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Abstract

This paper assesses the robustness of the empirical results in Ertur and Koch (2007),
who develop a model, which accounts for technological interdependence among coun-
tries through spatial externalities. The original version models interdependence via
an interaction matrix based on geographic distance. In contrast, in this paper, data
on genetic distance, defined as the time since two populations have shared a common
ancestor, from Spolaore and Wacziarg (2009) is used to construct the interaction
matrix. It is found that, whereas in the original model indirect spillovers from cap-
ital investment were insignificant, using genetic distance, these spillovers now have
a significant effect on steady-state income per worker. However, the version of the
model with an interaction matrix based on genetic distance implies an implausibly
large capital share of income. In addition, the model is subjected to a further series
of robustness checks. The original version relies on data from Penn World Table
(PWT) Version 6.1. More recent versions are currently available, and the data has
been extensively revised (Johnson et al., 2013). It is shown that results are in gen-
eral not robust across different versions of the PWT. Furthermore, the estimation
results are highly sensitive both to the measure used to model interaction between
countries (genetic or geographic distance) and to the specific functional form on
which the weights in the interaction matrix are based.
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1 Introduction

Countries do not develop in isolation from each other, but are connected and interact
in many different ways. A key aspect of this interdependence concerns technology, in
particular technological knowledge spillovers. Accounting for this technological interde-
pendence both on an empirical and theoretical level requires a notion of how to model
the interaction between countries. Empirical evidence suggests that knowledge spillovers
decline with the distance in geographic terms between countries (Keller, 2002, 136). This
insight has, for instance, been picked up by Ertur and Koch (2007), who develop a the-
oretical model of economic growth that incorporates technological knowledge spillovers
between countries. In the empirical part of their paper, they employ a specification,
which qualitatively replicates the effect identified by Keller (2002).

However, geographic distance is only one possible measure to model interaction between
countries. The concept is more general and encompasses “any kind of network structure”
(Ertur and Koch, 2011, 236). For example, data on genetic distance, which is defined as
the time, since two populations have shared a common ancestor (Spolaore and Wacziarg,
2009, 470), can be used to build this structure.

The general possibility of implementing this concept in this way is noted briefly by Ertur
and Koch (2011, 236-237, 249), and it follows as Spolaore and Wacziarg (2009) demon-
strate that genetic distance has an effect on cross-country income differences. They pro-
pose the following mechanism for this result and also provide empirical evidence consistent
with it:1 Within populations, characteristics like habits, implicit beliefs or conventions
are transmitted across generations biologically and culturally, and genetic distance can
be viewed as a summary statistic that picks up a divergence across populations in char-
acteristics that are slowly changing over time (see, also Spolaore and Wacziarg (2015)).
The next step in their argument is the assumption that these differences in characteris-
tics between populations introduce barriers to communication and understanding which
then hinder the diffusion of technology. Hence, by using genetic distance, this paper
contributes to the literature by providing an important robustness check for the empiri-
cal results in the influential model by Ertur and Koch (2007) which relies on geographic
distance to model interaction.

A further motivation for employing data on genetic distance is that this approach captures
interactions between economies that geographic distance is missing. For instance, Lindner
and Strulik (2014, 18) note (without any reference to genetic distance) that it might be

1It needs to be pointed out though that their empirical results are not uncontroversial, and have, for
instance, been challenged by Campbell and Pyun (2015).
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the case that knowledge exchange between the United States and the United Kingdom is
higher than between the United States and Guatemala even though geographic distance
would suggest otherwise. By modeling interaction through genetic distance instead of
geographic distance however, stronger knowledge spillovers between the United States
and the United Kingdom compared to between the United States and Guatemala would
be in line with the data on genetic distance, as the United States and United Kingdom
populations are genetically closer to each other than the ones in the United States and
Guatemala.

The second contribution of this paper is the assessment of the robustness of the results by
Ertur and Koch (2007) to data revisions. In their econometric analysis, they rely on data
from Penn World Table (PWT) Version 6.1 (Heston et al., 2002). Since the publication
of their article, newer versions of the PWT have become available, and in each update
the data has been revised. Ideally, empirical results should be robust to different versions
of the PWT. However, this is not a foregone conclusion, and Ponomareva and Katayama
(2010) find that conclusions from cross-country growth studies might change even for
the same period and units of observation, depending on the version of the PWT. More
recently, Johnson et al. (2013) have also investigated this issue. They find that some
data revisions have been relatively minor. For instance, the average growth rate of GDP
over the period 1975-1999 for Morocco was 1.6% when calculating it using PWT 6.1 and
1.7% when basing the calculations on PWT 6.2 (Johnson et al., 2013, Table 1). Other
revisions were drastic, showing high variability in the estimates, as exemplified by the
case of Equatorial Guinea. Taking the data from PWT 6.1, its average GDP growth
rate in the period 1975-1999 was −2.7%, making it the worst performing of 40 African
countries that are covered in both PWT 6.1 and 6.2. On the other hand, for the data from
PWT 6.2 its average GDP growth rate over the same period was 4%, thereby becoming
the second-best performer in the list of 40 African countries after Botswana (Johnson
et al., 2013, 255-256). Hence, the fact that robustness to different versions is an issue
for some studies is not too surprising. However, they also argue, based on the results
of a series of replication exercises for prominent articles investigating economic growth
that results from cross-sectional estimations tend to be robust to changing the version
of the PWT (Johnson et al., 2013, 273). This paper investigates whether this is also
the case for the results in Ertur and Koch (2007) by estimating the model for the same
set of countries and the same time period (1960-1995), but with data taken from PWT
Versions 6.2 and 7.1. The importance of checking the robustness of a study’s results to
data revisions has also been highlighted, for example, in the debate on the relationship
between public debt levels and economic growth (see Reinhart and Rogoff (2010) and
Herndon et al. (2014)). In this regard, the implications for providing policy advice based
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on results that are, for instance, sensitive to the specific version of the data set that is
used, cannot be neglected. Policy makers’ awareness of this issue needs to be raised.

The third contribution of this paper lies in the quantification of the strength of the
indirect (spillover) effects from, for instance, physical capital investment on steady-state
per capita income in the model by Ertur and Koch (2007). In the original study, only
the magnitude of the direct effects is presented. New methods have been developed by
LeSage and Pace (2009) that are applied here which allows for providing important results
concerning knowledge spillovers which are not highlighted in Ertur and Koch (2007).

The paper is organized as follows: Section 2 introduces the concept of genetic distance.
The following section briefly motivates the need to incorporate knowledge spillovers in
theoretical models, introduces the concept of spatial dependence and provides indicative
evidence for its existence before presenting the model by Ertur and Koch (2007) in de-
tail. In Section 4, the empirical specification and estimation strategy are discussed, and
Section 5 presents and discusses the estimation results. Section 6 concludes.

2 Genetic Distance

Genetic data is increasingly used in economic studies.2 Nonetheless, a brief summary of
relevant concepts might be helpful in order to better understand the measure of genetic
distance employed in the empirical part of this paper. A gene, i.e. a string of DNA
encoding a protein, can exist in numerous forms, and a particular form of this gene
is called an allele (Giuliano et al., 2014, 182). Individuals with different alleles may
have different observable (phenotypic) traits, for instance, eye color; although different
alleles between individuals need not result in different observable characteristics (ibid.).
It is important to note that the frequency of alleles is not constant across populations,
as this is the information used to calculate measures of the genetic distance between
populations (Spolaore and Wacziarg, 2009, 480). In principle, on which particular genes’
allelic frequency3 this computation is based would not matter. In practice, however, the
measure is based on neutral genes. These are genes that do not endow an individual
with a selective advantage (Giuliano et al., 2014, 182). This implies that the measure of
genetic distance provides no information about specific genes that have a direct impact
on fitness and survival or income and productivity (Spolaore and Wacziarg, 2009, 470).

2See, for instance, Spolaore and Wacziarg (2009), Giuliano et al. (2014), Desmet et al. (2011) or
Ashraf and Galor (2013).

3A database on allele frequencies is available under: http://alfred.med.yale.edu (accessed: 11 Au-
gust, 2015).
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The particular index of genetic distance mainly considered in this paper, FST distance,
measures the probability that the alleles for a gene selected at random from two popu-
lations will be different (Spolaore and Wacziarg, 2009, 481).4 For identical allele distri-
butions this index equals zero, and it increases with differences in the distributions.5 As
Spolaore and Wacziarg (2009) argue, these allele differences increase due to the presence
of random (or genetic) drift. This concept may be illustrated through an example by
Masel (2011, R837): Imagine a population of 5,000 people in which, due to the general
diploid nature of human somatic cells (the gametes, ovum and sperm, in contrast, are
haploid), 10,000 copies of each gene exist.6 If now, for instance, 3,000 of those copies are
of a particular form or allele, then in the next generation there might be more or fewer
than 3,000 copies, as out of all possible gametes, only some are randomly picked out.
When populations become separated, and for constant drift rates (see Kimura (1968) for
evidence on this), genetic distance can then be used to measure the time that has passed,
since populations have become separated (or, in other words, their degree of genealogical
relatedness). It is in this sense that genetic distance can be understood as the time that
has elapsed, since populations have shared a common ancestor. Spolaore and Wacziarg
(2009, 470-471) furthermore hypothesize that populations that are genetically more dis-
tant, have diverged more strongly in characteristics that are variably transmitted across
generations, like habits, norms, or implicit beliefs, and that this divergence hinders, for
instance, communication and understanding and thereby creates barriers to the diffusion
of development or technology. Applying this line of thought to the example mentioned in
the introduction: The United States are genetically closer to the United Kingdom than
to Guatemala (the pairwise genetic distances are 0.033 and 0.091, respectively) so that
with regard to this concept fewer barriers to knowledge diffusion should exist between the
United States and the United Kingdom than between the United States and Guatemala.7

Note that the stated genetic distances in this example are weighted FST genetic distances,
which take into account that some countries, like the United States or Australia, consist
of genetically distant subpopulations (see Spolaore and Wacziarg, 2009, 484-485).8

4Data from Spolaore and Wacziarg (2009) on an index with different theoretical properties, Nei’s
distance (see Nei (1972) and Cavalli-Sforza et al. (1994)), which however is highly correlated with FST
distance, will be used to assess the robustness of the empirical results as well.

5This index from Cavalli-Sforza et al. (1994) uses the frequency of 128 alleles that are related to
45 genes, which fulfill the conditions that they are both selectively neutral and easy to collect (Giuliano
et al., 2014, 183).

6A human cell is called haploid if its nucleus has a single set of 23 chromosomes and it is diploid if
its nucleus has a double set of 23 chromosomes.

7Considering geographic distances between the country capitals suggests that Washington, D.C. is
closer to Guatemala City (distance = 3,007km) than to London (distance = 5,909km). See Equation
(B.2) in Appendix B for the general formula to calculate these distances.

8See Appendix A for a formal definition of FST genetic distance. The formula for the weighted version
is provided in Equation (A.3).
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3 Spatial Dependence and Model Setup

This section motivates the need for including technological interdependence across geo-
graphical regions in theoretical models and introduces the spatial Solow model as it was
developed by Ertur and Koch (2007). Section 3.1 develops the concept of spatial depen-
dence and illustrates the concept with a brief example. Section 3.2 describes in detail the
specification of technological progress and technological interdependence in this model
before Section 3.3 investigates the transition dynamics and derives an equation for the
steady-state income per worker.

3.1 Spatial Dependence

Knowledge spillovers have been discussed by economists for quite a long time, going back
to Marshall (1890). His description of these effects was completely verbal however, and
the first attempts to incorporate these effects within a theoretical model are due to Arrow
(1962) and Romer (1986). These authors made the assumption that knowledge generated
in a single firm is not confined to this particular firm, but might spill over to other firms
in a given geographical region as knowledge is considered a non-rival input. While this is
an improvement on earlier models like the one by Solow (1956), it remains unclear why
knowledge diffusion should stop at a given border. Learning-by-doing, for instance, can
result as a by-product of mergers and acquisitions, be a result of interfirm cooperation or
the meeting of different people at conferences and seminars (Fischer, 2011, 420). None
of these activities is necessarily confined within an arbitrary geographical unit. With
respect to physical capital externalities, for example, López-Bazo et al. (2004, 44), note
that “there is no a priori reason to constrain spillovers within the barriers of the economy
where the agent making the investment is located”. Diffusion of these knowledge spillovers
across boundaries can then be viewed as a spatial externality, implying that, for instance,
the economic development of neighboring countries is related. Before presenting how
this effect is picked up in a theoretical model, the concept of spatial dependence will be
introduced to provide indicative evidence for the relevance of these spatial externalities.

As countries interact with each other in numerous ways, it is straightforward to assume
that the development of one country may be influenced by the development of nearby
countries. This latter idea is captured in the (spatial) econometric literature by the
concept of spatial dependence. More precisely, spatial dependence captures situations in
which the values observed in e.g. country i depend on the values observed in neighboring
countries (see LeSage and Pace, 2009, 2).
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As an example consider Figure 1, which depicts total factor productivity (TFP) levels
relative to those of the United States for 110 countries for the year 2007 in shades of
green. Visual inspection of this figure suggests that the TFP levels are not distributed

TFP Relative to US in 2007

< 0.6

0.6 - 0.8

0.8 - 1

> 1

No data

Figure 1: Total Factor Productivity Relative to the United States for 110 Countries in 2007 (Data
from Feenstra et al., 2013b).

randomly. Countries with comparatively low TFP levels (less than 80% of the value for
the United States) are, for instance, concentrated in South America, southeastern Europe
or east and southeast Asia, whereas regions with higher TFP levels (above 80% of the
level in the United States) can be found in northwestern Europe.

An alternative visualization of these data is provided by a Moran scatterplot in Figure 2.
When interpreting this figure, it is important to note that the variables are in deviations-
from-the-mean form. The meaning of the variable “Spatial Lag of TFP” on the ordinate
might not be immediately clear. In general, a spatial lag is a weighted average of the
values for a variable from countries that are neighbors to country i (see LeSage and Pace,
2009, 8).9

The Spatial Lag of TFP on the ordinate in Figure 2 thus has the interpretation that for
a given observation i, this variable shows the deviation of the TFP for country i from

9For expository reasons the term “neighbor” will be slightly abused in this section. In fact, in the
calculation of the spatial lag of TFP for country i, all countries for which data is available are included and
not only neighboring countries. However, countries that are geographically closer to country i receive a
higher weight in the calculation of the spatial lag. The precise formal specification of this idea is provided
in Section 5.1. Note that countries whose TFP levels exceed those of the US are mainly oil-rich countries,
like Saudi Arabia, Qatar (QAT) or Kuwait (KWT) for which TFP will be overstated as data is lacking
to include also “subsoil assets” in the underlying methodology (see Feenstra et al. (2013a, 35-36) and
Inklaar and Timmer (2013)) as well as Singapore or the Special Administrative Regions of Hong Kong
and Macao.
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Figure 2: Moran Scatterplot of TFP Relative to the United States for 110 Countries in 2007 (Data
from Feenstra et al., 2013b).

Note: The variables are in the form of deviations from the mean so that the value 0 on the abscissa
is equivalent to the mean value of 0.685.

the mean of TFP of its neighbors. Hence, in the lower left quadrant of the figure, one
finds countries for which not only their own TFP is below the mean, but also the TFP of
its neighbors is below the mean. Whereas, in the upper right quadrant countries cluster
whose own TFP as well as the one of its neighbors is above mean.10

Figures 1 and 2 have provided indicative evidence of spatial dependence (or spatial auto-
correlation) in country-level data. Theoretical models should therefore not disregard this
characteristic of the data, but instead try to represent it. The following section shows
one possible way to achieve this.

3.2 Specification of Technological Progress

The aggregate production for each country i = 1, . . . , N at time t in the model developed
by Ertur and Koch (2007) is described by the Cobb-Douglas production function

Yi(t) = Ai(t)Ki(t)
αLi(t)

1−α with 0 < α < 1 (1)

10Note that this result of spatial dependence is not particular to country-level data. Looking, for
example, at the distribution of the TFP levels of European NUTS 2 regions gives a similar result (Der-
byshire et al., 2011).
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where output, Yi(t), is produced with the three input factors labor, Li(t), physical capital,
Ki(t) and technology, Ai(t). This function is linearly homogenous in the two input factors
capital and labor and thus has constant returns to scale with respect to these two factors.
The aggregate level of technology in country i is described by

Ai(t) = Ω(t)ki(t)
φ

N∏
j 6=i

Aj(t)
γwij . (2)

Basically, overall technological progress is assumed to be due to three different factors in
Equation (2) which are (imperfect) substitutes. The first factor, Ω(t), reflects exogenous
(Harrod-neutral) technological progress as modeled in the original contributions by Solow
(1956, 85) and Swan (1956). In formal terms, this is captured by the equation

Ω(t) = Ω(0)eµt,

with µ as the constant rate of technological progress and Ω(0) the initial level.

The second term models the influence of the physical capital per worker, ki(t) = Ki(t)
Li(t)

,
on aggregate technology in country i. The level of technology increases with the level of
capital per worker ki(t), modeling the assumption that physical capital externalities exist
in general. Their strength is governed by the parameter φ for which 0 ≤ φ < 1 holds so
that perfect knowledge spillovers from a capital investment in a given firm in country i
to the remaining firms in this country are ruled out, as diffusion is not frictionless and
some knowledge is “lost in transmission”. The assumption that all firms in a country
gain a higher level of technology, if one firm increases its physical capital per worker is
due to Arrow (1962) and Romer (1986). As has been mentioned above, the assumption
that these knowledge spillovers should be constrained within a single region or country is
tenuous. Why should knowledge diffuse only within a country but not across countries?
The strength of the spillovers might be dampened (and there is indeed empirical evidence
to that extent11), but they should be present nonetheless.

The third factor in Equation (2) picks this up. From a formal perspective, this factor is a
weighted geometric mean of the level of technology in all countries j = 1, . . . , N connected
to country i. The strength of these cross-border spillovers or spatial externalities is
governed by two factors. The parameter γ, for which 0 ≤ γ < 1 holds, gauges which
fraction of knowledge generated in, for example, country j′ spills over into country i. This
value is the same for all units of observation. The second factor concerns the weights
wij. In general, these are allowed to differ across countries, and they specify the way in

11See, for example, Keller (2002), who estimates that at a distance of about 1,200 kilometers from
the country in which the knowledge originates, 50% is still available.
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which countries are connected to each other. It is important to note that how strong
country i benefits from knowledge spillovers depends on the way it is connected to all
other countries under consideration. This implies that the net effect on a country’s level
of technology due to spatial spillovers will differ across countries. For a given degree of
spillovers, relatively isolated countries will benefit less than more integrated countries.
With respect to the spatial weights, it is assumed that these are non-negative, which
leaves open the possibility that countries might not be connected to each other at all so
that spatial externalities are absent between particular pairs of countries, non-stochastic,
implying that the weights are fixed over time, and finite. In addition, the weights wij lie in
the interval [0, 1] and for i = j wij = 0 holds, excluding the case of self-influence. Finally,
the weights sum to one.12 Summarized, the spatial weight matrix or more generally
interaction matrix, W, is thus row-stochastic (LeSage and Pace, 2009, 9-10).13

Applying the natural logarithm to Equation (2), it can be rewritten as

lnAi(t) = ln Ω(t) + φ ln ki(t) + γ
N∑
j 6=i

wij lnAj(t). (3)

Stacking the equations for all countries i = 1, . . . , N at time t, the level of technology can
be expressed as

lnA1(t)
...

lnAN(t)


︸ ︷︷ ︸

=A
(N×1)

=


ln Ω(t)

...
ln Ω(t)


︸ ︷︷ ︸

=Ω
(N×1)

+φ


ln k1(t)

...
ln kN(t)


︸ ︷︷ ︸

=k
(N×1)

+γ


w11 · · · w1N

... . . . ...
wN1 · · · wNN


︸ ︷︷ ︸

=W
(N×N)

·


lnA1(t)

...
lnAN(t)


︸ ︷︷ ︸

=A
(N×1)

(4)

⇐⇒ A = Ω + φk + γWA.

Given that spatial dependence is positive, γ 6= 0, and that the inverse (I−γW )−1 exists14

the previous equation is equivalent to

A = (I − γW )−1Ω + φ(I − γW )−1k. (5)

12On the assumptions for the spatial weights see Ertur and Koch (2007, 1036, Footnote 2) and Fischer
and Wang (2011, 20).

13An illustration of two spatial weight matrices is given in Appendix B, which also describes the
calculation of the spatial weights based on great circle distances between country capitals in detail.

14This inverse exists if 1
γ is not an eigenvalue of the spatial weight matrix. However, it is not necessarily

guaranteed that the inverse exists for the parameter space for γ assumed here. See Appendix C for a
proof that the inverse exists in this case as well.
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From this expression, it follows that the level of technology for a given country i can be
written as

Ai(t) = Ω(t)
1

1−γ ki(t)
φ

N∏
j=1

kj(t)
φ
∑∞
r=1 γ

r(W r)ij (6)

where (W r)ij are the individual entries in row i and column j of the matrix W taken
to the power of r. Since the derivation of Equation (6) is not immediately obvious,
important intermediate results are provided in Appendix D.1. In particular, it is proved
that the inverse matrix (I−γW )−1, which is also called the inverse spatial transformation
(Le Gallo, 2014, 1515), can be written as an infinite series, i.e.

(I − γW )−1 =
∞∑
r=0

γrW r.

With respect to Equation (5), it follows then that the level of technology in every country
is correlated with the level of technology in every other country and closer countries are
more closely related.15 The effect of the inverse spatial transformation is often referred to
as the spatial multiplier effect (see, for example, Ertur and Koch (2007, 1044) or Le Gallo
(2014, 1515)).

The results derived with respect to the level of technology are helpful in rewriting the
production function. This function exhibits constant returns to scale in capital and labor,
which implies that Equation (1) can be written in per capita terms

yi(t) = Ai(t)ki(t)
α (7)

where yi(t) = Yi(t)
Li(t)

. Inserting the expression for the level of technology in Equation (6)
into the per worker production function leads to

yi(t) = Ω(t)
1

1−γ · ki(t)α+φ(1+
∑∞
r=1 γ

r(W r)ii) ·
N∏
j 6=i

kj(t)
φ
∑∞
r=1 γ

r(W r)ij .

Now define

uii ≡ α + φ

(
1 +

∞∑
r=1

γr(W r)ii

)
and uij ≡ φ

∞∑
r=1

γr(W r)ij (8)

and substitute for the exponents of physical capital per worker so that the per worker

15As Anselin (2003, 155) mentions in a slightly different context, which is nonetheless applicable here,
this is in effect a reformulation of the first law of geography by Tobler, which states that “everything is
related to everything else, but near things are more related than distant things” (1970, 236).
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production function can be written more compactly as

yi(t) = Ω(t)
1

1−γ · ki(t)uii ·
N∏
j 6=i

kj(t)
uij . (9)

From this function it can be seen that in contrast to the standard Solow model, the model
presented here implies heterogeneity in the social elasticities of income per worker with
respect to capital per worker. If, for instance, country i increases its own stock of physical
capital per worker, the social return (or elasticity) is16

∂yi(t)

∂ki(t)

ki(t)

yi(t)
= uii.

In case all countries except country i simultaneously increase their stocks of physical
capital per worker, then the corresponding elasticity is

N∑
j 6=i

∂yi(t)

∂kj(t)

kj(t)

yi(t)
=

N∑
j 6=i

uij.

Hence, if all countries i = 1, . . . , N together increase their stocks of physical capital per
worker, then

∂yi(t)

∂ki(t)

ki(t)

yi(t)
+

N∑
j 6=i

∂yi(t)

∂kj(t)

kj(t)

yi(t)
= uii +

N∑
j 6=i

uij = α +
φ

1− γ
< 1 (10)

is the social output elasticity per worker in the situation in which all countries simul-
taneously increase their capital stock per worker.17 The inequality α + φ

1−γ < 1 is an

16The term social in contrast to private is warranted in this case, as the elasticity calculated here
includes the physical capital externalities, φ, within a country (see the definitions in Equation (8)).

17The result before the inequality follows since

uii +

N∑
j 6=i

uij = α+ φ+ φ

∞∑
r=1

γr(W r)ii +

N∑
j 6=i

φ

∞∑
r=1

γr(W r)ij

= α+ φ

1 +

N∑
j=i

·
∞∑
r=1

γr(W r)ij

 .

The matrices W r are Markov matrices, and in this case it is the rows that sum to one, meaning that∑N
j=iW

r
ij = 1∀ r so that uii +

∑N
j 6=i uij = α + φ (1 +

∑∞
r=1 γ

r) , and the term in parentheses can be
rewritten as 1 +

∑∞
r=1 γ

r = 1 +
∑∞
r=1 γ

r + γ0 − γ0 = 1 +
∑∞
r=0−γ0 = 1

1−γ . With this result, the social
returns are

uii +

N∑
j 6=i

uij = α+
φ

1− γ
.
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assumption made by Ertur and Koch (2007, 1037), since otherwise the per worker pro-
duction function in Equation (9) would not have decreasing returns to (all) physical
capital, and the model would exhibit endogenous growth.

3.3 Transition Dynamics and Steady State

Capital accumulation is described by the fundamental dynamic equation of the Solow
model, i.e.

k̇i(t) = siyi(t)− (ni + δ)ki(t) (11)

where k̇i(t) = dki(t)/dt denotes a time derivative, si is the country specific constant
saving rate (the fraction of output invested in physical capital), ni is the constant growth
rate of labor for country i, and δ is the depreciation rate, which is assumed to be identical
for all countries.

Due to the decreasing returns to capital per worker (it holds that 0 < α < 1, see Equation
(1)), ki(t) converges monotonically to its steady-state value or value on the balanced
growth path, k∗i (t).18 When this value is reached, capital (and by implication output)
per worker grow at the balanced growth rate g = µ [(1− α)(1− γ)− φ]−1.19 This rate
increases if, for instance, φ, the parameter indicating the strength of knowledge spillovers
within a country, increases or if γ increases so that knowledge spillovers between countries
are stronger.20

The steady-state value k∗i (t) can be calculated by noting that from Equation (11) on the
balanced growth path

g = si
y∗i (t)

k∗i (t)
− (δ + ni) ⇐⇒ k∗i (t) =

si
ni + δ + g

y∗i (t) (12)

holds. Inserting Equation (9) into the right-most expression above and solving for k∗i (t)
yields

k∗i (t) = Ω(t)
1

1−γ(1−uii)

(
si

ni + δ + g

) 1
1−uii

N∏
j 6=i

(
k∗i (t)

) uij
1−uii .

The steady-state value of real income per capita in country i, y∗i (t), can be derived by

18Similar to Fischer (2011, 425), the balanced growth path is defined as a situation in which the
physical capital per worker grows at rate g, the investment rate for physical capital, the employment
growth rate and the growth rate of the exogenous part of technology are constant.

19The rate can be calculated by taking the derivative of Equation (13) with respect to time, then
using ln k∗i (t)/dt = g = ln y∗i (t)/dt, and solving the derivative for g.

20These results hold due to the inequality α+ φ
1−γ < 1.
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first taking the logarithm of the production function in Equation (7), writing it in matrix
form (compare Equation (4)) to obtain

y∗ = A∗ + αk∗,

where the asterisks denote steady-state values, and then inserting the expression for A

from Equation (5) evaluated at steady state therein and finally solving for y∗, which
yields

y∗ = Ω + (α + φ)k∗ − αγWk∗ + γWy∗.

Writing this equation for a single country i at time t results in

ln y∗i (t) = ln Ω(t) + (α + φ) ln k∗i (t)− αγ
N∑
j 6=i

wij ln k∗j (t) + γ

N∑
j 6=i

wij ln y∗j (t). (13)

Inserting now the expression for the capital-output ratio on the balanced growth path
from Equation (12) into this expression and solving for y∗i (t) leads to the final result

ln y∗i (t) =
1

1− α− φ
ln Ω(t) +

α + φ

1− α− φ
ln si

− α + φ

1− α− φ
ln(ni + g + δ)− αγ

1− α− φ

N∑
j 6=i

wij ln sj

+
αγ

1− α− φ

N∑
j 6=i

wij ln(nj + g + δ) +
γ(1− α)

1− α− φ

N∑
j 6=i

wij ln y∗j (t).

(14)

In line with the standard Solow model, this equation states that the per worker income
in steady state in country i is positively influenced by an increase in its own saving rate,
si, since an increase in savings leads to more investment and a higher capital stock per
worker, which in turn leads to a higher per worker income in steady state. Increases in
the labor force (note that g and δ are constant) reduce steady-state income, since for a
given saving rate the capital stock must now be spread over more workers so that k∗i (t)
falls, implying a decrease of y∗i (t). In addition to these standard effects, Equation (14)
suggests that the steady-state value also depends negatively on increases in the saving
rates of the other countries and positively on the increases in the population growth rate
and steady-state levels of the remaining countries. Why this should be the case is not
immediately obvious. However, at this point it needs to be taken into account that the
steady-state values in the neighboring countries of i depend, for instance, positively on
their own saving rates. Higher capital stocks in neighboring countries lead to a higher
level of technology in these countries (see Equation (2)). A fraction of this knowledge
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spills over into country i, which therefore benefits via these spatial externalities. The
elasticity ηisj of income per worker in steady state in country i with respect to the saving
rate in the neighboring countries is given by21

ηisj =
φ

(1− α)(1− α− φ)

∞∑
r=1

(W r)ij

[
γ(1− α)

1− α− φ

]r
. (15)

This expression is clearly positive (compare Equation (10)). The corresponding elasticity
with respect to population growth, ηinj , equals the expression above with a negative sign.
A further point to note is that the effect on a country’s per capita income from increasing
its own saving rate (or decreasing its own population growth rate) is higher in this model
than in the standard Solow model. This elasticity is given by

ηisi =
α + φ

1− α− φ
+

φ

(1− α)(1− α− φ)

∞∑
r=1

(W r)ii

[
γ(1− α)

1− α− φ

]r
. (16)

The reason is that the knowledge generated by the increase in the capital stock per worker
diffuses to the neighboring countries, leading to a higher income per worker in these
countries, which again has a positive impact on the income per worker in country i. This
feedback effect follows from the model’s setup, since even though the diagonal entries of
the spatial weight matrixW are zero, this is not the case for higher orders of the matrix,
as, for instance, each country is a second-order neighbor to itself or in other words a
neighbor to its first-order neighbor (see LeSage and Pace, 2009, 9).

4 Empirical Specification, Estimation Strategy, and

Model Interpretation

This section presents details on the empirical specification of the model from Section 3,
develops the spatial econometric estimation strategy, and addresses the interpretation of
parameters from the estimation. It will first be shown that ordinary least squares (OLS)
estimators of the model’s parameters are biased and inconsistent. Thereafter, maximum
likelihood estimators (ML) will be presented as an alternative to OLS.

21See Appendix D.2 for the derivation.
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4.1 Econometric Specification of the Model

Equation (14) from Section 3 has the empirical counterpart at t = 0 (both the time index
and the star to indicate the steady-state value of per worker income are now dropped to
enhance readability)

ln yi = β0 + β1 ln si + β2 ln(ni + g + δ) + θ1

N∑
j 6=i

wij ln sj

+ θ2

N∑
j 6=i

wij ln(nj + g + δ) + ρ
N∑
j 6=i

wij ln yj + εi

(17)

where 1
1−α−φ ln Ω(0) = β0 + εi for i = 1, . . . , N and β0 is a constant and εi is a country-

specific shock. From the development of the theoretical model, the empirical specification
above implies the following constraints on the coefficients β1 + β2 = 0 and θ1 + θ2 = 0

(see Equation (14)).

In matrix form, Equation (17) is equivalent to22

y = ιNβ0 +Xβ +WXθ + ρWy + ε. (18)

and the definitions of the respective variables are in order of appearance in the equation
above provided in the list below

y is an N × 1 vector of real income per worker in logarithms,

ιN is an N × 1 vector of ones,

β0 is a scalar (constant parameter),

X is an N × 2 matrix of the exogenous explanatory variables (investment rate and
population growth rate) in logarithms for the N observations,

β is a 2× 1 vector [β = (β1, β2)
′] of the regression parameters for the investment rate

and population growth rate,

W is the N ×N spatial weight matrix in row-standardized form,

WX is the N × 2 matrix of the spatially lagged explanatory variables,

22The notation here and in the list below follows Fischer (2011) and thus differs slightly from the one
in Ertur and Koch (2007). The reason for this is to be precise and clear in the notation. In particular,
by using the notation in Fischer (2011), having X denote two different matrices depending on context,
is avoided.
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θ is a 2× 1 vector [θ = (θ1, θ2)
′] of the regression parameters for the spatially lagged

explanatory variables,

ρ is the spatial autoregressive coefficient, ρ = γ(1−α)
1−α−φ ,

Wy is an N × 1 vector representing the spatially lagged endogenous variable,

ε is an N × 1 vector of errors, for which the assumption of normal and identical
distribution with mean zero and variance σ2I holds, i.e. ε ∼ N (0, σ2I).

Equation (18) includes spatial lags of both the endogenous variable and the explanatory
variables on the right-hand side. This specification is called a Spatial Durbin Model
(SDM) (see e.g. Anselin, 1988, 111). By redefining Z = [ιNXWX] and δ = [β0,β,θ]′,
this model can be rewritten as (see, for instance, LeSage and Pace, 2009, 46)

y = ρWy +Zδ + ε (19)

which is a spatial autoregressive (SAR) model. This specification will be used to demon-
strate that the OLS estimates are biased and to derive the ML estimates for this model.23

In reduced form (i.e. solved for the endogenous variable), the specification in Equation
(19) can be expressed as24

y = (I − ρW )−1Zδ + (I − ρW )−1ε.

This specification implies that the spatial lag of the endogenous variable and the error
term are correlated with each other, as

Cov[(Wy), ε] = E[(Wy)ε′]− E[Wy] = W (I − ρW )−1σ2

so that the OLS parameter estimators are biased and inconsistent (Davidson and Mac-
Kinnon, 2004) and an alternative estimation strategy is thus necessary.

23The SAR model is nested in the SDM model and so with the above rewriting their likelihood
functions coincide (LeSage and Pace, 2009, 46). Using the SAR model here is simply done to save on
notation.

24Note that this only holds if (I − ρW ) is non-singular. See Appendix C for the proof.
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4.2 Estimation Strategy

Given these problems, LeSage and Pace (2009, 45) note with reference to Lee (2004)
that maximum likelihood is a viable alternative to OLS.25 Assuming that the errors are
normally distributed, the specification in Equation (19) has the following log-likelihood
function.

lnL(y; δ, ρ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − ρW |

− 1

2σ2
[(I − ρW )y −Zδ]′ [(I − ρW )y −Zδ] .

Finding the maximum for this function requires calculating the partial derivatives with
respect to all parameters, setting these necessary conditions equal to zero, and solving
the system for the parameters. Instead, yielding identical results, this multivariate opti-
mization problem can be reduced to a univariate optimization problem by concentrating
the log-likelihood function with respect to the parameters δ and σ2 (LeSage and Pace,
2009, 47). This concentrated log-likelihood function depends, in addition to the sample
data, only on the single parameter ρ and is given by

lnL(y; ρ) = −N
2

[ln(2π) + 1] + ln |I − ρW | − N

2
ln

[
(êO − ρêL)′(êO − ρêL)

N

]
(20)

where êO are the estimated residuals from a regression of y on Z and êL those from a
regression of Wy on Z (see Fischer, 2011, 427). Maximizing Equation (20) yields a ML
estimate ρ̂, which can then be used to compute the ML estimates δ̂ and σ̂2.

4.3 Model Interpretation

Due to the presence of the spatial lagsWX andWy in Equation (18), the interpretation
of the parameters is a bit more complicated than in standard linear regression models,
since the feedback effects mentioned in Section 3.3 need to be taken into account. The
partial derivatives of Equation (18) with respect to, for example, the investment rate, are
given by

∂y

∂X ′
1

= (I − ρW )−1 (Iβ1 +W θ1) . (21)

This expression is an N ×N matrix, which represents the non-linear impacts on all coun-
tries that result from a change in the investment rate in any country (Fischer, 2011). As

25Other approaches like instrumental variables (IV), generalized methods of moments (GMM) or
Bayesian Markov Chain Monte Carlo (MCMC) might be alternatives (see Elhorst, 2010, 15).
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LeSage and Pace (2009, 36) point out, in general the impact of a change in an explanatory
variable in this type of model will not be identical across all observations. Therefore, they
suggest a summary measure of these differing impacts. The row sums in the matrix in
Equation (21) represent the total impact to an observation, i.e. the impact of a change
in the investment rate in all countries on steady-state income in country i = 1, . . . , N .
The average of these row sums is then labeled the average total impact to an observa-
tion by LeSage and Pace (2009). On the main diagonal of the matrix are the own partial
derivatives or direct impacts from a change in the explanatory variable. These derivatives
capture the effect of a change in, for example, the investment rate in country i on steady-
state income in country i, and these impacts are summarized via averaging the entries
on the diagonal of the matrix. LeSage and Pace (2009, 37) note that this corresponds, at
least to a certain extent, to the typical interpretation of regression coefficients. Finally,
the off-diagonal elements in the matrix are the cross-partial derivatives and represent the
indirect (or spillover) impacts, which are again summarized by averaging the row sums
of the respective matrix elements. In other words, this measure records the effect on the
steady-state level income in country i resulting from a change in the investment rate in all
countries except country i. Hence, the average indirect impact is given by the difference
between the average total impact and the average direct impact.

5 Data, Estimation Results, and Robustness

This section starts by providing information on the data sources used to assemble the
data set for the empirical analyses and on how the variables were constructed from the
source data. Thereafter, robustness checks on the results in Ertur and Koch (2007) are
conducted and discussed. The first set of robustness checks in Section 5.2 considers
the sensitivity of the results to changing the version of the PWT from 6.1 to 6.2 and
7.1, respectively. Next, in Section 5.3, estimation results are reported and discussed for
the specification in which technological interdependence is modeled via genetic distance.
Again, sensitivity of the results is assessed by estimating the model with data from the
three different versions of the PWT.

5.1 Data

The main data source for the replication exercise is PWT 6.1 (Heston et al., 2002), while
for the robustness checks PWT 6.2 (Heston et al., 2006) and 7.1 (Heston et al., 2012)
are used. Additional versions of the PWT exist as well, for example, PWT 6.3 and

18



7.0. However, Breton (2012) has noted substantial issues with Version 7.0. Moreover, as
Johnson et al. (2013, 257) point out, the exposition would soon become intractable if one
aimed at a comparison between every single version.26 As in Ertur and Koch (2007, 1042),
the initial sample covers the 91 countries of the non-oil sample in Mankiw et al. (1992),
for which data is available over the period 1960-1995.27 In contrast to the theoretical
model, GDP per capita and GDP per worker are not in fact identical, as not the whole
population in a country is employed. Hence, for the empirical exercise, the dependent
variable, y, is real GDP (evaluated via the chain method) per worker (variable rgdpwok
in PWT). The investment rate, s, is the real share of investment in real GDP (variable
ki in PWT) averaged over the respective years. For the average growth rate of workers,
n, no directly corresponding variable is available in PWT. A number for the size of the
working-age population can be recovered however by noting that the series for real GDP
per capita and population are available so that the number of workers can be calculated
by multiplying real GDP per capita (rgdch in PWT) by the size of the population (pop
in PWT) and dividing the result by the value of real GDP per worker (Ertur and Koch
(2007, 1042) refer to Caselli (2005, 685) for this method). The average growth rate of the
working-age population is then calculated as an approximation (though this is not stated
explicitly in Ertur and Koch (2007)) by taking the natural logarithm of the number of
workers in 1995, subtracting the natural logarithm of the number of workers in 1960, and
dividing the result by the number of years, i.e. 35.

For the construction of the interaction matrices the general assumptions made in Section
3.2 are valid. An additional important point to note is that the weights in these matrices
should be exogenous with respect to model (Ertur and Koch, 2007, 1042). This makes
geographic and genetic distance ideal candidates.28 The matrices that are based on spatial
distances use as weights the great circle distances, dij, between country capitals i and j.
There is however some scope in pinning down the latitude and longitude of a capital, and
Ertur and Koch provide no information for their source of this data. In this paper, in all

26See Table 2 in Johnson et al. (2013) for an overview of the evolution of the PWT up to Version
7. More recent versions of the Penn World Table (8.0 and 8.1, respectively) are also available (Feenstra
et al., 2015). These data sets will however not be used in this analysis, as these versions lack data on the
real share of investment in real GDP. See Table A3 in the document “variable correspondence” available
under http://www.rug.nl/research/ggdc/data/pwt/pwt-8.0 (accessed: 11 August, 2015), which states
that not only is this variable not reported in PWT 8.0, but neither is it possible to construct it from the
source data. This continues to be valid for PWT 8.1 (see http://www.rug.nl/research/ggdc/data/
pwt/pwt-8.1.xml (accessed: 11 August, 2015).

27Appendix F lists these countries.
28Another interesting variable on which to base the weights would be, for example, a measure of

technological proximity between countries. However, this measure could not be considered exogenous
to the model for the sample period considered in this paper and it would be problematic in the case of
technology to disentangle the effects on income per worker due to changes in X from those effects due
to changes in W .
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calculations that rely on latitude and longitude, the coordinates are taken from the CIA’s
World Factbook (Central Intelligence Agency, 2013), and the distances are calculated as
described in Appendix B.29 As a final step, the weights for the interaction matrices are
given by wij(1) = w∗ij(1)/

∑
j w
∗
ij(1) and wij(2) = w∗ij(2)/

∑
j w
∗
ij(2), and the weights are

based on the following functional forms

w∗ij(1) =

0 if i = j

d−2ij otherwise
(22a)

w∗ij(2) =

0 if i = j

e−2dij otherwise.
(22b)

Applying the transformations wij(1) = w∗ij(1)/
∑

j w
∗
ij(1) and wij(2) = w∗ij(2)/

∑
j w
∗
ij(2),

ensures that the row entries in the interaction matrix indeed sum to one. Adopting
the inverse of the squared distance as a functional form in Equation (22a) reflects a
gravity function (Ertur and Koch, 2007, 1042) and captures that the effect of the spatial
externalities weakens more than proportionally with distance; a result that has received
support in the empirical literature (see e.g. Keller, 2002). The spatial weight matrix
based on the weights in Equation (22a) is called W1 and the one in Equation (22b),
which Ertur and Koch (2007) employ as a robustness check, is W2.30

The data on genetic distance is taken from the data set of Spolaore and Wacziarg (2009),
who rely on data assembled by Cavalli-Sforza et al. (1994). Following the construction of
the original weight matrices based on geographic distance, the functional form in Equation
(22a) has been chosen for the interaction matrices based on genetic distances as well so
that a straightforward robustness check is possible. For the interaction matrix W3, the
distances dij are based on the concept of weighted FST genetic distance (see Section 2
and Appendix A for this measure) and for matrixW4 on weighted Nei’s genetic distance
(Nei, 1972, 1973).

29For some countries the capital has moved to a different city over the period from 1960 to 1995.
The capital for Côte d’Ivoire, for example, has moved from Abidjan to Yamoussoukro in 1983. In these
cases, the coordinates of the city, which was the capital over the longer period with respect to the sample
horizon was used. Recent versions of the World Factbook, however, lack geographic coordinates for
former capitals so that for these capitals the coordinates have been gathered via Google Maps. This
approach has also been employed for cities like Hong Kong that are not listed in the World Factbook.

30This latter matrix is also the one that has been used to calculate the spatial lag of TFP in the
Moran scatterplot in Figure 2.
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5.2 Results – Interaction Matrix Based on Geographic Distance

Estimation results are presented in Table 1.31 The first two columns replicate the results
from Table 1 in Ertur and Koch (2007) and serve as a benchmark compared to which all
subsequent robustness analyses will be assessed.32

In this analysis, the interaction matrix based on the weights in Equation (22a) has been
used. Column 1 shows in the upper half the results for the standard Solow model es-
timated by ordinary least squares (OLS). The estimated coefficients on the investment
rate and on the population growth rate have the signs expected from the theoretic model
and in addition are highly significant. In the lower half, this model is estimated with the
restriction β1 = −β2 imposed. This restriction is tested with a Wald test and rejected
(p-value = 0.038). Furthermore, the implied value for the capital share, α = 0.58, is too
high compared to empirical estimates. Gollin (2002, 458), for example, estimates that
the capital shares for most countries lie in the range of 20% to 35%. Also, Moran’s I
test indicates spatial autocorrelation in the error term. Based on these results, Ertur
and Koch (2007, 1046) thus conclude that the standard model is misspecified as it does
not account for physical capital externalities and technological interdependence between
countries.

Column 2 shows that the estimation results support the implications of the spatially aug-
mented model. All coefficients have the signs predicted from theory (compare Equation
(17)), even though, for instance, the estimated coefficient associated with the spatial lag
of the population growth rate is insignificant (p-value = 0.479). The likelihood ratio test
does not reject the joint theoretical restriction β1 +β2 = 0 and θ1 + θ2 = 0, as the p-value
is 0.419, which supports the validity of the spatially augmented model. In addition, the
(significant) implied value for the capital share of income is α = 0.284 and thus falls
approximately right in middle of the range of estimates by Gollin (2002). Furthermore,
the parameter φ reflecting physical capital externalities is positive and significant at the
10%-level. Also, the implied value for γ, which gauges the degree of technological in-
terdependence among the countries is positive and highly significant, implying that this

31All estimations have been carried out in Matlab using the Spatial Econometrics Toolbox by LeSage,
which is publicly available under: http://www.spatial-econometrics.com/ (accessed: 11 August,
2015).

32Note that since the analysis here is based on the geographic coordinates from the CIA’s World
Factbook, and these coordinates differ in some cases slightly from the ones in Ertur and Koch (2007),
the values for Moran’s I test in the unrestricted and restricted versions of the standard Solow model
in Column 1 as well as the values for the spatially augmented Solow model in Column 2 are somewhat
different. Qualitatively, the results are not affected though. Also, there is a small mistake in Ertur and
Koch’s Table I, as the values for Moran’s I test in the unrestricted Solow model belongs to the restricted
Solow model and vice versa.
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characteristic indeed needs to be taken into account in growth models, as economies can-
not be considered as independent observations (Fischer, 2011, 432). Finally, the value
of α + φ/(1 − γ) is below 1, implying that the externalities in the model are not strong
enough to lead to endogenous growth (Ertur and Koch, 2007, 1048). In sum, the esti-
mation results therefore provide rather strong support for the model developed by Ertur
and Koch.

The next columns in Table 1 assess the sensitivity of these results when changing the
underlying data source to more recent versions of the PWT. Due to missing data, for
instance, values for the variable capital investment are not available for some countries
in PWT 6.2, the sample size needs to be reduced to 83 countries in the estimations based
on this data source.33 In order to obtain estimation results for a balanced sample across
all three versions of the PWT considered in this paper, Columns 3 and 4 show estimation
results for the 83-country sample with data from PWT 6.1. For the standard model,
the results are virtually identical (Column 3) to those from the full sample. However,
dropping these 8 observations from the sample affects the results in the spatial model.
The implied values for α and φ are comparable in size to the full sample with 91 countries,
but they are insignificant in the smaller sample. Hence, dropping these 8 countries from
the sample already puts a small dent in the robustness of the results obtained by Ertur
and Koch (2007).

Columns 5 and 6 change the data source to PWT 6.2. In Column 5 of Table 1 the
estimation results are in line with those from Columns 1 and 3. The only exception
is that for this data source the restriction β1 = −β2 is not rejected (p-value = 0.476),
suggesting a good fit between the model and the data, except that the implied value for
the capital share is still too high with α = 0.576. For the unconstrained estimation of
the spatial model, Column 6 shows that compared to Columns 2 and 4, the coefficient for
the population growth rate still has the sign implied by the theoretical model, but is now
insignificant (p-value = 0.347). The results from the estimation with the joint parameter
restriction applied, show that, as for the results for the 83-country sample with data from
PWT 6.1, the implied share of capital income and the parameter for the physical capital
externalities are insignificant (p-values of 0.403 and 0.213, respectively). Hence, changing
the data source from PWT 6.1 to 6.2, suggests that while many results (e.g. concerning
the implied value of γ or the test of the joint restriction) are not sensitive to this change,
the original results by Ertur and Koch (2007) concerning the implied capital share of
income and the parameter φ are not robust.

More drastic changes to the original results are visible when moving to PWT 7.1 in

33See Appendix F for the eight countries with missing data.
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Table 1: Estimation Results for the Standard and Spatially Augmented Solow Model According
to Three Different Versions of the Penn World Table Based on Interaction Matrix W1 (Geographic
Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Model Stand. Spatial Stand. Spatial Stand. Spatial Stand. Spatial
Number of observations 91 91 83 83 83 83 83 83

Unconstrained estimation:

Constant 4.651 0.886 4.609 0.518 7.130 2.780 2.976 1.828
(0.010) (0.635) (0.017) (0.796) (0.000) (0.181) (0.189) (0.399)

ln si 1.276 0.836 1.234 0.789 1.319 0.876 1.697 0.944
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −2.709 −1.538 −2.701 −1.449 −1.835 −0.689 −3.428 −1.441
(0.000) (0.006) (0.000) (0.021) (0.008) (0.347) (0.000) (0.081)

W ln sj — −0.347 — −0.314 — −0.160 — 0.710
(0.057) (0.137) (0.514) (0.110)

W ln(nj + 0.05) — 0.591 — 0.343 — −0.191 — −0.298
(0.479) (0.705) (0.843) (0.793)

W ln yj — 0.742 — 0.732 — 0.608 — 0.595
(0.000) (0.000) (0.000) (0.000)

Moran’s I test 0.432 — 0.397 — 0.346 — 0.389 —
(0.000) (0.000) (0.000) (0.000)

Constrained estimation:

Constant 8.375 2.118 8.407 2.220 8.465 3.158 7.321 1.939
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004)

ln si − ln(ni + 0.05) 1.379 0.855 1.354 0.813 1.356 0.871 1.904 0.958
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] — −0.292 — −0.230 — −0.149 — 0.692
(0.098) (0.270) (0.527) (0.109)

W ln yj — 0.735 — 0.721 — 0.613 — 0.608
(0.000) (0.000) (0.000) (0.000)

Moran’s I test 0.415 — 0.4397 — 0.342 — 0.377 —
(0.000) (0.000) (0.000) (0.000)

Test of restriction 4.427 1.738 4.066 1.474 0.514 0.127 3.805 0.358
(0.038) (0.419) (0.047) (0.479) (0.476) (0.938) (0.055) (0.836)

Implied α 0.580 0.284 0.575 0.242 0.576 0.196 0.656 8.261
(0.000) (0.012) (0.000) (0.120) (0.000) (0.403) (0.000) (0.852)

Implied φ — 0.177 — 0.206 — 0.270 — −7.772
(0.082) (0.139) (0.213) (0.861)

Implied γ — 0.554 — 0.525 — 0.408 — −0.043
(0.000) (0.000) (0.009) (0.868)

α+ φ
1−γ — 0.680 — 0.676 — 0.651 — 0.808

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. For the standard Solow model the restriction is tested with
the Wald test and for the spatially augmented model the restriction is tested with the likelihood
ratio (LR) test.

Columns 7 and 8. For the standard model in Column 7, the signs of the coefficient
estimates have the expected signs, and Moran’s I test indicates misspecification with
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respect to spatial correlation in the error term. In accordance with the results for the
PWT 6.1 sample, the parameter restriction β1 = −β2 is rejected (p-value = 0.055), though
this time at the 10% level instead of the 5% level. However, in the spatially augmented
model in Column 8, the constrained estimation implies an implausibly large share of
capital income. The estimated value for α is 8.261 (although this value is not significant
with a p-value of 0.852). Moreover, the value for the physical capital externalities is
now negative, but also not significant (p = 0.861). The same holds qualitatively for the
parameter measuring technological interdependence. These estimates imply that using a
more recent data source, leads to drastic changes in the empirical results compared to
the benchmark results.34

It needs to be kept in mind though that in addition to the results in Table 1 the model’s
interpretation relies on the calculation of the direct and indirect effects from changes
in the exogenous variables via the approach presented in Section 4.3. The results for
these impacts are presented in Table 2 for all four samples considered in this paper. In
the paper by Ertur and Koch only the direct effects are reported (though without any
reference to the significance of these estimates). Here, a richer analysis is presented by
also reporting estimates for the indirect and total impacts on steady-state per worker
income due to changes in the exogenous variables and by providing information about
the significance of all three impacts as well.

Concerning the direct impacts, the results show that across all four samples an increase
in the investment rate in physical capital is approximately comparable in size and signifi-
cance. The estimated coefficients are highly significant and imply, due to the logarithmic
specification of the model, that a 10% increase in the investment rate would result in
an increase in per capita income between 8.6% and 11.6%. The results for the indirect
impacts of changes in the investment rate, resulting from spatial spillovers, differ how-
ever across the samples. Whereas these impacts are comparable in size for the first three
samples, the impact is only significant for the PWT 6.2 sample at the 10%-level. For the
PWT 7.1 sample, this effect has tripled in size compared to the other estimates and is
significant at the 1%-level. These findings indicate again that the results in Ertur and
Koch are not robust with respect to changing to more recent versions of the Penn World
Table. It is however interesting to note that at least for the first three samples the direct

34That changing the data source from e.g. PWT Version 6.1 or 6.2 to 7.1 can lead to different results
in models similar to the one considered here has also been pointed out by Johnson et al. (2013, 270).
They find that in the Solow model augmented with human capital, developed by Mankiw et al. (1992),
the coefficient on the investment share is reduced in size close to zero, when the estimation is based on
a more recent version of the PWT (7.0 in their case). This finding is attributed to the investment series
being more variable in this version of the PWT. However, they also state that the reason for this higher
variability is unclear (Johnson et al., 2013, 270).
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Table 2: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W1

(Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.916 0.859 0.941 1.158
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.693 −1.636 −0.793 −1.635
(0.005) (0.013) (0.269) (0.043)

Indirect impacts:

W ln sj 1.030 0.960 0.915 3.012
(0.118) (0.198) (0.057) (0.004)

W ln(nj + 0.05) −2.008 −2.559 −1.458 −2.709
(0.484) (0.423) (0.476) (0.218)

Total impacts:

ln si + W ln sj 1.945 1.820 1.856 4.170
(0.007) (0.023) (0.000) (0.000)

ln(ni + 0.05) + W ln(nj + 0.05) −3.701 −4.196 −2.251 −4.343
(0.230) (0.220) (0.294) (0.054)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.

and indirect impacts from the investment rate contribute both approximately 50% to the
total impact of this variable. Table 2 also shows that the results concerning the impacts
of the population growth rate are not robust across samples.

Finally, the estimates in Table 2 illustrate that basing the interpretation of the model on
the estimates in Table 1 would lead to incorrect conclusions. For instance, interpreting
the coefficient associated with the spatial lag of the investment rate, W ln sj in Column
2 of Table 1, as an indicator for the indirect impact would lead to the inference that this
effect is negative (−0.347), implying that an increase in the investment rate in neigh-
boring countries would result in a decrease of per capita income in the country under
consideration. The true impact estimate in Column 1 of Table 2, however, suggests that
the spillover effect is positive, though marginally insignificant at the 10%-level.

Before turning to the estimation results for the interaction matrix based on genetic dis-
tance, it should be remembered that Ertur and Koch have also employed an interaction
matrix based on the specification in Equation (22b) to assess the sensitivity of their re-
sults using their initial choice of weight matrix. The detailed results of the robustness
analysis for this interaction matrix across all four samples are delegated to Appendix E.
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Tables E.1 and E.2 in this appendix demonstrate again that some of the original results
fail to hold when estimating the model across the different samples.

Concerning interaction matrix W2, an important comment needs to be made. This
matrix does not seem to correspond exactly to the specification Ertur and Koch (2007)
actually use in their empirical analysis. From the Matlab code on the article’s website,35

it is clear that their estimation results are obtained by dividing the geographic distances
dij by 1,000. A reason for this transformation is not given however, and it turns out that
the estimation results are highly sensitive to this alternative specification (see the results
in Tables E.3 and E.4 in Appendix E). For instance, without dividing the distances by
1,000, the estimation results imply highly significant negative values for the parameters
φ and γ, and the implied capital share of income increases to an unreasonably, but highly
significant value of 90%. With respect to the impact estimates, the values for the direct
and total impacts are approximately comparable across both specifications, the indirect
effects however turn from being not significant in the specification as implemented by
Ertur and Koch to being strongly significant in the specification as claimed in the article
(i.e. without the division by 1,000).

5.3 Results – Interaction Matrix Based on Genetic Distance

This section presents the estimation results for the model in which the interaction matrix
is based on genetic distance. The general specification of the weights is given by the one
in Equation (22a), and the analyses use weighted FST genetic distance.36 As the results
for the standard model do not depend on the interaction matrix, Table 3 shows only the
results from the estimation of the spatial Durbin model. The results for the standard
model are suppressed in order to avoid duplication.37

Column 1 provides the results for the full sample of 91 countries for data taken from
PWT 6.1. In contrast to the benchmark, i.e. the original results in Ertur and Koch, the
estimates based on genetic distance show, for instance, that the coefficient associated
with the spatial lag of the investment rate is now positive and highly significant (p-
value = 0.000). The results for the constrained estimation also differ from the ones

35See http://qed.econ.queensu.ca/jae/datasets/ertur001/ (accessed: 23 July, 2014).
36For the results based on (weighted) Nei’s distance see Tables E.5 and E.6 in Appendix E. The

estimation results are comparable to the ones shown in Tables 3 and 4, which might be explained by the
fact that the correlation between the two measures of genetic distance is 93.9% (Spolaore and Wacziarg,
2009, 482) and thus very high.

37It is worth pointing out however, that in all samples the standard model continues to be misspecified,
as the values for Moran’s I test suggest spatial autocorrelation in the error term (p-values are 0.000 in
all four tests) also when using interaction matrix W3 in these tests.
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Table 3: Estimation Results for the Spatial Durbin Model According to Three Different Versions
of the Penn World Table Based on Interaction Matrix W3 (Weighted FST Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 8.654 8.246 5.941 −1.932
(0.001) (0.000) (0.011) (0.423)

ln si 0.820 0.945 0.888 0.972
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.034 −0.871 −0.148 −0.930
(0.054) (0.099) (0.790) (0.153)

W ln sj 0.901 0.665 0.725 −0.009
(0.000) (0.001) (0.002) (0.983)

W ln(nj + 0.05) 0.651 0.431 −1.625 −1.912
(0.500) (0.632) (0.096) (0.078)

W ln yj 0.322 0.327 0.198 0.556
(0.006) (0.002) (0.128) (0.000)

Constrained estimation:

Constant 5.520 5.452 6.013 2.452
(0.000) (0.000) (0.000) (0.000)

ln si − ln(ni + 0.05) 0.785 0.856 0.870 0.996
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] 0.850 0.653 0.655 0.130
(0.000) (0.001) (0.003) (0.743)

W ln yj 0.280 0.296 0.245 0.605
(0.019) (0.005) (0.045) (0.000)

Test of restriction 2.450 1.949 1.862 3.708
(0.294) (0.377) (0.394) (0.157)

Implied α 1.491 1.830 1.598 −0.273
(0.003) (0.052) (0.038) (0.803)

Implied φ −1.052 −1.360 −1.133 0.772
(0.039) (0.155) (0.147) (0.474)

Implied γ −0.319 −0.189 −0.219 0.238
(0.098) (0.196) (0.212) (0.288)

α+ φ
1−γ 0.694 0.686 0.669 0.740

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.

with an interaction matrix using geographic distance, as the implied value for α is now
implausibly large and highly significant. Moreover, the estimate for γ, measuring the
degree of technological interdependence is now negative and marginally significant at the
10%-level, which seems implausible.38 Similar results are also obtained for the other
samples. When using data from PWT 7.1 for instance, the implied value for the capital

38The implied values for α, φ, and γ are of approximately similar size in the estimation based on Nei’s
distance for this sample, though neither value is significant at the 10%-level. This is the exception from
the claim about comparable estimation results for both measures of genetic distance made in Footnote 36.
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share of income in Column 4 actually turns negative (although the p-value is 0.803). In
neither sample, based on a likelihood ratio test, the joint parameter restriction β1+β2 = 0

and θ1 + θ2 = 0 is rejected though.

Table 4: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W3

(Weighted FST Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.887 1.004 0.918 1.035
(0.000) (0.000) (0.011) (0.000)

ln(ni + 0.05) −1.009 −0.856 −0.198 −1.229
(0.058) (0.101) (0.722) (0.060)

Indirect impacts:

W ln sj 1.673 1.401 1.098 1.116
(0.000) (0.000) (0.000) (0.156)

W ln(nj + 0.05) 0.506 0.260 −1.996 −5.246
(0.701) (0.830) (0.062) (0.001)

Total impacts:

ln si + W ln sj 2.560 2.405 2.015 2.151
(0.000) (0.000) (0.000) (0.012)

ln(ni + 0.05) + W ln(nj + 0.05) −0.503 −0.560 −2.193 −6.475
(0.707) (0.627) (0.035) (0.003)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.

Despite these results from the estimation of the constrained model across the four samples,
the impact estimates in Table 4, which are calculated from the unconstrained estimation
results will be briefly discussed. Across all samples, the estimates for the direct impact
of a change in the investment rate on steady-state per capita income is comparable to
the results for the model with interaction matrix W1. One important difference to the
results in Table 2 concerns the spillovers from a change in the investment rate for the full
sample of 91 countries. The estimated effects are now highly significant and imply that
a change of 1% in the investment rate in all countries except country i would result in
an increase of approximately 1.7% in per capita income in country i. Another interesting
result is that these spillovers are not significant in the sample for PWT 7.1 in Column 4
of Table 4, whereas the reverse holds for this sample in the estimation with geographic
distance. There (see Column 4 in Table 2), this estimate is not only highly significant,
but also large in size. Table 4 furthermore clearly shows that the impacts with respect to
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the population growth rate are highly sensitive to the particular version of the PWT used
in the estimation. Hence, it can be concluded that the original results by Ertur and Koch
are challenged strongly both by changing the measure in the interaction matrix from
geographic to genetic distance and also by substituting the data set from older versions
of the Penn World Table for more recent versions.

6 Conclusion

This paper has presented the growth model with technological interdependence among
countries developed by Ertur and Koch (2007) and subjected their empirical results to
a series of robustness checks. In contrast to the original specification, which uses an
interaction matrix based on geographic distance, here data on measures of genetic distance
from Spolaore and Wacziarg (2009) has been used to construct an alternative interaction
matrix. Furthermore, additional robustness checks have been conducted to assess the
sensitivity of the original results across different versions of the Penn World Table for the
same period and the same set of countries. The analyses show that the original results by
Ertur and Koch are only robust to a certain extent. While the hypothesis that countries
need to be analyzed in an interdependent system is supported, other results are highly
sensitive to the version of the Penn World Table that is used in the empirical estimation.
Ertur and Koch (2007) estimate, for instance, an implied capital share of income slightly
below 30%, which is significant at the 5% level. However, this result is not robust when
estimating the model with data from PWT 6.2 or 7.1 instead.

Furthermore, whereas Ertur and Koch only provide estimates of the direct impacts on per
worker income associated with changes in the exogenous variables, in this paper values
for the indirect and total impacts have been calculated as well. The results again indicate
non-robustness across different versions of the PWT, as, for example, the indirect impacts
(or spillovers) associated with changes in the investment rate of physical capital on per
worker income in steady state are not significant in the PWT 6.1 sample, but significant
in the ones based on PWT 6.2 and 7.1, respectively. Results have also been shown to be
highly sensitive to the precise specification of the weights in the interaction matrix based
on geographical distance.

Based on theoretical and technical considerations, genetic distance has been introduced
as an alternative measure to geographic distance, on which to base an interaction matrix.
Concerning the empirical results for this alternative matrix, it is found that, whereas
in the original model indirect spillovers from capital investment were insignificant in
the PWT 6.1 sample, using a measure of genetic distance, these spillovers now have a
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significant effect on steady-state income per worker. However, the version of the model
with an interaction matrix based on genetic distance implies an implausibly large capital
share of income. In addition, also in the case of genetic distance, estimation results
are sensitive to the version of the data set. It can thus be stated that the empirical
results in Ertur and Koch are highly sensitive to the measure on which the weights
in the interaction matrix are based (geographic or genetic distance) as well as to the
concrete specification of the weights in the interaction matrix. This conclusion vividly
demonstrates the importance of sound data when it comes to, for instance, giving policy
advice.

In this paper, as, for example, in Fischer (2011), only level regressions have been ad-
dressed. Future work will also investigate the sensitivity of the estimates for the growth
regressions in Ertur and Koch (2007), as well as the impact of introducing human capital
into this model. Results from Ertur and Koch (2006) suggest that this factor is not related
to growth within this framework. However, as the results in this paper clearly demon-
strate, that this holds across different versions of the PWT need not necessarily be the
case. It should also be pointed out that an endogenous version of the model framework
exists (Ertur and Koch, 2011), which for a smaller set of countries and a shorter time
period provides empirical support, based in part on data from PWT 6.2, in favor of the
endogenous version. But again, this is no guarantee that this necessarily needs to hold
across different versions of the PWT. Robustness should be assessed for this finding as
well. As this paper has also clearly demonstrated the sensitivity of the empirical results
to the precise choice of the interaction matrix, further research will be devoted to this
issue. In particular, the method of Bayesian Model Averaging will be used to address the
uncertainty concerning the specification of the interaction matrix in this model.

Before concluding this paper, a brief remark on policy concerning the role of geographic
and genetic distance in determining the strength of knowledge spillovers: As humans
have demonstrated numerous times over the course of history in often horrible ways,
neither the geographic distances (through expansionary wars or state collapses) nor the
genetic distances (via genocide or the slave trade) between countries are fixed in the long
run.39 Abstracting from these, policy can, however, still have an impact by e.g. fostering
openness and thereby removing barriers to the diffusion of knowledge (Spolaore and
Wacziarg, 2009, 524).

39Also another, maybe at first glance more innocuous possibility, comes to mind in light of the dramat-
ically falling costs for gene sequencing. These are currently below $4,500 for the whole human genome
compared to nearly $100, 000, 000 in 2001 (Wetterstrand, 2015). I do not think that it is completely
unrealistic that personal genetic data will be used by states to influence, for instance, visa decisions.
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Appendix

A Definition of FST Genetic Distance

This appendix provides a formal definition of the concept of FST genetic distance which
was developed by Wright (1951).40 Consider as an example the case of two populations,
A and B, that are of equal size and a single gene which can either have the form of allele 1
or of allele 2.41 Denote the gene frequency of allele 1 in population A by pA and the one
for allele 2 by qA. The probability that two randomly selected alleles at the locus under
consideration will be identical (i.e. homozygosity occurs) is given by p2A + q2A. The case of
heterozygosity (i.e. two randomly selected alleles will differ) then is hetA = 1−(p2A+q2A) =

2pAqA. This follows as pA+qA = 1 and hence (pA+qA)2 = p2A+q2A+2pAqA = 1 holds. For
population B, the equivalent expressions for homozygosity and heterozygosity are given
by p2B + q2B and hetB = 1− (p2B + q2B) = 2pBqB, respectively.

Denoting the average gene frequencies of the two alleles in the two populations as p =
1
2
(pA + pB) and q = 1

2
(qA + qB), it follows that in the sum of the two populations het-

erozygosity is given by hetAB = 1 − (p2 + q2) = 2pq. The average heterozygosity in the
two populations is hetmean = 1

2
(hetA + hetB). By comparing hetmean to hetAB, FST is a

measure for the “variation in gene frequencies of populations” (Spolaore and Wacziarg,
2009, 525)

FST =
hetAB − hetmean

hetAB
= 1− pAqA + pBqB

2p̄q
=

1

4

(pA − pB)2

p(1− p)
. (A.1)

It now follows that the genetic distance between two populations is zero, if their allele
frequencies at the given locus are identical (i.e. pA = pB) and that FST equals one if the
respective frequencies are completely different (i.e. pA = 1 and pB = 0 or vice versa).42

In the construction of the interaction matrix based on genetic distance in Section 5,
weighted FST distances are used to account for the fact that populations in, for instance,

40For a compact review of FST that covers additional details, see Holsinger and Weir (2009).
41Compare Spolaore and Wacziarg (2009, 524-525) for this approach and Cavalli-Sforza et al. (1994,

26-27) for extensions to more than two alleles and two populations.
42Note that Cavalli-Sforza et al. (1994, 29), for instance, provide the following formula for FST genetic

distance
FST =

Vp
p(1− p)

(A.2)

where p are the average gene frequencies across the populations under consideration, and Vp indicates
the variance between gene frequencies across these populations. If now pA ≡ p+ σ and pB ≡ p− σ with
σ ≥ 0 and the variance is denoted by σ2, then the formula in Equation (A.1) is equivalent to the one
provided in Equation (A.2) (see Spolaore and Wacziarg (2015, 6-7) for this derivation).
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the United States or the United Kingdom consist of many subpopulations. If now the
United States contains the populations i = 1, . . . , I and the United Kingdom the popu-
lations j = 1, . . . , J and s1i is the share of population i in the United States and s2j the
share of population j in the United Kingdom, then the weighted FST genetic distance
between these two countries is given by (see, for example, Spolaore and Wacziarg (2009,
484-485))

FW
ST =

I∑
i=1

J∑
j=1

(s1i × s2j × dij) (A.3)

where dij denotes the FST genetic distance between populations i and j.

B Spatial Weight Matrices and Great Circle Distances

Numerous possibilities exist to model spatial connectivity via a spatial weight matrix.
This appendix illustrates two possibilities and provides details on the calculation of great
circle distances that are commonly used in empirical work. As an example, for how to
model the spatial relationship between geographic regions, consider the four NUTS 2
regions43 Schleswig-Holstein (SH), Hamburg (HH), Lüneburg (LÜ), and Mecklenburg-
Vorpommern (MP) depicted in the map in Figure B.1.

Figure B.1: NUTS 2 Regions in Northern Germany.

Defining now those regions that share are common border as neighboring regions, the

43NUTS is an acronym of the French Nomenclature des Unités territoriales statistiques, i.e. the Nomen-
clature of territorial units for statistics of the EU, and the NUTS 2 level comprises government regions.
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following spatial weight matrix of first-order neighbors can be constructed

WA =


SH HH LÜ MV

SH 0 1 1 1

HH 1 0 1 0

LÜ 1 1 0 1

MV 1 0 1 0

 .

In row-standardized form, the result is

WB =


SH HH LÜ MV

SH 0 1/3 1/3 1/3

HH 1/2 0 1/2 0

LÜ 1/3 1/3 0 1/3

MV 1/2 0 1/2 0

 . (B.1)

Here, queen contiguity is used as a concept to determine the spatial weights.44 However, a
spatial weight matrix can also be constructed based on geographic distance between units
of observations. One relatively straightforward alternative in this vein is the geographic
distance between country capitals. Consider, for example, the four capitals Berlin, Buenos
Aires, Moscow and Seoul and take as spatial weights the shortest distance between them.
Since the earth is (approximately) a sphere, this distance is not a straight line, but the
shortest path between the cities along the surface of the earth, i.e. an arc of a great circle.
Figure B.2 shows the great circle distances between Berlin and Buenos Aires and between
Moscow and Seoul on a Plate Carée projection of the earth, and Panels (a) and (b) in
Figure B.3 show the same distances on the surface of a spherical earth.45

In general, the great circle distance between two points i and j can be calculated by using
the spherical law of cosines (Shekhar and Xiong, 2008, 639-642)

dij = R⊕ × arccos[cos lati cos latj cos(longi − longj) + sin lati sin latj] (B.2)

where R⊕ = 6,378.1km is the (rounded value of the) earth’s equatorial radius (see Ahrens
(1995, 36)), and the values for latitude and longitude are in decimal degrees.

44The name follows from the movement of the queen on the chessboard. Other criteria for determining
spatial weights, whose names have the same origin are bishop and rook contiguity (see, for instance,
(Anselin, 1988, 18)).

45These figures were drawn with ArcGIS.
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Figure B.2: Great Circle Distances between Berlin and Buenos Aires and between Moscow and
Seoul on a Plate Carée Projection of the Earth.

!

!

!

(a) Great Circle Distance between Berlin and
Buenos Aires on the Surface of a Spherical
Earth.

!

!

(b) Great Circle Distance between Moscow and
Seoul on the Surface of a Spherical Earth.

Figure B.3: Great Circle Distances on the Surface of a Spherical Earth.

The geographic coordinates for the four capitals under consideration are as follows:

Berlin: N52◦31′, E13◦24′

Buenos Aires: S34◦35′, W58◦40′

Moscow: N55◦45′, E37◦36′

Seoul: N37◦33′, E126◦59′
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These coordinates are taken from the CIA’s World Factbook (Central Intelligence Agency,
2013) and before inputting them into the formula above they need to be converted from
degree-minute format to decimal degrees by dividing the entry for minutes by 60 and
adding it to the value for the degree (see Peterson and Smith (2012, 458)). In decimal-
degree form south and west are denoted with negative values (Shekhar and Xiong, 2008,
639) so that the coordinates from above now read46

Berlin: 52.52◦, 13.4◦

Buenos Aires: −34.58◦, −58.67◦

Moscow: 55.75◦, 37.6◦

Seoul: 37.55◦, 126.98◦

The distance between Berlin and Buenos Aires, for instance, can then be calculated as

dB,BA = R⊕ × arccos [cos(52.52◦) cos(−34.58◦) cos(13.4◦ − (−58.68◦))

+ sin(52.52◦) sin(−34.58◦)]

⇐⇒ dB,BA = R⊕ × 107.2356◦.

Converting now from degrees to radians by multiplying the angle with π/180 gives the
distance between Berlin and Buenos Aires as

dB,BA = 6,378.1km · 107.2356◦ · π
180

= 6,378.1km · 1.8716 = 11,937.25km. (B.3)

The complete spatial weight matrix for the four capitals thus reads

WC =


Berlin Buenos Aires Moscow Seoul

Berlin 0 11 936 1,610 8,138

Buenos Aires 11,936 0 13,505 19,431

Moscow 1,610 13,505 0 6,616

Seoul 8,138 19,431 6,616 0

 . (B.4)

The difference between the value in Equation (B.3) and the corresponding value in Equa-
tion (B.4) stems from rounding the results of the trigonometric functions in the calculation
above. In the matrix, the values have been calculated by implementing the formula in

46These conversions can easily be done in Mathematica or Matlab using the functions FromDMS and
dm2degrees, respectively. The values here are rounded to two decimal points.
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Matlab directly. After row-standardizing the matrix, it could be used in a straightforward
manner in the econometric exercise in the main text.

Note that as an alternative to the equatorial radius the mean radius of the earth could
have been used in the calculation. In its Earth Fact Sheet47 the National Aeronautic and
Space Administration (NASA) gives a value of 6,371km for the mean radius. Substituting
this value in Equation (B.2) would not change the relative distances between capitals,
however.

It should as well be kept in mind that the distances have been calculated by assuming
the earth is a sphere, although it is better described by an oblate spheroid and hence,
for instance, Vincenty’s formulae would be more accurate (Vincenty, 1975). For the
distances considered here, the gain in accuracy is negligible though and using a spatial
weights matrix based on Vincenty’s formulae would not change the qualitative results in
the main text.

C Proof that (I − γW )−1 exists

This appendix demonstrates that the inverse of (I − γW ) exists for the assumed pa-
rameter space of γ, given that γ 6= 0 and that 1

γ
is not an eigenvalue of W . The first

condition is obvious as it simply posits the existence of spatial externalities.48 In general,
(I − γW ) will have an inverse, if it is non-singular, implying that |I − γW | 6= 0. The
matrix will thus be singular and have no inverse if |I − γW | = 0. Applying the rules for
determinants, (see, for example, Sydsæter et al., 2008, 5) this expression is equivalent to∣∣∣∣1γ I −W

∣∣∣∣ = 0 ⇐⇒
∣∣∣∣W − 1

γ
I

∣∣∣∣ = 0.

The second equation is the characteristic or eigenvalue equation of W , demonstrating
that (I − γW ) will not have an inverse if 1

γ
is an eigenvalue of W .

Having established the general conditions under which the inverse exists, it will now be
shown that it exists for 0 ≤ γ < 1.49

The last step in the proof will use the result that the eigenvalues ofW will be less than or

47This is available under: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html (ac-
cessed: 11 August, 2015).

48For γ = 0, the model would reduce to a standard Solow model with physical externalities.
49It will actually be shown that the inverse exists for |γ| < 1. This naturally includes the parameter

space described by the inequality in the main text, where one could exclude γ = 0.

36

http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html


equal to 1 in absolute value. This result is now proved via Gerschgorin’s Circle Theorem.50

This theorem states that the eigenvalues of a matrixB ∈ Cn×n lie in the complex plane in
the area that is given by the intersection of the union of all Gerschgorin circles associated
with the rows of B and the union of all Gerschgorin cirlces associated with the columns
of B. Formally, the Gerschgorin circles (or discs), Gri , associated with the rows are given
by

Gri = {z ∈ C : |z − bii| ≤ ri}, where ri =
n∑
j=1
j 6=i

|bij| for i = 1, 2, . . . , n

which means that the circles have the entry bii of the matrix B as their center and the
sum of the absolute values of the off-diagonal entries of the respective row as their radius.
The eigenvalues of the matrix are then contained in the union of these n Gerschgorin
circles associated with the rows of B, i.e. in

⋃N
i=1 Gri .

The Gerschgorin circles associated with the columns, Gci , are given by51

Gcj = {z ∈ C : |z − bii| ≤ cj}, where cj =
n∑
i=1
i 6=j

|bij| for j = 1, 2, . . . , n

and the union of these n Gerschgorin circles is denoted by
⋃N
i=1 Gci . Hence, the eigenvalues

of B will be contained in the following intersection(
N⋃
i=1

Gri

)⋂(
N⋃
i=1

Gci

)
.

Before applying this theorem to the spatial weight matrixW from the main text, a brief
graphical illustration for the matrix in (B.1) from Appendix B will be provided to deepen
the understanding of the theorem.

For the matrix WB, all Gerschgorin circles are centered around the point (0, 0) in the
complex plane, and since the matrix is row standardized all circles associated with the
rows have a radius of 1. The union of these circles is shown in Panel (a) of Figure C.4.
Naturally, the circles associated with the columns are also centered around (0, 0) and,
since c1 = c3 = 4/3 and c2 = c4 = 2/3, there are in effect only two circles for the columns,
which have radii of 4/3 and 2/3, respectively. These circles and their union are depicted

50The original statement is due to Gerschgorin (1931). Here, I rely on the presentations in Meyer
(2000, 498) and Cheney and Kincaid (2008, 347-349).

51That the eigenvalues of B also are contained in the circles associated with the columns follows,
since the calculation of the eigenvalues involves the determinant, which is identical for a matrix and its
transpose (Meyer, 2000, 463).
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in Panel (b) of Figure C.4. Finally, Panel (c) of Figure C.4 overlays the two results,
showing that all eigenvalues52 (which are depicted with a white circle in the figure) will
be contained within the unit circle.

Re(z)

Im(z)

−1.5 −0.5 0.5 1.5

1.5i

0.5i

−0.5i

−1.5i

Gir

(a) Union of Gerschgorin Circles Associated
with the Rows of WB, i.e.

⋃N
i=1 Gri .

Re(z)

Im(z)

−1.5 −0.5 0.5 1.5

1.5i

0.5i

−0.5i

−1.5i

G1c ,G3c

G2c ,G4c

(b) Union of Gerschgorin Circles Associated
with the Columns of WB, i.e.

⋃N
i=1 Gci .

Re(z)

Im(z)

−1.5 −0.5 0.5 1.5

1.5i

0.5i

−0.5i

−1.5i

(c) Area in which the Eigenvalues of
the Matrix WB are Contained, i.e.(⋃N

i=1 Gri
)⋂(⋃N

i=1 Gci
)
.

Figure C.4: Illustration of Gerschgorin’s Circle Theorem for the Matrix WB.

This brief illustration provides an insight into why the eigenvalues λi of the matrix W
from the main text will be equal to or less than 1 in absolute value. The result hinges on
the assumption that the spatial weight matrix is row standardized so that ri = 1 for i =

1, . . . , N , implying that |λi| ≤ 1 will hold for the eigenvalues.

52The eigenvalues of WB are λ1 = 1, λ2 = −1/3, λ3 = −2/3, and λ4 = 0.
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In order to finally show that (I−γW )−1 exists a last intermediate result is helpful. From
Schur’s Triangularization Theorem it follows that via a similarity transformation53 every
square matrix can be made upper triangular (Meyer, 2000, 508). Hence, an invertible
N ×N matrix P exists so that

P−1WP = T , with T =


t11 · · · t1N
... . . . ...
0 · · · tNN


where as an implication of Schur’s Triangularization Theorem the eigenvalues of W are
the diagonal entries of the matrix T . This matrix will now be used to prove that I−γW
is non-singular.

Proof.

|I − γW | = |PP−1(I − γW )| = |P (I − γW )P−1|

⇐⇒ |I − γW | = |PIP−1 − γPWP−1| = |I − γT |

⇐⇒ |I − γW | = (1− γt11) · · · (1− γtNN) (C.1)

⇐⇒ |I − γW | 6= 0

The last line follows if |γλii| 6= 1, which holds since tii = λi and |λii| ≤ 1 from Ger-
schgorin’s Theorem, and also |γ| < 1 holds.

Here, the product rule on determinants as well as the fact that |PP−1 = 1| (see Meyer,
2000, 508) has been used, and to obtain Equation (C.1) the rule for the determinant of
a triangular matrix has been employed (see Meyer, 2000, 462).

An implication of applying Gerschgorin’s Theorem in this case is that it rules out that 1
γ

is an eigenvalue of W . This follows since it has been established that the eigenvalues of
W are in the interval [−1, 1] and |γ| < 1 so that the hypothetical eigenvalue 1

γ
would be

larger than 1.

53Two square matrices A and B are similar “whenever there exists a nonsingular matrix P such that
P−1AP = B. The product P−1AP = B is called a similarity transformation on A” (Meyer, 2000,
506, emphasis in the original).
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D Derivations and Proofs of Selected Model Results

In this appendix the expressions for the spatial multiplier and the elasticities are derived.

D.1 Derivation of Equation (6)

This appendix proves that (I − γW )−1 equals
∑∞

r=0 γ
rW r and uses the result to derive

the expression for the level of technology in country i in Equation (6) in Section 3.2. The
crucial step in this proof will be to show that limn→∞(γW )n = 0. If this holds, then
I − γW has an inverse, thereby providing an alternative proof for its existence, and it
follows that this inverse can be written as

∑∞
r=0 γ

rW r.54

Proof. As a first step, the following result is helpful

(I − γW )
(
I + γW + (γW )2 + · · ·+ (γW )n

)
= I − (γW )n

where, if limn→∞(γW )n = 0 the right-hand side tends to I as n→∞. Left multiplying
this equation by (I − γW )−1 then leads to the Neumann series

I + γW + (γW )2 + · · ·+ (γW )n =
∞∑
r=0

γrW r = (I − γW )−1.

It remains to be shown that limn→∞(γW )n = 0 indeed holds. This is equivalent to
the statement that the spectral radius of the matrix γW is strictly smaller than 1 (see
Meyer, 2000, 618). Since the spectral radius of a matrix is given by its largest eigenvalue
in absolute value (Meyer, 2000, 497), a straightforward application of Gerschgorin’s Circle
Theorem to the matrix γW shows that its spectral radius is smaller than 1. This follows,
since for the matrixW the largest eigenvalue is 1, and multiplying each matrix entry by
|γ| < 1 would reduce the radii of the Gerschgorin circles.

The expression (I − γW )−1 =
∑∞

r=0 γ
rW r is also referred to as the spatial multiplier

(Ertur and Koch, 2007, 1044) and using this result in Equation (5) leads to

A =
∞∑
r=0

λrW rΩ + φ
∞∑
r=0

γrW rk.

54This is called a Neumann Series and can be used to approximate the inverse (Meyer, 2000, 126).
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This equation can be simplified by repeatedly substituting the result WΩ = Ω.55 The
equation then reads

A =
1

1− γ
·Ω + φ

∞∑
r=0

γrW rk.

The last term on the right-hand side can be shown to equal

φ

∞∑
r=0

γrW rk = φ


ln k1(t)

...
ln kN(t)

+


∏N

j=1 ln kj(t)
φ
∑∞
r=1 γ

r(W r)1j

...∏N
j=1 ln kj(t)

φ
∑∞
r=1 γ

r(W r)Nj


so that after first collecting the terms in logarithms and then applying the exponential
transformation, the level of technology for a given country i is given by

Ai(t) = Ω(t)
1

1−γ · ki(t)φ ·
N∏
j=1

kj(t)
φ
∑∞
r=1 γ

r(W r)ij

which is Equation (6) in Section 3.2.

D.2 Derivation of the Elasticities

Define S as the N × 1 vector of investment rates, si, in logarithms and N as the N × 1

vector of the effective depreciation rates, ni+g+δ, also in logarithms, then Equation (14)
can be rewritten in matrix form as

y =
1

1− α− φ
Ω +

α + φ

1− α− φ
S − α + φ

1− α− φ
N

− αγ

1− α− φ
WS − αγ

1− α− φ
WN +

γ(1− α)

1− α− φ
Wy.

Solving this equation for y, yields

y =
1

1− α− φ

[
I − γ(1− α)

1− α− φ
W

]−1
Ω

+

[
γ(1− α)

1− α− φ
W

]−1(
α + φ

1− α− φ
I − αγ

1− α− φ
W

)
S

+

[
γ(1− α)

1− α− φ
W

]−1(
α + φ

1− α− φ
I − αγ

1− α− φ
W

)
N

55That this holds can be seen by writing out the details of the matrix multiplication and then using
the assumption that W is row standardized so that

∑N
j=1 w1j = 1.
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and taking now the derivative with respect to S leads to a matrix for the elasticities of
steady-state income with respect to the investment rate

ηs =
α + φ

1− α− φ
I +

[
φ

(1− α)(1− α− φ)

] ∞∑
r=1

W r

(
γ(1− α)

1− α− φ

)r
= −ηn

where ηn denotes the corresponding matrix of elasticities with respect to the vector of
effective depreciation ratesN . The elasticities given in Section 3.3 in Equations (15) and
(16) for a country i then follow directly from the equation above.

E Further Robustness Checks

This appendix gathers detailed estimation results for a series of specifications mentioned
in the main text. The results in Tables E.1 and E.2 demonstrate that the original results
by Ertur and Koch are not robust across different versions of the Penn World Table
based on the specification for the interaction matrixW2 as actually implemented in their
estimation. Tables E.3 and E.4 show that the estimation results are highly sensitive to
division of the geographic distances between country capitals by 1,000 in the weights of
interaction matrixW2. Finally, Tables E.5 and E.6 depict the results when the weights in
the interaction matrix using genetic distances between countries are based on weighted
Nei’s genetic distance. In this case, the estimation results are not robust across the
different samples, but comparable to the ones based on weighted FST distance in the
main text with the exception mentioned in Footnote 38.
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Table E.1: Estimation Results for the Standard and Spatially Augmented Solow Model According
to Three Different Versions of the Penn World Table Based on Interaction Matrix W2 (Geographic
Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 0.546 0.214 3.042 1.139
(0.771) (0.911) (0.135) (0.586)

ln si 0.804 0.757 0.836 0.936
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.471 −1.263 −0.496 −1.094
(0.08) (0.030) (0.479) (0.146)

W ln sj −0.381 −0.370 −0.132 0.152
(0.021) (0.031) (0.530) (0.669)

W ln(nj + 0.05) 0.158 −0.145 −0.595 −0.623
(0.840) (0.856) (0.500) (0.520)

W ln yj 0.657 0.659 0.516 0.577
(0.000) (0.000) (0.000) (0.000)

Constrained estimation:

Constant 2.769 3.022 4.086 2.649
(0.000) (0.000) (0.000) (0.000)

ln si − lnni 0.826 0.791 0.839 0.970
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] −0.318 −0.232 −0.085 0.252
(0.045) (0.174) (0.679) (0.457)

W ln yj 0.665 0.635 0.510 0.578
(0.000) (0.000) (0.000) (0.000)

Test of restriction 2.378 2.090 0.652 0.543
(0.305) (0.352) (0.722) (0.762)

Implied α 0.323 0.268 0.143 −0.773
(0.001) (0.042) (0.612) (0.695)

Implied φ 0.129 0.174 0.313 1.265
(0.126) (0.138) (0.235) (0.519)

Implied γ 0.538 0.484 0.324 0.166
(0.000) (0.000) (0.026) (0.406)

α+ φ
1−γ 0.603 0.605 0.606 0.743

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.
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Table E.2: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W2

(Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.847 0.799 0.897 1.091
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.709 −1.583 −0.667 −1.378
(0.004) (0.012) (0.332) (0.064)

Indirect impacts:

W ln sj 0.388 0.337 0.562 1.487
(0.286) (0.386) (0.049) (0.037)

W ln(nj + 0.05) −2.128 −2.561 −1.588 −2.696
(0.244) (0.168) (0.252) (0.110)

Total impacts:

ln si + W ln sj 1.236 1.136 1.459 2.578
(0.004) (0.014) (0.000) (0.003)

ln(ni + 0.05) + W ln(nj + 0.05) −3.837 −4.143 −2.255 −4.073
(0.066) (0.055) (0.143) (0.029)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.
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Table E.3: Estimation Results for the Spatially Augmented Solow Model According to the Speci-
fication of W2 as Implemented (Column 1) vs. as Claimed (Column 2) in Ertur and Koch (2007).

Data set PWT 6.1

Weight in the interaction matrix W2 e−2dij/1,000 e−2dij

Number of observations 91 91

Unconstrained estimation:

Constant 0.546 5.140
(0.771) (0.005)

ln si 0.804 1.238
(0.000) (0.000)

ln(ni + 0.05) −1.471 −2.475
(0.008) (0.000)

W ln sj −0.381 0.826
(0.021) (0.004)

W ln(nj + 0.05) 0.158 −1.570
(0.840) (0.012)

W ln yj 0.657 −0.236
(0.000) (0.073)

Constrained estimation:

Constant 2.769 8.884
(0.000) (0.000)

ln si − lnni 0.826 1.093
(0.000) (0.000)

W [ln sj − ln(nj + 0.05)] −0.318 2.021
(0.045) (0.000)

W ln yj 0.665 −0.236
(0.000) (0.000)

Implied α 0.323 0.895
(0.001) (0.000)

Implied φ 0.129 −0.373
(0.126) (0.000)

Implied γ 0.538 −1.078
(0.000) (0.000)

α+ φ
1−γ 0.603 0.716

(0.000) (0.000)

Note: p-values are given in parentheses. The likelihood ratio (LR) could not be performed for this
matrix, as no value for the log-likelihood was returned in this model.
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Table E.4: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to the Specification of W2 as Implemented (Column 1) vs. as Claimed (Column 2) in
Ertur and Koch (2007).

Data set PWT 6.1

Weight in the interaction matrix W2 e−2dij/1,000 e−2dij

Number of observations 91 91

Direct impacts:

ln si 0.847 1.210
(0.000) (0.000)

ln(ni + 0.05) −1.709 −2.412
(0.004) (0.001)

Indirect impacts:

W ln sj 0.388 0.463
(0.286) (0.033)

W ln(nj + 0.05) −2.128 −0.850
(0.244) (0.001)

Total impacts:

ln si + W ln sj 1.236 1.673
(0.004) (0.000)

ln(ni + 0.05) + W ln(nj + 0.05) −3.837 −3.262
(0.066) (0.000)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.
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Table E.5: Estimation Results for the Spatial Durbin Model According to Three Different Versions
of the Penn World Table Based on Interaction Matrix W4 (Weighted Nei’s Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:

Constant 8.023 8.745 5.864 −2.162
(0.003) (0.000) (0.013) (0.373)

ln si 0.847 0.962 0.901 1.005
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.091 −0.857 −0.137 −0.892
(0.047) (0.115) (0.806) (0.172)

W ln sj 0.725 0.728 0.739 −0.027
(0.003) (0.001) (0.003) (0.949)

W ln(nj + 0.05) 0.595 0.396 −1.747 −2.041
(0.550) (0.676) (0.074) (0.065)

W ln yj 0.330 0.285 0.181 0.557
(0.006) (0.015) (0.184) (0.000)

Constrained estimation:

Constant 5.407 5.750 6.119 2.325
(0.000) (0.000) (0.000) (0.001)

ln si − lnni 0.812 0.898 0.884 1.031
(0.000) (0.000) (0.000) (0.000)

W [ln sj − ln(nj + 0.05)] 0.668 0.688 0.671 0.047
(0.005) (0.001) (0.004) (0.905)

W ln yj 0.308 0.262 0.232 0.624
(0.019) (0.024) (0.070) (0.000)

Test of restriction 1.710 1.857 2.082 3.945
(0.425) (0.395) (0.353) (0.139)

Implied α 1.855 1.615 1.529 −0.081
(0.105) (0.023) (0.030) (0.913)

Implied φ −1.407 −1.141 −1.060 0.588
(0.221) (0.115) (0.138) (0.417)

Implied γ −0.199 −0.225 −0.233 0.284
(0.294) (0.158) (0.207) (0.188)

α+ φ
1−γ 0.681 0.683 0.669 0.741

(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction for the spatially augmented model is tested
with the likelihood ratio (LR) test.
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Table E.6: Estimation Results for the Direct, Indirect and Total Impacts in the Spatial Model
According to Three Different Versions of the Penn World Table Based on Interaction Matrix W4

(Weighted Nei’s Genetic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:

ln si 0.909 1.011 0.923 1.074
(0.000) (0.000) (0.000) (0.000)

ln(ni + 0.05) −1.071 −0.843 −0.185 −1.227
(0.050) (0.118) (0.741) (0.063)

Indirect impacts:

W ln sj 1.454 1.365 1.080 1.122
(0.000) (0.000) (0.000) (0.152)

W ln(nj + 0.05) 0.390 0.254 −2.101 −5.462
(0.776) (0.834) (0.046) (0.008)

Total impacts:

ln si + W ln sj 2.363 2.376 2.001 2.195
(0.000) (0.000) (0.000) (0.011)

ln(ni + 0.05) + W ln(nj + 0.05) −0.681 −0.589 −2.286 −6.689
(0.629) (0.630) (0.026) (0.003)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.
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F List of Countries Included in the Empirical Analyses

This appendix lists the countries that are included in the empirical analyses. Country
codes are given as well. In the analyses with 83 countries, Angola, Bangladesh, Botswana,
Central African Republic, Mauritania, Papua New Guinea, Sierra Leone, and Democratic
Republic of Congo have been dropped to achieve a balanced sample over PWT Versions
6.1, 6.2, and 7.1.

Table F.7: Alphabetical List of the 91 Countries from PWT 6.1 Included in the Empirical Analyses.

Country Code Country Code

Angola AGO Mali MLI
Argentina ARG Mauritania MRT
Australia AUS Mauritius MUS
Austria AUT Mexico MEX
Bangladesh BGD Morocco MAR
Belgium BEL Mozambique MOZ
Benin BEN Nepal NPL
Bolivia BOL Netherlands NLD
Botswana BWA New Zealand NZL
Brazil BRA Nicaragua NIC
Burkina Faso BFA Niger NER
Burundi BDI Nigeria NGA
Cameroon CMR Norway NOR
Canada CAN Pakistan PAK
Central African Republic CAF Panama PAN
Chad TCD Papua New Guinea PNG
Chile CHL Paraguay PRY
Colombia COL Peru PER
Costa Rica CRI Philippines PHL
Côte d’Ivoire CIV Portugal PRT
Democratic Republic of the Congo ZAR Republic of the Congo COG
Denmark DNK Republic of Korea KOR
Dominican Republic DOM Rwanda RWA
Ecuador ECU Senegal SEN
Egypt EGY Sierra Leone SLE
El Salvador SLV Singapore SGP
Ethiopia ETH South Africa ZAF
Finland FIN Spain ESP
France FRA Sri Lanka LKA
Ghana GHA Sweden SWE
Greece GRC Switzerland CHE
Guatemala GTM Syria SYR
Honduras HND Tanzania TZA
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Table F.7: (Continued)

Country Code Country Code

Hong Kong HKG Thailand THA
India IND Togo TGO
Indonesia IDN Trinidad and Tobago TTO
Ireland IRL Tunisia TUN
Israel ISR Turkey TUR
Italy ITA Uganda UGA
Jamaica JAM United Kingdom GBR
Japan JPN United States USA
Jordan JOR Uruguay URY
Kenya KEN Venezuela VEN
Madagascar MDG Zambia ZMB
Malawi MWI Zimbabwe ZWE
Malaysia MYS
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