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Abstract

We propose a political theory for the slow adoption of technology in sports
and other contests. We investigate players’preferences for new technology that
improves contest accuracy. Modeling accuracy as the elasticity of “production”
in a standard Tullock contest, we show that players may be against higher
accuracy if heterogeneity among them is: (1) suffi ciently low; (2) moderate but
the initial accuracy is low; or (3) high but the initial accuracy is high. We apply
our results to the recent adoption of goal-line technology by major European
soccer leagues.

1 Introduction

Despite being a multi-billion dollar industry1, European soccer has witnessed serious

refereeing errors.2 As technology has advanced, soccer fans have grown intolerant of

∗I thank Karl Wärneryd (supervisor) and Huseyin Yildirim for their helpful comments. All errors
are mine.

1According to Deloitte Consulting, in the midst of economic pressures, the European soc-
cer market reached $24.6 billion in revenue terms in 2012, which implies 11% growth in
2011/12. More details can be found at <http://www.deloitte.com/view/en_LB/ly/press/press-
releases/4c11cefd2e23f310VgnVCM3000003456f70aRCRD.htm#>

2Perhaps, the most memorable ones are England’s second goal against Germany in the 1966
World Cup Final, Argentina’s first goal against England in the 1986 World Cup, and England’s
second goal against Germany in the 2010 World Cup.
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these errors. Yet, European soccer leagues, and the international organizations such

as UEFA and FIFA, seem reluctant to introduce any advanced technology that can

minimize refereeing errors at a reasonable cost and with little disruption to the games.

It is only in 2013 that several major soccer leagues, including the English and Dutch,

have decided to adopt a goal-line technology while others including the Spanish and

German have agreed to follow suit in the near future. In contrast to team-based

European soccer, technology adoption appears timely in individualistic sports like

tennis, athletics, horse-racing, etc. The objective of this paper is to offer a political

theory for this discrepancy. Specifically, we examine players’ incentives to support

a new technology that improves contest accuracy. We show that these incentives

may substantially differ from those of a contest designer because conceivably, players

care more about winning than increasing the aggregate effort. Therefore, in contests

where players retain a significant say in contest design, technology adoption may be

delayed. Indeed, the English Premier League only recently adopted the new goal-line

technology after votes from its twenty clubs.3

The same may be true for other contests where accuracy improvement is feasible.

Today, some educational institutions use plus/minus grading instead of letter grad-

ing, where the former better differentiates students and is thus believed to enhance

grading accuracy. One rationale for this is the contention that plus/minus grad-

ing is superior to letter grading, its less accurate counterpart, in motivating student

achievement. While those not using it may have various reasons such as financial

and administrative costs, one reason could be student resistance. In fact, an ad-hoc

committee on plus/minus grading, established by Eastern Kentucky University in

2013, reported that more than half of the universities in Kentucky are still not us-

ing plus/minus grading for various reasons, one being student resistance.4 Likewise,

Dixon (2004) finds that the ratio of students choosing plus/minus grading over those

choosing letter grading is 1 to 2, whenever they are given a choice.

Our model is a standard Tullock contest with heterogeneous players. We define

contest accuracy as the elasticity of “production”in the Tullock contest success func-

tion since higher elasticity implies that winning depends more on the effort than

3For more information see <http://www.bbc.co.uk/sport/0/football/22107409>
4For more information see <http://www.eku.edu/academics/facultysenate/minutes/2003-

04/11-03-03/plus_minus_report/final.pdf>
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on “exogenous uncertainty”. In practice, accuracy can be improved through various

mechanisms depending on the context: in sports by allowing referees to get access to a

better technology, and in lobbying by providing interest groups with extra information

about the preferences of decision-makers. We assume there are two types of players:

those with a high marginal cost and those with a low marginal cost. Following Dixit

(1987), we call the former type underdogs and the latter type favorites.

In the unique equilibrium, we find that while the underdog’s payoff is always

decreasing in accuracy, the favorite’s payoff is ambiguous. In particular, when the

initial accuracy is very low, the favorite prefers higher accuracy if the cost advantage

is significant, and lower accuracy otherwise. This makes sense because when the

cost advantage is small, players are essentially identical and therefore compete most

fiercely with little change in their equilibrium probabilities of winning. The intuition

for a significant cost advantage is similar. This result fits well with the adoption of

technology in European soccer in general. The soccer leagues of England (resp. EPL)

and the Netherlands (resp. Eredevisie) have recently decided to implement a goal-line

technology while those of Germany (Bundesliga) and Spain (La Liga) have delayed

their decision until 2015. In agreement with our prediction, EPL and Eredevisie are

more heterogenous than Bundesliga and La Liga as evidenced by Figure 1.5

Figure 1. Heterogeneity of Six European Soccer Leagues
5In Figure 1, the competitive balance measures the dispersion of wins across teams. For-

mally, it is the standard deviation of wins. Thus, while 0 implies that the number of wins is
the same for all teams, any non-zero number shows the degree of heterogeneity among teams’
number of wins with respect to the mean number of wins. More details can be found at
<http://www.soccerbythenumbers.com/2011/06/comparing-competitiveness-of-european.html>
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Related Literature:

Our paper falls into a large collection of literature on contest design. These include:

the choice of prizes (Glazer and Hassin (1988), Moldovanu and Sela (2001)), the

choice of contest success function (Dasgupta and Nti (1998), Nti (2004)), the number

of contestants (Baye et al. (1993), Amegashi (1999)), the structure of multi-stage

contests (Gradstein (1998), Gradstein and Konrad (1999), Amegashie (2000), Yildirim

(2005)), and the structure of information (Wärneryd (2003,2012)).6 This literature

is mainly concerned about contest design aimed at maximizing total effort.7 More

importantly, the contest designer is treated as independent in the design process.

That is, only the designer’s preferences matter for the contest design. In contrast,

our focus is on the players’preferences for the contest design.

In highlighting accuracy differences across contests, our paper relates to Alcalde

and Dahm (2007), Che and Gale (1997), Dasgupta and Nti (1998), Micheals (1988),

Nti (1999,2004), Wang (2010). In these models, the contest designer employs ac-

curacy, the extent to which winning depends on effort rather than exogenous un-

certainty, to adjust these incentives. Moreover, they model accuracy as elasticity

of production in a standard Tullock contest as in our paper. To these, Alcalde and

Dahm (2007), Che and Gale (1997), Dasgupta and Nti (1998), Nti (1999,2004), Wang

(2010) introduce heterogeneity, while Dasgupta and Nti (1998), Micheals (1988) focus

on homogeneous contests. None of these papers investigate players’preferences for

accuracy.

The remainder of the paper is organized as follows. The basic model is presented

in the next section, followed by the equilibrium characterization in Section 3. Sec-

tions 4 and 5 provide findings regarding players and the designer who is concerned

about maximizing total effort respectively. Section 6 discusses the findings. Section

7 extends the model to a pairwise contest, and Section 7 concludes.

2 The Model

The model is a standard Tullock contest. A population of n+m risk-neutral players

simultaneously exert effort to win a prize V > 0. The cost of effort for player i is

6See Nitzan (1994) and Konrad (2009) for a detailed survey of contest literature.
7If efforts are interpreted as rent-seeking, then the design aims to minimize total error.
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Ci(xi) = cixi where xi ≥ 0 denotes his effort and ci ∈ {cL, cH} denotes his marginal
cost, where 0 < cL < cH . Let x =(x1, ..., xn, xn+1, ..., xn+m) represent an effort profile

such that ci = cL for i = 1, ..., n. Given x, player i’s probability of winning or the

contest success function (CSF) takes the Tullock form:

pi(x) =


xri∑n+m
j=1 xrj

if x 6= 0

1/(n+m) if x = 0,
(1)

where r ∈ (0, 1). Clearly, i’s probability of winning is increasing with his own effort

and decreasing with others’, both at a decreasing rate. In particular,

∂pi(x)

∂xi
=
r

xi
pi(x)[1− pi(x)] > 0 and

∂pi(x)

∂xj
= − r

xj
pi(x)pj(x) < 0. (2)

Note that the “production function”f(xi) = xri has a constant elasticity, r. That is,

as r increases, the probability of winning becomes more sensitive to efforts, and less

sensitive to exogenous uncertainty. Depending on the context, the source of such ef-

fort sensitivity can be technological, political, or institutional. For instance, in sports

r may be determined by the resolution of cameras used or by the ability of the referees

in deciding close calls. In lobbying, r may be affected by the (unknown) preferences

of decision-makers, and in organizations, it may be the result of the allocation of

property rights. In general, we will call r the accuracy of the contest, and inves-

tigate players’preferences for this accuracy. We begin our analysis by equilibrium

characterization.

3 Equilibrium Characterization

The expected payoff of player i can be written:

πi(x) ≡ pi(x)V − cixi. (3)

An effort profile x∗ is a Nash equilibrium if and only if player i’s effort is a best-reply

to others’; namely

x∗i = arg max
xi

πi(x
∗
1, ..., xi, ..., x

∗
n+m).

Lemma 1 There is a unique x∗.
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Proof. Directly follows from Szidarovski and Okuguchi (1997).

The argument for the equilibrium existence is routine. The uniqueness relies on the

assumption that r < 1 so that there are diminishing marginal returns to effort. Since

there are two sets of identical players in our contest, the uniqueness of equilibrium

implies that players with equal marginal costs choose equal efforts in equilibrium.

Let x∗i = x∗L for ci = cL and x∗i = x∗H for ci = cH . The following proposition fully

characterizes equilibrium efforts and players’payoffs.

Proposition 1 Let c ≡ cH
cL
and θ∗ ≡ x∗H

x∗L
. Then, θ∗ ∈ (0, 1

c
] and

(a) p∗L = 1
n+m×(θ∗)r >

1
m+n/(θ∗)r = p∗H ,

(b) x∗L = r
cL
p∗L[1− p∗L]V > r

cH
p∗H [1− p∗H ]V = x∗H ,

(c) π∗L = p∗L(1− r + rp∗L)V > p∗H(1− r + rp∗H)V = π∗H ,

(d) θ∗ uniquely solves:

g(θ) ≡ (m− 1)θ2r−1 −mcθr + nθr−1 − (n− 1)c = 0. (4)

Proof. Part (a) directly follows from (1). Next, differentiating (3) with respect

to xi and employing (2), player i’s first-order condition can be stated as

∂πi
∂xi

=
r

x∗i
pi(x

∗)[1− pi(x∗)]V − ci ≤ 0 ( = 0 if x∗i > 0). (5)

Note first note that x∗L = x∗H = 0 cannot form an equilibrium because, given zero

effort by others, a player can guarantee winning by an ε > 0 effort. In fact, because

r < 1, it must be that x∗H > 0 and x∗L > 0; otherwise, (5) would be violated for the

player with zero effort. Positive equilibrium efforts imply that (5) holds with equality

for all i. In particular,

rp∗H(1− p∗H)V = cHx
∗
H (6)

rp∗L(1− p∗L)V = cLx
∗
L.

Together with the fact that p∗L > p∗H from part (a), part (b) is obtained. Inserting

(6) into (3) proves part (c). Finally, to show part (d), we divide both sides of (6) to
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obtain: 1−p∗H
1−p∗L

= c × (θ∗)1−r. Inserting the expressions from part (a) and arranging

terms yield the indifference condition, as desired. The observation that θ∗ ≤ 1
c
follows

from part (b).

Proposition 1 is intuitive. It says that the low-cost players work harder and thus

they are more likely to win the contest. In the terminology of Dixit (1987), we

therefore call a low-cost player a favorite and a high-cost player an underdog. It also

says that all players participate in the competition. This is due to the fact that, for

small efforts, the marginal benefit is greater than the marginal cost. Formally, this

relies on the assumption that r < 1. 8 Despite exerting more effort and incurring a

higher cost, as cLx∗L ≥ cHx
∗
H by part (b), Proposition 1 reveals that the favorite is

better off than the underdog.

Armed with the equilibrium characterization, we are ready to investigate how

players’payoffs change with the accuracy, r.

4 Comparative Statics of the Accuracy, r

To establish a benchmark, we begin with the two-player case which is often adopted

in the contest literature.

4.1 Benchmark: Two Players

Assume that there is one favorite and one underdog. The intuition suggests that the

favorite should always prefer higher contest accuracy in order to make his effort —not

the exogenous uncertainty —more decisive in winning, while the opposite should hold

for the underdog.9 The following proposition mostly confirms this intuition.

Proposition 2 Suppose there is one favorite and one underdog, i.e., n = m = 1.

8For r = 1, it is possible that the high-cost players may drop out of the contest, especially when
the number of the low-cost ones is suffi ciently large. We ignore this corner case here both because
our investigation is about the interaction between the two types of players and because one can take
the limit r → 1.

9As mentioned in the introduction, Wang(2010) also investigates the impact of contest accuracy
in a two-player setting, but his focus is on total efforts.
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Then, (a) θ∗ = 1
c
, (b) dπ∗H

dr
< 0, and (c)

dπ∗L
dr


< 0 if c < c
< 0 if c ≤ c ≤ e and r < r
≥ 0 if c ≤ c ≤ e and r ≥ r
> 0 if c > e,

where c ≈ 2.09 uniquely solves: 2c ln c−c−1 = 0, and e ≈ 2.71 is the natural number.

Proof. Note that pL + pH = 1 for n = m = 1. Together with (6), this implies

cHx
∗
H = cLx

∗
L. Dividing both sides by cHx

∗
L proves part (a). To prove part (b), we

differentiate π∗H with respect to r

dπ∗H
dr

=
∂π∗H
∂r

+
∂π∗H
∂θ∗

∂θ∗

∂r
.

More simply,
dπ∗H
dr

=
∂π∗H
∂r

,

since θ∗ = 1
c
by part (a) implies ∂θ∗

∂r
= 0. Now, calculating the derivative using

Proposition 1c provides

dπ∗H
dr

=
∂π∗H
∂r

= − crV

(cr + 1)3
[1 + cr + (1 + r + (1− r)cr) ln c],

which together with c > 1 yields dπ∗H
dr

< 0 for all r, as desired.

Finally, to prove part (c), we differentiate π∗L with respect to r to obtain

dπ∗L
dr

=
∂π∗L
∂r

= − crV

(cr + 1)3
[1 + cr − (1− r + (1 + r)cr) ln c︸ ︷︷ ︸

f(r,c)

],

where
∂f(r, c)

∂c
= −1

c
[1− r + cr + (1 + r)rcr ln c] < 0,

and
∂2f(r, c)

∂r2
= −cr(ln c)2[1 + (1 + r) ln c] < 0.

Clearly, if c ≥ e, then since f(r, e) < 0 and ∂f(r,c)
∂c

< 0 for any r, we have f(r, c) < 0

which, in turn, implies dπ∗L
dr

> 0 for any r. If c < e, the second derivative together

with the fact that f(0, c) = 2(1 − ln c) > 0, and f(1, c) = 1 + c − 2c ln c gives us:

8



f(r, c) > 0 whenever c < c, and f(r, c) > 0 whenever c < c < e and r < r; and

f(r, c) < 0 whenever c < c < e and r > r. Combining our findings shows part (c).

Part (a) is well-known in the literature on Tullock contests (e.g., Nitzan (1994),

Konrad (2011)). It says that equilibrium efforts are inversely proportional to marginal

costs.10 Part (b) indicates that the underdog’s payoffdecreases with accuracy because

an increase in accuracy amplifies the underdog’s cost disadvantage. The change in

the favorite’s payoff is, however, ambiguous. Part (c) reveals that as the accuracy

improves so does the favorite’s payoffas long as his cost advantage is suffi ciently large.

When the cost advantage is small (in the extreme, negligible), the favorite’s payoff,

like the underdog’s, is also decreasing in the accuracy level. When the cost advantage

is intermediate, part (c) shows that the change in the favorite’s payoffdepends on the

initial level of accuracy. In particular, his payoff decreases if the initial level is low,

and it increases if the initial level is high.

Although prominently used in the literature, the two-player case is restrictive in

our investigation because discussion about the contest accuracy often involves more

than two players, necessitating a more general analysis.

4.2 More than Two Players

Suppose that there are at least three players including one favorite and one underdog.

The next proposition shows that the relative effort of the underdog in equilibrium,

θ∗, is no longer independent of the accuracy level, r, even though its impact on the

underdogs’payoff is qualitatively the same as in the two-player case.

Proposition 3 Suppose there are n favorites, and m underdogs. Then, (a) ∂θ∗

∂r
< 0

and (b) dπ∗H
dr

< 0.

Proof. Differentiating (4) with respect to r yields,

∂θ

∂r
= −gr

gθ
.

10Technically, since, with two players, pL + pH = 1, eq.(6) implies cLx∗L = cHx
∗
H , and thus

θ∗ =
x∗H
x∗L
= cL

cH
.
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Routine algebra yields

gr = [n+ 2(m− 1)θr −mcθ]θr−1(ln θ),
gθ = −[(1− r)n+ (1− 2r)(m− 1)θr + rmcθ]θr−2.

Now note from (4) that cθ =
[n+ (m− 1)θr]θr

[n+mθr − 1]
. Substituting this into the above

expressions, we get:

gr =
m(m− 1)θ2r + 2(m− 1)(n− 1)θr + n(n− 1)

n+mθr − 1
θr−1(ln θ),

gθ = −(1− r)[m(m− 1)θ2r + (m− 1)(n− 1)θr + n(n− 1)] + [mn− r(m− 1)(n− 1)]θr

n+mθr − 1
θr−2.

Clearly, gr < 0 and gθ < 0 since θ < 1 by Proposition 1d, proving part (a). To prove

part (b), we differentiate π∗H with respect to r (as in the two-player case),

dπ∗H
dr

=
∂π∗H
∂r

+
∂π∗H
∂θ

∂θ∗

∂r
.

Employing Proposition 1c and 1a, we respectively get,

∂π∗H
∂θ

=
∂p∗H
∂θ

(1− r + rp∗H) + rp∗H
∂p∗H
∂θ

,

and
∂p∗H
∂θ

= rn
θr−1

(n+mθr)2
> 0.

From here, it follows that ∂π∗H
∂θ∗ > 0, which implies ∂π∗H

∂θ∗
∂θ∗

∂r
< 0. Moreover,

∂π∗H
∂r

=
∂p∗H
∂r

(1− r + rp∗H) + p∗H(−1 + p∗H + r
∂p∗H
∂r

),

and
∂p∗H
∂r

= nθr
ln θ

(n+mθr)2
< 0,

which, together implies, ∂π
∗
H

∂r
< 0. As a result, we have dπ∗H

dr
< 0.

To understand Proposition 3, note that in general, an increase in the accuracy

level, r, introduces a direct “technological”effect and an indirect “competitive”effect

measured by θ∗. Part (a) indicates that unlike in the two-player benchmark, superior

accuracy creates a competitive advantage for the favorites by motivating them more
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than the underdogs. Part (b) shows that as the accuracy improves, the technological

effect also works against the underdog because, all else equal, the winning becomes

more sensitive to effort.

As with the two-player case, the impact of the accuracy on the favorite’s payoff is

ambiguous. This ambiguity is, however, qualitatively different depending on whether

the underdogs or the favorites form the majority in the contest. To ease exposition,

we present analytical results for the two extreme values of accuracy and show their

robustness through numerical examples later.

Proposition 4 Suppose there are n favorites and m underdogs. Then,

(a) as r → 0,

dπ∗L
dr


< 0 if c < exp(1 +

n− 1

m
)

> 0 if c > exp(1 +
n− 1

m
)
.

(b) as r → 1,

dπ∗L
dr

 < 0 if c < c̃(n,m) or c >
n

n− 1
> 0 if c̃(n,m) < c <

n

n− 1

,

where c̃(n,m) ∈ (1, n
n−1) uniquely solves: mc + n + 2mc ln(

n− (n− 1)c

mc− (m− 1)
) = 0.

Moreover, c̃(n,m) is decreasing in n and m, each converging to 1.

Proof. Employing Proposition 1c to differentiate π∗L with respect to r provides

dπ∗L
dr

=
dp∗L
dr

(1− r + 2rp∗L)V − p∗L(1− p∗L)V, (7)

where

p∗L =
1

n+m× (θ∗)r
by Proposition 1a. (8)

Differentiating p∗L with respect to r

dp∗L
dr

=
∂p∗L
∂r

+
∂p∗L
∂θ∗

∂θ∗

∂r
.

Routine algebra yields

dp∗L
dr

= −(
m× (θ∗)r ln θ∗

(m(θ∗)r + n)2
)(1 + r

2(m− 1)(θ∗)r − cmθ∗ + n

(1− 2r)(m− 1)(θ∗)r + rcmθ∗ + (1− r)n), (9)

11



where we have also used (4) to obtain ∂θ∗

∂r
. Using (4) to obtain the limit values of θ∗

lim
r→0

θ∗ =
1

c
. (10)

lim
r→0

p∗L and lim
r→0

dp∗L
dr
can be calculated after substituting (10) into (8) and (9)

lim
r→0

p∗L =
1

m+ n
, (11)

lim
r→0

dp∗L
dr

=
m

(m+ n)2
ln c > 0. (12)

Likewise, lim
r→0

dπ∗L
dr

can be calculated after substituting (11) and (12) into (7)

lim
r→0

dπ∗L
dr

=
m ln c− (m+ n− 1)

(m+ n)2
V,

which implies limr→0
dπ∗L
dr

< 0 if and only if c < exp(1 +
n− 1

m
), proving part (a).

To prove part (b), we follow the same steps as in part (a). So, we first refer to (4) to

obtain

lim
r→1

θ∗ =
n− (n− 1)c

m(c− 1) + 1
. (13)

After substituting (13) into (8) and (9), lim
r→1

p∗L and lim
r→1

dp∗L
dr
are found as

lim
r→1

p∗L =
m(c− 1) + 1

n+mc
, (14)

lim
r→1

dp∗L
dr

= −cm(m+ n− 1)

(n+ cm)2
ln(

n− (n− 1)c

m(c− 1) + 1
) > 0. (15)

Likewise, after substituting (14) and (15) into (7), lim
r→1

dπ∗L
dr

is found as

lim
r→1

dπ∗L
dr

= −(m+ n− 1)(m(c− 1) + 1)V

(cm+ n)3
(cm+ n+ 2cm ln(

n− (n− 1)c

m(c− 1) + 1
)).

Letting,

f = mc+ n+ 2mc ln(
n− (n− 1)c

m(c− 1) + 1
),

it can be rewritten as

lim
r→1

dπ∗L
dr

= (−(m+ n− 1)(m(c− 1) + 1)V

(cm+ n)3
) ∗ f.

12



Obviously, the term in parenthesis is always negative. Hence, we need to examine the

sign of f . To this end, we differentiate f with respect to c to find

∂f

∂c
= −mm (n− 1) c2 − (2mn− 3(m+ n− 1)) c+ n (m− 1)

(n− (n− 1)c) (mc− (m− 1))
+2m ln(

n− (n− 1)c

m(c− 1) + 1
).

1 ≤ c < n
n−1 assures

∂f

∂c
< 0,

it follows,

−∞ = f(
n

n− 1
) < f(c) < f(1) = m+ n for 1 < c <

n

n− 1
,

which together with the continuity of f(c) over (1, n
n−1) assures the existence of the

solution by the intermediate value theorem. Moreover, the uniqueness comes from

monotonicity. Denoting the unique solution by c̃(n,m) generates the conditions in

part (b). Note that

lim
c→1

(lim
r→1

dπ∗L
dr

) = −m+ n− 1

(m+ n)2
V,

which implies

lim
n→∞

c̃ = lim
m→∞

c̃ = 1.

Finally, to show c̃(n,m) is decreasing in n and m, we utilize implicit differentiation.

∂c̃(n,m)

∂n
= −

∂f

∂n
∂f

∂c

|f=0 and
∂c̃(n,m)

∂m
= −

∂f

∂m
∂f

∂c

|f=0 ,

where f is defined as above. Taking the derivatives and calculating them at f = 0,

∂c̃(n,m)

∂n
= − [c̃ (mc̃− (m− 1))][2mc̃(c̃− 1) + (n− 1)c̃− n]

(2c̃2)m2 + ((2n− 1)nc̃− c̃2 (n− 1) (n− 2)− n2)m+ n (n− (n− 1) c̃)
,

and

∂c̃(n,m)

∂m
= − c̃

m

[(n− (n− 1)c̃)][2m2c̃ (c̃− 1) + (mc̃− (m− 1))n]

(2c̃2)m2 + ((2n− 1)nc̃− c̃2 (n− 1) (n− 2)− n2)m+ n (n− (n− 1) c̃)
.

Note that 1 ≤ c̃ < n
n−1 implies

∂c̃

∂n
< 0 and

∂c̃

∂m
< 0,
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showing that c̃(n,m) is decreasing in n and m.

Part (a) of Proposition 4 indicates that when the initial accuracy level is very

low, the favorite prefers higher accuracy if his cost advantage is significant. This

is in line with the benchmark case where, in a suffi ciently uneven contest, higher

accuracy discourages the underdog, though not to the extent of dropping out of the

competition. More interestingly for the case of multiple players, the favorite is more

likely to support higher accuracy as more underdogs and/or fewer favorites compete.

This also makes sense because, in either situation, the balance of competition tips to

the advantage of the favorite. Part (b) of Proposition 4 looks at the other extreme

where the initial accuracy level is very high. Interestingly, in this case the favorite

supports a further increase in accuracy only if his cost advantage is moderate. In

particular, contrary to part (a), for high cost advantage, i.e., c >
n

n− 1
, the favorite

does not support a higher accuracy when r is close to 1. The reason is that if the

contest technology is already very accurate, underdogs exert little effort, which means

that the competition takes place mostly among favorites —in other words, among the

identical players.

To understand how the favorite’s payoff changes for intermediate values of the

accuracy, r, we next present two numerical examples.

Figure 2. Favorite’s Payoff vs Accuracy when n=m=2
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Figure 2 illustrates the case in which there are 2 players from each type. It indi-

cates that when the cost advantage is small enough, the favorite’s payoff monotoni-

cally decreases with accuracy. An increase in the cost advantage, however, makes this

monotonicity disappear. First, the pattern is "decrease-increase-decrease" followed

by "increase-decrease" with further increases in the cost advantage.

Figure 3. Favorite’s Payoffwhen n=m=5

Figure 3 illustrates the case where there are 5 players from each type. It follows

the same patterns as in Figure 2, and the only difference seems to be the smaller

cutoff values. However, this is not true. Unlike in Figure 2 where the monotonicity

is observed for small enough cost advantages, monotonicity is observed for some high

cost advantages.

5 Total Effort and Accuracy

Up to now, we have analyzed players’willingness to support higher accuracy. We now

turn our attention to the designer’s incentives to adopt higher accuracy. Naturally,

this requires making an assumption about his objective. While the designer’s objec-

tive often varies across contests, total effort maximization has become the primary
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focus of many studies (see Related Literature).11 So, in what follows, we assume that

total effort maximization is the only concern of the designer.

The following proposition analyses the impact of higher accuracy on total effort

(hereinafter, TE), the designer’s only concern.

Proposition 5 Suppose there are n favorites andm underdogs. If the initial accuracy

is very low, then total effort increases with accuracy. However, if the initial accuracy

is very high, then total effort increases with accuracy unless the cost advantage is

moderate, and it decreases otherwise. Formally,

(a) as r → 0,
dTE
dr

> 0 .

(b) as r → 1,
dTE
dr

> 0 if c < ĉ(n,m) or c > n
n−1

dTE
dr

< 0 if ĉ(n,m) < c < n
n−1

,

where ĉ(n,m) ∈ (1, n
n−1) uniquely solves: mc + n + mn (c− 1) ln( n−(n−1)c

mc−(m−1)) = 0.

Moreover, ĉ(n,m) is decreasing in n and m.

Proof. Total effort is given by

TE = nx∗L +mx∗H .

By taking the common parenthesis of x∗H and remembering that θ
∗ =

x∗H
x∗L
, it can be

rewritten as

TE = (
n

θ∗
+m)x∗H . (16)

Recall that x∗H and p
∗
H are given by

x∗H =
r

cH
p∗H(1− p∗H)V, (17)

11For instance, in sports, the designer is usually interested in total effort maximization since, all
else equal, higher effort has a positive impact on viewers’willingness to pay for watching the game.
In job interviews, however, he is mostly concerned about selecting the highest-ability candidate
because such a candidate is more valuable for the firm.
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and

p∗H =
θr

n+mxθr
, (18)

by Proposition 1a & 1b respectively. Substituting (17) and (18) into (16), it becomes

TE =
V

cH

rθr−1

(mθr + n)2
(mθ + n) ((m− 1)θr + n). (19)

Notice that θ can be rewritten as

θ =
((m− 1)θr + n) θr

(mθr + n− 1)c
, (20)

by (4). Substituting (20) into (19) and recalling that c = cH
cL
, it becomes

TE =
V

cL

r (mθ + n) (mθr + n− 1)

(mθr + n)2
. (21)

Letting

h =
r (mθ + n) (mθr + n− 1)

(mθr + n)2
,

it becomes

TE =
V

cL
h.

Differentiating TE with respect to r, we obtain

d(TE)

dr
=
V

cL
[
∂h

∂r
+
∂h

∂θ

∂θ

∂r
], (22)

where

∂h

∂r
= (mθ + n)

(mθr + n) (mθr + n− 1)− rmθr (mθr + n− 2) ln θ

(mθr + n)3
, (23)

∂h

∂θ
= rm

θ (mθr + n) (mθr + n− 1)− rθr(mθ + n)(mθr + n− 2)

(mθr + n)3 θ
,

∂θ

∂r
=

n−mcθ + 2(m− 1)θr

(1− r)n+ (1− 2r)(m− 1)θr + rmcθ
θ ln θ.

Referring to (4) to obtain the limit values of θ∗, we get

lim
r→0

θ∗ =
1

c
, (24)
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and

lim
r→1

θ∗ =
n− (n− 1)c

m(c− 1) + 1
. (25)

Using (24), (23), and (22) together

lim
r→0

d(TE)

dr
=
V

cL
[
(m+ n− 1) (m+ cn)

c (m+ n)2
],

which implies limr→0
d(TE)
dr

> 0 for all c, showing part (a).

Similarly, using (25), (23), and (22) together

lim
r→1

d(TE)

dr
=
V

cL
[(m+ n− 1)

mc+ n+mn (c− 1) ln(
n− (n− 1)c

mc− (m− 1)
)

(mc+ n)2
].

Letting,

f = mc+ n+mn (c− 1) ln(
n− (n− 1)c

mc− (m− 1)
),

it can be rewritten as

lim
r→1

d(TE)

dr
= (

V

cL

(m+ n− 1)

(mc+ n)2
) ∗ f.

As the term in parenthesis is always positive, we will just focus on f . Note that

lim
c→1

f = m and lim
c→ n

n−1

f = −∞,

which together with the continuity of f over c ∈ (1, n
n−1) assures the existence of the

solution by the intermediate value theorem. To show uniqueness, we first calculate

the first and second derivatives of f ,

∂f

∂c
= −m (m (n− 1) c2 − (m− n− 1) (n− 1) c− n2)

(n− (n− 1)c) (mc− (m− 1))
+mn ln(

n− (n− 1)c

mc− (m− 1)
),

∂2f

∂c2
= −mn (m+ n− 1) ((m− n+ 1) c+ (n−m+ 1))

(c+ n− cn)2 (cm−m+ 1)2
< 0.

Note that,

∂f

∂c
|c=1 = m, f(c = 1) = m and

∂f

∂c
|c= n

n−1
= −∞, lim

c→ n
n−1

f(c) = −∞ ,
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which together with concavity assures the uniqueness of the solution. Letting ĉ(n,m)

denote this solution generates the conditions in part (b). Finally, to show ĉ(n,m) is

decreasing in n and m, we utilize implicit differentiation.

∂ĉ(n,m)

∂n
= −

∂f
∂n
∂f
∂c

|f=0 and
∂ĉ(n,m)

∂m
= −

∂f
∂m
∂f
∂c

|f=0.

Routine algebra yields,

∂ĉ

∂n
= −m

n
(ĉ− 1)

(mĉ− (m− 1))((n2 − n+ 1) ĉ2 − (2n− 1)nĉ+ n2)

ĉ(ĉ− 1)m2 + ĉm+ n(n− (n− 1)ĉ)
,

and

∂ĉ

∂m
= − n

m
(ĉ− 1)

(n− (n− 1)ĉ)(m2ĉ2 − (2m− 1)mĉ+ (m2 −m+ 1))

ĉ(ĉ− 1)m2 + ĉm+ n(n− (n− 1)ĉ)
.

1 < c < n
n−1 implies:

∂ĉ

∂n
< 0 and

∂ĉ

∂m
< 0,

which completes the proof.

Part (a) of Proposition 5 indicates that when the initial accuracy is very low, total

effort increases with accuracy independent of the size of the cost advantage. This is

in line with the intuition that a decrease in accuracy weakens players’incentives for

effort because lower accuracy is associated with lower effort sensitivity of winning.

In the extreme, when accuracy is zero, it becomes a pure lottery in which no players

exert any effort.

Part (b) of Proposition 5 indicates that when the cost advantage is either small

enough or big enough, total effort increases with accuracy for very high initial ac-

curacy. The intuition behind it is simple. When the cost advantage is either small

enough or high enough, the contest essentially takes place among identical players.

Specifically, when it is small enough, all players are essentially identical. When it is

big enough, however, the competition takes place among favorites for very high initial

accuracy. This is because high initial accuracy intensifies the cost advantage, which is

already significant. This discourages underdogs, leading to very low effort provision

in the equilibrium by them. Evidently, when competition takes place among identical

players, higher accuracy leads to greater total effort. Thus, higher accuracy leads to
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greater total effort when the initial accuracy is very high and the cost advantage is

not moderate.

Up to now, our analysis has yielded conditions under which the players and the de-

signer would want to adopt new technology that improves contest accuracy. Equipped

with these conditions, we are ready to highlight the cases in which the conflict of in-

terest arises between the players and the designer.

Proposition 6 Suppose there are n favorites, m underdogs, and let c̃(n,m) and

ĉ(n,m) be defined as above. Then, regardless of the asymmetry between types, con-

flict over an accuracy improvement arises. The type of conflict, however, depends on

initial accuracy, asymmetry, and number of players from each type. Formally,

(a) as r → 0,

dTE
dr

> 0 and dπ∗L
dr
,
dπ∗H
dr

< 0 if 1 ≤ c < exp(1 + n−1
m

)

dTE
dr
,
dπ∗L
dr

> 0 and dπ∗H
dr

< 0 if c > exp(1 + n−1
m

)

.

(b) as r → 1,

dTE
dr

> 0 and dπ∗L
dr
,
dπ∗H
dr

< 0 if 1 ≤ c < c̃ or c > n
n−1

dTE
dr
,
dπ∗L
dr

> 0 and dπ∗H
dr

< 0 if c̃ ≤ c < ĉ

dπ∗L
dr

> 0 and dTE
dr
,
dπ∗H
dr

< 0 if ĉ ≤ c < n
n−1

.

Proof. Directly follows from Propositions 4 & 5.

Part (a) of Proposition 6 highlights conflicts when the initial accuracy is very

low. As mentioned earlier, the designer, unlike the underdog who never prefers higher

accuracy under any circumstances, always prefers higher accuracy whenever the initial

accuracy is very low. Thus, while the designer is always in conflict with the underdogs,

he may be in agreement with the favorites. This suggests that there may be two

conflict types where the conflict is either between the designer and both types of

player or between the designer and underdogs. Part (a) of Proposition 6, indeed,

points to these two conflict types. Specifically, it suggests that the designer vs. players
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conflict occurs when the cost asymmetry is below a certain threshold, and that the

designer vs. underdog conflict occurs when the cost asymmetry is above a certain

threshold. Moreover, the threshold increases either as favorites are introduced or as

underdogs are removed. Clearly, a greater threshold narrows the no-conflict interval,

the length of interval over which the designer and the favorites are in agreement on

higher accuracy. Accordingly, adding a favorite and/or removing an underdog makes

the consensus between the designer and the favorites more likely.

Part (b) of Proposition 6 highlights conflicts where the initial accuracy is very high.

In addition to the two conflict types above, part (b) of proposition 6 points to an extra

conflict type which is observed when the cost asymmetry is intermediate. In this type,

the conflict arises between the designer who does not prefer higher accuracy and the

favorites who do prefer. In the remaining two types, the designer always prefers higher

accuracy as in part (a). However, the designer and the favorites reach a consensus

on higher accuracy over an interval [c̃(n,m), ĉ(n,m)] where c̃(n,m), ĉ(n,m) <
n

n− 1
.

This is in stark contrast to part (a) where the favorites and the designer reach a

consensus on accuracy improvement for significantly high cost asymmetry (meaning

that c > exp(1 + n−1
m

)). However, it is not entirely clear, particularly compared to

part (a), how the addition of either more favorites or more underdogs reduces the

upper and lower bounds of the no-conflict interval, which reflects the possibility of

conflict since ∆c = ĉ(n,m) − c̃(n,m). For example, consider the interval [a, b]. If

both a and b decrease with the introduction of favorites and/or underdogs, then it is

unclear exactly how the length of the b−a interval changes, since it would depend on
whether it is b or a that decreases at higher rate. In other words, both ĉ(n,m) and

c̃(n,m) decrease with the addition of new players, making the change ambiguous. In

order to make it clear, we present the following numerical examples.12

12Our attempt to show it analytically was unsuccessful.
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Figure 4. Length of No-Conflict Interval vs Number of Favorites

Figure 4 portrays, fixing the number of underdogs, how the length of no-conflict

interval changes with an increase in the number of favorites. It clearly suggests that

the no-conflict interval narrows as the number of favorites increases. Simply put, all

else equal, this amounts to saying that adding more favorites to the contest, weakens

the changes to improve accuracy. This makes sense in that higher accuracy is less

appealing to the favorites whenever there are more favorites in competition.
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Figure 5: Length of No-Conflict Interval vs Number of Underdogs

Figure 5 portrays, fixing the number of favorites, how the length of no-conflict

interval changes with an increase in the number of underdogs. In contrast to Figure 4,

it points to non-monotonicity. Specifically, the no-conflict interval first expands, then

it shrinks with an addition of underdogs. Said differently, while more underdogs in the

contest make the adoption of higher accuracy more likely, this likelihood diminishes

over time. To grasp the intuition, consider the extreme case where there are no

underdogs, that is, the competition takes place among the favorites, i.e. homogeneous

contest. As explained earlier, in such a case, higher accuracy is always preferred by

the designer only not the favorites. In other words, the length of no-conflict interval

is 0. Addition of an underdog to the contest, however, leads to a non-zero interval

length. Consider now the other extreme where there are infinitely many underdogs.

Clearly, this contest can be considered as homogeneous as long as the number of

favorites is finite. Consequently, no-conflict interval eventually vanishes.

6 Discussion

Our analysis features discrepancies in the preferences of players and designer for

higher accuracy. While these discrepancies may not be important for contests where

players’preferences do not matter for the design process, they are clearly crucial for
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others where they do matter. According to Dixon (2004), most students choose letter

grading over plus/minus grading despite the fact that the latter leads to greater grad-

ing accuracy than the former. Accordingly, we expect to see letter grading instead

of plus/minus grading in schools whenever the players’preferences matter for the de-

signer. The report of the Ad-Hoc Committee of Eastern Kentucky University revealed

that those not using plus/minus grading cited student resistance as one factor. We

conjecture that players’preferences are more likely to matter in settings where there

are large and long-term players. The rationale behind our conjecture is multi-faceted.

Firstly, the design process can be democratic in that any proposal by the designer

needs to be agreed upon by players. Secondly, when the contest designer is selected

by the players, he may value their preferences to increase his re-election prospects.

Finally, large players may influence the designer’s decision by various means such as

lobbying or by pressuring him. In team sports such as soccer or baseball, for instance,

competition takes place among long-term teams where some are disproportionately

powerful. Yet, in individualistic sports such as tennis, golf, or athletics, the play-

ers are short-term and can not hold too much power. In line with this conjecture,

our analysis predicts that team sports such as soccer or baseball are associated with

less accuracy than individualistic sports. This prediction appears consistent with

current practices in sports. In addition to the previous prediction that seems to cor-

rectly address the accuracy disparities across contests that differ in the significance

of players’preferences on design process, our analysis has another prediction about

accuracy disparities across contests that differ in the level of heterogeneity. Specif-

ically, our analysis predicts that greater heterogeneity is closely linked with higher

accuracy whenever players’preferences matter for the designer. The evidence from

European soccer leagues presented in the Introduction, seems to support this predic-

tion. More specifically, the evidence shows that the soccer leagues of England and

the Netherlands, the most heterogeneous ones, have recently decided to implement a

goal-line technology while those of Germany and Spain delayed their decision until

2015. Though somewhat extreme, our limit results in Proposition 4, which states

that the favorites support higher accuracy only under certain cases, seems to explain

why top tennis players such as Roger Federer and Novak Djokovic have expressed

24



their opinion against the use of technology in tennis.13

Apart from the above predictions, our analysis underlines several distinctions be-

tween two-player contests and contests with more than two players. First, while a

change in accuracy alters players’efforts through direct effect only in two-player con-

tests, this happens with indirect effect in addition to direct effect in contests with

more than two players. Second, in a more general case, the effort-maximizing designer

does not necessarily decrease the contest accuracy with an increase in heterogeneity.

More precisely, our analysis indicates that when there is more than one favorite, it

is still optimal for the effort-maximizing designer to increase contest accuracy for

significant heterogeneity levels.

7 Pairwise Contests and Accuracy

Up to now, we have assumed that all players compete simultaneously. However, in

certain contests, competitions involve only two players. That is, while at the time

of accuracy choice, players may not know their rivals. They know that there will be

only one opponent. In this section, we demonstrate that our results above continue

to hold.

Suppose there are once again, n favorites and m underdogs. Conditional on being

a favorite, the opponent is a favorite with a probability n−1
m+n−1 , and an underdog with

a probability m
m+n−1 .

Proposition 7 Suppose each contest involves only two players and opponents are
drawn randomly. Moreover, the accuracy, r, is decided before there are n favorites

and m underdogs where a given player will compete with his opponent which is to be

drawn randomly. Then,

(a) The underdog’s payoff is decreasing in the accuracy, i.e. dE[π∗H ]
dr

< 0.

(b) The favorite’s payoff is ambiguous in the accuracy. Specifically,

• as r → 0,
dE[π∗L]

dr

{
> 0 if c > exp(1 + n−1

m
)

< 0 if c < exp(1 + n−1
m

)
.

13For more information, see: <http://www.independent.co.uk/sport/tennis/djokovic-resists-
hawkeye-calls-1990418.html.>
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• as r → 1,

dE[π∗L]

dr

{
> 0 if n−1

m
< k and c(m,n) < c < c(m,n)

< 0 if otherwise
.

where k ≈ 1.06 uniquely solves: max
{c∈[1,∞)}

4c(2c ln c− c− 1)

(c+ 1)3
.

Proof. Let π∗ij denote the payoffof type i in a pairwise contest when his opponent
is of type j. Also let E[π∗i ] denote the expected payoff of type i. Since the opponent

is chosen randomly,

E[π∗H ] =
m− 1

m+ n− 1
π∗HH +

n

m+ n− 1
π∗HL.

Differentiating with respect to r,

dE[π∗H ]

dr
=

m− 1

m+ n− 1

dπ∗HH
dr

+
n

m+ n− 1

dπ∗HL
dr

From the proof of Proposition 2, dπ∗HL
dr

< 0, and we have p∗HH = 1
2
. Substituting

it into Proposition 1c which leads to π∗HH = 2−r
4
V . Note that dπ∗HH

dr
= −V

4
< 0

and dπ∗HL
dr

< 0 by Proposition 2, which proves part (a). In a similar vein, we have

E[π∗L] = n−1
m+n−1π

∗
LL + m

m+n−1π
∗
LH . Differentiating both sides with respect to r,

dE[π∗L]

dr
=

n− 1

m+ n− 1

dπ∗LL
dr

+
m

m+ n− 1

dπ∗LH
dr

where π∗LL =
2− r

4
V and π∗LH =

cr(cr − r + 1)

(cr + 1)2
V . Routine algebra yields,

dE[π∗L]

dr
=

n− 1

m+ n− 1
(−V

4
) +

m

m+ n− 1

cr((1 + cr − r + rcr) ln c− (1 + cr))

(1 + cr)3
V

Taking the limit as r → 0 we have,

lim
r→0

dE[π∗L]

∂r
=
m ln c− (m+ n− 1)

4(m+ n− 1)
V

it follows
dπ∗L
dr

< 0 if and only if c < exp(1 +
n− 1

m
), proving part (a).

Taking the limit as r → 1 we have,

lim
r→1

dE[π∗L]

∂r
= m(c+ 1)3(

4c(2c ln c− c− 1)

(c+ 1)3
− n− 1

m
)V
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Similarly, limr→1
∂(EP [π∗L])

∂r
> 0 if and only if 1 + k × m ≥ n and c(m,n) < c <

c(m,n) , where k ≈ 1.06 uniquely solves k ∈ max{4c(2c ln c− c− 1)

(c+ 1)3
}, and c, c solve

4c(2c ln c− c− 1)

(c+ 1)3
− n− 1

m
= 0.

Proposition 6 confirms that the accuracy choices of the players in pairwise contests

are qualitatively the same as in simultaneous contests with many players. Regardless

of the initial accuracy, the underdogs never prefer higher accuracy in both settings.

On the other hand, the favorites prefer higher accuracy if and only if either the initial

accuracy is very low and the cost advantage is significant, or the initial accuracy is

very high and the cost advantage is moderate.

8 Concluding remarks

Contest accuracy, or the extent to which winning depends on the effort rather than

exogenous uncertainty, often varies across contests. While this variation may be ex-

pected among contests with different design objectives, it is rather a puzzle for those

with exactly the same and /or relatively similar design objectives. Today, for instance,

while some schools switched from letter grading to plus/minus grading to enhance

grading accuracy, others continue to use letter grading. When asked, the latter points

to student resistance among other factors. On the other hand, all sports are often de-

signed with the common purpose of providing players with appropriate incentives to

perform well. Yet, today only certain sports do use technology. A closer look reveals

that they are mostly individualistic sports such as tennis, athletics, or horse-racing

rather than team sports such as soccer or baseball. One notable distinction between

them is that while the set of players often changes in individualistic sports, it remains

the same in team sports. More importantly, the players hold less power in individual-

istic sports than in team sports. Our conjecture is that the contest designer takes the

players’preferences more seriously in team sports compared individualistic sports. In

the light of this conjecture, our analysis offers one possible explanation for this puzzle

by emphasizing the discrepancies in the preferences of players and the contest de-

signer. Our analysis also offers an explanation for the accuracy differences across the

same contests differing only with regard to composition of the players. Specifically,
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our analysis predicts higher accuracy in less heterogeneous contests, which seems to

be in line with the evidence in European soccer. One interesting finding is that the

favorites support higher accuracy only under certain cases. This seems to explain

why top tennis players such as Roger Federer and Novak Djokovic have expressed

their opinions against the use of technology in tennis.14

Our analysis highlights several distinctions between two-player contests and more

general contests that may be useful for future research. First, a change in accuracy

alters players’efforts through an indirect effect, or competitive effect, which is absent

in the two-player case. Second, in contrast to the two-player case, effort maximization

does not necessitate lowering contest accuracy for excessive cost asymmetry between

types.

14For more information, see: <http://www.independent.co.uk/sport/tennis/djokovic-resists-
hawkeye-calls-1990418.html.>
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