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Abstract

We consider a basic stochastic evolutionary model with rare mutation and a
best-reply (or better-reply) selection mechanism. Following Young’s papers
[29] and [30], we call a state stochastically stable if its long-term relative
frequency of occurrence is bounded away from zero as the mutation rate
decreases to zero. We prove that, for all finite extensive-form games of per-
fect information, the best-reply dynamic converges to a Nash equilibrium
almost surely. Moreover, only Nash equilibria can be stochastically stable.
We present a ‘centipede-trust game’, where we prove that both the back-
ward induction equilibrium component and the Pareto-dominant equilibrium
component are stochastically stable, even when the populations increase to
infinity. For finite extensive-form games of perfect information, we give a suf-
ficient condition for stochastic stability of the set of non-backward-induction
equilibria, and show how much extra payoff is needed to turn an equilibrium
stochastically stable.
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1 Introduction

Nash equilibrium is the most common solution concept in game theory. How-
ever, in a game with multiple equilibria, Nash equilibrium is silent on how
to determine which equilibrium will be played. We would like to follow one
evolutionary approach to answer this question. In an evolutionary dynamic
process, a mutation can be viewed as a random perturbation; the selection
condition requires that the current better/best strategies will be used more
frequently in the future. In such a dynamic process with both mutation and
selection, some Nash equilibria are more robust against persistent random
perturbations (not just isolated ones), and are more likely to emerge in such
‘noisy’ environment in the long run. We call a state stochastically stable if
its long-term relative frequency of occurrence is bounded away from zero as
the mutation rate decreases to zero. This notion is proposed by Foster and
Young in [5], by Young in [29] and [30]. It is also called ‘long-run equilib-
rium’ by Kandori et al. in [14], ‘in the support of the limit distribution’ by
Samuelson in [25], by Fudenberg and Levine in [7], and ‘evolutionarily stable’
by Hart in [12].

Such dynamic evolutionary models have been extensively studied under
various selection mechanism for games in strategic form. (See [14], [29], [26]
and many other literatures.) They show that some Nash equilibria, e.g. the
risk-dominant ones, are more stable than others under certain circumstance.
In general normal-form games, the evolutionary process brings inertia to the
model: individuals’ observations are limited and imperfect, and their under-
standing of the whole dynamic process is constrained. Both these factors
support the assumption that in each period only a small fraction of individ-
uals are adjusting their strategies simultaneously. The standard argument
in games of normal form claims that the strategies that have proved to be
successful up until today are likely to remain successful for some time in the
future.

For an extensive-form game of perfect information under an evolutionary
dynamic, some nodes are visited more frequently than the others, which can-
not be represented in a normal-form game. One also needs to be careful when
applying the inertia argument above. We say that a node is disconnected if
the probability that node is reached is zero (see (2.1) for rigorous definition).
For individuals playing strategies at a disconnected node, when that node be-
comes connected by an individual from another population, the best/better
strategies of the former individuals may entirely depends on that single ‘con-
necting’ individual. If this ‘connecting’ individual diverts away from this
node and makes it disconnected again in the next period, then the ones play-
ing at this node may lose the incentive to adjust their strategies. Therefore,
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the set of better/best reply strategies can change in every period. This is
one basic observation in the dynamics in extensive-form games.

We adopt the dynamic model introduced in Hart’s paper [12], which is
a natural and simple process that provides for both selection and mutation.
The model includes an adapted version of the best-response dynamic dis-
cussed in [14] and [15] for a k-player normal form game, and we apply it here
in extensive-form games of perfect information. For symmetric coordination
games discussed in [14], they deduce a robust stability result with a general
Darwinian property which allows for multiple individuals in each population
to change their strategies in each period, while, in our current paper, in each
period only one individual in each population may change her strategy. We
study the extreme case of all individuals subject to change in our extensive-
form framework in another paper [27], which corresponds to the case that
the adjustment probability is 1 for each individual in each period in [15].
We show in [27] that the stability result on an extensive-form game may be
sensitive to the rate of replacing strategies. In the current paper, we instead
focus on the effect of large population on stability result, which is not ad-
dressed in [14] or [15]: the stochastic stability result of a Nash equilibrium
may be different for the case of large and small population size.

Our analysis approach of a regular perturbed Markov process is adapted
from [29]. The evolutionary process applied on a normal-form game in [29] is
similar to our selection-mutation process. However, Young’s model is essen-
tially equivalent to an evolutionary process with a single individual in each
population, and a state defined there is a bounded history of play. Our model
instead focuses on large populations and the selection is entirely based on
the last state, which is the distribution of strategies played in all populations
in the last period.

Hart [12] proves that the backward induction equilibrium is the unique
stochastically stable state, when the populations go to infinity, and the prod-
uct of population size and mutation rate is bounded away from zero. This
boundary condition can be interpreted as requiring that the expected num-
ber of mutation per generation does not go to zero. Gorodeisky [10] relaxes
this constraint on the product of population size and mutation rate.

However, Hart only considers a specific type of perfect-information games:
each player can never play at more than one node in a game. We use the
basic dynamic model of population games proposed in Hart’s paper, but
dispense with this constraint. Our first conclusion is that our best-reply
dynamics always lead to a Nash equilibrium in finite extensive-form games
of perfect information. We further deduce that, for all such games, regardless
of population size, only Nash equilibria can be stochastically stable. It is a
natural question whether Hart’s stability result still holds in this general
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context.
Our starting point is the concept of Nash equilibrium components. Here,

we adopt the standard definition: a Nash equilibrium component is a maxi-
mal connected set of Nash equilibria. In a generic game, all equilibria in the
same Nash equilibrium component give rise to identical induced probabil-
ity distribution over terminal nodes, i.e., they differ only off the equilibrium
path. (cf. [16] and [2].) Thus, a backward induction equilibrium component
is a Nash equilibrium component whose final outcome is also the outcome
of a backward induction equilibrium. When a state is in a backward in-
duction equilibrium component, the strategy distribution of a population at
a node off the equilibrium path can be various. We cannot conclude that
all individuals in all populations converge to the (pure) backward induction
equilibrium, even if the backward induction equilibrium component is the
only stochastically stable result. (See Example 4 in [28] for more details.)

In [12], Hart also shows an example that equilibria other than the back-
ward induction equilibrium may be stochastically stable, when the popula-
tions are fixed. However, he further proves that, if each player can play at
only one node, then this no longer holds when the populations increase to
infinity. Our result in Section 6 instead shows that if a player is allowed to
play at multiple nodes, then the backward induction equilibrium component
may not be the unique stochastically stable component even when the pop-
ulations go to infinity. Moreover, this is a minimum example with respect
to the number of nodes in all finite extensive-form games of perfect informa-
tion with large population. For more details, please refer to the end of [28],
where we discuss why such an example needs more than three non-terminal
nodes. The results hold for both the best reply and the better reply selection
mechanisms.

The evolutionary approach may also explain the emergence of trust and
fairness under bounded rationality modeled in a finite extensive-form game.
Here we consider the case in which populations of individuals play a game
repeatedly where each population assumes the role of a player in the original
extensive-form game. Our evolutionary model is compatible with the notion
of ‘bounded rational behaviour’ introduced in [14]. That is, not all individ-
uals need to react instantaneously to their environment; when individuals
react, they react myopically; there is a small probability that individuals
change their strategies at random. Note that in our example in Section
6, the stochastically stable Nash equilibrium component not containing the
backward induction equilibrium is in fact Pareto-efficient. Thus, this evo-
lutionary approach shows that, under the condition of bounded rationality,
players select Pareto-efficient equilibria in the long run as well, even if they
are not the backward induction equilibrium. (See [23] for the stability result
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of Pareto-efficient equilibria in symmetric 2× 2 coordination games.) More-
over, the Pareto efficiency can be viewed as resulted from trust (reciprocal
play) built on a sufficiently long multiple-move game. Indeed, recall that
every extensive-form game with no more than three non-terminal nodes has
the backward induction equilibrium component as its unique stochastically
stable component. We shall discuss it in details in Section 6.

In Section 7, we generalise our example and provide a sufficient condition
for the set of non-backward-induction equilibria to be stochastically stable,
regardless of population size. The theorem is in the context of two-player
finite extensive-form generic games of perfect information, and it only needs
a payoff condition and a structure condition roughly as follows. The payoff
vector of the alternative Nash equilibrium component is sufficiently high, and
the paths of the backward induction equilibrium and the alternative Nash
equilibrium can be ‘properly’ separated. Further generalisation is also pos-
sible, as long as an individual selects each better (or best) response strategy
with a probability bounded from below. The proof needs several steps, some
of which are quite subtle. The earlier example is a warm-up for this general
theorem.

We can apply this sufficient condition for stochastic stability to solve the
problem of improving stability by increasing payoffs. We firstly observe that,
when a payoff vector gives global best payoff to both players, it must be the
result of the backward induction equilibrium in the game, and the backward
induction equilibrium component is stochastically stable for any population
size. If we can only lift one payoff of a Nash equilibrium to be the global
maximum and the other payoff to be a second best, under what circumstances
will that equilibrium component become stochastically stable? We’ll answer
this question in Section 8.

Regarding the technical difficulties of the proofs, as Hart predicts in his
paper, the complexity in multiple-move games arises since selection operates
at the level of the players rather than the nodes. For instance, consider the
case that the unique backward induction equilibrium path terminates some-
where in the middle of the game tree by player (population) I, and the current
state is in the backward induction equilibrium component. Then very few in-
dividuals in population I are playing off the backward induction equilibrium
path. As the number of individuals playing at each node is not fixed, a small
change in the proportions of strategies in population I triggered by mutation
may bring a huge effect to the relative proportions of strategies in population
I in a subgame off the backward induction equilibrium path. That may fur-
ther influence other individuals and other populations. While we regard the
central issue in Hart’s model as ‘connectedness’ of path, in this generalised
model we are more concerned with the ‘dynamic of proportions’. We shall see
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later that the standard technique of perturbed dynamical systems, proposed
in [6] and applied as a ‘tree technique’ in [14] and [29], cannot lead to the
stochastic stability result in the case of large populations for extensive-form
games: that method is only effective for the case of fixed population size. We
have to refer to the basic time-average asymptotic behavior of the Markov
chain in our analysis.

2 The Model

2.1 An extensive-form game of perfect information

We adopt the standard definition of a finite extensive-form game of perfection
information. (See [17], [11] and [21] for reference.)

Given a set N of finitely many nodes, we define a partial order binary
relation ≺ on N that represents precedence. We further suppose an initial
node n0 as a predecessor of all other nodes in N . Such (N,≺) defines a
tree T , and we call n0 the root of T . We define the immediate-predecessor
function ψ : N → N such that

ψ(n′) = max{n : n ≺ n′} ∀n′ ∈ N \ {n0}

and ψ(n0) = ∅. Let Ψ be the predecessor function Ψ : N → 2N with

Ψ(n′) = {n ∈ N : n ≺ n′}.

We denote ψ−1 to be the immediate-successor function. Thus, ψ−1(n) =
{n′ ∈ N : n = ψ(n′)} for all n in N . The successor function Ψ−1 can be
similarly deduced. We call a node n a terminal node if ψ−1(n) = ∅, and write
Nt := {n ∈ N,ψ−1(n) = ∅}.

We say that a sequence {n1, ..., ni} of nodes is a subplay in the tree T if
nj−1 = ψ(nj) for all 1 < j ≤ i. If n1 = n0 and ni ∈ Nt, then it is called a
play. Denote the set of all plays by H.

We define a k-player extensive-form game of perfect information on the
finite tree (N,≺). Denote N = {Λ0,Λ1, ...,Λk} as a partition of N \ Nt,
and call it the assignment of decision nodes. The members of Λ0 are called
chance nodes ; for each i ≤ k, the members of Λi are called the nodes of
player i. Given a node n ∈ N , we put λ(n) as the indicator of which player
moves on this node. So λ(n) = i, if n ∈ Λi. For chance nodes, define
τ : ψ−1(Λ0)→ [0, 1] to be a probability distribution function such that∑

n′∈ψ−1(n)

τ(n′) = 1 ∀n ∈ Λ0.
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We define a vector v = (v1, ..., vk) such that each vi : H → R is a Bernoulli
function of player i for all 1 ≤ i ≤ k. We call the quadruple (T,N , τ,v) an
extensive-form game Γ of perfect information. When we apply such a game
Γ to the dynamic process introduced later, we assume Λ0 = ∅ for simplicity,
and thus Γ can be represented by a tripe (T,N ,v) later in our framework.
(All results in this paper can be generalised to the case including chance
nodes.)

For each player i, a (pure) strategy ai assigns a successor to each node in
Λi. So ψ(ai(n)) = n for all n in Λi. Denote the set of pure strategies of player
i by Ai, and the set of pure-strategy profiles by A =

∏k
i=1A

i. We denote the
probability distribution of play in game Γ for a pure strategy profile a to be
a function ρa : H → [0, 1] with

∑
h∈H ρa(h) = 1. (Note that H is finite.)

Given a node n̄, we denote Hn̄ := {h ∈ H : n̄ ∈ h} and say that the node n̄
is connected under a pure strategy profile a if∑

h∈Hn̄

ρa(h) > 0. (2.1)

When Λ0 = ∅, given such a pure strategy profile a in A, we can find a
sequence of nodes {n0, n1, ..., nm} such that n0 = n0 and

ni+1 = aλ(ni)(ni) ∀0 ≤ i < m.

It follows that the last node nm ∈ Nt.
The set of mixed strategies for player i is defined as

X i := ∆(Ai) = {σ =
(
σi (a)

)
a∈Ai : σi (a) ≥ 0 ∀a ∈ Ai and

∑
a∈Ai

σi(a) = 1}.

(2.2)
So a mixed strategy xi is a vector of probabilities assigned to each pure
strategy in Ai. The set of mixed-strategy profiles is denoted as X =

∏k
i=1X

i.
We call the induced probability distribution of a mixed-strategy profile x
over plays in T as the outcome of x. Note that a pure-strategy profile a
generates a payoff vector u(a) =

∑
h∈H ρa(h)v(h). We can linearly extend it

to a mixed-strategy profile x:

u(x) =
∑

a∈supp(x)

(∏
ai∈a

xi
(
ai
))

u(a). (2.3)

A mixed-strategy profile x is a Nash equilibrium of the game Γ if

ui(x) ≥ ui(yi, x−i)
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for every i ≤ k and every yi ∈ X i, where x−i := (xj|1 ≤ j ≤ k, j 6= i).
A subtree rooted at a node n is the truncated tree (Ψ−1(n) ∪ {n},≺).

A subgame rooted at node n is the corresponding subtree with the induced
assignment of decision nodes and the payoff function. We denote this sub-
game by Γn. A Nash equilibrium is a backward induction equilibrium (also
called subgame-perfect equilibrium) if it induces a Nash equilibrium in all
subgames. Kuhn proved in [18] that there always exists a pure backward in-
duction equilibrium, constructed from the terminal nodes and going towards
the root. In this paper, we consider a generic finite k-player game Γ in ex-
tensive form with perfect information. In the generic assumption, no player
obtains the same payoff at any two terminal nodes. Thus, the backward
induction equilibrium in Γ is unique.

For a mixed strategy profile x, we say that a node n̄ is connected under
x if there exists a pure strategy profile a with non-zero probability in x such
that node n̄ is connected under a. A realised play of a Nash equilibrium is
also called an equilibrium path.

In an extensive-form game, two different pure strategies for the same
player always induce the same probability distributions over plays, if they
differ only at disconnected nodes (cf. Proposition 4.1 in [21]). This ob-
servation suggests a lower-dimensional representation of an extensive-form
game. We call two pure strategies ai1 and ai2 for player i outcome equivalent
and write ai1 ∼ ai2 if, with every combination a−i of strategies for the other
players, the outcome generated by these two strategies are always the same,
i.e.,

ρ(ai1,a
−i)(h) = ρ(ai2,a

−i)(h) ∀h ∈ H ∀a−i ∈ A−i. (2.4)

Such relationship of outcome equivalence generates for each player i a parti-
tion Bi of the set Ai. That means

1. The union of all sets in Bi equals to Ai;

2. Given any bi in Bi, for any two strategies ai1, a
i
2 ∈ bi, (2.4) holds.

Thus, each bi is an equivalence class, and we call Bi the set of pure quasi
strategies of player i, and the set of pure quasi strategy profiles is defined as
B :=

∏k
i=1B

i. Given a pure quasi strategy profile b = (b1, ..., bk), we can find
a pure strategy profile a = (a1, a2, ..., ak) with ai ∈ bi for all 1 ≤ i ≤ k, and
we define the payoff vector of profile b as u(b) :=

∑
h∈H(ρa(h))v(h)). The

set of mixed quasi strategies and the payoff vector of a mixed quasi strategy
profile can be defined analogously to (2.2) and (2.3), respectively. Nash
equilibria can also be defined with quasi strategies. We use the definition of
quasi strategy in this paper. When no ambiguity, we simply refer to a quasi
strategy as a strategy.

7



For instance, given the game Γ̄ in Figure 1, for a pure strategy of player
I which includes the move α1 at the root, it must also specify the move she
would play at the bottom node. We, however, do not specify it for a quasi
strategy, as it is impossible to reach the bottom node in that case. Hence,
in this one-player game, there are only three quasi strategies corresponding
to α1, α2 and α3, respectively, in our framework. See Appendix 10.1 for
comparison between the partition generated from outcome equivalence and
the standard representation of reduced normal form for an extensive-form
game: outcome equivalence is defined on the realisation of outcome, while a
reduced-normal-form strategy is concerning the payoff equivalence.

I

I

43

α2 α3

7

α1

Figure 1: Game Γ̄

2.2 Evolutionary dynamics

We consider the following population game associated to Γ. Assume that
for each player i with 1 ≤ i ≤ k there is a non-empty population M(i)
of individuals playing the game in the role of player i. For simplicity, we
put |M(i)| = m for all i. An individual is characterised by a pure quasi
strategy. (See Section 4.1 for more information.) We define a state w to be
the collection of pure quasi strategies of all individuals in all populations,
i.e., w = (wi)1≤i≤k where wi := (wi(q))q∈M(i) and wi(q) ∈ Bi for each i ≤ k
and each q ∈M(i). Let the state space W be

∏
1≤i≤k(B

i)M(i). At a state w,
for each i, let mbi(w) be the number of individuals playing strategy bi ∈ Bi,
and let xbi(w) be the proportion of population M(i) that plays the strategy
bi, i.e., xbi(w) = mbi(w)/m. We put

x (w) :=
(
(xbi (w))bi∈Bi

)
1≤i≤k (2.5)

and thus we may view each state w as a k-tuple mixed strategy in X.
Comment: A mixed strategy can be thought of as a distribution of

potential participants in a large population, where each potential participant
commits to a particular pure strategy. The game is played over and over

8



again by participants who are randomly drawn from large populations. This
idea is suggested in [19], [22], [21], etc.

We define a discrete-time Markov chain (Zt)t≥0 such that each Zt is a
random variable valued in W . Note that for a rigorous analysis, one needs to
define first the sample space Ω := WN, which is the necessity for the definition
of this Markov chain and its transition probabilities. We shall not refer
to it explicitly, when the context allows. Given the population size m and
mutation rate µ, the transition probabilities Pµ,m of this Markov chain specify
the probability that Zt+1 equals a state w̃ given a history Z1 = w1, ..., Zt = wt,
i.e., Pµ,m(Zt+1 = w̃|Z1 = w1, . . . Zt = wt), for each t ≥ 0. We further assume
(Zt)t≥0 to be a stationary Markov chain dictated by a one-step transition
probability matrix Qµ,m, i.e.,

Pµ,m(Zt+1 = w̃|Z1 = w1, . . . Zt = wt) = Qµ,m(w̃|wt),

for every w1, ..., wt, w̃ in W and t = 1, 2, . . .. If context allows, we drop the
subscript µ and m of P and Q; for a pure quasi strategy b of some player i,
in period t, we also abbreviate mb(Zt) by mb(t), which is the random num-
ber of individuals in population M(i) playing the strategy a in the Markov
chain in period t. We view Q as a transition rule concerning ‘selection’ and
‘mutation’ described in the following basic model with a better-reply selection
mechanism, which was introduced by Hart in [12].

• Conditional on the current state, transitions are independent over pop-
ulations, i.e.,

Q(w̃|w) =
∏

1≤i≤N

Q(w̃i|w).

• In each period, for each i with 1 ≤ i ≤ k, an individual qi in M(i) is
chosen with probability 1/m.

• All individuals in M(i) except qi do not change their strategies.

• The chosen qi undergoes mutation, selection or no change, with prob-
ability µ, σ and 1− µ− σ, respectively.

• Conditional on mutation, the individual qi chooses a random strategy,
i.e., w̃i(qi) = bi with probability 1/|Bi| for each bi in Bi.

• Conditional on selection, we define a set of ‘better strategies’, namely

BT i(qi, w) := {bi ∈ Bi : ui(bi, w−i) > ui(wi(qi), w−i)}, (2.6)
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where w−i indicates the collection of pure quasi strategies of all indi-
viduals in all populations other than M(i). We abbreviate the notation
BT i(qi, w) by BT i. If BT i is not empty, then the new strategy w̃i(qi)
of qi is randomly chosen in a better-reply distribution pi(·):

pi
(
w̃i(qi) = bi|wi

(
qi
)
/∈ BT i

)
> κ ∀bi ∈ BT i, (2.7)

for a constant κ > 0. (This corresponds to the selection mechanism
used in [14] and [15].) We further assume that p(·) := (pi(·))i is inde-
pendent of period t. If BT i is empty, then there is no change in the
strategy of qi.

• For the case of no change, the strategy of qi does not change: w̃i(qi) =
wi(qi).

We can also adopt the best-reply selection mechanism in the model above.
Consider the case that at state w an individual qi in M(i) is chosen and
selection takes effect. We define a set of ‘best strategies’, namely

BSi(w) := arg max
bi∈Bi

ui(bi, w−i). (2.8)

If wi(qi) ∈ BSi(w), then there is no change in qi’s strategy: w̃i(qi) = wi(qi);
otherwise, the new strategy w̃i(qi) is a randomly chosen best strategy in the
following probability distribution:

pi
(
w̃i(qi) = bi|wi

(
qi
)
/∈ BSi(w)

)
> κ ∀bi ∈ BSi(w) (2.9)

for a constant κ > 0, and that p(·) := (pi(·))i is independent of period
t. The only difference between the models with best-reply and better-reply
mechanism is in this selection procedure.

3 Main Results

To give the formal definition of stochastic stability, we study the behaviour
of the steady-state analysis and limiting distribution of the Markov chain
(Zt)t≥0 with the one-step transition probability matrix Qµ,m generated from
the transition process in Section 2. We first consider the selection mechanism
of better reply applied in the model. It is straightforward to check that, for
every finite m and every µ > 0, the induced Markov chain is irreducible and
aperiodic. Hence, for every pair of population size m and mutation rate µ,

10



there exists a unique invariant distribution πµ,m ∈ 4(W ) on W such that
πµ,m = πµ,mQµ,m, or

πµ,m[w̃] =
∑
w∈W

πµ,m[w]Qµ,m(w̃|w)

for every w̃ ∈ W .

Lemma 3.1 Given an one-step transition probability matrix Qµ,m defined
in Section 2, for a fixed population size m, the limit distribution limµ→0 πµ,m
exists.

Proof. It immediately follows from Theorem 3.1 in [30]. Given two states w
and w′, the resistance of the transition w → w′ defined in [30] is equivalent
to the minimum number of mutations needed for a transition from w to w′

in our context. �
For a fixed population size, a state w in W is called m-stochastically stable

if its invariant probability πµ,m[w] does not go to zero as µ decreases to zero,
i.e., limµ→0 πµ,m[w] > 0. We call a state w stochastically stable for large
populations if lim infm→∞ limµ→0 πµ,m[w] > 0. Given a limiting process that
m increases to infinity, µ decreases to zero, and that µm is always in a set R ⊆
R+, we call a a state w stochastically stable in this limiting process if πµ,m[w]
is bounded away from zero throughout this process. All definitions above
can be naturally extended to subsets included in the state space. So a Nash
equilibrium component is stochastically stable if and only if a subset in it is
stochastically stable. For every set of mixed quasi strategy profiles Y ⊆ X,
if no ambiguity, we abbreviate πµ,m[w ∈ W : x(w) ∈ Y ] by πµ,m[Y ]. Recall
the game we consider is generic. Denote the unique backward induction
equilibrium in Γ by BI = (si)1≤i≤k, and denote the ε-neighbourhood of BI
by

BIε := {x ∈ X : xisi ≥ 1− ε ∀1 ≤ i ≤ k}.

We shall first prove in Section 4 that our best-reply dynamic leads to
a Nash equilibrium, and that only Nash equilibria are stochastically stable
regardless of population size.

The combined results from Hart [12] and Gorodeisky [10] are

∀ε > 0, lim
µ→0,m→∞

πµ,m[BIε] = 1,

in the case that each player can only play at one node in a game. Thus, in
the context of only two players, their conclusion can only be applied to a
two-node game.
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Recall that all equilibria in the same Nash equilibrium component give
rise to identical outcome, i.e., they differ only off the equilibrium path. We
denote the backward induction equilibrium component by BC. We then
denote NC to be the set of Nash equilibria other than those included in the
backward induction equilibrium component, and NE to be the set of Nash
equilibria. So NC = NE \BC. We give a proof of the following theorem by
game Γ1 in Section 6.

Theorem 3.2 Under some best-reply dynamic or better-reply dynamic, there
exists a two-player game of perfect information and a positive number c such
that for all finite m > 1 NC is m-stochastically stable and

lim
µ→0

πµ,m[NC] ≥ c.

This theorem applies to both the best-reply selection mechanism and the
better-reply selection mechanism.

4 Stochastic Stability of Nash Equilibria

In this section, we prove that, under the best-reply or better-reply selection
mechanism, only Nash equilibria are stochastically stable regardless of pop-
ulation size, after we introduce some notations and concepts. To this end,
we need to study the relationship between backward induction equilibrium
and general Nash equilibrium in subgames, and we need the two operations
introduced below.

4.1 Definitions, notations and operations

Recall that each individual plays a pure quasi strategy in each period. If at
some decision node n, strategy b of an individual q requires b(n) = n′, we
then say that q moves toward n′ at node n (or towards a node in Ψ−1(n)).

Consider a generic finite game G in extensive form of perfect informa-
tion with the associated population game. Recall that a state describes the
distribution of all individual’s strategies in G. Given a state w, a node n is
connected in G at w if and only if at every n′ in Ψ(n), i.e., on the subplay
from the root of G to the immediate predecessor of n, there is at least one
individual q in M(λ(n′)) whose move is towards n. (Note M(λ(n′)) is the
corresponding population of the player who plays at node n′.) When a node
n in G is connected at state w, we write Rw(n) = 1; otherwise Rw(n) = 0.

12



Given a node n in G, we say an individual in M(λ(n)) is active at node n,
if she moves towards the node n at every predecessor node of n where that
individual takes a move, i.e., at all nodes in Ψ(n) ∩ Λλ(ni+1). If for a node n
in G, player λ(n) does not play at any node in Ψ(n), then every individual in
M(λ(n)) is active at n. For any individual, the set of all moves taken at the
nodes where the individual is active essentially corresponds to a pure quasi
strategy. For convenience, we recognise a move as a directed edge in the
game tree. When we need to emphasize any notation defined with respect
to the game G, we add (G) on it, e.g., N(G), Nt(G), λ(n)(G), etc.

We introduce below two operations on a node n in the set

L(G) := ψ−1 (Nt (G)) = {n ∈ N (G) : ψ−1(n) ⊆ Nt (G)}

in a genetic extensive-form game G of perfect information.

• Pruning G at node n. [Elimination of dominated payoff vectors]

As G is a generic game, there is a terminal node nmax which gives
player λ(n) the maximum payoff conditional on reaching node n. We
cut all edges from n to its terminal nodes, and then transform node n
to a terminal node with the payoff vector the same as of the original
terminal node nmax. We denote the such modified game by G∼n.

• Cutting G at node n. [Remove of node n]

We delete the edge from ψ(n) to n, and check whether ψ(n) is a new
terminal node after deletion. If yes, then we also delete the edge from
ψ2(n) to ψ(n), and check whether ψ2(n) is a new terminal node after
deletion. This process continues until we find a predecessor n̄ ∈ Ψ(n)
with survival terminal nodes after deletion. We denote the such modi-
fied game by G−n.

4.2 Constraints on the histories

Given a state w in W , if x(w) is in NE, we simply write w ∈ NE. (See (2.5)
for the definition of x(w).)

Given a finite generic extensive-form game Γ of perfect information and
an associated Markov chain defined in Section 2.2, for any initial state w,
we shall prove the existence of a finite transition history (w0, w1, ..., wk) with
positive probability such that w0 = w and wk ∈ NE. This is the crucial step
to show that onlyNE can be stochastically stable in the evolutionary process.
We shall construct such a finite history under the following constraints.

13



1. No-mutation Constraint: In each period, the chosen individual in
each population either picks her best-reply strategy or keep using her
best-reply strategy against the current distribution of other popula-
tions. In other words, we do not consider the case of mutation and the
case of ‘no change’ which is assigned with probability 1−µ−σ in each
period.

2. Disconnected-moves-unchanged Constraint: When a chosen in-
dividual switches to her best-reply strategy in period t, for all nodes n
with Rwt(n) = 0 and the property that the individual is active at n in
both periods t and t + 1, her move at n will be the same in these two
periods. In other words, when an individual’s current strategy consists
of a move at a disconnected node n, her move at n remains unchanged
if she is still active at n in the next period.

For instance, in the game in Figure 6, suppose that in period t no
individual in M(1) is playing s1, and thus the middle left node nlf is
disconnected. Note that all individuals in M(2) are active at node nlf
in any period. So the move of any individual in M(2) at node nlf keeps
unchanged in period t+ 1.

3. Fixed-move Constraint: It is concerning about a node n in Γ and
an edge e departing from n, and it takes effect from a certain period
t: from t on, whenever node n is disconnected and an individual turns
active at n, her move at n is always the edge e. This is possible, since,
when an individual changes to her best-reply strategy, her moves on
disconnected nodes do not affect her payoff.

We still take the game in Figure 6 as an example. We can apply this
constrain from some period t that, whenever an individual in M(1)
takes a move at the disconnected bottom node, she picks the right
edge, which corresponds to the strategy s3.

4.3 Construction of a finite history ending at NE

Denote Γ as the extensive-form game we study. Given any initial state w0, we
construct a finite history α = (w0, w1, ..., wt) in the stochastic process under
the best-reply selection mechanism (without mutation) such that wt ∈ NE.

To this end, we shall define below a sequence of extensive-form games
(Gn1 , ..., Gnr) indexed by ni ∈ N(Γ) for all i with 1 ≤ i ≤ r. We require
N(Gnl) ⊃ N(Gnl+1

) for all l with 1 ≤ l < r. We also let Gn1 = Γ and
Gnr be a one-node game. Furthermore, for i ≥ 1, game Gni+1

is obtained
from pruning or cutting at a node ni+1 in L(Gni) in game Gni . Each Gni
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will be associated with a finite sequence of states (w0
i , w

1
i , ..., w

β(i)
i ) under the

best-reply selection mechanism. (These states are defined with respect to Γ.)
In doing so, we could fix each specific move in turn in a Nash equilibrium,
and, for each connected node in the equilibrium, all individuals active at that
node could follow that move from some period till the end of history α.

Let w0
1 be the initial state w0. Given any i ≥ 1, the game Gni and state

w0
i , to obtain Gni+1

, we pick one (arbitrary) node in L(Gni), denoted as ni+1.
Under the best-reply selection mechanism, we then check for Γ whether there
is a finite transition process y = (y0, y1, ..., yl) with the property y0 = w0

i and
Ryl(ni+1) = 1 in Γ which satisfies Constraint 1 and Constraint 2 as well as
the Constraints 3 specified during the construction of (Gn1 , ..., Gni). Note
that if ni+1 is connected at w0

i , then the answer is trivially yes.
Case I: No such finite process exists. We cut Gni at node ni+1 and obtain

Gni+1
:= G

−ni+1
ni . Let w0

i+1 be w0
i .

Case II: There exists one such finite process. We adopt one such process
y and denote it as (w0

i , w
1
i , ..., w

l
i). We denote the equivalent node to the

terminal node nmax
i+1 in Gni by nei+1 in Γ. (*) (Recall that nei+1 gives player

λ(ni+1)(Gni) the maximum payoff in Gni conditional on reaching node ni+1.
Note that nei+1 is a terminal node in Γ, or there exists a game Gl such that
l < i and Gl is pruned at node nei+1.) Suppose at state wli there are q active
individuals at node ni+1 whose move is not towards nei+1. In the next q
periods, when applying the best-reply selection mechanism, we always pick
one such individual in population M(λ(ni+1)) and make it to adopt a best
reply against the current distribution of all other populations. Meanwhile, we
can make node ni+1 always connected in these q periods: when there is only
one individual moving towards ni+1 at some node n′ ∈ (Ψ(ni+1)\Λλ(ni+1) in
the subplay from the root of Γ to ni+1, we always avoid picking this individual
in population M(λ(n′)). There is no further restriction on the transition
process (wl+1

i , wl+2
i , ..., wl+qi ) under the best-reply selection mechanism during

these q periods.
Denote the period when reaching the state wl+qi by tni+1 . (**) For Γ, we

apply Constraint 3 on node ni+1 and the edge from ni+1 to nei+1 since period
tni+1 . We prune Gni at node ni+1 and obtain Gni+1

:= G
∼ni+1
ni , and let w0

i+1

be wl+qi .

In either case, at state w0
i+1, we pick one node ni+2 in L(Gni+1

) and check
the existence of a qualified finite transition process as for game Gni . This
process continues until we obtain a one-node game Gnr and the associated

finite transition process (w0
r , ..., w

β(r)
r ), where Gnr only contains the root of

Γ.
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We stick all finite transition history together in order together with the
initial state w0, and leave out w0

i for all i with 0 < i ≤ r. We denote
such transition history by α. Recall that in the construction process, the
sequence of generated extensive-form games (Gn1 , ..., Gnr) has the property
N(Gnl) ⊃ N(Gnl+1

) for all l with 1 ≤ l < r. Recall also that the associated

sequence (w0
i , w

1
i , ..., w

β(i)
i ) to each game Gni is finite. Because the population

size m and |N(Γ)| are both finite, we may infer that α is finite. The transition
history α is in the form

α =
(
w0, w

1
l1
, ..., w

kβ(l1)
l1

, w1
l2
, ..., w

β(l2)
l2

, ..., w1
r , ..., w

β(r)
r

)
where, for any i > 0 and any j with li < j < li+1, w1

j is not defined in the
above history. It is because that we cut Gnj at node nj+1, or we prune Gnj

at node nj+1 but the associated sequence of states (wtj)0<t≤β(j) is empty.

4.4 Results and proofs

In the game Γ, we call a node n an active node if it is pruned in the con-
struction of finite history α. Thus, a node n is inactive if there is either a
predecessor node of n or n itself cut in the construction of α.

For the constructed finite history α = (wi)i, we firstly observe that each
one-step transition from wi to wi+1 is consistent with the best-reply selection
mechanism. Thus, the finite α happens with positive probability. Note also
that Constraint 2 and Constraint 3 are only concerning with disconnected
nodes.

Lemma 4.1 Given the constructed finite history α under the best-reply se-
lection mechanism, for each active node ni in Γ, every active individual at
node ni takes a move towards some fixed node n̄ in ψ−1(ni) from some pe-
riod on. Therefore, from that period on, whenever ni is connected and the
best-reply strategy of an individual in M(λ(ni)) consists of a move at node
ni, the move must be towards that fixed node n̄.

When we talk about an active individual q at an active node n in the
proof below, we mean that node n is an active node and the individual q is
active at node n.

Proof. Recall the definition of nei and tni in Case II in the above con-
struction process when the active node ni is considered in the game Gni−1

(see (*) and (**), respectively). We show below by induction that every ac-
tive individual at an active node ni takes a move towards nei from period tni

on.
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For active nodes in L(Γ), it is straightforward to see that the above state-
ment holds under the Constraints 1, 2 and 3.

Now suppose that node n is labeled as ni in the construction of α and
ψ−1(n) 6= ∅. Given a node n in Γ, denote the subgame rooted at n by Γn.
The induction hypothesis is that for all active nodes nr in Γni after its
root, every active individual at node nr takes a move towards ner from period
tnr on. We first prove the following claim.

Claim: In period tni all active individuals at the active node ni are taking
the move towards nei at state wl+qi−1. (It is possible that no individual is active
at node ni at that time.)

Proof of the claim: Suppose the period when it reaches the state wlni−1

in the construction (see Case II) is t̄, then t̄ > tnj for all active nodes nj
with j < i. Thus, by induction hypothesis, every active individual at any
active node nj in Γni except the root takes a move towards nej in any period
t ≥ t̄. Note that if a node nr is inactive, then after any period tnj with j > r,
node nr is remains disconnected. Recall that the specified move sequence
starting from nej leads to the backward-induction payoff vector in Γnj if all
inactive nodes are excluded. It follows that, in all periods t ≥ t̄ when ni is
connected, the local best-reply strategy in Γni of an individual in M(λ(ni))
consists the move from ni to nei . Consider those q active individuals at node
ni whose move is different. We know from Case II in the construction of α
that, when anyone of those q active individuals is chosen after period t̄, ni is
connected. The chosen individual either selects a best-reply strategy which
does not consist of a move at ni, or it picks a strategy with the move towards
nei . That completes the proof of the above claim.

With the same argument above, in any period t > tni , when ni is con-
nected, an individual in M(λ(ni)) has a best-reply strategy s with the move
towards nei , if that s involves a move in Γni . When ni is disconnected, Con-
straint 2 excludes the case that an individual’s move at ni drifts to another
edge departing from ni. When an individual’s best reply consists of a move
at ni but with ni disconnected, Constraint 3 requires that move to be towards
nei . We have completed the proof of the lemma. �

Lemma 4.2 Suppose the constructed finite history α under the best-reply
selection mechanism is (w0, w1, ..., wt), then wt is in NE.

Proof. Consider the last active node, the root of Γ in the construction of α.
At state wt = w

β(r)
r , Gnr is pruned at the root. From Lemma 4.1, it follows

that all individuals in all populations have no incentive to move and they are
all playing their best-reply strategies at the last state wt in α. So wt ∈ NE.
�
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Comment: To deduce the result that the backward induction equi-
librium is always stochastically stable, Hart proved in (3.4) in [12] that,
for the case in Γ that each player only plays once, Q0 (the limit of one-
step transition matrix when µ goes to zero) is acyclic. That is, there are
no states w0, w1, ..., wt, ..., wT in W with the property that wt 6= wt−1 and
Q0(wt|wt−1) > 0 for every t = 1, . . . , T and wT = w0. However, for the model
we consider here, Q0 is not always acyclic. Consider the following two-player
extensive-form game in Figure 2.

I

II

I

-1
4

4
0

a2 a3

0
3

b1 b2

2
-1

a1

Figure 2: A game with non-acyclic Q0

Suppose |M(1)| = |M(2)| = m = 2n + 1 for some natural number n.
A state w is described in the form (ma2 ,ma3 ;mb2). Now consider a fi-
nite sequence of states (wt)0≤t≤4 satisfying the following process: (0, 1;n),
(0, 1;n+ 1), (1, 1;n+ 1), (1, 1;n), (0, 1;n). Then w0 = w4, and one can check
that, for each t = 1, ..., 4, Q0(wt|wt−1) > 0. Hence, Q0 is not acyclic. To
some extent, the case of non-acyclic Q0 constitutes a substantial difficulty in
the study of our models.

Lemma 4.3 In a finite k-player game in extensive form of perfect informa-
tion, we suppose that each player has no more than ζ pure quasi strategies,
i.e., ζ ≥ max{|B1|, ..., |Bk|}. Under the selection mechanism of best reply
or better reply, if from any initial state the process can enter NE in finite
periods with probability p, then it can also enter NE in no more than ζmk

periods with probability no less than p, where m is the population size.

Proof. We firstly observe the size of the state space W is (ζm)k. For any
partial transition history (w0, w1, ..., wt) with positive probability p, if there
exist two periods i and j such that i < j and wi = wj, then the shortened
partial history (w0, ..., wi−1, wi, wj+1, ..., wt) happens with probability greater
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than p. This follows from the Markov property. In this way, we can reduce the
original partial history to a finite sequence (wt0 , wt1 , ...wtk) where wti 6= wtj
for all i 6= j. Recall the size of the state space W . �

We have the following corollary from this lemma and the Markov property.

Corollary 4.4 The best-reply dynamic defined in Section 2.2 (without muta-
tion) converges to a Nash equilibrium almost surely in a finite extensive-form
game of perfect information.

We can further prove that the adapted play with finite memory and sam-
ple size in [29] converges to a Nash equilibrium. In the context of random
matching in [23], the convergence result above still holds. Since a best reply
dynamic is a kind of uncoupled dynamic, it is an open question in how many
classes of games and under what selection mechanism the convergence result
holds. Recall the negative result in [13].

Theorem 4.5 Under the best-reply selection mechanism, for a generic finite
extensive-form game of perfect information, we have the following property:

lim
µ→0

πµ,m[NE] = 1

for all m in N.

Proof. We suppose that each player has no more than ζ pure quasi strate-
gies. From Lemma 4.2 and Lemma 4.3, it follows that under the best-reply
selection mechanism as well as the Constraint 1 in Section 4.2, a state w not
in NE can enter NE in no more than (ζm)k periods with positive probability
when µ = 0. For the general case, given a state w not in NE, we show below
the existence of a natural number t ≤ ζmk, a state w′ in NE and a positive
number c(w,w′, t) with the property that

Qt
µ,m(w′|w) ≥ c(w,w′, t).

(Recall in Section 2.2 that Q is a one-step transition probability matrix.)
Without loss of generality, we suppose that there exists a number σ̄ with

0 < σ̄ < 1 such that σ ≥ σ̄ in the limiting process of evolutionary dynamics.
Recall that Constraint 1 requires that in each period the chosen individual in
each population either moves to pick her best-reply strategy or keeps using
her best-reply strategy against the current distribution of other populations.
So in each period, the transition probability to the next state where l popu-
lations change due to selection and the other k− l populations unchanged is
no less than

m−k (κσ̄)l (1− µ)k−l
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for all 1 ≤ l ≤ k. Therefore, when µ < 1/2, we have

c(w,w′, t) >

(
21−k

(κσ̄
m

)k)t
, (4.1)

and
t

c(w,w′, t)
≤ ζmk(

2
(
κσ̄
2m

)k)ζmk =: fσ̄(m).

Denote the right hand side of the inequality above by fσ̄(m). Thus fσ̄(m) is a
uniform upper bound of the expected number of steps fromW toNE when no
mutation involved, where the uniformity means from any state w ∈ (W \NE)
to any reachable state in NE. From the invariance property, we may infer
that

πµ,m[w′] ≥ πµ,m[w′]Qt
µ,m(w′|w′) + πµ,m[w]Qt

µ,m(w′|w).

Note that Qt
µ,m(w′|w′) ≥ 1− ktµ, as w′ is in NE. Hence,

πµ,m[w] ≤ kt

c(w,w′, t)
πµ,m[w′]µ ≤ kfσ̄(m)µ.

It follows that∑
w∈(W\NE)

πµ,m[w] ≤ kµ
∑

w∈(W\NE)

fσ̄(m) < kµ|W |fσ̄(m) = kµζmkfσ̄(m),

when µ < 1/2. Therefore,

πµ,m[NE] = 1−
∑

w∈(W\NE)

πµ,m[w] ≥ 1− kµζmkfσ̄(m).

We then arrive at, for all finite m, limµ→0 πµ,m[NE] = 1. It then follows that
limm→∞ limµ→0 πµ,m[NE] = 1. �

Comment 1: The result above also holds for the better-reply selection
mechanism described in Section 2.2. To see this, note that, if some player is
playing some strategy c and a is a best reply strategy yielding strictly higher
payoff than strategy a, then a is also a better reply strategy than c.

Comment 2: The proof presented here is inspired by (3.3) in [12]. One
may attempt to deduce the conclusion from Theorem 3.1 in [30]. However,
one needs to find all recurrent classes in the Markov chain with mutation
rate being zero. It is not straightforward to check whether there exists a
recurrent class which is a set of states not in NE. We find the proof above is
more informative, and we would like to use the definition of fσ̄(m) introduced
there in later proofs.
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Comment 3: Note that the above theorem holds for both the case σ =
1− µ and σ < 1− µ. σ̄ is introduced in the proof for the latter case.

Consider a best-reply selection mechanism that, whenever the chosen in-
dividual is not playing the best strategy, she selects each one current best
strategy with equal probability, i.e., (2.9) is replaced by

pi
(
w̃i(qi) = bi|wi

(
qi
)
/∈ BSi(w)

)
= 1/|BSi(w)| (4.2)

for each bi ∈ BSi(w). In this case,

fσ̄(m) =
ζmk(

2
(

σ̄
2mζ

)k)ζmk (4.3)

in the proof above. We will use this constant in the later proofs. The
analogous better-reply selection mechanism has (2.7) replaced by

pi
(
w̃i(qi) = bi|wi

(
qi
)
/∈ BT i

)
= 1/|BT i| (4.4)

for each bi ∈ BT i.

5 From time-average asymptotic behaviour

to stochastic stability

We study the problem of stochastic stability by the approach below.
Recall that the long-run behaviour of a Markov chain (Zt)t is well de-

scribed by its invariant distribution π in the following way. In any long
enough stretch of time, the relative frequency of visits at a subset S included
in W is approximately π[S]. That is,

∀S ⊆ W, lim
T2−T1→∞

|{t : T1 < t ≤ T2, Zt ∈ S}|
T2 − T1

= π[S]. (5.1)

The Markov chain is ergodic, and property (5.1) holds regardless of the initial
state.

To obtain the invariant distribution between BC and NC, we analyse the
long-term relative proportion of visiting time in NC.

From Theorem 4.5, we may infer that, under the best-reply selection
mechanism without mutation, from any initial state, the expected transition
time to NE is bounded with respect to the population size m. See Corollary
10.2 for more details. Recall that we consider a process in which the mutation
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rate decreases to zero. When the mutation rate is much smaller than the
inverse of the bound above, the expected interval between two sequential
mutations can be enough long such that the probability of moving to a state
in NE before the next mutation is very big. That is, the transition time to
NE triggered by a mutation is in expectation only a fraction of the interval
between two mutations.

From another point of view, the probability that a mutation happens
at a state not in NE is very low when mutation rate is small. So, after
any mutation happens, we can concentrate on a transition process to NE in
the best-reply dynamic without mutation. If an equilibrium component C1

is stochastically stable, and if a mutation from C1 can trigger a transition
to another component C2 with positive probability p in best-reply dynamic
without mutation, then C2 is also stochastically stable. To see this, note that
in expectation every d1/pe times of the mutation above can lead to at least
one successful transition to C2. Once at C2, in expectation it will stay in
C2 for no less than 1/(kµ) periods before the next mutation, where k is the
number of players. Since C1 is stochastically stable, the relative frequency
of visits at C1 is positive. If the process has stayed at C1 for l/(kµ) periods,
then in expectation it has visited C2 for no less than lp/(kµ) periods. (We
ignore the period when the state is not in NE.) From (5.1), we can conclude
that C2 is also stochastically stable. Hence, to show NC being stochastically
stable, we only need to show a transition triggered by some mutation at
BC can reach NC with positive probability. The proof of Lemma 5.1 will
follow this argument. To apply this lemma in the proof in Section 6, we need
notation U(BC,NC), which is the maximum expected transition time from
a state in BC to NC. The rigorous definition of U(BC,NC) is introduced
in Section 10.2.

For Lemma 5.1, we present some related definitions of an event in the
Markov process. Recall that an event is a subset of the sample space Ω = WN

which is specified in Section 2. An element ω in the sample space Ω is
an infinite sequence of states, i.e., ω = (ω0, ω1, ...) with ωi in W for all
i ≥ 0. Denote the truncated sequence of ω with length n by ω|(n − 1) =
(ω0, ω1, ..., ωn−1). We can view an event as a set of sequences of states. We
denote {ω ∈ Ω : ω ∈ F} by simply F . In the proof of Theorem 3.2, we
shall define an event F as an intersection of a finite sequence of events on
the dynamic process such that, if F happens, then Zt is in NC in some
period t > 0. Given a state s, we denote the event F with Z0 = s by Fs.
Note that we can in fact start from any period t̄ > 0, ignore the partial
history (Z0, ..., Zt̄−1), and check whether it will reach NC after t̄ according
to a ‘similar’ transition pattern as in F . That is, by Markov property, we
can shift the original Markov chain Zt to Zt−t̄ and then consider the event F .
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For instance, when we count from period t̄, F includes that the first mutant
in population M(1) picks strategy a2 and the second mutation happens 2µ−1

periods later... Here the exact time index is not important, only transition
order and time interval matter.

Note that F may only be a sufficient condition but not a necessary con-
dition for Zt ∈ NC at some t > 0. Denote the complement of F by F c. For
an initial state s, we define Ts(F ) (or Ts(F

c)) to be the expected time that
we need to realise F is true (or false), respectively. That is,

Ts(F ) = E[min{t : ∀ω ∈ Ω with ω|t = (Z0 = s, Z1, ..., Zt), ω ∈ F}|Fs],
(5.2)

and

Ts(F
c) = E[min{t : ∀ω ∈ Ω with ω|t = (Z0 = s, Z1, ..., Zt), ω /∈ F}|F c

s ].

Note that gσ̄(m) in the lemma below is defined in (10.1). To understand
and use this lemma, we can view the condition µ < gσ̄(m) as µ being enough
small.

Lemma 5.1 We suppose that there exists a number σ̄ with 0 < σ̄ < 1 such
that σ ≥ σ̄ in the limiting process of evolutionary dynamics. Given the
induced Markov chain with a finite population size m, suppose that, if F
happens, then Zt is in NC in some period t > 0. We further suppose that
there exist two positive numbers l and p such that given any g′ ≤ gσ̄(m) and
for any mutation rate µ < g′ it has the property

min
w∈BC

P (F |Z0 = w) ≥ p

and
max
w∈BC

Tw(F ) + max
w∈BC

Tw(F c) ≤ lµ−1.

Then there exists a positive number c(p, l) such that

∀µ < g′, πµ,m[NC] ≥ c(p, l).

The proof is in Section 10.3.

23



I

II

I

II

4.9
0.1

0
0

no yes
4
1

high low
2.5
0.5

s2

3
0

s1

Figure 3: A centipede-trust game Γ1

6 A centipede-trust game

We call game Γ1 in Figure 3 a centipede-trust game, since it can be viewed
as a combination of a trust game (see [1]) and a centipede game (see [24]).

The backward induction equilibrium in the game Γ1 is eb := (s1, s2), and
the equilibrium component BC is the set of Nash equilibria with the same
result as in eb. One alternative pure Nash equilibrium is en := (high, no),
and the corresponding equilibrium component is the set of Nash equilibria
with the same result as in en. This is the only Nash equilibrium component
different from BC. So we may also denote it as NC. For convenience, all
backward induction moves are arrowed and the terminating moves in the
alternative pure Nash equilibrium are double arrowed in Figure 3.

We say an extensive-form game of perfect information is a finite stopping
game if, for each non-terminal node, the number of its immediate successor
nodes not in Nt is no more than 1, i.e.,

|ψ−1(n) \Nt| ≤ 1,∀n ∈ N \Nt.

By the finite stopping game Γ1 in Figure 3, we prove Theorem 3.2 under
a best-reply selection mechanism with the condition (4.2). Note that the
plays of both BC and NC in Γ1 are terminated by player I. (We show the
case that BC and NC are terminated by different players in a finite stopping
game in [28].) We can see that Γ1 is not a generic game. However, we can
easily modify the payoff vectors to make it satisfy the generic assumption,
e.g., a game Γ′1 is the same as Γ1 except the payoff vector at the top node
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replaced by (2,0.1). We find the economics intuition is clearer in Γ1 than in
Γ′1. Moreover, the analysis and conclusion on evolutionary dynamics are the
same for Γ1 and Γ′1.

6.1 Overview of the game structure and dynamics in
Γ1

In game Γ1, the subgame consisting of the last two nodes is an ultimatum
minigame. (See [8] for analysis of replicator-dynamic mechanism and [20]
for experimental results on ultimatum games.) In Γ1, player II has limited
bargaining power in the whole game. In period 1, player I has a pie of size
3. She can either stop the game and eat the whole pie by strategy s1, or
pass the pie to player II. If she chooses to continue the game, player II can
then secure 1/6 of the pie to himself by stopping the game, or pass the pie
back to player I. If no one decides to stop the game by that time, the pie
then grows to size 5, and player I is going to make a final offer to player II
in period 3. If player I gives a relative generous offer of size 1 to player II,
we assume that player II always accepts it. The other option for player I in
period 3 is to demand almost the whole pie to himself. If so, player II can
decide whether to accept or reject this tiny part of the pie. If she rejects it,
then both players leave with nothing.

If we just consider the subgame of the last two nodes in Γ1, the payoff
vector of NC in the subgame coincides with the one of NC in Γ1. The
conclusion from Hart and Gorodeisky says that the equilibrium component
NC is not stochastically stable for large populations in this subgame. In
contrast to that, I shall show that, in the multiple-move game Γ1, NC is
stochastically stable for any finite populations, even when the populations
increase to infinity.

From another perspective, we may transform Γ1 into an agent normal-
form game Γ2, where each player can only move at one node. In Γ2 below,
player I and player III has identical payoffs at all terminal nodes, and the
same payoffs applies for player II and player IV. The difference between
Γ2 and Γ1 is strategies: in Γ2, even when player I terminates the game by
choosing strategy s1 at the top node, player III has to specify her (quasi)
strategy. There are always m individuals playing at the third node in the
associated population game of Γ2, while, in the population game of Γ1, if all
individuals in M(1) are playing quasi strategy s1, then none is playing at the
third node.

To compare the dynamics in these two population games, we firstly look at
Γ2, which fits Hart’s model. Note that in Γ2 only one pure Nash equilibrium
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Figure 4: Γ2: transformation of Γ1 to an agent normal-form game

en := (s′1, s
′
2, high, no) is included in NC. One can show that the backward

induction equilibrium is the only stochastically stable state when populations
increase to infinity. To see this claim, from Theorem 4.5, we only need to
consider the case that the initial state is a Nash equilibrium. Suppose that
the initial state is eb := (s1, s2, low, yes), then any mutation in any population
will give a no better payoff than the one of her backward induction strategy.
The only way to transit from BC to NC is by consecutive mutations (dm
times for some constant d), but that will happen very rarely when populations
are large. If the initial state is en, then we consider a mutation in M(3) to
strategy low. Once it happens, the bottom node is connected and M(4) is
under the selection pressure to the backward induction strategy yes. Note
that the probability is positive that the mutant at low is not selected in the
next dm (e.g. d=5) periods and hence it stays unchanged there during these
periods. Thus the probability is also positive that a significant proportion
(greater than 40/49) of M(4) has moved to yes in these dm periods. That will
further put M(3) under the selection pressure to low, and will then change
the best-reply strategy for M(2) and M(1) in order. Finally all populations
converge to their respective backward induction equilibrium strategy. That
is, the evolutionary dynamic leads to eb.

We now turn to Γ1, and we present some intuition why it is possible
to transit from BC to NC via a transition triggered by a single mutation.
When a state is in BC, there is no individual playing at the third node. For a
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mutation from s1 to high, the mutant will stay at high for significantly long
time with positive probability, similarly as in the case of Γ2 above. When
it is at high, M(2) is under the selection pressure to a strategy no or yes,
and each strategy is chosen with equal probability. By the strong law of
large numbers, we can show that with positive probability the distribution of
individuals at the bottom node can always favours strategy high to low for
M(1). With the decrease of the proportion of M(2) playing at s2, M(1) will
become under selection pressure to leave s1 at some time, and that has to be
high if the distribution condition above is satisfied. Meanwhile, M(2) keeps
moving to no and yes with equal probability. With positive probability,
this transition will reach a state in NC before the next mutation. From
the arguments in Section 5, we know that NC is stochastically stable if the
probability is positive that a single mutation can trigger a transition from
BC to NC under the best-reply dynamic.

6.2 Economics motivation

We discuss three economics motivations of the game Γ1.
First, this evolutionary approach can support the argument that trust

would be relatively easier built up in a game with more steps of reciprocal
interactions. (Recall that Hart in [12] shows only backward induction equi-
libria are stochastically stable for large populations in a game where each
player can only move once.) For game Γ1, if, in period 1, player I resists
the temptation to eat the whole pie immediately and chooses to continue the
game with a promise of payoff 1 in period 3 to player II, then player II would
be likely to give a positive response to this decision of player I and continue
this game as well. So player I’s invitation to cooperation in period 1 can
be viewed as a ‘carrot’ to attract player II to be more patient. If player II
tends to stop the game in period 2, then player I gradually learns it in the
long run and will finally simply stop the game in period 1, i.e., the result of
backward induction equilibrium with 0 payoff to player II. If player II indeed
continues the game in period 2, then the pie grows to size 5. Player I would
be happy to reward such reciprocity from player II with 1/5 of the current
pie and thus realize her promise. If player I is greedy in this period and try to
abuse her first-mover advantage, then it is reasonable to expect that player
II might reject the offer to punish player I for cheating. She may simply do
so to show her dignity or indifference between nothing and crumbs of the pie.
The threat of saying no in the last period can be viewed as a ‘stick’. With
both carrot and stick in the game, it is reasonable to predict that alternative
Nash equilibrium component might ‘survive’ in the long run.

From another point of view, this non-backward induction equilibrium is
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fairer than the backward induction equilibrium in game Γ1. Here we adopt
the characterisation of fairness in [4]: in response to an act of player I that
is favourable for player II, II is willing to take costly actions to return at
least part of the favour (positive reciprocity), and in response to an act that
is perceived as harmful by II, II is willing to take costly actions to reduce
I’s material payoff (negative reciprocity). The trust scheme and fairness
might be developed in a multiple-move game with more than 3 nodes. (For
games with no more than 3 nodes, one can prove only backward induction
equilibrium component is stochastically stable for large populations. See
Section 9 for more details.)

The second point I would like to mention is that alternative Nash equi-
librium component yields a Pareto-efficient equilibrium payoff vector (4, 1).
We know that the classical paper [14] of Kandori, Mailath and Rob considers
whether Pareto-efficient equilibrium or risk-dominant equilibrium is selected
in the long run in a coordination game as the mutation rate goes to 0. By
this example, we show that Pareto-efficient equilibrium in an extensive-form
game may also be a long-run equilibrium as the mutation rate decreases to
0, regardless of population size.

For the third point, it is interesting to see that once we include the outside
options s1 and s2 for both players, the extended mini ultimatum game may
lead to an outcome as predicted. Indeed, in real life, people are usually not
forced to participate a certain programme or investment. They may suffer
opportunity cost if they commit to the game. The set of payoff vectors in the
mini ultimatum game is not the complete payoff set in the centipede-trust
game with outside options. The result of the backward induction equilibrium
in the original mini-ultimatum game is no longer a Nash equilibrium in the
extended version. See [20] for the experimental results of mini-ultimatum
games where the backward induction equilibrium is often not selected under
the circumstance that the offer to the responder is small.

6.3 The proposition and an easy extension

We prove Theorem 3.2 by Proposition 6.1 below, whose proof is included in
Section 10.7.

Proposition 6.1 Given the game Γ1 in Figure 3, for the best-reply selec-
tion with the condition (4.2) or the better-reply selection mechanism with the
condition (4.4), there exists a positive number c such that for all finite m > 1,

lim
µ→0

πµ,m[NC] > c.
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.
Comment 1: The stability result of NC depends on the exact condition

(2.7) or (2.9) in the selection mechanism.
Comment 2: In [12], Hart also shows an example that equilibria other

than the backward induction equilibrium may be stochastically stable, when
the populations are fixed. However, he further proves that, if each player
can play at only one node, then this no longer holds when the populations
increase to infinity.

It is not difficult to find a four-node game with a stochastically stable
equilibrium component in addition to the backward induction equilibrium
component. We consider a general four-node game in Figure 5 below with
backward induction actions arrowed and the terminating moves in the alter-
native pure Nash equilibrium double arrowed.
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II

I

II

u1
5

u2
5

u1
4

u2
4

b2 b3
u1

3

u2
3

a2 a3
u1

2
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b1
u1

1

u2
1

a1

Figure 5: A general four-node game with NC stochastically stable

By Lemma 10.7 and the analogous arguments as in the proof of Propo-
sition 6.1, one can find the alternative Nash equilibrium component with
payoff vector (u1

3, u
2
3) stochastically stable regardless of population size if the

following conditions are satisfied:

u1
2 < u1

1 < u1
3 < u1

5, u1
3 >

u1
4 + u1

5

2
,

and
u2

4 < u2
5 < u2

2 < u2
3.

The transition from NC to BC may need two sequential mutations in pop-
ulation M(1) to strategy a3 and a2 in order. The mutant to a3 may lead
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to a state in BC such that the majority of population M(2) is playing its
backward induction strategy b1. When population M(1) is under the selec-
tion pressure and moving away from strategy a1 after the second mutation to
strategy a2, the relative proportion of M(2) playing b2 may be always high
enough to make a2 as the best reply to M(1). See the proof of Theorem 7.1
for a similar (but more general) treatment.

It is clear that payoff u1
3 is the second best payoff to player I, and u2

3

is at least the second best payoff to player II. We find this alternative Nash
equilibrium component is Pareto-efficient. We shall further extend this result
in Section 7.

7 A sufficient condition for NC being stochas-

tically stable

We apply the best-reply selection mechanism with the condition (4.2) in this
section, and show a sufficient condition for that NC is stochastically stable
in Γ for any population size. This result is later applied in the Theorem 8.2.

We introduce some notations before we present the formal statement.
Suppose that a two-player finite extensive-form generic game Γ of perfect
information is given. Given a node n in Γ, recall that the subgame of Γ rooted
at n is denoted as Γn. Given a Nash equilibrium component EC ⊆ NE, we
denote the play of EC by pEC , which is from the root of Γ to the terminal
node of EC. Given a node n in Γ, we denote the subplay from the root to n
by p(n). Recall that the depth of a node is the length of the subplay from the
root to that node. Given the backward induction equilibrium component BC
and an alternative Nash equilibrium component EC, we denote the deepest
node on both pBC and pEC by ñBC,EC . We can decide the identity of player
I by the pair (BC,EC) in the way that we assign the player who moves at
node ñBC,EC as player I. (Thus the other player is denoted by player II.)
Given a play h which terminates at node n, we sometimes denote vn to be
the payoff vector v(h), since h uniquely determines the terminal node n.
For a Nash equilibrium component EC, we denote the payoff vector of the
equilibrium path pEC by vEC = (v1

EC , v
2
EC). Denote the terminal node of

EC by nEC . Suppose that there are λ terminal nodes in the generic game Γ.
We enumerate the attached payoffs to each player in order, respectively, as
(v1

(1), ..., v
1
(λ)) and (v2

(1), ..., v
2
(λ)) such that the superscripts correspond to the

players and vi(m) > vi(n) for all m < n, i ∈ {1, 2}.
In our model, player I and player II has ς1 := |B1| and ς2 := |B2| quasi

strategies in Γ, respectively.
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Condition 1: suppose that a component SC has the property v2
SC = v2

(1)

and

v1
SC = v1

(2) >
v1

(3)

ς22
+

(ς2
2 − 1)v1

(1)

ς2
2

.

We denote the terminal node with the highest payoff v1
(1) to player I by n1

(1),

and assume nSC 6= n1
(1). Denote the deepest node on both subplay p(nSC)

and p(n1
(1)) by n1

(1)(SC).
Condition 2: All nodes in subgame Γn1

(1)
(SC) are not on pBC .

Theorem 7.1 If Γ satisfies both Condition 1 and 2, then there exists a pos-
itive number c such that for all finite m > 1 NC is m-stochastically stable
and

lim
µ→0

πµ,m[NC] ≥ c.

This theorem says that, in a two-player finite extensive-form generic game
of perfect information, if the payoff vector of one pure Nash equilibrium SE
is enough high and the BC and SE path are ‘separated properly’ by the
subplay from the root to n1

(1), then NC is stochastically stable regardless of
population size.

Comment: It is possible to give a more generalised theorem on exten-
sive games of more than two players in the same spirit, however the exact
conditions would be more complicated. We can also relax the constraint
that each chosen individual select a better (or a best strategy) with equal
probability in Section 2. For instance, we can only require that the chosen
individual chooses each strategy in BT with probability at least 1/(β|BT |)
(or for BS with probability 1/(β|BS|)) where β ≥ 1. In this case, we only
need to modify Condition 1 as follows, and Theorem 7.1 still holds.

Suppose the payoff vector of nSC is (v1
SC , v

2
SC) with v2

SC = v2
(1) and

v1
SC = v1

(2) >
v1

(3)

(βς2)2
+

(
(βς2)2 − 1

)
v1

(1)

(βς2)2
.

8 Extra value to reach stochastic stability

As in the previous section, we apply the best-reply selection mechanism with
the condition (4.2). We also apply in the dynamic process the Disconnected-
moves-unchanged Constraint, which is introduced in Section 4.2.

If without further notice, in this section, we constrain ourselves within the
case of two-player finite extensive-form generic games of perfect information
with multiple equilibrium components. Given such a game Γ, we suppose
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that the backward induction equilibrium component is the only stochastically
stable result for large populations, i.e.

lim
m→∞

lim
µ→0

πµ,m[BC] = 1.

Note that stochastic stability can be viewed as a Nash refinement. A natural
question is that, if we increase the payoff vector of a non-backward-induction
equilibrium component, how much extra value do we need to make its equi-
librium path a stochastically stable result for large populations. One may,
of course, lift that payoff vector to be a complete dominant one in the whole
game. That is, each payoff in the modified vector is the maximum of all
possible payoffs in Γ to the player. That will give a new backward induc-
tion equilibrium component. (It is straightforward to see this new backward
induction equilibrium component is stochastically stable for any population
size.) If we have only limited power to raise the payoffs, in particular the
case that we can only make the target vector consist of a best and a second
best payoff to each player respectively in the modified Γ, is it enough to
make its associated equilibrium path a stochastically stable result for large
populations?

Definition 8.1 Given a two-player finite extensive-form generic game Γ of
perfect information, we suppose that there is another Nash equilibrium com-
ponent SC other than the backward induction equilibrium component BC,
and we decide the player I by (BC, SC) as in Section 7. We say that com-
ponent SC is dominated by BC on player I if and only if v1

BC = v1
(1).

We first present a negative result by the following game Γ3 in Figure 6.
It shows that, if one non-backward-induction equilibrium component SC is
dominated by BC on player I, then it is possibly not enough to make it
stochastically stable for large populations, by simply raising one payoff in
the payoff vector of SC to be the global maximum and the other payoff in it
to be the second best.

In Γ3, the backward induction equilibrium is (s1, (a1, a4)). (Note that a
quasi strategy of player II in Γ3 needs two moves.) The other equilibrium
component, which we denote by SC, contains the pure Nash equilibrium
(s2, (a2, a3)). As before, the backward-induction moves are arrowed and the
moves of SC are double arrowed. Note that player I is consistent with the
pair (BC, SC). We denote v̄SC to be the increased vector of vSC . For
convenience, we put v̄n = vn for all n 6= nSC and then denote the modified
payoff vector sequence by (v̄). We also denote the such modified game by
Γ̄3.
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Figure 6: Game Γ3

One can see that only BC is stochastically stable for large populations
in Γ3 by an adapted proof in [10] or [14]. We can further prove that to make
SC stochastically stable with added values on vSC , it needs v̄1

SC = v̄1
(1) and

v̄2
SC = v̄2

(1).

[ Why is it not enough by putting (v̄SC = v̄1
(1), v̄

2
SC = v̄2

(2)) or (v̄SC =

v̄1
(2), v̄

2
SC = v̄2

(1))? One can show two cases above, respectively.

(1) v̄1
SC = v̄1

(1) and v̄2
SC = v̄2

(2). The path of SC in Γ̄3 is the same as in Γ3.
This case is similar to the game shown in the Section ‘Further comments’ in
[28].

(2) v̄1
SC = v̄1

(2) and v̄2
SC = v̄2

(1). The path of SC in Γ̄3 is the same as in Γ3

as well. Once the state is in BC, player I has no incentive to deviate from
its path pBC in the dynamic process.]

Under the circumstance that, in a general game Γ, one non-backward-
induction equilibrium component SC is not dominated, we have the following
theorem.

Theorem 8.2 Given a two-player finite extensive-form generic game Γ of
perfect information, we suppose that there is another Nash equilibrium com-
ponent SC other than the backward induction equilibrium component BC,
and we decide the player I from (BC, SC). We further suppose that BC is
the only stochastically stable result in Γ for large populations. If SC is not
dominated by BC on player I in Γ, then there exists a positive ε(Γ) with
the following proposition. If we raise vSC to v̄SC such that v̄2

SC = v̄2
(1) and

v̄1
SC > v̄1

(1)−ε(Γ), then the equilibrium component in Γ̄ with path pSC becomes
stochastically stable for any population size.

We relegate the proof in Appendix.
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Comment: One can also prove that, in a game Γ where every component
SC ⊂ NC is dominated by BC, then only BC is stochastically stable for
large populations. We omit the proof here.

9 Further research directions

There are many directions for further research. The basic model in Section 2
is a reasonable one in selection-mutation process when m is not too large. If
m goes to infinity, one may find the condition that even very small difference
of payoff, e.g. 1/m, caused by one mutant will change the selection power
completely. In Γ1, during the periods of only one mutant in population M(1)
playing strategy a2, on average more than 1/4 of M(2) would be attracted
to strategy b1, away from its backward induction strategy b3. That looks
too strong for some situations in real life. (However, for some situations in
epidemiology and epizoology, one ‘bad’ mutation can indeed finally influence
all related populations.) So one might try to smooth the selection process and
make it continuous. For instance, Hart suggests to use the payoff difference
to a positive power less than 1. (See (5.1) in [12].)

We only consider the case that µ is extremely small with respect to m
in the limiting process. (Recall Lemma 10.4.) One can also study other
conditions. For instance, the expected number of mutation per generation
does not go to zero. That is, mµ > c for some c > 0. A more extreme case
is lim infµ→0 lim infm→∞ πµ,m[BCε].

One may also study under what tree structure in our models the BC is
the unique stochastically stable outcome. An interesting result is that the
stochastic stability is affected by background limiting parameters under some
tree structures. For instance, in the game Γ1, we can prove that, given any
pair of δ and η with 0 < δ < η,

lim
µ→0,m→∞
δ≤mµ≤η

πµ,m[BCε] = 1,

for all ε > 0. Thus the Pareto-efficient equilibrium component with payoff
vector (4,1) is not stochastically stable in this limiting process.
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10 Appendix

10.1 Terminology of reduced normal form

There are two other well-known normal form representations of an extensive-
form game. (cf. [21].) A normal-form game is semi-reduced (so called pure-
strategy reduced or quasi-reduced) if for all ai1, a

i
2 ∈ Ai and for all players

i = 1, ..., k

u(ai1, a
−i) = u(ai2, a

−i), ∀a−i ∈ A−i ⇒ ai1 = ai2.

A normal-form game is mixed-strategy reduced (or simply called reduced) if
for all ai ∈ Ai and for all players i = 1, ..., k

u(ai, a−i) =
∑
āi∈Ai

σi(āi)u(āi, a−i), ∀a−i ∈ A−i ⇒ σi(ai) = 1.

(Recall σi in (2.2).) Given an extensive-form game Γ, we denote the set
of strategies for player i in semi-reduced normal form and mixed-strategy
reduced normal form by Si and M i, respectively. Recall the set of quasi
strategies for player i is Bi. From their definitions, we could let Bi ⊇ Si ⊇M i

for any player i in any extensive-form game Γ.
Recall that Λ0 = ∅ implies no chance node.

Lemma 10.1 Given a generic extensive-form game of perfect information
with Λ0 = ∅, for each player i, Bi ⊇ Si implies Bi = Si.

Proof. When Λ0 = ∅, for every player i and every two different quasi
strategies bi1, b

i
2 ∈ Bi, there exist two different plays h1, h2 and one strategy

combination b−i of other players such that

ρ(bi1,b
−i)(h1) = ρ(bi2,b

−i)(h2) = 1,

i.e., (bi1, b
−i) and (bi2, b

−i) generate different plays h1 and h2, respectively,
in Γ. (Rigorously, given a quasi strategy profile b = (b1, ..., bk) and a pure
strategy profile a = (a1, ..., ak) such that ai ∈ bi for all i with 1 ≤ i ≤ k, we
have ρb(h) = ρa(h) for all play h in H.) Since Γ is generic, it follows that

u(bi1, b
−i) 6= u(bi2, b

−i).

It is true for every pair of quasi strategies bi1, b
i
2 ∈ Bi. Recall that the set of

quasi strategies is a partition of pure strategies, and we reach the conclusion
Bi = Si. �
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Figure 7: Γ′ with Bi 6= M i

Even if Λ0 = ∅, it is not true that Bi = M i for all players i in all generic
extensive-form game of perfect information. In the one-player game Γ′ below,
we denote B1 = {b1, b2, b3} where u1(b1) = 3, u1(b2) = 0 and u1(b3) = 6.
However, strategy b1 can be replaced by a mixed strategy x1 = {σ1(b1) =
0, σ1(b2) = 1/2, σ1(b3) = 1/2}. Thus, M1 6= B1.

For the general case without the constraint on Λ, the conclusion in Lemma
10.1 is no longer true. In the one-player game Γ′′ below, we denote B1 =
{b1, b2}. The strategy b1 and b2 leads to the same expected payoff, and hence
can be replaced by each other. So B1 6= S1.

I

Nature

60

p = 1/2 p = 1/2

3

b1 b2

Figure 8: Γ′′ with Bi 6= Si

10.2 Results on transition time in Markov chain

The following corollary of Theorem 4.5 estimates the expected transition
time when no mutation is involved. Given a Markov chain (Zt)t≥0 generated
in the selection-mutation process with population size m and mutation rate
µ, for a state w ∈ W and a subset S ⊆ W , we define the random variable
Tµ,m(w, S) := min{t ≥ 0 : Zt ∈ S, Z0 = w} to be the transition time from w
to S, and define the expected transition time from w to S to be

Uµ,m(w, S) := Eµ,m[Tµ,m(w, S)].
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For every two subsets S1, S2 ⊆ W , we put

Uµ,m(S1, S2) := max
w∈S1

Uµ,m(w, S2).

Corollary 10.2 Given a Markov chain (Zt)t≥0 with µ = 0 and the associated
fσ(m) defined in (4.3) for a σ ≥ σ̄ > 0, we have U0,m(W,NE) < fσ̄(m).

Proof. The result follows from the definition of fσ̄(m) in (4.3). �
We need the following lemma to show the expected transition time to

Nash equilibria when µ is small.

Lemma 10.3 Given a number p in (0, 1/2), we consider a random variable
Xp : Ω→ N in geometric distribution with

P (Xp = k) = (1− p)k−1p ∀k ∈ N.

Then, we have P (Xp > E[Xp]) > 1/8.

Proof. It is straightforward to see that E[Xp] = 1/p. Then,

P (Xp > E[Xp]) ≥
∑
i>1/p

P (Xp = i)

≥
∑

i>d1/pe

(1− p)i−1p

= (1− p)d1/pe

> (1/2)(1− p)1/p,

as p < 1/2 Note that the function y(n) = (1 − 1/n)n is a strictly monotone
increasing function when n > 1. We may then infer that

P (Xp > E[Xp]) > P (X1/2 ≥ E[X1/2]) > 1/8.

�
The next lemma shows that the expected transition time to Nash equi-

libria is bounded when mutation rate µ is small.

Lemma 10.4 Consider a two-player extensive-form game of perfect infor-
mation with the induced Markov chain. Without loss of generality, we suppose
that there exists a number σ̄ with 0 < σ̄ < 1 such that σ ≥ σ̄ in the limiting
process of evolutionary dynamics. Denote cσ̄ to be e−200/σ̄. Then, given fσ̄(m)
defined in (4.3), for every µ < cσ̄/(32fσ̄(m)), it satisfies Uµ,m(W,NE) <
cσ̄µ

−1.
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For the proof later, we define

gσ̄(m) := cσ̄/(32fσ̄(m)). (10.1)

Proof. From Corollary 10.2, U0,m(W,NE) < fσ̄(m), where fσ̄(m) is
defined in (4.3). If no mutation is involved in the dynamic process, then any
process starting from a state w not in NE would reach NE almost surely.

Given σ̄ > 0, note that 1/(2µ) > 16fσ̄(m)/cσ̄ > 2fσ̄(m). Denote the first
period that a mutation happens by tµ > 0. As this is a two-player game, we
apply p = 2µ−µ2 in Lemma 10.3 and obtain E[tµ] > 1/(2µ). It follows from
Lemma 10.3 that

P (tµ > 1/(2µ) > 2fσ̄(m)) > 1/8. (10.2)

From Corollary 10.2 and Markov inequality, it follows that, for any initial
state w ∈ W ,

P (Tµ,m (w,NE) < 2fσ̄ (m) |tµ > 2fσ̄ (m)) > 1/2.

Therefore, by (10.2), the process enters NE by period 2fσ̄ (m) is bounded as
follows.

P (Tµ,m (w,NE) < 2fσ̄ (m))

≥P (tµ > 2fσ̄ (m))P (Tµ,m (w,NE) < 2fσ̄ (m) |tµ > 2fσ̄ (m))

>1/16 ∀w ∈ W. (10.3)

Denote minw∈W P (Tµ,m (w,NE) < 2fσ̄ (m)) by P̄ . Then P̄ > 1/16. By
Markov property, we may then infer that

Uµ,m(W,NE) ≤
∑
i≥1

(
P̄ (1− P̄ )i−1(2i)fσ̄ (m)

)
= 2fσ̄(m)/P̄ < 32fσ̄(m).

As 1/µ > 32fσ̄(m)/cσ̄, the proof is completed. �
The following lemma shows in expectation the transition conditional on

passing some subset takes longer than the one without such condition.

Lemma 10.5

∀S ⊆ W, U(S,NC) ≤ U(S,BC) + U(BC,NC).
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Proof. By Lemma A.1 in [10], for any w in S,

U(w,NC) ≤ U(w,BC) + U(BC,NC) ≤ U(S,BC) + U(BC,NC),

which completes the proof. �
It is also important to know in expectation how long the Markov process

stays at the same state each time. The next lemma answers this question
for an arbitrary state in NE. To present it formally, we first introduce
some terminology. Given the Markov chain (Zt)t≥0, for a state w in W ,
suppose that Z0 6= w and mark period 0 as te0(w). For each i ≥ 0, we
mark the period min{t > tei (w) : Zt = w} as tsi+1(w) and then the period
min{t > tsi+1(w) : Zt 6= w} as tei+1(w) in turn. We define Ū(w) to be the
expected length of the time during which the dynamic process stays at w in
the following way,

Ū(w) := E

[
lim
N→∞

1

N

∑
1≤i≤N

(tei (w)− tsi (w))

]
.

Note that the expected length of the period at w does not depend on the
state in initial period, so we can assume Z0 6= w in the condition above. By
Markov property, we find

Ū(w) = E[tei (w)− tsi (w)] ∀i ≥ 1.

Lemma 10.6 Given a two-player extensive-form game of perfect informa-
tion, for the induced Markov chain with the mutation rate µ, we have

Ū(w) ≥ 1/(2µ)

for all w in NE.

Proof. From period 0, we enumerate the periods when at least one
mutation happens as u1, u2, . . .. In every period, the probability of a mutation
in any population is no more than 2µ. It follows that

E[uk+1 − uk] ≥ 1/(2µ) (10.4)

for all k. Note that once w is in NE, the state will keep unchanged at least
until the next mutation. The result now follows. �
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10.3 Proof of Lemma 5.1

From the definition of U(BC,NC) and Markov property, it follows that

U(BC,NC)

= max
w∈BC

U(w,NC)

≤ max
w∈BC

(
P (F |Z0 = w)Tw (F ) + P (F c|Z0 = w) (Tw (F c) + U (W,NC))

)
.

By Lemma 10.5, we find U(W,NC) ≤ U(W,NE) + U(BC,NC). With the
observation of

P (F c|Z0 = w) ≤ 1− p ∀w ∈ BC,

it follows that

pU(BC,NC) ≤ max
w∈BC

Tw(F ) + max
w∈BC

Tw(F c) + U(W,NE).

By Lemma 10.4 and initial assumptions, we find U(BC,NC) ≤ p−1(l +
cσ̄)µ−1. By Lemma 10.5 again, we arrive at

U(W,NC) ≤ cσ̄µ
−1 + p−1(l + cσ̄)µ−1.

From (5.1), we observe that

π[NC] ≥ minw∈NC Ū(w)

U(W,NC) + minw∈NC Ū(w)
.

Lemma 10.6 then completes the proof.

10.4 A Combinatorial Lemma

Consider a finite sequence of i.i.d. random variables (Yi)0<i≤n with P (Yi =
1) = P (Yi = −1) = 1/2 for all 0 < i ≤ n. For any finite number k with k > 1,
the next lemma gives a lower bound of the probability that the number of
Yi = 1 is always no less than the number of Yi = −1 divided by k during a
sampling of this sequence (Yi)0<i≤n.

Lemma 10.7 Let (Yi)i∈N be an infinite sequence of i.i.d. random variables
with P (Yi = 1) = P (Yi = −1) = 1/2 for all i ∈ N. For each positive integer
t, we let St denote the

∑t
i=1 Yi. The sequence (St)t∈N is a standard random

walk. Define Bt =
∑t

i=1 1Yi=1 and Ct =
∑t

i=1 1Yi=−1. Given any k > 1,
there exists a natural number sk such that, for all n > 0, we have

P (St/t ≥ (1− k)/(k + 1) ∀0 < t ≤ n) ≥ 2−sk ,
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and thus,
P (kBt ≥ Ct ∀0 < t ≤ n) ≥ 2−sk .

Proof. Given k with k > 1 and a natural number n, we firstly observe

P (kBt ≥ Ct ∀0 < t ≤ n) = P (St/t ≥ (1− k)/(k + 1) ∀0 < t ≤ n). (10.5)

For each natural number l, we define a set

Al :=
⋂
t≥l

{
St
t
>

1− k
2 (k + 1)

}
.

From the Strong Law of Large Numbers, we know P (limt→∞(St/t) = 0) = 1.
It follows that P (

⋃
l∈NAl) = 1. By monotone-convergence properties of

probability measures, we arrive at liml→∞ P (Al) = 1. Hence, there exists a
natural number tk such that P (Atk) > 1/2. We also know that

P (Atk) =

tk∑
l=−tk

(
P (Stk = l)P

(⋂
t≥tk

{
St
t
>

1− k
2 (k + 1)

} ∣∣Stk = l

))

It then follows that

P

(⋂
t≥tk

{
St
t
>

1− k
2 (k + 1)

} ∣∣Stk = tk

)
> 1/2.

Therefore, for any n > tk,

P

(
St
t
≥ 1− k
k + 1

∀0 < t ≤ n

)
>P (Stk = tk)P

(⋂
t≥tk

{
St
t
>

1− k
2 (k + 1)

} ∣∣Stk = tk

)
>2−tk−1.

For any n ≤ tk, it is straightforward to see

P

(
St
t
≥ 1− k
k + 1

∀0 < t ≤ n

)
> 2−k.

By (10.5), we complete the proof. �
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10.5 Preliminary lemmas for the dynamics

Lemma 10.8 Given the induced Markov chain (Zt) of a finite extensive-
form game of perfect information with population size |m| > 1, suppose an
individual q is chosen in population M(i) 3 q in some period t, then for any
positive number k, the probability that q is not chosen in M(i) for all periods
between t and t+ dkme is greater than 2−2k−1.

Proof. Note that in every period the probability that the individual q is
chosen is 1/m. We may then infer that the probability of q not chosen for
all periods between period t and t+ km is at least (1− 1/m)km > 2−2k. �

Lemma 10.9 Suppose that there exists a number σ̄ with 0 < σ̄ < 1 such that
σ ≥ σ̄ in the limiting process of evolutionary dynamics. Given the induced
Markov chain (Zt) of a finite extensive-form game of perfect information,
suppose that population M(i) is under selection pressure moving away quasi
strategy bi for all periods t > t̄. Then, for any pair of positive numbers k and
λ, it follows that

P
(
msi (t̄+ dkme) > λm|Gt̄,t̄+dkme

)
<

1− λ
kλσ̄

,

where Gt1,t2 requires no mutation in all populations between period t1 and t2.

Proof. Without loss of generality, we assume mbi(t) = m. Denote by T̄λ the
first time after t that the number of individuals in population M(i) which
play strategy bi is no more than λm, i.e.,

T̄λ := min{t > t̄ : mbi(t) ≤ λm}.

In any period with mbi > λm, the probability that an individual playing
strategy bi is chosen in population M(i) is greater than λ; conditional on
such an individual is chosen, the probability that selection takes effect in
that period is no less than σ̄. Hence, for any period t ≥ t̄,

P (mbi (t+ 1) < msi (t)) > λσ̄.

It follows that
E[T̄λ − t̄|Gt̄,T̄λ ] < (1− λ)m/(λσ̄).

By Markov inequality, we find

P (T̄λ − t̄ > km|Gt̄,t̄+dkme) <
1− λ
kλσ̄

,

which completes the proof. �
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10.6 A sufficient condition for that strategy low is not
a best reply in Γ1 in Figure 3

For the population game associated with Γ1, for any two periods τ1 and τ2

with τ1 < τ2, denote the difference of number of individuals playing strategy
no and yes by ∆no(τ1, τ2) := mno(τ2)−mno(τ1) and ∆yes(τ1, τ2) := myes(τ2)−
myes(τ1), respectively.

Lemma 10.10 Consider the Markov chain associated to the game Γ1 with
the best-reply selection mechanism. Given two periods t1 and t2 with t1 < t2,
we assume that event Gt1,t2 happens, i.e., no mutation happens between t1 and
t2. We further assume that mhigh(t1) = 1, mlow(t1) = 0, and that population
M(2) satisfies the following proposition in period t1.

ms2(t1) ≥ 2m/3 and 2.5ms2(t1) + 4.9myes(t1) ≤ 3m. (10.6)

If
1.01∆no(t1, t) ≥ ∆yes(t1, t) ≥ 0 ∀ t with t1 < t ≤ t2, (10.7)

then low is not a best reply of population M(1) at t2, and hence no individual
in population M(1) is playing low in period t2.

Note that the quasi strategy s1 is a best reply for M(1) in period t1, if and
only if Zt1 satisfies (10.6).

Proof. We denote ulow(t) as the payoff to an individual in population
M(1) who plays low in period t. By (10.6), which is the constraint of pop-
ulation M(2) for BC, we observe ulow(t1) ≤ 3. Suppose the proportions
of population M(2) playing the strategies s2, no and yes in period t1 are
p1 = xs2(Zt1), p2 = xno(Zt1) and p3 = xyes(Zt1), respectively. Then, the
payoff of an individual in population M(1) playing strategy low in period t1
is

ulow(t1) = 2.5p1 + 0p2 + 4.9p3.

Then, given a period t with t1 < t ≤ t2, with the possible move of
population M(2) under the constraint (10.7), the payoff of an individual in
population M(1) playing strategy low in period t is

ulow(t) ≤ (p1 − x− x/1.01)2.5 + (p2 + x/1.01)0 + (p3 + x)4.9

≤ 2.5p1 + 4.9p3 − 0.075x

where x ≥ 0 is the proportion difference of population M(2) playing yes be-
tween period t1 and period t. Thus ulow(t) ≤ ulow(t1) ≤ 3, and hence strategy
low is weakly dominated by strategy s1 in period t. Recall mlow(t1) = 0 and
the absence of mutation between period t1 and t. We may then infer that
there is still be no individual playing at strategy low in period t. �
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10.7 Proof of Proposition 6.1

As mentioned in Section 5, we are going to define F as an intersection of
a finite sequence of events on the dynamic process such that, if F happens,
then Zt is in NC in some period t > 0. In the proof below, event F4 itself
leads to the entry into NC, however it is concerned with the states visited
between the first and second mutation. We need events F1, F2 and F3 to
deduce the probability of F =

⋂4
i=1 Fi (or F4|

⋂3
i=1 Fi) in a dynamic process

starting from period 0.
Proof of Proposition 6.1: We consider the case of the best-reply se-

lection mechanism, and the proof is essentially the same for the better-reply
selection mechanism. Without loss of generality, we suppose that there ex-
ists a number σ̄ with 0 < σ̄ < 1 such that σ ≥ σ̄ in the limiting process of
evolutionary dynamics.

We take k = 1.01 in Lemma 10.7, and in this proof denote s1.01 by s̄.
We further denote 2−s̄gσ̄(m) by g′, and assume µ < g′ (see the definition
of gσ̄(m) in (10.1)). As specified in the proof of Lemma 5.1, our main goal
is to calculate U(BC,NC). To this end, we are going to define a finite
sequence of events (F1, F2, F3, F4) with respect to the Markov chain (Zt)t≥0,

and put event F to be
⋂4
i=1 Fi. For simplicity, we denote

⋂l
i=1 Fi by Dl for

all 1 ≤ l ≤ 4. Thus Dl = Dl−1 ∩ Fl. To deduce U(BC,NC), we assume
Z0 ∈ BC in period 0. We shall see that the argument below is independent
to the exact initial state in BC. We enumerate the periods that at least one
mutation happens as u1, u2, . . .. Suppose that q1 is the individual chosen in
M(1) in period u1.

Event F1 := {Z1
u1

(q1) = high, mb(u1) = mb(0) ∀b ∈ {s2, no, yes}}. [The
first mutation is in population M(1) only and that yields a high strategy.]

Claim: When µ < 1/7, for all w in BC,

P (F1|Z0 = w) = (1− µ)/6 > 1/7. (10.8)

Note that conditional on u1 is finite, the probability that the first muta-
tion happens at population M(1) is 1/2; conditional on that the first muta-
tion affects population M(1), the probability that the mutant’s new strategy
is high and no mutation happens in population M(2) at u1 is (1− µ)/3.

Event F2 := {µ−1 < u2 − u1 < 100/µ}. [The number of periods between
the first and the second mutation is between µ−1 and 100µ−1.]

Claim: When µ < 1/4, for all w in BC,

P (F2|Z0 = w) > 1/16− 1/200. (10.9)

It is straightforward to see

P
(
u2 − u1 > µ−1

)
≥ (1− 2µ)µ

−1

=
(

(1− 2µ)
1

2µ

)2

> 4−2 = 1/16, (10.10)
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when µ < 1/4. (Recall that y(n) = (1− 1/n)n, n ≥ 2, is a strictly monotone
increasing function with limit e−1 as n→∞.) From E[u2 − u1] = 1/(2µ), it
follows that P (u2 − u1 > 100/µ) < 1/200 by Markov inequality.

We denote t1 to be the first period after u1 when the state is in NE, i.e.,
t1 = min{t > u1 : Zt ∈ NE}.

Event F3 := {t1 − u1 ≤ 1/(2µ)}. [From period u1, it takes less than
1/(2µ) periods back into NE.]

Claim: Denote 2 + (8/σ̄) by c̄σ̄. For all w in BC,

P (F3|D2, Z0 = w) ≥ 1− e−c̄σ̄2−s̄. (10.11)

If t1 < u2, then throughout the period between t1 and u2, no change
happens on either X1 or X2, and it is at a state in NE. Recall the definition
of fσ̄(m) in (4.3). From Corollary 10.2 and Markov inequality,

P
(
U0,m (Zu1 , NE) > ec̄σ̄2s̄fσ̄(m)

)
< e−c̄σ̄2−s̄. (10.12)

We may then infer

P (t1 − u1 > ec̄σ̄2s̄fσ̄(m)|u2 − u1 > 1/µ) < e−c̄σ̄2−s̄,

from the fact of no mutation between period u1 and u2 and the assumption
µ < g′ ≤ e−c̄σ̄/(2s̄32fσ̄(m)). Therefore, for all w in BC,

P (t1 − u1 > 1/ (2µ) |D2, Z0 = w) < e−c̄σ̄2−s̄.

Event F4 := {∃t : u1 < t < u2, Zt ∈ NC}. [The process enters into NC
at some period between the first and the second mutation.]

Claim:

P (F3 ∩ F4|D2, Z0 = w]) ≥ 2−s̄(2−c̄σ̄ − e−c̄σ̄) ∀w ∈ BC. (10.13)

Note that, in any period t > u1, if mhigh(t) > mlow(t) = 0, then popula-
tion M(2) is under the selection pressure to strategies no and yes. For any
two periods τ1 and τ2 with τ1 < τ2, recall the definition of ∆no(τ1, τ2) and
∆yes(τ1, τ2) in Section 10.6 and Gτ1,τ2 in Lemma 10.9. We denote the event
of 1.01∆no(τ1, t) ≥ ∆yes(τ1, t) for all periods t with τ1 < t < τ2 by Hτ1,τ2 . We
take ms2(u1) as number n in Lemma 10.7, and find that, given any t > u1,
(for example, take t as min{t′ > u1 : ms2(t′) = 0})

P
(
Hu1,t

∣∣Gu1,t,mhigh(t
′) ≥ mlow(t′) = 0 ∀t′ with u1 < t′ < t

)
≥ 2−s̄. (10.14)

From Lemma 10.10 and the definition of F1, if both Hu1,t and Gu1,t hap-
pens, then it follows that low is not a best reply of M(1) up to period t
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and no individual in M(1) is playing low at t. Conditional on that low is
never the best reply of population M(1), with the decrease of x2

s2
, high will

become the best reply of population M(1) when x2
s2
≤ 1/3. We show be-

low that the following event happens with positive probability conditional on
1.01∆no(u1, t) ≥ ∆yes(u1, t) and no mutation involved for all periods t > u1:
the whole population M(1) moves to high and the whole population M(2)
moves away from s2, i.e., it enters a state in NC.

For the original Markov chain (Zt)t, we take k = 4/σ̄ in Lemma 10.8
and conclude that the probability is greater than 2−1−2k that the mutant will
keep playing strategy high between period u1 and u1 +dkme. (*) Recall that
when the mutant is playing high and no individual in M(1) is playing low,
M(2) is under selection pressure and moving away from s2. Taking the same
k and λ = 1/3 in Lemma 10.9, we find

P
(
ms2 (u1 + dkme) ≤ m

3

∣∣∣Fh>l, Gu1,u1+dkme

)
≥ 1

2
(10.15)

where Fh>l := {mhigh(t) > mlow(t) = 0 ∀u1 < t ≤ u1 + dkme}. If the events
in (*), (10.14) and (10.15) are all true, then (zt)u1≤t<u2 is in a trajectory to
NC. Combining all three results above as well as (10.11), we have proved
the claim.

Finally, from (10.8), (10.9) and (10.13), it follows that

min
w∈BC

P (F |Z0 = w) > (1/7)(1/16− 1/200)2−s̄(2−c̄σ̄ − e−c̄σ̄),

when µ < g′. Now we calculate the expected transition time from BC to NC
conditional on F:

max
w∈BC

Tw(F ) = max
w∈BC

(
E
[
u1|F, Z0 = w

]
+ E

[
t1 − u1|F, Z0 = w

])
.

By the definition of F3, E[t1 − u1|F, Z0 = w] < 1/(2µ), for all w in BC.
So, maxw∈BC Tw(F ) < 1/(2µ) + 1/(2µ) = µ. (Tw(F ) is defined in (5.2).) We
may also infer from the definition of F2 that, for all w in BC,

Tw(F c) ≤ E
[
u1|F, Z0 = w

]
+ 100/µ < 1/(2µ) + 100/µ.

We complete the proof by Lemma 5.1. �.
Comment: We do not specify the exact value of σ ≥ σ̄ in the above

proof. One can see that the proof can be applied to any fixed σ with 0 <
σ < 1 or σ = 1− µ in the limiting process. The proof is valid, as long as all
best-reply quasi strategies are assigned with the same probability for each
selection step.
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10.8 Preliminary results to prove Theorem 7.1

Recall that in Γ the sets of all nodes where player I and II play are Λ1 and
Λ2, respectively.

Lemma 10.11 Condition 1 implies that player I moves at node n1
(1)(SC).

Proof. Denote the immediate successor node of n1
(1)(SC) on path pSC by

n̂ := ψ−1(n1
(1)(SC)) ∩ pSC . (Recall the definition of ψ−1 in Section 2.1.) It

is straightforward to see the subplay from n̂ to nSC is the path of the local
backward induction equilibrium in subgame Γn̂. If player II plays at node n̂,
then the local backward induction strategy requires player II to move towards
n̂ at n1

(1)(SC). Thus the path of the global backward induction equilibrium is
from the root to nSC . This contradicts with the assumption that pSC 6= pBC .
�

Lemma 10.12 Denote by N2
BC the set of nodes where player II takes a move

according to her backward induction quasi strategy. If Γ satisfies both Con-
dition 1 and Condition 2, then Γn1

(1)
(SC) contains no node in N2

BC.

Root

ñBC,SC (player I)

n1
(1)(SC) (player I)

n̂

nSC

pSC

paths)(othern1
(1)

BIE

pBC

paths)(other

Figure 9: Tree structure of Γ
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Proof. We prove it by contradiction. See Figure 9 for the tree structure
of Γ.

Step 1: Suppose the node Γn1
(1)

(SC) where player II moves in her back-

ward induction quasi strategy, then player II moves towards n1
(1)(SC) in her

backward induction strategy at all nodes in p(n1
(1)(SC)) ∩ Λ2.

Step 2: Suppose the node n̂ = ψ−1(n1
(1)(SC)) ∩ pSC exists. (If not, the

analysis in this step can be ignored.) Because the payoff vector (v1
SC , v

2
SC)

gives the maximum payoff for each player in Γn̂, the path of the local back-
ward induction equilibrium starts from n̂ and ends at nSC . Hence, at each
node in Ψ(n1

(1)(SC))∩ pSC , the player moves in the direction towards nSC in
her backward induction strategy.

Step 3: From Lemma 10.11, we know that player I moves at node
n1

(1)(SC). If she moves towards n̂, then with the backward induction path

in Γn̂ taken into account, player I can secure payoff v1
SC , conditional on that

player II plays her backward induction strategy.
Step 4: Since player II moves along the whole pSC in her backward in-

duction strategy, player I ’s best reply against it, i.e., her backward induction
strategy, should guarantee a payoff at least v1

SC . However, by Condition 2,
pBC does not go through n1

(1)(SC), and hence player I receives a worse payoff
in BC. Contradiction. �

Lemma 10.13 If Γ satisfies both Condition 1 and Condition 2, then in sub-
game Γn1

(1)
(SC), the path of the local backward induction equilibrium is from

n1
(1)(SC) to n1

(1).

Proof. We prove it by contradiction. Suppose that the path of the local
backward induction equilibrium in Γn1

(1)
(SC) is not from n1

(1)(SC) to n1
(1).

Because the only terminal node not dominated by nSC is n1
(1), the path of

the local backward induction equilibrium in Γn1
(1)

(SC) must be from n1
(1)(SC)

to nSC , and the path pBC in Γ must be from the root to nSC . This contradicts
Condition 2. �

Lemma 10.14 Consider a quasi strategy b1 of player I which satisfies the
following propositions.

1. At every node in Ψ(n1
(1)(SC)) ∩ Λ1, player I moves towards the node

n1
(1)(SC).

2. Player I plays a local backward induction strategy in Γn1
(1)

(SC).

Then, the best-response quasi strategy b2 of player II against b1 includes no
move in Γn1

(1)
(SC).
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Proof. From Lemma 10.13, it follows that player I’s induced strategy of b1 in
Γn1

(1)
(SC) is consistent with the path of local backward induction equilibrium

in Γn1
(1)

(SC), which is from n1
(1)(SC) to n1

(1).

We prove the statement by contradiction. Suppose that player II’s best
response b2 consists of some move at a node in Γn1

(1)
(SC). It follows that the

induced strategy of b2 in Γn1
(1)

(SC) is the local backward induction strategy

in Γn1
(1)

(SC). We may also infer that player II moves towards n1
(1) at every

node in p(n1
(1)(SC))∩Λ2 in strategy b2, since b2 includes a move in Γn1

(1)
(SC).

So the equilibrium path generated by (b1, b2) starts from the root and goes
through node n1

(1)(SC).

Under this circumstance, we claim that (b1, b2) is the backward induction
strategy profile in Γ. To see this, firstly recall that b1 and b2 are consistent
with the path of backward induction equilibrium in Γn1

(1)
(SC). Suppose a node

n in {n1
(1)(SC)} ∪Ψ(n1

(1)(SC)) is such that b1 and b2 are consistent with the
path of the local backward induction equilibrium in subgame Γn. If the node
ψ(n) is played by player I, then the move towards n1

(1) gives him the highest
possible payoff. So, b1 induces the backward induction strategy of player I
in Γψ(n). If ψ(n) is played by player II, we know from the paragraph above
that the best response in Γψ(n) against b1 conditional on reaching node ψ(n)
is moving towards n1

(1). In this way, we conclude that (b1, b2) is the backward

induction strategy profile in Γ. Thus, path pBC goes through node n1
(1)(SC),

which contradicts Condition 2. �

Lemma 10.15 Suppose that Γ satisfies Condition 1 and 2. In subgame ΓN̄ ,
there are at least two induced quasi strategies of player II. In the whole game
Γ, ς2 > 2.

Proof. If there is only one quasi strategy in Γn1
(1)

(SC), then pSC is no longer

the path of a Nash equilibrium component. Lemma 10.14 then completes
the proof. �

We present below a generalised version of Lemma 10.7.

Corollary 10.16 Suppose a natural number r is given. Let (Yi)i∈N be an
infinite sequence of i.i.d. random variables with P (Yi = l) = 1/r for all
1 ≤ l ≤ r and for all i ∈ N. Given a natural number l with 1 ≤ l ≤ r, we
define N l

t =
∑t

i=1 1Yi=l for all natural numbers t. Then, given any k > 1,
there exists a natural number sk such that, for all n > 0, we have for any l
with 1 ≤ l ≤ r

P (kN l
t >

t

r
∀0 < t ≤ n) ≥ r−sk .
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10.9 Sketch proof of Theorem 7.1

10.9.1 The transition from BC to SC

Denote B̄1 and B̄2 to be the set of all quasi strategies of player I and player
II which requires at least one move in subgame Γn1

(1)
(SC), respectively.

Take a pure quasi strategy of player I in SC as b3. Recall that the payoff
vector of BC is (v1

BC , v
2
BC). For the equilibrium component BC, we enu-

merate all pure Nash equilibria in it as ((b1
1, b

2
1), (b1

2, b
2
2), ..., (b1

i , b
2
i )). Denote

B1
BC := (b1

1, b
1
2, ..., b

1
i ) and B2

BC := (b2
1, b

2
2, ..., b

2
i ). We define ū to be the best

payoff to player I when her uses the strategy b3 against a strategy in B2
BC of

player II, i.e., ū := maxb∈B2
BC
u1(b3, b). Note that ū < v1

BC < v1
(1). So there

exists a positive number ρ < 1 with

(1− ρ

ς2 − 2
)ū+

ρ

ς2 − 2
v1

(1) < v1
BC . (10.16)

(Recall Lemma 10.15 that ς2 > 2.) We fix such a ρ for the proof.
Our goal is to prove that there exists a positive number c such that for

all finite m,
lim
µ→0

πµ,m[NC] > c.

As before, we consider the case of the best-reply selection mechanism, and
the proof is essentially the same for the better-reply selection mechanism.
Without loss of generality, we suppose that there exists a number σ̄ with
0 < σ̄ < 1 such that σ ≥ σ̄ in the limiting process of evolutionary dynamics.

We reset cσ̄ to be exp −200(ς2−ρ)
ρσ̄

in Lemma 10.4 from now on. We take
k = 1.5 in Corollary 10.16, and in this proof denote s1.5 by s̄. We further
denote ς−s̄2 gσ̄(m) by g′, and assume µ < g′ (see (10.1) for the definition of
gσ̄(m)). As in the proof of Proposition 6.1, our main goal is to calculate
U(BC,NC). To this end, we are going to define a finite sequence of events
(F1, ..., F10) with respect to the Markov chain (Zt)t≥0. For simplicity, we

denote
⋂l
i=1 Fi by Dl for all l with 1 ≤ l ≤ 10. Thus Dl = Dl−1 ∩ Fl. To

deduce U(BC,NC), we assume Z0 ∈ BC in period 0. We shall see that
the argument below is independent to the exact initial state in BC. We
enumerate the periods that at least one mutation happens as u1, u2, ...

First phase: events (F1, ..., F6) between period u1 and u2

[Event D6 =
⋂6
i=1 Fi will push the majority of M(2) to a strategy in

B2 \ B̄2. If the mutant at u2 happens to be an individual in M(1) playing
a pure quasi strategy in SC, then the distribution of the converted M(2) on
B̄2 will possibly be approximately uniform all the time from u2 to u3. Thus
M(1) will favour a pure quasi strategy in SC from some time after u2. See
Comment 1 at the end of this section for more details.]
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Recall the strategy b1 defined in Lemma 10.14. Suppose that q1 is the
individual chosen in M(1) in period u1.

Event F1 := {Z1
u1

(q1) = b1, Z
2
u1

(q) = Z2
0(q) ∀q ∈ M(2)}. [The first

mutation is in population M(1) only and that yields a b1 strategy.]
With the similar analysis as in (10.8), we conclude that, when µ < 1/2,

for all w in BC,

P (F1|Z0 = w) = (1− µ)/(2ς1) > 1/(4ς1). (10.17)

Event F2 := {µ−1 < u2 − u1 < 100/µ}. [The number of periods between
the first and the second mutation is between µ−1 and 100µ−1.]

With the similar analysis as in (10.9), we conclude that, when µ < 1/4,
for all w in BC,

P (F2|Z0 = w) > 1/16− 1/200. (10.18)

Event F3 := {Zu2−1 ∈ BC}. [After the transition triggered by the
mutant, it converts back to BC.]

If Zu2−1 /∈ BC, then we do not need to consider the events F4, ..., F9 and
F10 below. See Comment 2 at the end of this section for more details about
F3.

We denote t1 to be the first period after u1 when the mutant q1 changes
her strategy, i.e., t1 = min{t > u1 : Z1

t (q1) 6= Z1
u1

(q1)}.
Event F4 := {t1 − u1 < 1/(2µ)}. [From period u1, it takes less than

1/(2µ) for q1 to change her strategy.]
Conditional on D3, Zu1+1/(2µ) is in NE if F4 happens. With the similar

analysis as in (10.11), we conclude that, for all w in BC,

P (F4|D3, Z0 = w]) ≥ 1− cσ̄ = 1− exp
−200(ς2 − ρ)

ρσ̄
. (10.19)

Event F5 := {t1 − u1 > d2(ς2−ρ)m
ρσ̄

e} [From period u1, it takes more than

d2(ς2−ρ)m
ρσ̄

e} periods for the mutant to change her strategy from s1.]

With the similar analysis as in F4 in Example 1 in [28], we conclude that,
when µ < g′, for all w in BC,

P (F5|D3, Z0 = w) > 2−
4(ς2−ρ)
ρσ̄

−1 > exp(−4(ς2 − ρ)

ρσ̄
− 1).

Thus, for all w in BC,

P (D5, Z0 = w)

≥P (D3, Z0 = w)

(
exp(−4(ς2 − ρ)

ρσ̄
− 1)− exp

−200(ς2 − ρ)

ρσ̄

)
. (10.20)
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We denote c5(σ̄) := exp(−4(ς2−ρ)
ρσ̄
− 1)− exp −200(ς2−ρ)

ρσ̄
for simplicity.

Event F6 := {
∑

b∈B̄2 mb(u2) ≤ ρm/ς2}. [At the second mutation, the
proportion of population M(2) playing a move in ΓN̄ is no greater than
ρm/ς2.]

With an adapted analysis on F5 in Example 1 in [28], we conclude that,
for all w in BC,

P (D6, Z0 = w) ≥ P (D5, Z0 = w)/2. (10.21)

Second phase: events (F7, ..., F10) between period u2 and u3

[Transition to SC.]
Recall that b3 is a pure quasi strategy of player I in SC. Suppose that q̄1

is the individual chosen in M(1) in period u1.
Event F7 := {Z1

u2
(q̄1) = s3, Z

2
u2

(q) = Z2
u2−1(q), ∀q ∈ M(2)}. [The

second mutation is in population M(1) only and that yields an b3 strategy.]
With the similar analysis as in (10.8), we conclude that, when µ < 1/2,

for all w in BC,

P (F7|D6, Z0 = w) = (1− µ)/(2ς1) > 1/(4ς1). (10.22)

Event F8 := {µ−1 < u3 − u2 < 100/µ}. [The number of periods between
the second and the third mutation is between µ−1 and 100µ−1.]

With the similar analysis as in (10.9), we conclude that, when µ < 1/4,
for all w in BC,

P (F8|D7, Z0 = w) > 1/16− 1/200. (10.23)

We denote t2 to be the first period after u2 when the state is in NE, i.e.,
t2 = min{t > u2 : Zt ∈ NE}. We reset c̄σ̄ := 2 + 4ρ

σ̄(ς2−2−ρ)
from now on.

Event F9 := {t2 − u2 < 1/(2µ)}. [From period u2, it takes less than
1/(2µ) periods back into NE.]

With the similar analysis as in (10.11), we conclude that, for all w in BC,

P (F9|D8, Z0 = w) ≥ 1− e−c̄σ̄ς−s̄2 . (10.24)

Event F10 := {∃t : u2 < t < u3, Zt ∈ NC}. [The process enters into NC
in some period between the second and the third mutation.]

Claim:

P (F9 ∩ F10|D8, Z0 = w]) ≥ ς−s̄2 (2−c̄σ̄ − e−c̄σ̄) ∀w ∈ BC. (10.25)

Denote b4 to be a best response of player II to b3 such that (b3, b4) is a
pure Nash equilibrium. The mutant playing s3 attracts M(2) to divert to a
strategy in B̄2.
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For any two periods τ1 and τ2 with τ1 < τ2, denote the difference of
number of individuals playing the strategy b4 between these two periods by

∆b4(τ1, τ2) := (mb4 (τ2)−mb4 (τ1))

and we further denote

∆B̄2(τ1, τ2) :=
∑
b∈B̄2

(mb (τ2)−mb (τ1)) .

Given two periods τ1 < τ2, denote the event of no mutation in both
populations between period τ1 and τ2 by Gτ1,τ2 , and the event of

2∆b4(τ1, t) ≥ ∆B̄2(τ1, t)/(ς2 − 1) ∀t with τ1 < t < τ2

by Hτ1,τ2 . (ς2− 1 corresponds to Lemma 10.14.) We take m−
∑

b∈B̄2 mb(u2)
as number n in Corollary 10.16, and find that, given any t > u2, (for example,
take t as min{t′ > u2 :

∑
b∈B̄2 mb(t

′) = m})

P

(
Hu2,t

∣∣∣Gu2,t,mb3(t′) =
∑
b∈B̄1

mb(t
′) = 1 ∀t′ with u2 < t′ < t

)
≥ ς−s̄2 .

(10.26)
We show that it is with positive probability that the mutant will keep

playing s3 for sufficiently long time.
For the original Markov chain (Zt)t, we take k = 2ρ/(σ̄(ς2 − 2 − ρ)) in

Lemma 10.8 and conclude that the probability is greater than 2−1−2k that
the mutant will keep playing strategy b3 between period u2 and u2 + dkme.
(*) Taking the same k and λ = 1− ρ

ς2−2
in Lemma 10.9, we find

P

(∑
b∈B̄2

mb (u2 + dkme) ≥ ρm

ς2 − 2

∣∣∣F̂ , Gu2,u2+dkme

)
≥ 1

2
(10.27)

where event

F̂ := {ms3(t′) =
∑

s∈N1(N̄)

ms(t
′) > 0 ∀u2 < t′ ≤ u2 + dkme}.

Comment 1: Suppose the current state is in BC. From Condition 2,
it follows that no individual in population I is moving at a node in ΓN̄ . If
every individual in M(2) is playing a quasi strategy in B2

BC , then by Lemma
10.12, no individual in M(2) is moving at a node in ΓN̄ .

However, if this is the case, then there may be some individuals in M(2)
playing a strategy in B̄2, or any other quasi strategy. It’s the average payoff
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to M(1) such that no individual prefers to deviate from B1
BC , and hence the

state stays in BC. If a mutation happens to be a pure quasi strategy in SC
at an individual in M(1), then the following scenario might be true. In the
case that a significant proportion of M(2) is playing a strategy consistent
with the subplay p(n1

(1)), a pure quasi strategy of player I containing a local

backward induction strategy in Γn1
(1)

(SC) might be the best response for M(1)

for some time period after u1. That would make M(2) prefer a strategy with
a local backward induction strategy in Γn1

(1)
(SC) and then two populations

would begin to convert to a trajectory back to BC. See the example below
in Figure 10.

I

II

I

II

18
0.1

0
0

x5 x6

17
2

x3 x4

2
1

x2

3
0

x1

Figure 10: Example in Comment 1

We consider the case of large populations with very small mutation rate.
Suppose Z0 ∈ BC where mx1 = m, mx2 = d15m

16
e, mx5 = 0 and mx6 = bm

16
c.

We further suppose that a mutation happens in period 1 such that mx3 = 1 >
mx4 = 0, and that mutation will stay at x3 for sufficiently long time. Then,
M(2) is under selection pressure, and an individual playing x2 would like
to choose x5 or x6 randomly. Let’s assume a period that m/256 individuals
have changed their strategies from x2 to x5 or x6 with equal probability. By
strong law of large numbers, it would be very close to the result of m/512
to x5 and m/512 to x6. We now check the average payoff of strategy x4 of
player I against this distribution of M(2)

ux4 = 2

(
15

16
− 1

256

)
+ 18

(
1

512
+

1

16

)
=

775

256
≈ 3.027
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and the average payoff of x3

ux3 = 2

(
15

16
− 1

256

)
+

17

256
=

495

256
< 3

So x4 is the best response at that time, and M(1) is under the selection
pressure to x4. If the bottom node is connected by such drift of M(1), then
x5 is dominated by x6. Recall that (x3, x5) is the pure Nash equilibrium in
NC. So the transition triggered by the mutant playing x3 will move back to
BC with probability close to 1.

Comment 2: We continue with the analysis in Comment 1, and show
why event D6 above is necessary for the general two-player extensive-form
games of perfect information. For a state in BC, the proportion profile of
M(2) playing each strategy can be various. If one can force the majority of
M(2) drifting away from B̄2, then it is with bounded probability that the
process enters SC after the second mutation of an individual in M(1) playing
s3.

A mutation of an individual in M(1) to bs1 may trigger such desired
drift of M(2). From Lemma 10.14, we know that the best response of M(2)
against b1 is some strategy in B2 \ B̄2.

Comment 2: One may note that the first mutation may lead a transi-
tion to a Nash equilibrium in neither SC nor BC, i.e., to some other Nash
equilibrium component. For our purpose, we only need to consider the case
that it still stays in BC at period u2 − 1, and that is shown in the Second
Period.

10.9.2 Proof of Theorem 7.1 by event F

We check why the transition is in a trajectory to SC if all events above,
i.e., D9, (10.26), (*) and (10.27), are true. Recall that in (10.21), there are
at most ρm/ς2 individuals in M(2) playing a strategy in B̄2 just before the
second mutation. Consider the state in period t̂ := u2 + dkme. From (10.27)
at least ρm/(ς2 − 2) individuals are playing a strategy in B̄2 at t̂. So there
are at least

ρm

ς2 − 2
− ρm

ς2
=

2ρm

ς2
2 − 2ς2

individuals converting to a strategy in B̄2 between period u2 and t̂. From
(10.26), we may further infer that at least ρm

ς32−2ς22
among them are playing b4

in period t̂. Denote by T̂ the minimum period that the number of individuals
in M(2) playing a strategy in B̄2 is bρm/(ς2 − 2)c. Then T̂ ≤ t̂.

Suppose an individual q in M(1) is playing a strategy in B̄1 in period
T̂ . Let’s consider its average payoff against the induced distribution of M(2)
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which play a strategy in B̄2 in period T̂ . If q plays b3, then the average payoff
is u1

SC . If q plays a strategy consistent with p(n1
(1)), e.g. b1, then the average

payoff is at most max(
v1
(3)

ς22 +
(ς22−1)v1

(1)

ς22
). By Condition 1, we know that b3 gives

the best payoff in all strategies in B̄1 at T̂ .
Meanwhile, from (10.16), we know that a pure quasi strategy of player I

in BC is still the (global) best reply for M(1) at least until period T̂ . After
T̂ , with M(2) drifting to strategies in B̄2, pure quasi strategies of player I
in SC will become the best replies for population M(1) from some period at
least until u3, if (10.26) is true. If F9 is true, then it will converge to a state
in SC before u3. In summary, none strategy consistent with p(n1

(1)) is a best

response for M(1) in any period between u2 and u3.

Define the event that the state enters NC before u3 by F := {∃t <
u3 s.t. Zt ∈ NC}. Then F ⊃ ((D2 ∩ F c

3 ) ∪ D10). From (10.17), (10.18),
(10.20), (10.21), (10.22), (10.23) and (10.25), it follows that

min
w∈BC

P (F |Z0 = w) >
1

(4ς2)2
(

1

16
− 1

200
)2c5(σ̄)ς−s̄2

2−c̄σ̄ − e−c̄σ̄
2

.

Now we calculate the maximum expected transition time from BC to NC
conditional on F: for each w in BC,

Tw(F ) ≤ E [u1|F, Z0 = w] +E [u2 − u1|F, Z0 = w] +E [t2 − u2|F, Z0 = w] .

(Recall Tw(F ) is defined in 5.2.) For all w in BC, by the definition of F2,
E
[
u2 − u1|F, Z0 = w

]
< 100/µ; by the definition of F9, E

[
t2 − u2|F, Z0 =

w
]
< 1/(2µ). So,

max
w∈BC

Tw(F ) < 1/(2µ) + 100/µ+ 1/(2µ) = 101/µ.

It follows from the definition of F2 and F8 that, for all w in BC,

Tw(F c) ≤
(
E
[
u1|F, Z0 = w

]
+ 100/µ+ 100/µ

)
< 1/(2µ) + 100/µ+ 100/µ.

We complete the proof by Lemma 5.1.

10.10 Proof of Theorem 8.2

Recall the node n1
(1)(SC) in Γ denoted in Condition 1 in Section 7 and that

node ñBC,SC is the deepest node on both pSC and p(n1
(1)). For simplicity, we

abbreviate the notation ñBC,SC to ñ. We prove the theorem by considering
the following two cases.
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1. Case I: ñ ∈ Γn1
(1)

(SC). We show that, when v̄2
SC = v̄2

(1) and v̄1
SC = v̄1

(2),

p(nSC) becomes the path of the new backward induction equilibrium
in Γ̄. Firstly note that v̄1

SC > v̄1
p and v̄2

SC > ū2
p for any play p which

ends at a terminal node in subgame Γ̄n1
(1)

(SC). So, the path of the

backward induction equilibrium in Γ̄ñ leads to the payoff vector v̄SC .
If we turned the node ñ to a terminal node with payoff vector vBC
(the one of the original backward induction equilibrium in Γ), then
the backward induction path would proceed from the root to this new
node. Now v̄SC dominates vBC , and thus the new backward induction
equilibrium path proceeds towards nSC . It is straightforward to see the
play p(nSC) corresponds to a stochastically stable component for any
population size in Γ̄. (One mutation is enough to trigger a transition
from any other equilibrium component to this new backward induction
equilibrium component.)

2. Case II: ñ /∈ Γn1
(1)

(SC). We divide it into two sub-cases.

(a) Sub-case I: the backward induction equilibrium in the subgame
Γn1

(1)
(SC) terminates at n1

(1). It follows that the path of the back-

ward induction equilibrium in Γ remains the same after raising
vSC .

As before, we suppose player I and player II has ς1 and ς2 quasi
strategies in Γ, respectively. Define

ε(Γ) := u1
(1) −

(
u1

(2)

ς22
+

(ς2
2 − 1)u1

(1)

ς2
2

)
.

We apply Theorem 7.1, and the desired conclusion follows.

Note that BC is the only stochastically stable component in Γ,
so we can skip event F3 in the proof of Theorem 7.1: if Zu2−1 ∈
NE, then Zu2−1 must be in BC. (Detailed analysis needs the
Disconnected-moves-unchanged constraint.)

(b) Sub-case II: the backward induction equilibrium in subgame
Γn1

(1)
(SC) does not terminate at n1

(1). By the similar arguments

as in Case I, we find that p(nSC) becomes the path of the new
backward induction equilibrium in Γ̄, and the corresponding equi-
librium component is stochastically stable for any population size.
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