. Although this may seem a bit cryp-
tic at the moment, it will become clearer when we explain the transformation syntax
of the do-file.

Keep in mind that the variables of the columns nmtype and tcountry in the first spell of
synopsis 1 have the same VARinfix “01” as the two following spells. These are the vari-
ables bdpm_l01_28 and bdpm_l01_2902 preceding the loop (see Figure 1 on page 8).
Those variables bearing the infix “01” has no reason, because there are no variables
bdpm_l02_28, bdpm_l03_28, and so on. In any case, as these two variables are not
only outside the loop but also outside the naming conventions of the loop variables,
they do not disturb the regularity.

The same is unfortunately not true for the section of the migration biography that ap-
plies to foreign-born migrants (“coming to Germany”), presented in synopsis 2. As in
synopsis 1, the first spell represents the episode from birth to first move. But it lasts
three more spells before regularity takes effect.

Assessing the variable correspondence of those three spells was a fairly difficult opera-
tion due to the apparently arbitrary assignment of variable names and VARinfixes.
Having established the correspondence, the inner logic emerged. In hindsight, it was
worth the trouble because the synopses in general, but especially synopsis 2, were a
great help in developing the transformation syntax to produce spell data.

Data Documentation 79
3 Determining the relation between source and target files

15

Synopsis 1: Stays abroad (for German-born migrants)

VARinfix country starty startm status lfgroup nmtype tcountry coverage

01 bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 --- --- bdpm_l01_28 bdpm_l01_2902 all cases

from here: repetition for each value of VARinfix

01 bdpm_l01_3001 bdpm_l01_3002 bdpm_l01_3101 --- bdpm_l01_3201 bdpm_l01_3203 stay abroad

01 bdpm_l01_32a01 bdpm_l01_32a02 --- --- bdpm_l01_3301 bdpm_l01_3303 stay in DE

02 bdpm_l02_3001 bdpm_l02_3002 bdpm_l02_3101 --- bdpm_l02_3201 bdpm_l02_3203 stay abroad

02 bdpm_l02_32a01 bdpm_l02_32a02 --- --- bdpm_l02_3301 bdpm_l02_3303 stay in DE

etc.

15 bdpm_l15_3001 bdpm_l15_3002 bdpm_l15_3101 --- bdpm_l15_3201 bdpm_l15_3203 stay abroad

15 bdpm_l15_32a01 bdpm_l15_32a02 --- --- bdpm_l15_3301 bdpm_l15_3303 stay in DE
(up to int.date)

Data Documentation 79
3 Determining the relation between source and target files

16

Synopsis 2: Coming to Germany (for migrants not born in Germany)

XX index minus 1 due to variables highlighted in yellow from loop transit 1

VARinfix country starty startm status lfgroup nmtype tcountry coverage

01 bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 --- --- bdpm_l01_1701 bdpm_l01_1703 all cases

01 bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_2201 --- bdpm_l01_2301 bdpm_l01_2303 stay abroad
(birth country
→ not DE)

01 bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_1801 bdpm_l01_19 bdpm_l01_2001 bdpm_l01_2003 stay in DE

01 bdpm_l01_2101 bdpm_l01_2102 bdpm_l01_2201 --- bdpm_l01_2301 bdpm_l01_2303 stay abroad
(birth country
→ DE → not DE)

from here: repetition for each value of VARinfix

02 bdpm_l01_2401 bdpm_l01_2402 bdpm_l01_2501 bdpm_l01_26 bdpm_l02_2001 bdpm_l02_2003 stay in DE

02 bdpm_l02_2101 bdpm_l02_2102 bdpm_l02_2201 --- bdpm_l02_2301 bdpm_l02_2303 stay abroad

03 bdpm_l02_2401 bdpm_l02_2402 bdpm_l02_2501 bdpm_l02_26 bdpm_l03_2001 bdpm_l03_2003 stay in DE

03 bdpm_l03_2101 bdpm_l03_2102 bdpm_l03_2201 --- bdpm_l03_2301 bdpm_l03_2303 stay abroad

etc.

15 bdpm_l14_2401 bdpm_ll14_2402 bdpm_ll14_2501 bdpm_l14_26 bdpm_l15_2001 bdpm_l15_2003 stay in DE

15 bdpm_l15_2101 bdpm_l15_2102 bdpm_l15_2201 --- bdpm_l15_2301 bdpm_l15_2303 stay abroad

16 bdpm_l15_2401 bdpm_l15_2402 bdpm_l15_2501 bdpm_l15_26 --- --- stay in DE
(up to int.date)

Data Documentation 79
4 How to do the transformation in Stata

17

We do not go into further detail on the idiosyncratic variable names of the second to
fourth spells in synopsis 2. Instead, we focus on the spells after the point where regu-
larity emerges. In contrast to synopsis 1, the VARinfixes of synopsis 2 are not the same
for all variables within a spell, but this lack of consistent correspondence applies only
to the spells for stays in Germany. Here we find that starty, startm, status, and lfgroup
have a lower VARinfix than the other variables in the same spell.6 Yet once this anoma-
ly—highlighted in yellow in the synopsis—and the reason for it have been identified it
is easy enough to address. The reason is apparent from the third row of the synopsis,
where the four variables highlighted in yellow take the place of the variables that ap-
pear in later spells. When the latter appear for the first time, their infix part begins
with “01”, although their “collegues” in the same row have already reached “02”.

Since usually most of the variables are derived from a questionnaire that is designed to
cover multiple aspects, with data handling requirements not taking top priority, similar
problems might occur often enough when it comes to transforming data from wide to
long format. In those cases a correspondence table like the one presented in the syn-
opses is extremely useful.

4 How to do the transformation in Stata

As described above, we transform the data into spell format by splitting a long variable
chain into similarly sized chunks that are stored one atop the next. This chapter de-
scribes precisely how this is done with Stata, using the example of the migration biog-
raphies in file bdp_mig.dta.

The two synopses presented in the previous chapter show exactly what pieces the long
chain has to be split into. These can be used as a template for a line-by-line definition
of each spell to be created. This is only done, however, for the spells before regular
repetitions occur (after spell 1 in synopsis 1 and spell 4 in synopsis 2). As soon as we
find regular patterns, we can shorten the process by using looping techniques.

Let us recall the four necessary steps for the treatment of every segment of the varia-
ble chain listed on page 4, now in the same order as they are performed in the pro-
gram:

6 Seeing it this way is a matter of decision. One could just as well decide that variables nmtype and

tcountry should have a higher VARmidfix than the other variables in the same spell. In that case
the point of regularity was reached after spell 3 with spell 5 still having the value “01” in the VAR-
midfix column. The way we put it in this paper is more in accordance with the explanation of the
reason for this anomaly.

Data Documentation 79
4 How to do the transformation in Stata

18

1. If necessary, recode the variables in the source file that flow into the same target
variable, so that same meanings have same the numeric codes.

2. Rename the variables in the source file to fit the variables in the target file.

3. Capture empty spells and prevent them from being added to the target file.

4. Generate the spell identifier.

So far, the steps are universal for the transformation of “wide” format data into spell
format data. In addition, we had to address the idiosyncrasy that stays in Germany
were not represented in the country variables but in extra variables.

The listed steps give the structure for the treatment of each particular spell. In the fol-
lowing, the syntax file migspell_transform.do is explained in detail. The entire Sata
syntax file is to be found in appendix A of this paper. It might be useful to print it out in
order to compare the following explanations to the related syntax.

The reader should have a general understanding of macros in Stata and of how loops
are used in programming.

4.1 Layout of the do-file migspell_transform.do

The file migspell_transform.do has 5 sections, numbered from 0 to 4:

Section 0: Definition of globals

Section 1: Preparation of the source files for “coming to Germany” and for
“stays abroad”

Section 2: Generating spell data for “stays abroad” (migrants born in DE)

Section 3: Generating spell data for “coming to Germany” (migrants not born
in DE)

Section 4: Integration of the two spell data sets, generation of some useful
variables, generation of variable and value labels

4.1.1 Sections 0 to 1: preliminary operations

Global macros are defined only for the local paths and the log file. All other macros
within the syntax are local macros7. In general, local macros should be given prefer-

7 Simply put, macros in Stata are a kind of text module.

Data Documentation 79
4 How to do the transformation in Stata

19

ence whenever possible: “You should never use a global macro where a local macro
would suffice” (Stata User’s Guide, Chapter 18.3.10, Advanced global macro manipula-
tion). However, defining the local paths globally is more convenient when developing
syntax because this makes it easier to run a job partially.

In section 1 the source files are prepared. In order to construct the first (additional)
spell from birth to the first move, the variables birth country, birth year, birth month,
and German-born/not German-born are combined with the variables that relate to the
“stays abroad” or “coming to Germany” sections of the migration biographies. It was a
matter of preference to create separate source files for each section, containing only
the cases and the variables that relate to the respective part. Alternatively, we could
have kept all variables in one source file and selected the appropriate data when using
the file.

4.1.2 Section 2: Generating spell data for “stays abroad”

The general procedure is as follows: For each spell those variables from the source file
are used that are listed in the respective line of the synopses. Then—as preliminary
steps—the variables with differing semantic codes are recoded uniformly and Germa-
ny is integrated into the country variable. After that, the main tasks are: first, to re-
name the set of source variables to make them a set of target variables, then to gener-
ate the spell ID, drop the “empty” spells, and save the subfile separately. The subfile
contains the xth spell of all persons having performed an xth move.

In section 2, “stays abroad”, only the first spell has to be generated “manually”. From
then on regular repetitions begin, which are processed in a “forvalues loop”, the loop
index ranging from one to 15, as we can see from synopsis 1.

Each loop transit consists of two interlaced parts (see synopsis 1): after the first spell
there are always two spells having the same VARinfix. The syntax within the loop is
therefore divided into the production of the first and the second spell of each loop.
Each of these results in a separate file. The problems that had to be solved for the syn-
tax within the loops were:

a) invoking the variables without spelling out their specific names

b) generating a spell ID

c) generating an index number for the target subfiles.

For point a see section 4.2.1 (p. 21) of this chapter. We have to reconstruct the “infix”
part of the variable name, and the procedure for doing so is explained there.

Data Documentation 79
4 How to do the transformation in Stata

20

For points b and c the same consideration applies: We cannot use the loop index to
enumerate the spells and spell files because every loop produces two of them. The
algorithm is therefore: twice the loop index for the first and twice the loop index plus
one for the second spell. The result is the value of the spell identifier and also the in-
dex of the name of the resulting “stays abroad” subfile.

Having thus produced all 31 spell files (the first one plus 15 times 2 from the 15 loop
transits), they have to be combined into the target file of the “stays abroad” section of
the migration biography. This is also done by means of a forvalues loop. After having
opened the file of the first spell the loop index ranges from 2 to 31. In the same loop
the now dispensable single spell files are erased.

4.1.3 Section 3: Generating spell data for “coming to Germany”

The general proceeding is as described in section 2. The main differences are:

a) There are more spells until regularity is reached and loop programming begins.

b) We have to address the issue that the source variable names from the same spell
may have different infixes (see synopsis 2, infixes highlighted in yellow).

c) The last spell is treated outside the loop.

Synopsis 2 shows that there are four spells before regular repetitions occur. Strictly
speaking, there are only three spells, because two of them can only occur alternately:
line 2 of the synopsis applies to persons whose first move was to another country than
Germany, while line 3 applies to persons whose first move was to Germany. No
respondent can have values in both spells that correspond to these lines of the synop-
sis. Therefore lines 2 and 3 form the template for the second spell and accordingly line
4 forms the template for the third spell.

There would have been nothing wrong with mapping those four lines of the synopsis
onto four spells. To the contrary, the syntax would have been simpler. However, map-
ping them onto three spells results from the process of clarifying the complex data
structure and is more in accordance with the semantics of the data.

After that, the processing continues with a forvalues loop, again done in basically the
same way as in section 2: There are two interlacing loop parts, that is, two spells are
generated from each loop transit. However, the different infixes in the spells relating
to stays in Germany require a special treatment that was not necessary in section 2. As
mentioned above, section 4.2.1 (p. 21) explains in detail how to invoke the variable
names.

Data Documentation 79
4 How to do the transformation in Stata

21

After the forvalues loop is finished, only the last spell has to be transformed—outside
the loop. Due to the fact that some variables have a lower infix than their “collegues”
in the spells that relate to stays in Germany, the variable list for the last spell (which
had to be a stay in Germany) is different. It contains only the yellow highlighted varia-
bles with a infix of the regular value minus 1 (starty startm status lfgroup, see last line
of synopsis 2). Their infix is 15 in the last spell, while the regular (logical) infix value
would have already reached 16 if treated within the loop—but there are no source
variables with a infix of 16. For this reason, the last spell has to be treated outside the
loop, in contrast to the approach in section 2.

The last step of section 3 is to compile the target file for the “way to Germany” section
of the migration biography and to erase the now useless separate spell files.

4.1.4 Section 4: Integration of the two spell data sets

Section 4 deals with the integration of the two spell data sets. The variable country is
derived from tcountry of the previous spell; a new consecutive spell ID is generated,
that keeps the consecution but closes the gaps in the original spell ID; and some other
useful procedures are carried out, such as defining variable and value labels. This sec-
tion is quite transparent and requires no explanation.

4.2 Some specific procedures within the syntax

4.2.1 Invoking the variable names of the migration biographies within a loop
structure

As emphasized, we do not want to write syntax for each spell to be added to the target
file, but rather to abbreviate this procedure. Usually this is done by loops. It is crucial
for programming loops that treat variables to find a way to invoke the variables with-
out having to spell out their precise names. Variable names that are composed of both
constant name parts and regularly varying name parts provide a good basis for this.
One then has to find an algorithm to reproduce the varying parts and to put the varia-
ble name together from the constant part and the varying part.

The obvious easy solution to invoking the variables one after the other within a loop is
for the varying part of their name to consist of a consecutive number that has a math-
ematical relation to the loop index (the xth loop transit). In every programming lan-
guage, loops are defined by the number of loop transits (repetitions) until the program
exits the loop. So if we had to treat var1, var2, var3 and so on with the same sequence

Data Documentation 79
4 How to do the transformation in Stata

22

of commands, we could do so easily using the index of the loop: in transit 1 treat var1,
then go back (transit 2), treat var2, then go back (transit 3), treat var3, and so on.

In principle, the variables of the source files meet the requirement of having consecu-
tive numbers as varying name parts (their “infixes”)—with the exception that numbers
smaller than 10 result in infixes which consist of a consecutive number preceded by
zero. This is not an integer and therefore cannot be replaced directly by the index that
counts the loops. For this reason, the procedure takes the intermediate of a local mac-
ro to indicate the infixes. The content of the macro depends not only on the index
number of a specific loop transit, but also on whether the index number is smaller than
10 / greater or equal to 10. If the index is smaller than 10, a leading zero has to be
added. The macro used to reproduce the infix was named “in”.

The next small complication—which occurs only for the “way to Germany” data on
foreign-born migrants—are the differing infixes in the variables of the same spell when
related to a stay in Germany (see the yellow highlighted positions in synopsis 2), the
infixes being one unit lower than those of their collegues. To invoke those variables, a
second macro is needed with an appropriate definition of the infix, named “iu”.

See below the related part of the syntax for the “coming to Germany” data:

local n = 15 /* because the infixes range to 15 maximally */

forvalues i = 2(1)`n' { /* from 2 to 15 in steps of 1 */

 /* Generation of the variable parts of the variable names: */
 local j = `i'-1 /* j is the lower infix, i is the regular infix
 and at the same time the loop index */
 if `i' < 10 {
 local in 0`i' /* a leading 0 is added if i < 10 */
 }
 if `i' >= 10 {
 local in `i'
 }
 if `j' < 10 {
 local iu 0`j' /* a leading 0 is added if j < 10 */
 }
 if `j' >= 10 {
 local iu `j'
 }

 /* follows syntax: what to do with the variables having the infixes
 `in' and `iu' in their names */

}

Because the macros “in” and “iu” are linked with the loop index “I” in every loop trans-
it, they take different values from 02 to 15 and from 01 to 14, respectively. Note that

Data Documentation 79
4 How to do the transformation in Stata

23

we avoid the problem that “iu” takes on the value “00” by defining the loop index
range from 2 to 15, not from 1 to 15.8

4.2.2 How to generate the target spell data file

As explained above, each move is represented by a segment of the long variable chain
that makes up the whole migration biography. The program captures sequentially each
segment and transforms it into spells. The spells belonging to one segment of the vari-
able chain are saved in a separate data file that contains one observation (spell) for
each person having done the xth move. At the end all separate data files are appended
to form the target file.

The only problem to be solved with this approach is how to name the intermediate
data files. Having already arranged for a consecutive spell number, it makes obvious
sense to use this number as a suffix to the file name. Note that the spell number may
have gaps for the spells of respondents (because of dropping empty spells), but it is
consecutive without gaps for the intermediate spell files, although the files may have
no observations.

This is important for the procedure of compiling the separate data files, again with a
loop. If there were gaps in the suffixes of the file names, or if a file were not saved be-
cause it contains no observations, the loop through the files would generate an error
as soon as a file is invoked that does not exist. But since this is not the case, no provi-
sions have to be made to capture a possible error of invoking non-existing files.

The same loop that compiles the target file also erases the intermediate data files.

Note: Instead of creating and deleting the intermediate data files in the course of the
syntax, they could have been created using the tempfile command. If you are pro-
gramming Stata syntax that is to be used by others, this would be a better choice be-
cause it does not conflict with already existing files that have the same names as the
files created by your syntax.

However, using “tempfile” implies that you cannot access the intermediate after the
end of the program without having to carry out major syntax alterations. For example,
you might want to check whether your program does what you want it to do by exam-
ining one of the intermediate files. Creating them as ordinary data files and erasing
them when they are no longer needed permits access to the intermediate files by
simply converting the “erase” command in the syntax into a comment.

8 Doing so, the variables with the midfixes “01” have to be treated before the loop starts.

Data Documentation 79
Appendix A: migspell_transform.do

24

Appendix A: migspell_transform.do

version 13
/* ##
################## Generation of spell data from migration biographies ##############################
################## IAB-SOEP migration sample 2013 (bdp_mig.dta) ##############################
################## ##############################
################## Author: Klaudia Erhardt, SOEP, DIW ##############################
################## ##############################
################## Last updated: 2014-11-12 ##############################
################## ##############################
################## Source file: bdp_mig.dta ##############################
################## Resulting file: migspell_transformed.dta ##############################
################## ##############################
*/

/* contents:

SECTION 0: Definition of globals

SECTION 1: Preparation of the source files for "Coming to Germany" and for "Stays abroad"

SECTION 2: Generating spell data for "Stays abroad" (migrants born in DE)

SECTION 3: Generating spell data for "Coming to Germany" (migrants born outside DE)

SECTION 4: Integration of the two spell data sets, generation of some useful variables,
 generation of variable and value labels
*/

/* ##
########## SECTION 0: Definition of Globals ############################
########## Replace content of globals by values of your own environment ############################
########## If you don't differentiate main directory and /data /output directories, ############################
########## assign same directory to all globals or change related syntax ############################
*/

global data s:/DATA/soep30_de/stata /* Path to source-files directory */
global pfad1 H:/Zuwanderer/Datenverknüpfung_STATA/migspells /* Main local path */
global pfad1d ${pfad1}/Datenfiles /* local data directory (--> target file) */
global pfad1o ${pfad1}/Output /* local output directory */
global lg ${pfad1o}/migspells_${S_DATE}.log /* local log-file name */

Data Documentation 79
Appendix A: migspell_transform.do

25

/* ######### Start of program ## */

clear
set more off
set varabbrev off
capture log close
log using "$lg", append

/* ##
########## SECTION 1: Preparation of the source file ##################
*/

/* The source file contains:

 - Variables that are not part of the migration biographies: country of birth place (current state),
 birth year, birth month, German-born/not German-born (only used as a selection criterion)

 plus alternatively:

 - the variables describing the "stays abroad" section of the migration biography (relating to migrants born
 in Germany) --> bdp_mig_sabr.dta

 - the variables describing the "coming to Germany" section of the migration biography (relating to migrants
 born outside Germany) --> bdp_mig_ctde.dta

*/

use "${data}/bdp_mig", clear
keep persnr bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l_0201 bdpm_l01_28-bdpm_l15_3303
drop if bdpm_l_0201==2 /* drop the abroad-born migrants */
save "${pfad1d}/bdp_mig_sabr_1.dta", replace
use "${data}/bdp_mig", clear
keep persnr bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l_0201 bdpm_l01_1601-bdpm_l15_26
drop if bdpm_l_0201==1 /*drop the german-born migrants */
save "${pfad1d}/bdp_mig_ctde_1.dta", replace

/* ##
########### SECTION 2: Generating spell data for "Stays abroad" (migrants born in DE) ##################
########### ##################
########### See synopsis 1 of the documentation for an overview of the structure ##################
########### of source and target file ##################
*/

Data Documentation 79
Appendix A: migspell_transform.do

26

/* ########### 1st Spell (everybody): this is an additional spell from birth to first move ############### */

use "${pfad1d}/bdp_mig_sabr.dta", clear
keep persnr bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l01_28 bdpm_l01_2902

/* Harmonization of codes of nmtype
 different codes only in 1st spell: 1: always lived in Germany, 2: also lived in other countries.
 With all other spells: 1: move to other country, 2: move to DE --> recoded 1=3 2=1 at the end of SECTION 2 */
recode bdpm_l01_28 (2=3)

/* generate spell data */
rename (bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l01_28 bdpm_l01_2902) (country starty startm nmtype tcountry)
replace country=1 /* birth country resp. 1st country of habitation is DE for all cases */
gen byte spid = 1 /* generation of the spell ID */
drop if starty == -2 /* drop empty spells */
save "${pfad1d}/sabr-1.dta", replace

/* ########### Loop for all the following moves ############### */

local n = 15
forvalues i = 1(1)`n' {
 /* Generation of the varying parts of the variable names */
 if `i' < 10 {
 local in 0`i' /* the leading zero is added */
 }
 if `i' >= 10 {
 local in `i'
 }
 /* ####### the 1st spell of each loop (a stay abroad) ############## */

 use "${pfad1d}/bdp_mig_sabr.dta", clear
 keep persnr bdpm_l`in'_3001 bdpm_l`in'_3002 bdpm_l`in'_3101 bdpm_l`in'_3201 bdpm_l`in'_3203

 /* generate spell data */
 /* if target of next move is DE, replace value -2 of variable bdpm_l`in'_3203 (target country) with 1 */
 replace bdpm_l`in'_3203=1 if bdpm_l`in'_3201 == 2
 rename (bdpm_l`in'_3001 bdpm_l`in'_3002 bdpm_l`in'_3101 bdpm_l`in'_3201 bdpm_l`in'_3203) ///
 (starty startm status nmtype tcountry)
 gen byte spid = 2 * `i' /* generate spell ID */
 drop if starty == -2 /* drop empty spells */
 local xt = 2 * `i'
 save "${pfad1d}/sabr-`xt'.dta", replace

Data Documentation 79
Appendix A: migspell_transform.do

27

 /* ####### the 2nd spell of each loop (a stay in DE) ############## */

 use "${pfad1d}/bdp_mig_sabr.dta", clear
 keep persnr bdpm_l`in'_32a01 bdpm_l`in'_32a02 bdpm_l`in'_3301 bdpm_l`in'_3303

 * generate spell data
 rename (bdpm_l`in'_32a01 bdpm_l`in'_32a02 bdpm_l`in'_3301 bdpm_l`in'_3303) (starty startm nmtype tcountry)
 gen byte spid = 2 * `i' + 1 /* generate spell ID */
 local xt = 2 * `i' + 1
 drop if starty == -2 /* drop empty spells */
 save "${pfad1d}/sabr-`xt'.dta", replace
}
/* ########### compile the single files into target file ############## */

use "${pfad1d}/sabr-1.dta", clear
forvalues i = 2(1)31 {
 quietly append using "${pfad1d}/sabr-`i'", nolabel
 quietly erase "${pfad1d}/sabr-`i'.dta"
}
quietly erase "${pfad1d}/sabr-1.dta"

/* Harmonization of the codes of 'nmtype', which are different for "Stays abroad" and "Coming to Germany" */
recode nmtype (1=3)(2=1)

/* Harmonization of the codes of 'status', which are different for "Stays abroad" and "Coming to Germany" */
recode status (2=3) (3=5) (4=6) (5=7)

sort persnr spid
order persnr spid country starty startm status nmtype tcountry, first
save "${pfad1d}/migspell_sabr_all.dta", replace

/* ##
########### SECTION 3: Generating spell data for "Coming to Germany" (migrants not born in DE) ###############
########### ##################
########### See synopsis 2 of the documentation for an overview of the structure ##################
########### of source and target file ##################
*/

/* ########### Reconstruction of the first loop ##############*/

/* ########### 1st Spell (everybody): this is an additional spell from birth to first move ###############*/

Data Documentation 79
Appendix A: migspell_transform.do

28

use "${pfad1d}/bdp_mig_ctde.dta", clear
keep persnr bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l01_1701 bdpm_l01_1703

/* target country: integrate DE */
replace bdpm_l01_1703 = 1 if bdpm_l01_1701==1

/* Harmonization of codes (different codes only in 1st spell) */
replace bdpm_l01_1701 = 3 if bdpm_l01_1701==2

/* generate spell data */
rename (bdpm_l_0203 bdpm_l_0103 bdpm_l_0102 bdpm_l01_1701 bdpm_l01_1703) (country starty startm nmtype tcountry)
gen byte spid = 1
drop if starty == -2 /* drop empty spells */
save "${pfad1d}/ctde-1.dta", replace

/* ########### 2nd Spell - only persons moving from birth country to another country ############## */

use "${pfad1d}/bdp_mig_ctde.dta", clear
keep bdpm_l01_1701 persnr bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_2201 bdpm_l01_2301 bdpm_l01_2303
drop if bdpm_l01_1701==1 /* drop persons going to Germany */
drop bdpm_l01_1701

/* target country: integrate DE */
replace bdpm_l01_2303 = 1 if bdpm_l01_2301==1

/* harmonization of codes */
recode bdpm_l01_2201 (6=7)(5=6)(4=5)(3=4)(2=3)

/* generate spell data */
rename (bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_2201 bdpm_l01_2301 bdpm_l01_2303) ///
 (starty startm status nmtype tcountry)
gen byte spid = 2 /* generate spell ID */
drop if starty == -2 /* drop empty spells */
save "${pfad1d}/ctde-2a.dta", replace

/* ########### 2nd Spell - only persons moving from birth country directly to Germany ############## */

use "${pfad1d}/bdp_mig_ctde.dta", clear
keep bdpm_l01_1701 persnr bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_1801 bdpm_l01_19 bdpm_l01_2001 bdpm_l01_2003
drop if bdpm_l01_1701==2 /* drop persons moving to another country than Germany */
drop bdpm_l01_1701

/* target country: integrate DE */
replace bdpm_l01_2003 = 1 if bdpm_l01_2001==1

Data Documentation 79
Appendix A: migspell_transform.do

29

/* generate spell data */
rename (bdpm_l01_1601 bdpm_l01_1602 bdpm_l01_1801 bdpm_l01_19 bdpm_l01_2001 bdpm_l01_2003) ///
 (starty startm status lfgroup nmtype tcountry)
gen byte spid = 2
drop if starty == -2 /* drop empty spells */
append using "${pfad1d}/ctde-2a.dta"
save "${pfad1d}/ctde-2.dta", replace
capture erase "${pfad1d}/ctde-2a.dta"

/* ########### 3rd spell - only persons moving to DE first, then to another country ############## */

use "${pfad1d}/bdp_mig_ctde.dta", clear
keep bdpm_l01_1701 bdpm_l01_2001 persnr bdpm_l01_2101 bdpm_l01_2102 bdpm_l01_2201 bdpm_l01_2301 bdpm_l01_2303
keep if bdpm_l01_1701==1 & bdpm_l01_2001 > 1 /* keep persons moving to DE first, then to another country */
drop bdpm_l01_1701 bdpm_l01_2001

/* target country: integrate DE */
replace bdpm_l01_2303 = 1 if bdpm_l01_2301==1

/* harmonization of codes which are different for moves to DE and moves to other countries */
recode bdpm_l01_2201 (6=7)(5=6)(4=5)(3=4)(2=3)

/* generate spell data */
rename (bdpm_l01_2101 bdpm_l01_2102 bdpm_l01_2201 bdpm_l01_2301 bdpm_l01_2303) ///
 (starty startm status nmtype tcountry)
gen byte spid = 3 /* generate spell ID */
drop if starty == -2 /* drop empty spells */
save "${pfad1d}/ctde-3.dta", replace

/* ########### Loop for the following moves (except for the last move to DE) ############## */

local n = 15
forvalues i = 2(1)`n' {
 /* Generation of the varying parts of the variable names */
 local j = `i'-1
 if `i' < 10 {
 local in 0`i' /* the leading zero is added */
 }
 if `i' >= 10 {
 local in `i'
 }
 if `j' < 10 {
 local iu 0`j' /* the leading zero is added */

Data Documentation 79
Appendix A: migspell_transform.do

30

 }
 if `j' >= 10 {
 local iu `j'
 }

 /* ####### the 1st spell of a loop (a stay in DE) ############## */

 use "${pfad1d}/bdp_mig_ctde.dta", clear
 keep persnr bdpm_l`iu'_2401 bdpm_l`iu'_2402 bdpm_l`iu'_2501 bdpm_l`iu'_26 bdpm_l`in'_2001 bdpm_l`in'_2003

 /* target country: integrate DE */
 replace bdpm_l`in'_2003 = 1 if bdpm_l`in'_2001==1

 /* generate spell data */
 rename (bdpm_l`iu'_2401 bdpm_l`iu'_2402 bdpm_l`iu'_2501 bdpm_l`iu'_26 bdpm_l`in'_2001 bdpm_l`in'_2003) ///
 (starty startm status lfgroup nmtype tcountry)
 gen byte spid = 2 * `i' /* generate spell ID */
 local xt = 2 * `i' /* sequential number as a file identifier */
 drop if starty == -2 /* drop empty spells */
 save "${pfad1d}/ctde-`xt'.dta", replace

 /* ####### the 2nd spell of a loop (a stay abroad) ############## */

 use "${pfad1d}/bdp_mig_ctde.dta", clear
 keep persnr bdpm_l`in'_2101 bdpm_l`in'_2102 bdpm_l`in'_2301 bdpm_l`in'_2303 bdpm_l`in'_2201

 /* target country: integrate DE */
 replace bdpm_l`in'_2303 = 1 if bdpm_l`in'_2301==1

 /* harmonization of codes */
 recode bdpm_l`in'_2201 (6=7)(5=6)(4=5)(3=4)(2=3)

 /* generate spell data */
 rename (bdpm_l`in'_2101 bdpm_l`in'_2102 bdpm_l`in'_2201 bdpm_l`in'_2301 bdpm_l`in'_2303) ///
 (starty startm status nmtype tcountry)
 gen byte spid = 2 * `i' + 1 /* generate spell ID */
 drop if starty == -2 /* drop empty spells */
 local xt = 2 * `i' + 1
 save "${pfad1d}/ctde-`xt'.dta", replace
}

Data Documentation 79
Appendix A: migspell_transform.do

31

/* ########## Last move to DE is treated outside the loop, because the variable list is different - now there
 are only the variables left which had the infix "iu". iu could maximally be 14 inside the loop. In the next
 step these variables having the infix 15 are invoked ############### */

local iu 15 /* set macros to 15 and 16, respectively, in order to allow for using the same syntax as within
 the loop */
local i 16
use "${pfad1d}/bdp_mig_ctde.dta", clear
keep persnr bdpm_l`iu'_2401 bdpm_l`iu'_2402 bdpm_l`iu'_2501 bdpm_l`iu'_26

/* generate spell data - tcountry und nmtype do not occur any more because there are no next moves */
rename (bdpm_l`in'_2401 bdpm_l`in'_2402 bdpm_l`in'_2501 bdpm_l`in'_26) (starty startm status lfgroup)
gen byte spid = 2 * `i' /* generate spell ID */
local xt = 2 * `i'
drop if starty == -2 /* drop empty spells */
save "${pfad1d}/ctde-`xt'.dta", replace

/* ########### compile the single files into target file ############## */

use "${pfad1d}/ctde-1.dta", clear
forvalues i = 2(1)32 {
 quietly append using "${pfad1d}/ctde-`i'", nolabel
 quietly erase "${pfad1d}/ctde-`i'.dta"
}
quietly erase "${pfad1d}/ctde-1.dta"

sort persnr spid
order persnr spid country starty startm status lfgroup nmtype tcountry, first
save "${pfad1d}/migspell_ctde_all.dta", replace

/* ##
########## SECTION 4: Integration of the two spell data sets, generation of some useful variables #########
########## and generation of variable and value labels ############
*/

use "${pfad1d}/migspell_ctde_all.dta", clear
append using "${pfad1d}/migspell_sabr_all.dta", nolabel
sort persnr spid

/* target country --> -1 if nmtype==-1 (No answer) */
replace tcountry= -1 if nmtype== -1

/* replace tcountry with birth country if nmtype==2 (meaning: going back to birth country) */
by persnr: replace tcountry = country[1] if nmtype==2

Data Documentation 79
Appendix A: migspell_transform.do

32

/* fill in variable country from tcountry of previous spell, replace values of tcountry & nmtype in last spell */
by persnr: replace country = tcountry[_n-1] if _n > 1
by persnr: replace tcountry = -2 if _n==_N /* in the last spell target country of next move is not applicable */
by persnr: replace nmtype = -2 if _n==_N /* in the last spell next move type is not applicable */

/* create Variable birth country */
by persnr: gen int bcountry = country[1]

/* replace missings with -2 (not applicable) - missings stem from merge-command */
replace status = -2 if status == .
replace lfgroup = -2 if lfgroup == .

/* new consecutive spell ID (closing the gaps, but keeping the original succession) */
sort persnr spid
by persnr: gen byte spellnr = _n
drop spid

/* Number of spells */
by persnr: egen nspell = max(spellnr)

/* Define variable labels */
lab var persnr ""
lab var spellnr "spell number"
lab var nspell "number of spells per case"
lab var starty "startyear"
lab var startm "startmonth"
lab var country "country of habitation"
lab var status "status when coming"
lab var lfgroup "labor force type"
lab var tcountry "target country next move"
lab var nmtype "next move type"
lab var bcountry "birth country"

/* Define Value labels */
lab def nmtype ///
 -3 "[-3] Answer implausible" ///
 -2 "[-2] Does not apply" ///
 -1 "[-1] No answer" ///
 1 "[1] To Germany" ///
 2 "[2] Back to birth country" ///
 3 "[3] To another country" ///
 , replace
lab val nmtype nmtype

Data Documentation 79
Appendix A: migspell_transform.do

33

lab def status ///
 -3 "[-3] Answer implausible" ///
 -2 "[-2] Does not apply" ///
 -1 "[-1] No answer" ///
 1 "[1] Employee with job offer" ///
 2 "[2] Ethnic German immigrant fr. Eastern Europe" ///
 3 "[3] Spouse/child/other family member" ///
 4 "[4] Asylum seeker or refugee" ///
 5 "[5] Student/vocational trainee" ///
 6 "[6] Job seeker" ///
 7 "[7] Other status" ///
 , replace
lab val status status

lab def lfgroup ///
 -3 "[-3] Answer implausible" ///
 -2 "[-2] Does not apply" ///
 -1 "[-1] No answer" ///
 1 "[1] Self-employed/entrepreneur" ///
 2 "[2] Seasonal worker/contractor" ///
 3 "[3] Relocated to Germany by employer" ///
 4 "[4] Sent to Germany from company" ///
 5 "[5] High qualified with special entry conditions" ///
 6 "[6] Other kind of employee" ///
 , replace
lab val lfgroup lfgroup

label copy bdpm_l_0203 country
label copy bdpm_l_0203 tcountry
label copy bdpm_l_0203 bcountry
lab val country country
lab val tcountry tcountry
lab val bcountry bcountry

order persnr bcountry spellnr nspell country starty startm status lfgroup nmtype tcountry, first

save "${pfad1d}/migspell_transformed.dta", replace
quietly erase "${pfad1d}/migspell_ctde_all.dta"
quietly erase "${pfad1d}/migspell_sabr_all.dta"
capture log close

Data Documentation 79
Appendix B: Questions of the migration biography

34

Appendix B: Questions of the migration biography

extract from the questionnaires for the IAB-SOEP Migration sample (sample M) of
wave 30 (wave bd) of the SOEP (SOEP Survey Paper 218)

Data Documentation 79
Appendix B: Questions of the migration biography

35

German version

Data Documentation 79
Appendix B: Questions of the migration biography

36

Data Documentation 79
Appendix B: Questions of the migration biography

37

Data Documentation 79
Appendix B: Questions of the migration biography

38

Data Documentation 79
Appendix B: Questions of the migration biography

39

Englisch translation

(just used as a translation utility, not being used as a survey questionnaire)

Data Documentation 79
Appendix B: Questions of the migration biography

40

Data Documentation 79
Appendix B: Questions of the migration biography

41

Data Documentation 79
Appendix B: Questions of the migration biography

42

	1 Introduction
	2 Main working principles of a transformation from “wide” data into spell data
	3 Determining the relation between source and target files
	3.1 Structure of the source file
	3.2 The structure of the target file
	3.3 Detailed correspondence between source variables and target variables

	4 How to do the transformation in Stata
	4.1 Layout of the do-file migspell_transform.do
	4.1.1 Sections 0 to 1: preliminary operations
	4.1.2 Section 2: Generating spell data for “stays abroad”
	4.1.3 Section 3: Generating spell data for “coming to Germany”
	4.1.4 Section 4: Integration of the two spell data sets

	4.2 Some specific procedures within the syntax
	4.2.1 Invoking the variable names of the migration biographies within a loop structure
	4.2.2 How to generate the target spell data file

	Appendix A: migspell_transform.do
	Appendix B: Questions of the migration biography
	German version
	Englisch translation

